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Abstract/Executive summary 
This deliverable focuses on the development of methods for model evaluation in order to 
have unambiguous indications derived from the use of several evaluation metrics. The 
information about model quality is aggregated into a single indicator using a fuzzy expert 
system that can be applied to a wide range of model estimates where suitable test data 
are available. This is a cross-cutting activity between CropM (C1.4) and LiveM (L2.2). 
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Introduction 
This protocol is the first major attempt to lay the groundwork for good practice standards 
of model evaluation based on the use of modern concepts and criteria. The basis of the 
protocol stems from the progresses made over the last two decades in setting new horizons 
for model performance and on the problematic interpretations made of model evaluation. 
The main important progresses made in the domain can be summarized as follows: 
- aggregation of multiple evaluation metrics into integrated indicators (based on the 
fuzzy logic principle, after Bellocchi et al., 2002a) 
- assessment of model departure from observations with respect to an external 
variable (pattern indices by Donatelli et al., 2004) 
- inclusion, in the evaluation of models, of other measures than performance 
metrics, such as sensitivity analysis measures and information criteria for model selection 
(Confalonieri et al., 2009a), and consideration by expert stakeholders (Alexandrov et al., 
2011) 
- elaboration of the model robustness concept (Confalonieri et al., 2010a) 
- elaboration of the model plasticity concept (Confalonieri et al., 2012) 
Such evolution in model evaluation, yet accompanied by the creation of dedicated 
software tools (Fila et al., 2003a, b; Criscuolo et al., 2005; Tedeschi, 2006; Olesen and 
Chang, 2010), has recently culminated in a review article (Bellocchi et al., 2010) as well as 
position papers (Alexandrov et al., 2011; Bennett et al., 2013) of the International 
Environmental Modelling & Software Society (http://www.iemss.org) with the aim of 
characterising the performance of models and providing standards for publishing models in 
forms suitable for use by broad communities (Laniak et al., 2013). Alternative validation 
strategies were documented by Richter et al. (2012) and Ritter et al. (2013). Some novel 
ideas about model evaluation have also found application for validating analytical methods 
(e.g. Acutis et al., 2007; Bellocchi et al., 2008) to complement standard assessment 
approaches of the International Organization for Standardization (http://www.iso.org). 
Also graphical tools have been developed to help assessing the quality of model 
performances (e.g. Taylor diagrams, Taylor, 2001). 

General goals 
 
The primary goal is to evaluate the quality of crop and grassland models in predicting 
production and other variables while considering integrated multiple metrics in order to 
have unambiguous indications about model accuracy and robustness under a variety of 
conditions. Accurate and robust models offer reduced uncertainties under scenarios where 
no calibration data exist (e.g. climate scenarios and areas not covered by experimental 
sites). These goals are about evaluation of models under conditions of ‘known unknowns’ 
such as models which could not represent things like pests, diseases or physical damage. 
 

Objectives 
 
1. To evaluate crop and grassland models in response to climatic and management factors 
by comparing the simulated results with the observed data by: 
a. Identifying common sets of input and outputs (mainly production outputs); 
b. Identifying common evaluation metrics; 
c. Identifying ranges of acceptability and relative weights for each metric. 
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2. To document model evaluation experiences against test cases and assess them with 
respect to alternative models (e.g. comparing the results obtained with different models for 
the same crop, cropping system or grassland). 
3. To formulate standard criteria for model evaluation (and creation of exemplary evaluation 
tools). 
4) To expand the concept of robustness in the use of crop/grassland models to simulate yield 
or other variables of interest under climate change conditions, towards including a variety of 
meteorological and soil conditions (with respect to the original formulation of the robustness 
index based on ET0 and precipitation, other variables such as temperature and soil 
properties should be included). 
 

Evaluation strategy 
 
Model evaluation cannot be performed in an absolute way looking at one (or few) metrics 
(indices or test statistics) for summarizing some model behaviors. For a long time authors 
have looked at the evaluation problem as if it was mainly an issue of selecting some 
appropriate evaluation metrics and assessing their values (e.g. Nash and Sutcliffe, 1970; 
Willmott, 1981; Greenwood et al., 1985; Loague and Green, 1991; Stöckle et al., 2004). Also 
recently, authors have been working towards the further development of evaluation metrics 
(e.g. Jain and Sudheer, 2008; Willmott et al., 2012; Legates and McCabe, 2013). However, it 
has become clear since long ago that each kind of problem faced with modelling tools 
through simulation processes needs a specific evaluation scheme (e.g. Bellocchi et al., 
2002a for evaluation of solar radiation models; Confalonieri et al., 2006 for comparison of 
rice growth and yield models; Moriasi et al., 2007 for evaluation of watershed runoff 
estimations; Bregaglio et al., 2010, 2011 for simulation of relative humidity and leaf wetness, 
respectively). The lack of precise and undisputable criteria to consider a specific metric as 
more effective than others, and the multiplicity of aspects to be accounted for a multi-
perspective evaluation of model performance, logically leads to some use of composite 
metrics for model validation (e.g. Bellocchi et al., 2002b; Diodato et al., 2007a, b; Rivington 
et al., 2007; Confalonieri et al., 2009b, 2010b). With a composite method, the best is 
obtained with combining the metrics, while also having the information provided by the 
individual metrics. In such respect, composition of metrics is a shift of paradigm from merely 
selecting the best out of a set of evaluation metrics. 
A problem only partially faced by the actual available knowledge on model evaluation is how 
to handle multiple outcomes from models. Virtually all cropping system and grassland 
models offer several relevant outputs such as yield, nitrogen concentration in soil layers, 
nitrogen and pesticides leaching, water runoff, soil erosion, evolution in time of soil organic 
matter, etc. These outputs are produced at different space and time scales ranging from daily 
(or sub-daily) to yearly outputs and from soil layer to site, catchment or region. To reduce the 
user effort, a modular model allows simulating each process according to a modelling 
solution that the user may select out of alternate solutions based on his/her knowledge of the 
system, data availability, computing resources, etc. (Donatelli and Rizzoli, 2008). There is 
thus the need to understand if a single model can cover all the required outputs 
simultaneously, offering an implicit warranty of coherence of all aspects of the simulation, or 
several models need to be used. For crop models, the need of simultaneously evaluating 
several outputs was highlighted by Wallach (2006). An attempt to address the same scenario 
with hydrological models was done by Confalonieri et al. (2010b) by using fuzzy-logic based 
rules. In principle, fuzzy logic offers again a way to aggregate several metrics in a few or in 
one indicator. Here, the risk is either to create an excessively complex evaluation scheme, or 
a too simple one, thus reducing the problem of multiple output evaluation to a weighted sum 
of performance metrics. 
There is a challenge to develop disciplined answers to the issues in the debate opened by 
Matthews et al. (2011) targeting at shifting towards model “outcome” rather than merely 
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model “output” assessment. An interesting way to develop a fuzzy-logic based scheme is to 
explicitly involve a network of experts in a participatory activity through group discussions 
and interviews. In this cross-cutting activity we are proposing a three-step approach for the 
definition of a procedure for model evaluation: 
i) collection of a large number of model evaluation metrics, including their 
characteristics, pros and cons, 
ii) definition of the minimum dataset (MDS) of metrics needed for model evaluation on 
the basis of expert’s opinions and their factual grounding, and 
iii) fuzzy-based aggregation of the variables belonging to the MDS. 
The procedure will be tested on simulation results of the models used in the inter-comparison 
tasks (C1.5, L2.4), submitted to the expert panel, and possibly adjusted to expand 
consensus by enhancing dialogue and joint efforts. 
An example of this approach is given in Carozzi et al. (2013) to assess soil quality under 
different options for soil management. 
 

Basic components for model evaluation 
 
The multi-metric, fuzzy-logic based approach adopted by Confalonieri et al. (2009a) is the 
basis for model assessment in a comparative fashion (Figure 1). 
 

 
Figure 1. Structure of the Model Quality Indicator  (MQI) assessment method, where: EF, modelling efficiency; 
P(t), Student t-test probability of null mean difference between predictions and observations; R, correlation 
coefficient of predictions versus observations; Rp, ratio of relevant model parameters over total number of 

parameters; wk, Akaike Information Criterion (AIC) ratio; F, favorable threshold; U, unfavorable threshold; S, 
S-shaped membership function; x, value of metric; a, minimum value between F and U; b, maximum value 
between F and U. Expert weights are assigned as follows: 0.20, 0.60 and 0.20 to R, EF and P(t) in module 

Agreement; 0.50 and 0.50 to Rp and wk in module complexity; 0.25 and 0.75 to Complexity and Agreement in 
the indicator. 

 
The Model Quality Indicator (MQI) was obtained by combining (via fuzzy-logic based 
weighting) performance metrics (R, correlation coefficient between observations and 
simulations; EF, modelling efficiency; P(t), Student-t test probability of equal means 
between observation and simulations) as well as components of model structure (relevant 
over total parameters ratio and Akaike Information Criterion-based indicator of the loss of 
performance as the number of parameters in the model decreases). 
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In a model inter-comparison exercise, MQI allows ranking best- to worst-performing models 
not only at the output level (Agreement) but also regarding the parameterization effort 
(Complexity). 
The originally developed indicator targeted the evaluation of model estimates of above-
ground biomass under potential conditions. With the main focus on plant growth and 
development, options for extending this approach to actual conditions could include: 

- The number of sensitive and total parameters of the plant modelling structure 
under actual conditions 

- A model robustness measure in the fuzzy-logic based framework to account for site-
to-site differences 

- Evaluation of model performance with respect to other output variables than 
above-ground biomass (e.g. soil water content, carbon fluxes, etc.) 

 
Based on the above items, the following fuzzy-logic based multi-metric evaluation 
framework is proposed (Figure 2). This is meant for the evaluation of one output variable. 
In case of multiple outputs, the results obtained by applying the same procedure to each 
output will be used for further analysis and presentation of results. 
 

 
Figure 2. Structure of the MQIm assessment method, where: d, index of agreement; P(t), Student t-test 
probability of null mean difference between predictions and observations; R, correlation coefficient of 

predictions versus observations; Rp, ratio of relevant model parameters over total number of parameters; wk, 
Akaike Information Criterion (AIC) ratio; IR, index of robustness (see also Table 1); F, favorable threshold; U, 

unfavorable threshold; S, S-shaped membership function; x, value of metric; a, minimum value between F and 
U; b, maximum value between F and U. Expert weights are assigned as follows: 0.20, 0.60 and 0.20 to R, d and 

P(t) in module Agreement; 0.50 and 0.50 to Rp and wk in module complexity; 0.25, 0.50 and 0.25 to 
Complexity, Agreement and Robustness in the indicator. 

 
In Figure 2: 

- MQIm stands for Model Quality Indicator for multi-site evaluation 
- It is composed of three modules: Agreement, Complexity, Robustness 

Ratio	  of	  relevance	  parameters	  (Rp)
F	  Partial	  U

≥	  0.10	  ↔	  ≤	  0.50

AIC relative	  weight	  (wk)
F	  Partial	  U

≥	  0.70	  ↔	  ≤	  0.30

0.00
0.50
0.50
1.00

F F
F U
U F
U U

Complexity
F	  Partial	  	  U
0	  	  	  	  	  ↔	  	  	  	  	  1

Agreement
F	  Partial	  	  U
0	  	  	  	  	  ↔	  	  	  	  	  1

0.00
0.25
0.50
0.75
0.25
0.50
0.75
1.00

MCIm

0.00
0.20
0.60
0.80
0.20
0.40
0.80
1.00

F F F
F F U
F U F
F U U
U F F
U F U
U U F
U U U

membership	  function
S[x;	  a =	  min	  (F,	  U);	  b =	  max	  (F,	  U)]

membership
function

S[x;	  a =	  0;	  b =	  1

Index	  of	  agreement	  (d)
F	  Partial	  U

≥	  0.90	  ↔	  ≤	  0.70

Probability	  of	  equal	  means	  (P(t))
F	  Partial	  U

≥	  0.10	  ↔	  ≤	  0.05

Correlation	  coefficient	  (R)
F	  Partial	  U

≥	  0.90	  ↔	  ≤	  0.70
expert
weight

Index	  of	  robustness	  (IR)
F	  Partial	  	  U
1	  	  	  	  	  ↔	  	  	  	  	  10

0.00
1.00

F
U

Robustness
F	  Partial	  	  U
0	  	  	  	  	  ↔	  	  	  	  	  1

F F F
F F U
F U F
F U U
U F F
U F U
U U F
U U U

membership	  function
S[x;	  a =	  min	  (F,	  U);	  b =	  max	  (F,	  U)]

membership	  function
S[x;	  a =	  min	  (F,	  U);	  b =max	  (F,	  U)]
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- The module agreement is made of three basic metrics: Pearson’s correlation 
coefficient (R), Willmott’s index of agreement (d), Student-t probability of equal 
means for paired data (P(t)) 

- The module complexity is made of two basic metrics: relevant over total 
parameters ratio (Rp) and a weighed measure (wk) of the Akaike’s Information 
Criterion (AIC) 

- For Agreement and Complexity, basic metrics values are the average of values 
calculated from the simulations at multiple sites 

- The module Robustness is made of one basic metric: index of robustness (IR) 
Single-site evaluation is performed with an indicator, MQIs, similar to the MQI of Figure 1, 
in which modelling efficiency (EF) is replaced by Willmott’s index of agreement (d) in 
module Agreement. MQIm (Figure 2) is thus an extension of MQIs to multiple sites. As EF is a 
component of the index of robustness (IR), duplication was avoided by replacing it by d. 
 
Table 1. Multiple-metrics assessment method: modules and basic metrics. 

Module Performance 
measure Equation Unit Value range 

and purpose 

Agreement 

Pearson’s 
correlation 
coefficient (R) 
between 
estimates and 
measurements 

5.0

n

1i

n

1i

2
i

2
i

n

1i
iii

)O(O)P(P

)O-(O)O-(P
  R

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅−

⋅
=

∑ ∑

∑

= =

= 	   - 

-1 (anti-correlation) 
to 1 (perfect 

correlation): the 
closer the values 

are to 1, the better 
performing the 

model 

d, index of 
agreement 

∑

∑

=

−+−
= n

1i

2
ii

2
ii

|)OO||OP(|

)O-(P
-1  d  - 

0 (absence of 
agreement) to 1 

(perfect 
agreement): the 
closer the values 

are to 1, the better 
performing the 

model 

P(t), Paired 
Student t-test 
probability of 
means being 
equal	  

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

n
SD

DP  P(t) 	   -‐	  

0 (absence of 
agreement) to 1 

(perfect 
agreement): the 
closer the values 

are to 1, the better 
performing the 

model	  

Complexity 

Rp, relevant 
parameter 
ratio T

S
p =R  - 

0 (absence of 
relevant 

parameters) to 1 
(all parameters are 

relevant): the 
closer the values 

are to 0, the 
simpler the model 

use 

wk, Akaike 
Information 
Criterion ratio	   ∑

=

−

−

=
p

k

AIC

AIC

k k

k

e

e

1

2

2
w 	  

-‐	  

0 (best model out 
of a set) to 1 (worst 
model out of a set): 

the closer the 
values are to 0, the 
simpler and better 

performing the 
model	  

Robustness IR, index of 
robustness	  

SAM

EF
R s

sI = 	   -‐	  

0 (perfect 
robustness) to 

positive infinity 
(absence of 

robustness): the 
closer the values 
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are to 0, the more 
robust the model	  

Co
m
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al
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D ,	  average of 
the 
differences 
between E 
predicted and 
observed 
values 
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n
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D

n

i
ii∑

=

−
= 1 	  

Unit of the 
variable - 

O ,	  mean of 
observed 
values n

O
O

n

i
i∑

== 1 	  
Unit of the 

variable - 

 	     
s

D
, standard 

deviation of 
the 
differences 
between 
estimated and 
observed 
values 

( )
1

1

2

−

−
=
∑
=

n

DD
s

n

i
i

D 	  
  

AIC, Akaike 
Information 
Criterion 
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negative infinity 
(optimum) to 

positive infinity: 
the closer the 
values are to 

negative infinity, 
the better 

performing the 
model 

EF, modelling 
efficiency 

∑

∑

=

=

−

−
−= n

1i

2
i

n

1i

2
ii

)O(O

)O(P
1EF  - 

negative infinity to 
1 (optimum): the 
closer the values 

are to 1, the more 
efficient the model 

with respect to 
observed mean 

SAM, 
standardized 
agro-
meteorological 
metric	  

0

0S
ETRain
ETRainAM

+
−

= 	   -‐	  

-1 (no rain, water 
deficit) to 1 (no 

ET0, water surplus): 
the closer the 

values are to 0, the 
more balanced the 

water budget 

s
EF

, standard 

deviation of 
EF values	  

( )
1

1

2

−

−

=
∑
=

n

EFEF
s

s

j
j

EF 	  
-‐	  

0 (optimum) to 
positive infinity: 
the closer the 

values are to 0, the 
more robust the 

model 

s
SAM
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deviation of 
SAM values	  

( )
1
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2

−

−

=
∑
=

n
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s

s

j
j

SAM 	  
-‐	  

0 (optimum) to 
positive infinity: 
the closer the 

values are to 0 the 
more similar site 

conditions 

D, difference 
between 
predicted and 
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values 

ii OPD −= 	   Unit of the 
variable 

negative infinity 
(underestimation) 
to positive infinity 
(overestimation): 

the closer the 
values are to 0, the 

less biased the 
model 

S, number of -‐	   - 0 (optimum) to 
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relevant 
parameters in 
a model1 

positive infinity: 
the closer the 
values to 0 the 
easier model 

parameterization 

T, number of 
parameters in 
a model2 

-‐	   - 

0 (optimum) to 
positive infinity: 
the closer the 
values to 0 the 

simpler the model 
k, each of 
models being 
compared 

-‐	   - - 

p, number of 
models being 
compared 

-‐	   - - 

m, number of 
sites being 
simulated 

	     

j, each of sites 
being 
simulated 

	     

P, predicted 
value -‐	   Unit of the 

variable - 

O, observed 
value -‐	   Unit of the 

variable - 

n, number of 
P/O pairs -‐	   - - 

i, each of P/O 
pairs -‐	   - - 

1 Relevant parameters are those which the model is most sensitive to. They are from formal sensitivity analysis exercises or 
based the understanding of the modelling context and scope (e.g. the parameters which are more frequently considered for 
calibration). Depending on the purpose of evaluation, a reduced set of relevant parameters can be built (for instance, only 
parameters of the plant). 
2 The total number of model parameters is restricted to parameters accessible to users (parameters embedded in the code, 
but not available to users, are not considered). Depending on the purpose of evaluation, a reduced set of parameters can be 
built (for instance, only parameters of the plant), and an upper threshold can be set at a level which reflects a high model 
complexity (for instance, if total parameters is greater than 100, then T=100). 

 
 

Conclusions 
The indicator’s settings were evaluated via a questionnaire-based survey (Appendix A), 
whose results are reported in Appendix B. Overall the answers received corroborate the 
choices made, whereas the approach to robustness requires further assessment. The 
indicator for model evaluation, facilitated by ready-to-use software (Appendix 3), will be 
applied to simulation results from CropM and LiveM actions. 
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Appendix 1 

Multi-metric fuzzy-logic based evaluation of crop/grassland 
models in a model-intercomparison at multiple sites - 
Questionnaire 
 
1) Do the fuzzy-logic based assessment method proposed (MQIm), including model 

agreement, complexity and robustness, account for all the relevant aspects of multi-site 

model inter-comparison? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    

 

2) Do the basic assessment metrics of MQIm represent a good choice to cover aspects of 

model evaluation such as quantification of error, bias, efficiency, etc.? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    

 

3) Do the equations of the basic metrics require changes (e.g. is standardized agro-

meteorological metric, SAM, a good indicator of site conditions)? In case, how would you 

revise them to accommodate the needs of model evaluation, and why? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    

 

4) Do the favourable/unfavourable trehsholds assigned to each basic metric reflect the 

perception of how we think of the quality of model performance? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    

 

5) Do the expert weights assigned to basic metrics within a Module reflect the importance 

of each metric with respect to the quality of model performance? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    
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6) Do the expert weights assigned to Modules reflect the importance of each Module with 

respect to the quality of model performance? 

 

YES  reason of “NO” Proposal in case of “NO” 

NO    

 

7) Over the range 0 (best) to 1 (worst) of MQIm (and its three modules), would you set crisp 

threshold values to interpret results (e.g. <0.33: good model performance; 0.33-0.66: 

acceptable model performance but better calibration required; >0.66: poor model 

performance, improvements being required in the basic equation)? 

 

NO  reason of “YES” Proposal in case of “YES” 

YES    
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Appendix 2 

Presentation given to FACCE MACSUR Mid-term Scientific 
Conference, 01-04 April, 2014, Sassari, Italy 
(http://ocs.macsur.eu/index.php/Hub/Mid-
term/paper/view/193) 
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Appendix 3 

Spreadsheet prototype for MQIm calculation 
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