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Abstract/Executive summary

This deliverable focuses on the development of methods for model evaluation in order to
have unambiguous indications derived from the use of several evaluation metrics. The
information about model quality is aggregated into a single indicator using a fuzzy expert
system that can be applied to a wide range of model estimates where suitable test data
are available. This is a cross-cutting activity between CropM (C1.4) and LiveM (L2.2).
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Introduction

This protocol is the first major attempt to lay the groundwork for good practice standards
of model evaluation based on the use of modern concepts and criteria. The basis of the
protocol stems from the progresses made over the last two decades in setting new horizons
for model performance and on the problematic interpretations made of model evaluation.
The main important progresses made in the domain can be summarized as follows:

- aggregation of multiple evaluation metrics into integrated indicators (based on the
fuzzy logic principle, after Bellocchi et al., 2002a)

- assessment of model departure from observations with respect to an external
variable (pattern indices by Donatelli et al., 2004)

- inclusion, in the evaluation of models, of other measures than performance
metrics, such as sensitivity analysis measures and information criteria for model selection
(Confalonieri et al., 2009a), and consideration by expert stakeholders (Alexandrov et al.,
2011)

- elaboration of the model robustness concept (Confalonieri et al., 2010a)

- elaboration of the model plasticity concept (Confalonieri et al., 2012)

Such evolution in model evaluation, yet accompanied by the creation of dedicated
software tools (Fila et al., 2003a, b; Criscuolo et al., 2005; Tedeschi, 2006; Olesen and
Chang, 2010), has recently culminated in a review article (Bellocchi et al., 2010) as well as
position papers (Alexandrov et al., 2011; Bennett et al., 2013) of the International
Environmental Modelling & Software Society (http://www.iemss.org) with the aim of
characterising the performance of models and providing standards for publishing models in
forms suitable for use by broad communities (Laniak et al., 2013). Alternative validation
strategies were documented by Richter et al. (2012) and Ritter et al. (2013). Some novel
ideas about model evaluation have also found application for validating analytical methods
(e.g. Acutis et al., 2007; Bellocchi et al., 2008) to complement standard assessment
approaches of the International Organization for Standardization (http://www.iso.org).
Also graphical tools have been developed to help assessing the quality of model
performances (e.g. Taylor diagrams, Taylor, 2001).

General goals

The primary goal is to evaluate the quality of crop and grassland models in predicting
production and other variables while considering integrated multiple metrics in order to
have unambiguous indications about model accuracy and robustness under a variety of
conditions. Accurate and robust models offer reduced uncertainties under scenarios where
no calibration data exist (e.g. climate scenarios and areas not covered by experimental
sites). These goals are about evaluation of models under conditions of ‘known unknowns’
such as models which could not represent things like pests, diseases or physical damage.

Objectives

1. To evaluate crop and grassland models in response to climatic and management factors
by comparing the simulated results with the observed data by:

a. ldentifying common sets of input and outputs (mainly production outputs);

b. Identifying common evaluation metrics;

c. Identifying ranges of acceptability and relative weights for each metric.



2. To document model evaluation experiences against test cases and assess them with
respect to alternative models (e.g. comparing the results obtained with different models for
the same crop, cropping system or grassland).

3. To formulate standard criteria for model evaluation (and creation of exemplary evaluation
tools).

4) To expand the concept of robustness in the use of crop/grassland models to simulate yield
or other variables of interest under climate change conditions, towards including a variety of
meteorological and soil conditions (with respect to the original formulation of the robustness
index based on ET, and precipitation, other variables such as temperature and soil
properties should be included).

Evaluation strategy

Model evaluation cannot be performed in an absolute way looking at one (or few) metrics
(indices or test statistics) for summarizing some model behaviors. For a long time authors
have looked at the evaluation problem as if it was mainly an issue of selecting some
appropriate evaluation metrics and assessing their values (e.g. Nash and Sutcliffe, 1970;
Willmott, 1981; Greenwood et al., 1985; Loague and Green, 1991; Stockle et al., 2004). Also
recently, authors have been working towards the further development of evaluation metrics
(e.g. Jain and Sudheer, 2008; Willmott et al., 2012; Legates and McCabe, 2013). However, it
has become clear since long ago that each kind of problem faced with modelling tools
through simulation processes needs a specific evaluation scheme (e.g. Bellocchi et al.,
2002a for evaluation of solar radiation models; Confalonieri et al., 2006 for comparison of
rice growth and yield models; Moriasi et al., 2007 for evaluation of watershed runoff
estimations; Bregaglio et al., 2010, 2011 for simulation of relative humidity and leaf wetness,
respectively). The lack of precise and undisputable criteria to consider a specific metric as
more effective than others, and the multiplicity of aspects to be accounted for a multi-
perspective evaluation of model performance, logically leads to some use of composite
metrics for model validation (e.g. Bellocchi et al., 2002b; Diodato et al., 2007a, b; Rivington
et al., 2007; Confalonieri et al., 2009b, 2010b). With a composite method, the best is
obtained with combining the metrics, while also having the information provided by the
individual metrics. In such respect, composition of metrics is a shift of paradigm from merely
selecting the best out of a set of evaluation metrics.

A problem only partially faced by the actual available knowledge on model evaluation is how
to handle multiple outcomes from models. Virtually all cropping system and grassland
models offer several relevant outputs such as yield, nitrogen concentration in soil layers,
nitrogen and pesticides leaching, water runoff, soil erosion, evolution in time of soil organic
matter, etc. These outputs are produced at different space and time scales ranging from daily
(or sub-daily) to yearly outputs and from soil layer to site, catchment or region. To reduce the
user effort, a modular model allows simulating each process according to a modelling
solution that the user may select out of alternate solutions based on his/her knowledge of the
system, data availability, computing resources, etc. (Donatelli and Rizzoli, 2008). There is
thus the need to understand if a single model can cover all the required outputs
simultaneously, offering an implicit warranty of coherence of all aspects of the simulation, or
several models need to be used. For crop models, the need of simultaneously evaluating
several outputs was highlighted by Wallach (2006). An attempt to address the same scenario
with hydrological models was done by Confalonieri et al. (2010b) by using fuzzy-logic based
rules. In principle, fuzzy logic offers again a way to aggregate several metrics in a few or in
one indicator. Here, the risk is either to create an excessively complex evaluation scheme, or
a too simple one, thus reducing the problem of multiple output evaluation to a weighted sum
of performance metrics.

There is a challenge to develop disciplined answers to the issues in the debate opened by
Matthews et al. (2011) targeting at shifting towards model “outcome” rather than merely



model “output” assessment. An interesting way to develop a fuzzy-logic based scheme is to
explicitly involve a network of experts in a participatory activity through group discussions
and interviews. In this cross-cutting activity we are proposing a three-step approach for the
definition of a procedure for model evaluation:

i) collection of a large number of model evaluation metrics, including their
characteristics, pros and cons,
i) definition of the minimum dataset (MDS) of metrics needed for model evaluation on

the basis of expert’s opinions and their factual grounding, and

iii) fuzzy-based aggregation of the variables belonging to the MDS.

The procedure will be tested on simulation results of the models used in the inter-comparison
tasks (C1.5, L2.4), submitted to the expert panel, and possibly adjusted to expand
consensus by enhancing dialogue and joint efforts.

An example of this approach is given in Carozzi et al. (2013) to assess soil quality under
different options for soil management.

Basic components for model evaluation

The multi-metric, fuzzy-logic based approach adopted by Confalonieri et al. (2009a) is the
basis for model assessment in a comparative fashion (Figure 1).
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Figure 1. Structure of the Model Quality Indicator (MQl) assessment method, where: EF, modelling efficiency;
P(t), Student t-test probability of null mean difference between predictions and observations; R, correlation
coefficient of predictions versus observations; R,, ratio of relevant model parameters over total number of

parameters; wy, Akaike Information Criterion (AIC) ratio; F, favorable threshold; U, unfavorable threshold; S,
S-shaped membership function; x, value of metric; a, minimum value between F and U; b, maximum value
between F and U. Expert weights are assigned as follows: 0.20, 0.60 and 0.20 to R, EF and P(t) in module

Agreement; 0.50 and 0.50 to R, and w; in module complexity; 0.25 and 0.75 to Complexity and Agreement in

the indicator.

The Model Quality Indicator (MQl) was obtained by combining (via fuzzy-logic based
weighting) performance metrics (R, correlation coefficient between observations and
simulations; EF, modelling efficiency; P(t), Student-t test probability of equal means
between observation and simulations) as well as components of model structure (relevant
over total parameters ratio and Akaike Information Criterion-based indicator of the loss of
performance as the number of parameters in the model decreases).



In a model inter-comparison exercise, MQI allows ranking best- to worst-performing models
not only at the output level (Agreement) but also regarding the parameterization effort
(Complexity).
The originally developed indicator targeted the evaluation of model estimates of above-
ground biomass under potential conditions. With the main focus on plant growth and
development, options for extending this approach to actual conditions could include:
- The number of sensitive and total parameters of the plant modelling structure
under actual conditions
- A model robustness measure in the fuzzy-logic based framework to account for site-
to-site differences
- Evaluation of model performance with respect to other output variables than
above-ground biomass (e.g. soil water content, carbon fluxes, etc.)

Based on the above items, the following fuzzy-logic based multi-metric evaluation
framework is proposed (Figure 2). This is meant for the evaluation of one output variable.
In case of multiple outputs, the results obtained by applying the same procedure to each
output will be used for further analysis and presentation of results.
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Figure 2. Structure of the MQl,, assessment method, where: d, index of agreement; P(t), Student t-test
probability of null mean difference between predictions and observations; R, correlation coefficient of
predictions versus observations; R, ratio of relevant model parameters over total number of parameters; wx,
Akaike Information Criterion (AIC) ratio; Ig, index of robustness (see also Table 1); F, favorable threshold; U,
unfavorable threshold; S, S-shaped membership function; x, value of metric; a, minimum value between F and
U; b, maximum value between F and U. Expert weights are assigned as follows: 0.20, 0.60 and 0.20 to R, d and
P(t) in module Agreement; 0.50 and 0.50 to R, and w; in module complexity; 0.25, 0.50 and 0.25 to
Complexity, Agreement and Robustness in the indicator.

In Figure 2:
- MQIl,, stands for Model Quality Indicator for multi-site evaluation
- Itis composed of three modules: Agreement, Complexity, Robustness



Table 1. Multiple-metrics assessment method: modules and basic metrics.

The module agreement is made of three basic metrics: Pearson’s correlation
coefficient (R), Willmott’s index of agreement (d), Student-t probability of equal

means for paired data (P(t))
The module complexity is made of two basic metrics:

relevant over total

parameters ratio (R,) and a weighed measure (wi) of the Akaike’s Information

Criterion (AIC)

For Agreement and Complexity, basic metrics values are the average of values

calculated from the simulations at multiple sites

The module Robustness is made of one basic metric: index of robustness (/)
Single-site evaluation is performed with an indicator, MQls, similar to the MQIl of Figure 1,
in which modelling efficiency (EF) is replaced by Willmott’s index of agreement (d) in
module Agreement. MQl, (Figure 2) is thus an extension of MQls to multiple sites. As EF is a
component of the index of robustness (/z), duplication was avoided by replacing it by d.
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are to 0, the more
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Computational details
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relevant positive infinity:
parameters in the closer the
a model’ values to 0 the
easier model
parameterization

0 (optimum) to

T, number of positive infinity:

parameters in - - the closer the

a model? values to 0 the
simpler the model

k, each of

models being - - -

compared

p, humber of
models being - - .
compared

m, number of
sites being
simulated

j, each of sites
being
simulated

P, predicted Unit of the
value variable

O, observed Unit of the
value variable

n, number of
P/0 pairs

i, each of P/0O
pairs

' Relevant parameters are those which the model is most sensitive to. They are from formal sensitivity analysis exercises or
based the understanding of the modelling context and scope (e.g. the parameters which are more frequently considered for
calibration). Depending on the purpose of evaluation, a reduced set of relevant parameters can be built (for instance, only
parameters of the plant).

? The total number of model parameters is restricted to parameters accessible to users (parameters embedded in the code,
but not available to users, are not considered). Depending on the purpose of evaluation, a reduced set of parameters can be
built (for instance, only parameters of the plant), and an upper threshold can be set at a level which reflects a high model
complexity (for instance, if total parameters is greater than 100, then T=100).

Conclusions

The indicator’s settings were evaluated via a questionnaire-based survey (Appendix A),
whose results are reported in Appendix B. Overall the answers received corroborate the
choices made, whereas the approach to robustness requires further assessment. The
indicator for model evaluation, facilitated by ready-to-use software (Appendix 3), will be
applied to simulation results from CropM and LiveM actions.
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Appendix 1

Multi-metric fuzzy-logic based evaluation of crop/grassland
models in a model-intercomparison at multiple sites -
Questionnaire

1) Do the fuzzy-logic based assessment method proposed (MQl.), including model
agreement, complexity and robustness, account for all the relevant aspects of multi-site

model inter-comparison?

YES reason of “NO” Proposal in case of “NO”

NO

2) Do the basic assessment metrics of MQl,, represent a good choice to cover aspects of

model evaluation such as quantification of error, bias, efficiency, etc.?

YES reason of “NO” Proposal in case of “NO”

NO

3) Do the equations of the basic metrics require changes (e.g. is standardized agro-
meteorological metric, SAM, a good indicator of site conditions)? In case, how would you

revise them to accommodate the needs of model evaluation, and why?

YES reason of “NO” Proposal in case of “NO”
NO

4) Do the favourable/unfavourable trehsholds assigned to each basic metric reflect the

perception of how we think of the quality of model performance?

YES reason of “NO” Proposal in case of “NO”
NO

5) Do the expert weights assigned to basic metrics within a Module reflect the importance

of each metric with respect to the quality of model performance?

YES reason of “NO” Proposal in case of “NO”
NO

12




6) Do the expert weights assigned to Modules reflect the importance of each Module with

respect to the quality of model performance?

YES

reason of “NO”

Proposal in case of “NO”

NO

7) Over the range 0 (best) to 1 (worst) of MQl,, (and its three modules), would you set crisp

threshold values to interpret results (e.g. <0.33: good model performance; 0.33-0.66:

acceptable model performance but better calibration required; >0.66: poor model

performance, improvements being required in the basic equation)?

NO

reason of “YES”

Proposal in case of “YES”

YES
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Appendix 2

Presentation given to FACCE MACSUR Mid-term Scientific

Conference, 01-04  April, 2014, Sassari,
(http://ocs.macsur.eu/index.php/Hub/Mid-
term/paper/view/193)

b R )

po Hutton

7 wssue
Deliberative processes for comprehensive
evaluation of agro-ecological models

Gianni BELLOCCHI

Franch NaSonal Insttuts for Agricuftural Ressarch, Clsrmont-Ferrand Francs

Mike RIVINGTON

The James Huon Insttuts, Abserdesn, United Kingdom

Marco ACUTIS
University of Milan, Ealy

FACCE MACSUR Mid-Term Scientific Conference
University of Sassari, Haly
01-04 April 2014
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MACSUR cross-cutting activities

Coordination of Knowledge Hub

TradeM

———

Capacity building J

. - Definition of mode/ performance indicators
Cr OpM-Ll veM - Elaboration of mode/ evaluation protocols J

Task C1.4

Develop and apply model evaluation methods

TaskL2.2
Development of methods for model
evaluation
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-——————

Model evaluation / deliberative process

Components of model quality

Agreement with Complexity Stabiity
achual data (setaofequations, (performeance over
(rmetnics;, test Siatisics) paranstes) different conditions)

Evaluation - crop and grassiand simulation models
(experimental / absenvalional research, soco-ecanamic / dimaie scenanos)

Comprehensive ovaluaﬂm

Deliberative process
(review; exchange of nformaiion, ansensis)

Conted = Credbilly

e e e - - -
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Synthetic indicators Aggregation rules:
fuzzy-logic based weighing system

- TR |
* Correlation coefiident
* Indexof agreement J Lowerand upper bounding
* Probability of equal means
1. Complexity
* Ratioof rdevant parameters |y, ModeIQlﬂyln(icauJ
* Parameters-agreement
crteron ) |
Z 10
IIl. Stability (robustness) | E | Ly
* Indexof robusiness ) . Unfavourable
-]
£ 0o
Q
a

Hindrances to overcome: : U
thresholds and weights 00 02 o4
Indexof agreement
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[Ilulti-site, Model Quality Indicator (MQi,,) |

Srocesy o eqal mess (P(1)
" Swu

18

et e = ) Ll = ) v
gt TeMW=-30T0 TeW—-320 20xX-s5008
oo [ [ -
== r - Agreement:
e - u r -
-% - r u v
ex: u r -
-2 -} v r v
- - u u 1.4
108 u u v
mxic o rewcance cesTees () Al relmion waig (wg =
Ll = Ll L. . Y Ll L
TAMW—-3s0m F 3-8 -5 -] -} - 1 -] - | -] - |
i : 5 (1. ] - - -
-¥ -} 1 4 ) J
b o Complexity : o= | ¢ ’ u
100 u u ox r 1] L4
ars r v v
[-%_} u r L
cx v r v
ars v J r
108 J J v
Index o rebatrexs (g
Robustness g
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-1 -} 1 4
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MQI,, - Questionnaire

Questionnaires answered / commented: 15 (13 online + 3 offine) + 1 comment
mYes mNo =NA

7. Over the mnge O (best) to 1 (worst) of MOl
m:ycizplhrsholdnbe:hulb'-erpﬂ7
rezults (e.9. >0.65 poor modd peformance?

6. Do the expert weight assgned to Modules §
reflect the importance of each of them?

5. Do the expat weight x:iyednometri::s
within 3 Module reflect their miatne importance?

4. Do the favourable | unfavourable threshdds
assigned to exch metric refiect the perception of 4
the quality of model performance?

Problematic the way how .

3- Do the equations of the meticz nced changez? 3 robustness is dealtwith

(quantiSication of error, bix, diciency etc]? 2

e peprrretee T I N N R B

(WQl,) accoumt for 3l the relevant xpects 061
model intercomparizon?

0% 0% 0% 60% 80% 100%
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Robustness of a model

A robustness measure would account for model performance stability over
a wide range of conditions (single site versus multiple sites)

How the variability of model performance can be quantified with the variability of

conditions?
Index of robustness Confalonieriet al.(2010)
_ %%r
I = (0, best; +m, worst)
Osam

Modelling efficiency Synthetic Agro-Meteorological Indicator

2?:1(& - 01): Rain — ETO
EF =1-TFFes . .
5,00, —0) (-oo, worst; 1, best) SAM Rein T ET. ET,

(-1,#1)

From the questionnaires:
-Need to test the index on a variety of rainfall patterns (e.g. monsoonal areas)
- Whole year versus growing season, or winter and summer?

- Accounting for soil properties if water limited simulations are performed
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8 - 1- “simple” model (18 parameters, 2 mostinfluential)

2- “complex” model (20 parameters, 8 most influentiz
7 +
- |_Evalaton | Wocel |
6_ . ¢y=1_‘|x—1.69 I
. . R 0.67 Agreement 0.329
= P
£5 ) . Complexity 0.016
£ /' Robustness 0.0
4 - y=053x+173
R2=045 Mal, 0.109
34
74 ]
2 T T = T T \
2 3 4 56 ] 7 8 -
Observat SiteB
(dry)
| Evaluaion | odel
Agreement 0.300
Complexity 0.500
Robustness 0.006
Mal. — 1 y=oeex-o07i* - - -
0 G- r r ’ . .
0 1 2 3 4 3 (] 7
Observations
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Exemplary results

Above-ground rice biomass (kg DMm2)
Three models: WARM (intemmediate), CropSyst
s (simple), WOFOST (complex)
MQi; WARM  CropSyst WOFOST MSE WARM  CropSyst WOFOST
C. d'Agogna 0.0313 0.1250 0.2174 |C. d'Agogna 3.26 1.86 242
Verceli 0.1070 0.0853 0.1372 |Verceli 293 1.35 1.57
Moriara 02188  0.0000 02174 |Mortara 1.66 0.34 0.94
Rosae 0.0313 0.2284 0.2388 |Rosae 097 496 6.75
MQiy, 0.0750 0.1940 0.3356 AiC WARM  CropSyst WOFOST
- C. d'Agegna 34 37 79
. EF WARM  CropSyst WOFOST \erceli 13 a4 73
C. d'Agogna 0.90 085 023 IMortara 26 28 67
Mercell 0.92 097 096 o 20 49 91
Moriara 0.96 098 098 .
Rosate 082 062 048 Complexity
Iz 0.16 1.24 1.7 Robustness
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Deliberative process in model-based
climate change studies

[ Stakeholder-science dialogue
[ Aspirations ][ Expectations ] Impact
: - v v .| assessment to
‘ Simulations > global (climate)
changes

[ Legitimation of models ] Adaptations

Bellocchi et al. (2006)
Rivington et al. (2007) Acutis and Bellocchi (2014)
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Implementation and resources / 1
D EDED ED

Y

JPIFACCE :MACSUR, CN-MIP, . |

MACSUR knowledge hub (as well as parallel programmes such as AgMIP
or other initiatives of the JPI FACCE) holds potential to advance in good
modelling practice in relation with model evaluation (including access to
appropriate software tools), an activity which is frequently neglected in the
context of time-limited projects.

MAESURY :
' MACSUR Mid Term LiveM International Livestock Modelling and
Conference — Research Colloguium
1547 April, Sassari (Kaly) 147167 Ociober, Bilbao (Span)
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Implementation and resources / 2
— '

¥ Asa [
', e MODEXTREME J 2
MODelling vegetation responseto EXTREMe Events

0
T
t\°“¢d¢c
Institutional (specific)
decision-makers

Concerted network

Stakehokder power

Diversity of stake ho ldess

Insfitutional  (assorted)
decision-makers

Indep%nder( (local) actors

% modexireme Scope of participation
DG AGRI LUNCHTIME SESSION | oot of staksholdere
107 April, Brussels (Beigium)

25



Institutionalising deliberative practices
for context-specific model evaluations

Model evaluation(s) are (sometimes) an (importanf) orientating landmark in the skyline of
decisions, without replacing them

: apcultural systems is a priority that
m a more efl‘icnem (maybe

The cenfral issue is to think and conceive model evaluation in a (clear) decisional
perspective about type of model, operability, transparency, etc.

As several -models are at‘hand, “mod-diversity” imposes the analysis of case-by-case
issues, while also integrating‘the specific context in a larger-scale perspective {ih space
and time)
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“We conserve many things that we don't
evaluate and little of those we value” J\

(Geoffrey M. Heal)

Thankyou for your
attention.
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Appendix 3

Spreadsheet prototype for MQI,, calculation

A B c D E F G H 1 J K L M N o [) 3
1 site 1 site 2 site 3 site 4 site 5 m
2 obs mod 1 mod 2 obs mod 1 mod 2 obs mod 1 mod 2 obs mod 1 mod 2 obs mod 1 mod 2
3 74 76 5,5 34 2,8 6,0 48 57 6,5 58 6,0 4,7 5,7 5,7 12
4 7.2 7,7 59 35 38 36 45 35 2,2 56 57 51 4,7 2,4 16
5 6,5 6,8 54 5,9 76 53 47 4,9 34 42 43 36 33 4,0 07
6 6,0 5,5 6,7 58 56 53 5,7 5,6 58 51 63 4,0 5,5 46 3.2
7 74 6,6 53 43 3,7 34 52 4,9 53 59 6,5 77 41 26 33
8 68 55 53 4,7 6,2 84 5,9 83 32 4,9 63 4,0 52 53 54|
9 58 6,1 2,9 54 7,8 41 53 4,5 16 48 5.2 50 3,2 23 47|
10 5.2 41 4,7 3,9 26 5,0 4,9 25 4,4 6,0 5.2 6,1 2,7 16 72
11 48 71 26 53 6,0 4,1 46 43 33 58 52 34
12 54 51 42 44 43 4,9 58 4,9 36 2,9 13 37
13 48 5,0 7.3 5,0 38 3,9 41 5,6 4,7 46 2,7 2,0
14 4,0 50 438 4,4 31 48 30 30 48
15 56 6,9 3,6 5,7 7.2 7,0 5.1 47 46
16 54 4,0 5,0 53 5.2 41
17 34 3,2 45 4,5 58 39 B
18 46 30 7.9
19
20
21
22 mean 6,5 6.2 52 4,7 50 51 5,1 4,9 4,1 51 54 4,8 43 35 35
23
24
25 'Pearson correlation 0,820 0,394 f 0,864 0,101 [ 0,688 0,067 f 05127 0724 f 0769 0,389
26  coeff of agreement 0,846 0,488 0,743 0,275 0,554 0,260 0,634 0,635 0,800 0,221
27 Student T (P for paired data) 0,262 0,011 0,388 0,407 0,663 0,071 0,179 0,284 0,007 0287|
O Data . Thresholds " Modules .~ Modules 7] Ml [ ] »
Prét | m usk 0 U—@
B C D E F G H 1 j) K L M N (o] P Q ;
1 1| Im
2 METRICS
Weight
withina
3 THRESHOLDS module Average of all sites Fvalues U Values
4 M1 M2 M1 M2 M1 M2 R x o
B . . S(xiey)
6 Module Agreement =
7 pearson correlation coefficient 07 09 02 0731 0179 0047 0000 0953 1,000
8 coefficient of agrreement d 0,7 0,9] 0,6 0,716 0,376 0,012 0,000 0,988 1,000
9 Student-t for paired data (P(t)) 0,05 0,1 0,2 0,300 0,212 1,000 1,000 0,000 0,000
10
11 Module Complexity
12 relevant over total parameters ratio (Rp) 05 01 05 0125 0667 0992 0000 0008 1,000
13 weighed measure (wk) of the AIC 0,3 0,7] 0,5 0,980 0,020 1,000 0,000 0,000 1,000 U
14
15 Module Robustness
16 index of robustness (IR) 10 1] 13,65 25,76 0,000 0,000 1,000 1,000
17
18
19
20
21
2 user input
23 Could be calculated in the sheet "data" or user input
24
25
26
27
28
29
30 v
<> W[ Data | Thresholds ~Modules .~ Modules %7 V4 0K [T} ] » [
prét | |E=] 100% (=) V] ©)
A C D E F G H ! ] K L M N o P Qa :
1 ip value M
2 Module Agreement M1 M2
3 Expert weight Pearson of d Student-t for paired data (P(t)) [to compute expert weight Pearson d  Studentt Thruth val Thrut*we(Pearson d  Studentt Thruthv|
4 0,0 F F F o 0 0 0,047 0,012 1,00 0,012 0,000 0,00 o 1 0,00
5 0,2 F F u o 0 0,2 0,047 0,012 0,00 0,000 0,000 0,00 o [ o 0,00
6 0,6 F u F o 0,6 0 0,047 0,988 1,00 0,047 0,028 0,00 1 1 X
7 0,8 F u u o 0,6 0,2 0,047 0,988 [ 0,00 0,000 0,000 0,00 l' o 0,00
8 0,2 u F F 0,2 0 0] 0,953 0,012 1,00 0,012 0,002 1 o 1 0,00
9 0,4 u F u 0,2 0 0,2] 0,953 0,012 0,00 0,000 0,000 1 0 [ o 0,00
10 0,8 u u F 0,2 0,6 0] 0,953 0,988 1,00 0,953 0,763 1 1 1 1,00
1 1,0 u u u 0,2 0,6 0,2 0,953 0,988 0,00 0,000 0,000 1 1 0 X
12
13 1,024 0,793 1,00
14 Module weight = 05 5
15 I= 0,774 1=
16
17
18 Module Complexity M1 M2
19 Expert weight relevant over total parms ratio (Rp weighed measure (wk) of the AIC Rp WKAIC Thruth val Thrut*we(Rp WKAIC Thruth v|
20 0,0 F F o 0 0,992 1,000 0,992 0,000 o o 0,00
21 05 F u ) 05| 099" o008 0,008 0,004 o 1 X
22 0,5 u F 0,5 0 0,008 1,000 0,008 0,004 1 o 0,00
23 1,0 u u 0,5 0,5 0,008 0,008 0,008 0,008 1 1 1
24
25 1,016 0,016 1,00
26 Module weight = 0,25
27 I= 0,015| = B
28
29
30 Module Robustness
31 Expert weight index of robustness (IR)
32 0 F
W 4 » W[ Data / Thresholds | Modules / Modules (7] 0Kl m

Prét |
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B c D 3 F G H 1 3 K L ™ N o 3 Q R S
j: { E
2 Modules M1 M2
3 Expertweight Agreement  Complexity  Robustness [Tocompute weights Agreement  Complexity Thruth value Thrut*weigh{Ag: Complexity Robustness Thruth value Thrut*weight
a 0 F F F ) 0 o 0,774 0015 1 0,015 0,000 0,300 0500 1 0,500 0,000
B 025 F F u ) 0 0,25 0,774 0,015 ) 0,000 0,000 0,800 0,500 0 0,000 0,000
6 025 F u F 0 02 o| 0,774 0,985 1 0,774 0,194 0,800 0,500 1 0,500 0,125
7 05 £ u u 0 02 0,25 0,774 0,985” [ 0,000 0,000 0,300 0,500” 0 0,000 0,000
8 05 u F F 05 0 o 0,226 0,015 1 0,015 0,008 0,200 0,500 1 0,200 0,100
9 075 u F u 05 0 0,25 0,226 0,015” 0 0,000 0,000 0,200 0,500" 0 0,000 0,000
10 075 u u F 05 0,25 0| 0,226 0,985 1 0,226 0,169 0,200 0,500 1 0,200 0,150)
1 1 u u u 05 025 0,25) 0,226 0,985 0 0,000 0,000 0,200 0,500 0 0,000 0,000
12
13 1,031 0,370 1,400 0,375
14
15 MQl= 0,359 MQl= 0,268
16
17
18
19
20
21
2
23
24
2
2%
27
28
2
30
31 4
W <> W Data  Thresholds . Modules | Modules i 7] <[ Il I [l
Prét ‘
B C D E F G H 1 J K L M N o P Q R S T U
1 site 2 site 3 site 4 site 5 N
2 obs mod obs mod obs mod obs mod obs mod
3 568802 828198 3,06601 2,86411 554177 3,76871 579653 3,93302 53551 7,28753
4 7,79729 3,93704 3,07074 4,50895 5,52767' 7,0867 4,7882 4,94483 2,26028 0,8614
5 | 7,99689 9,10478 3,8233 4,08226 4,43257'3,50157 553578 3,3339 5,53707 7,16308
6 | 7,52462 7,202 4,27523 5,70795 5,06043'3,09024 550739 4,83925 3,48616 4,23513
7 769212 580267 471933 3558796 530631 635199 4,94569 3,50547 594868 3,02041
8 65348 596204 599974 673007 499779  2,95428 571587 847169 4,61877 564535
9 610437 7,82645 550808 4,24069 4,70596 642689 4,29759 6,34031 4,22385 2,88111
10 7,12556 4,41411 4,62972 723473 453469 661244 541189 7,79149 2,97914 192234
1 545676 520031 4,04323” 4,93258 4,46406 601101 537126 4,34619
12 3,599 4,11954 4,47322'4,33741 4,35276 4,18063 4,6583 4,11119
13 3,78842 3,67262 5,64355'6,50082 586739 5,86271 5,89556 8,38595 L
14 3,54342 2,78779 539447 6,42856 229336 1,41921 1
15 4,08383  3,8422 595858 4,06374 2,11997  2,0401
16 3,62599 4,46202 511849 3,95307
17 493415 6,03611 430535 3,27026
18 3,77244 6,00132
19
20
21
22
23
24
25
26 L]
27
28 4
W 4 » W] Data  Thresholds . Modules . Modules (7] 1<l 1] ||

Prét |
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