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Optimal Control of CSTR
Kalpesh Pathak, Anil Markana and Nishant Parikh

Abstract—Nonlinear Model PredictiveControl (MPC) of Con-
tinuous Stirred Tank Reactor (CSTR) has been demostrated in
this work. Optimal state estimation has been done using Extended
Kalman Filter (EKF). Second order mathematical model for
CSTR has been developed and further used for dynamic simula-
tions. It is found that optimal control of temperature inside the
CSTR is achieved better with the help of MPC strategy compared
to conventional control strategies. It is seen that setpoint tracking
performance using this optimal control strategy is satisfactory
achieved.

Index Terms—Model Predictive Control, Extended Kalman
Filter, controller effort

I. INTRODUCTION

Chemical reactors together with mass transfer processes
constitute an important part of chemical processes. From a
control point of view, reactors belong to the most difficult
nonlinear processes. We describe here CSTR as second order
process where the aim is to control the temperature of product
inside CSTR by manipulating the inlet steam temperature.
Exothermic reactors are very interesting systems because of
their potential safety problems and the possibility of exotic
behavior such as multiple steady states. Furthermore, oper-
ation of chemical reactors is corrupted by many different
uncertainties. Some of them arise from varying or not ex-
actly known parameters like chemical kinetics or reaction
activity. Operating points also change in this process. Various
types of perturbations also affect chemical reactors. All these
uncertainties can cause poor performance or even instability
of closed-loop control systems. In this paper we concentrate
on a CSTR as a highly nonlinear system. In the jacketed
chemical reactor (CSTR) shown in Figure 1, a second-order
exothermic reaction takes place, in which component A react
irreversibly and at specific reaction rate to form a product.
The reaction rate constant follows the Arrhenius equation.
According to this equation, the effect of temperature, on the
specific reaction rate is usually exponential. This exponential
temperature dependence represents one of the most severe
nonlinearities in chemical engineering systems.[7] .
Patwardhan S.C. et. al.[5] used a discrete quadratic pertur-
bation model for approximating nonlinear plant dynamics
in the neighborhood of the operating point by simulating a
benchmark CSTR system. Simulation with MPC with State
Estimation and Adaptation Mechanism[7] for a CSTR has
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Fig. 1. Continuous Stirred Tank Reactor

been performed for normal operating conditions and with dis-
turbances also. Past work includes classical control, Artificial
Intelligence(AI), Neural Network(NN) and Fuzzy logic based
control algorithm for CSTR.
Optimal control strategies like MPC and Linear Quadratic
Gaussian (LQG) Control are effective here. MPC refers to
a class of algorithms that compute a sequence of manipulated
variable adjustments in order to optimize the future behavior
of a plant. Adaptation of linear models with occurrence of new
conditions according to variety of operating points in nonlinear
systems is a solution for extending linear methods in design
of controllers for nonlinear systems.Nonlinear MPC to control
temperature inside CSTR has been presented here. Optimal
state estimation has been done using Extended Kalman Filter
(EKF). Second order mathematical model for CSTR has
been developed and further used for dynamic simulations.
Satisfactory set point tracking performance shows that optimal
control of temperature inside the CSTR is achieved better with
the help of MPC strategy compared to conventional control
strategies.

II. MATHEMATICAL MODEL
In this section the mathematical model for the CSTR is

derived. The process input and output are temperature of the
steam and temperature of the product respectively.
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Overall reactor material balance

The overall reactor material balance equation is.

d

dt
vρ = Finρin − Foutρ (1)

Where,
v : constant liquid rector volume
ρ : density of reactor fluid

ρ in : density of inlet stream
Fin : Flow rate of inlet stream
Fout : Flow rate of outlet stream
Assuming Constant density (ρ in = ρ ) and volume, it is easy
to show that Fin = Fout = F.

Balance on component A

here we consider the simple reaction A → B. The balance
on component A is

v
d

dt
CA = FCAf − FCA − V rA (2)

Where,
CA :Concentration of component A in the reactor
rA :Rate of reaction per unit volume
The Arrhenius expression is normally used for the rate of
reaction. A first-order reaction results in the following

rA = k0exp(
−Ea
RT

)CA (3)

Where,
k0 :Frequency factor
Ea :Activation energy
R : Ideal gas constant
T :Reactor temperature on an absolute scale(Rankine or
Kelvin)

Reactor energy balance

The reactor energy balance assuming constant volume, heat
capacity (Cp) and density, and neglecting changes in the
kinetic and potential energy is,

vρCp
d

dt
T = FρCp(Tf − T ) + (−∆H) ∗ V rA −UA(T − Tj)

(4)

where,
(-4H) : heat of reaction
U : Heat transfer coefficient
A : Heat transfer area
Tf :Feed temperature
Tj :Jacket temperature

State variable form of the equations

d

dt
CA = f1(CA, T ) =

F

v
(CAf−CA)−k0exp(

−Ea
RT

)CA (5)

d

dt
T = f2(CA, T )

F

v
(Tf−T )+

(−∆H)

ρCp
∗k0exp(

−Ea
RT

)CA−
UA
vρCp

(T−Tj)
(6)

Taking state variable x1 = CA and x2 = T above model can
be written as nonlinear state variable form

d

dt
x(t) = f(x, u) (7)

where,
x(t) : state vector
u(t) : Input vector
The nonlinear dynamical Eqns for CSTR given by Eqn 5 &
Eqn. 6, considering parameters and constants listed in TableI
can be written as,

d

dt
x1 = Da(1− x1)− exp( x2

1 + x2

γ

)− x1 (8)

d

dt
x2 = −x2+B(Da(1−x1)−exp( x2

1 + x2

γ

))+β(u−x2) (9)

The parameter values of the laboratory process are given in
Table I

Parameters Values
β 3
γ 40
B 22 DMA
Da 0.082 DMA
u -2.5 DMA

TABLE I
PARAMETER VALUES

III. OPTIMAL CONTROL STRATEGY
Linear model predictive control[6],[8] refers to a class

of control algorithms that compute a manipulated variable
profile by utilizing a linear process model to optimize a
linear or quadratic open loop performance objective subject
to linear constraints over a future time horizon. The first
move of this open loop optimal manipulated variable profile is
then implemented. This procedure is repeated at each control
interval with the process measurements used to update the
optimization problem. MPC is a control algorithm based on
solving an online optimal control problem. A receding horizon
approach is used, which can be summarized in the following
steps:

1) At time k and for the current state x(k); solve, on-line,
an open-loop optimal control problem over some future
interval, taking in to account of constraints.

2) Apply the first step in the optimal control sequence.
3) Repeat the procedure at time (k + 1); using the current

state x(k + 1).
When x(k) is not directly measured, one can obtain a closed
loop solution by replacing x(k) by an estimate x̂(k), provided
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by some form of observer. The various MPC algorithms only
differ amongst themselves in the model used to represent the
process, noise and the cost function to be minimized. They
share the common features as

1) Process model that is explicitly used to predict the
process output for a fixed number of steps in to future.

2) A known future reference trajectory.
3) Calculation of a future control sequence minimizing a

certain objective function (usually quadratic, that in-
volves future process output errors and control incre-
ments),

4) Receding strategy: at each sampling period only the first
control signal of the sequence calculated is applied to a
process controlled.

Objective Function

The various MPC algorithms propose different objective
functions[9] for obtaining the control law. The general aim is
that the future output y(n + j) on the considered horizon should
follow a desired reference signal w and at the same time, the
control effort, u necessary for doing so should be penalized.
The general expression for such an objective function will be
min

J =

j=N1∑
N2

δ(j)[ŷ(n+
j

n
)−ω(n+j)]2+

j=1∑
Nu

ρ(j)[∆u(n+j−1)]2

(10)
In some cases, the above equation also includes weighing on
control effort.N1 and N2 are the minimum and maximum cost
horizons and Nu is the control horizon. ω(n + j) is the future
reference trajectory.

IV. NONLINEAR STATE ESTIMATION

This section presents discrete-time EKF[3],[4] for nonlinear
state estimation. It considers discrete time dynamics and dis-
crete time measurements. This situation is often encountered
in practice. Even if the underlying system dynamics are
continuous time, the EKF usually needs to be implemented
in a digital computer. This means that there might not be
enough computational power to integrate the system dynamics
as required in a continuous-time EKF or a hybrid EKF. So the
dynamics are often discretized. and then a discrete-time EKF
can be used.
Suppose the CSTR system model represented as

xk = f(k−1)(x(k−1), u(k−1), ω(k−1)) (11)

yk = hk(xk, vk) (12)

state noise
ωk ∼ (0, Qk) (13)

and measurement noise

vk ∼ (0, Rk) (14)

where xk, uk and yk are system state, input and ouput
respectively. ωk and vk are zero mean white noise sequence
with variance of Qk and Rk respectively. We perform a Taylor

series expansion of the state equation around xk−1 = x̂k−1 and
ωk−1 = 0 to obtain the following:

xk = fk−1(x̂+k−1, uk−1, 0)+
∂fk−1

∂x
| x̂+k−1(xk−1−x̂+k−1)+

∂fk−1

∂x
| x̂+k−1ωk−1

(15)
xk = fk−1(x̂k−1, uk−1, 0)+Fk−1(xk−1− x̂+k−1)+Lk−1ωk−1

(16)
xk = Fk−1xk−1+[fk−1(x̂+k−1, uk−1, 0)−Fk−1x̂

+
k−1]+Lk−1ωk−1

(17)
xk = Fk−1xk−1 + ũk−1 + W̃k−1 (18)

Fk−1 and Lk−1 are defined by the above equation. The known
signal uk and the noise signal W̃k are defined as follows:

ũk = fk(x̂+k , uk, 0)− fkx̂+k (19)

ω̃k ∼ (0, LkQkL
T
k ) (20)

We linearize the measurement equation around xk = x̂−k and
vk = 0 to obtain

yk = hk(x̂−k−1, 0) +
∂hk
∂x
| x̂−k−1(xk − x̂−k−1) +

∂hk
∂x
| x̂−k−1vk

(21)
yk = hk(x̂−k−1, 0) +Hk(xk − x̂−k−1) +Mkvk (22)

yk = Hkxk + [hk(x̂−k−1, 0)−Hkx̂
−
k−1] +Mkvk (23)

yk = Hkvk + zk + ṽk (24)

Hk and Mk are defined by the above equation. The known
signal zk and the noise signal ṽk are defined as

zk = hk(x̂−k−1, 0)−Hkx̂
−
k−1 (25)

ṽk ∼ (0,MkRkM
T
k ) (26)

We have a linear state space system in Eqn 18 and a linear
measurement in Eqn 24 That means we can use the standard
Kalman filter equations to estimate the state. This results in
the following equations for the discrete time extended Kalman
filter.

P−
k = Fk−1P

+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1 (27)

Kk = P−
k H

T
k (HkP

−
k H

T
k +MkRkM

T
k )−1 (28)

x̂−k = fk−1(x̂−k−1, uk−1, 0) (29)

zk = hk(x̂−k , 0)−Hkx̂
−
k (30)

x̂+k = x̂−k +Kk(yk −Hkx̂
−
k − zk) (31)

x̂+k = x̂−k +Kk[yk − hk(x̂−k , 0)] (32)

P+
k = (I −KkHk)P−

k (33)

V. RESULTS & DISCUSSION

This section presents results of simulation using MAT-
LAB. Fig. 2 shows the simulation results for controlling
temperature inside the reactor when an MPC with EKF is
implemented. Simulation parameters like prediction horizon
and control horizon are 50 and 2 respectively. After a setpoint
change response reaches final steady value within less than
8 seconds.Results shows good tracking performance when a
reference trajectory changes.
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Fig. 2. Simulation results for MPC with Extended Kalman Filter for CSTR

VI. CONCLUSION

Second order mathematical model for CSTR has been
developed and dynamic simulation has been performed using
it. It can be observed that the optimal control of temperature
inside the CSTR is achieved better with the help of MPC
strategy compared to conventional control strategies.Nonlinear
MPC of CSTR has been demostrated and response shows that
satisfactory setpoint tracking performance with this optimal
control strategy has been achieved.
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