

SIMULATING CROP ROTATIONS AND MANAGEMENT ACROSS **CLIMATIC ZONES IN EUROPE** - AN INTERCOMPARISON STUDY USING FIFTEEN MODELS K. C. Kersebaum,

C. Kollas, C. Nendel, K. Manevski, C. Müller, T. Palosuo, C.M. Armas-Herrera, N. Beaudoin, M. Bindi, M. Charfeddine, T. Conradt, J. Constantin, J. Eitzinger, F. Ewert, R. Ferrise, T. Gaiser, I. Garcia de Cortazar-Atauri , L. Giglio , P. Hlavinka, H. Hoffmann, M.P. Hoffmann, M. Launay, R. Manderscheid, B. Mary, W. Mirschel, M. Moriondo, J.E. Olesen, I. Öztürk, A. Pacholski, D. Ripoche-Wachter, P.P. Roggero, S. Roncossek, R.P. Rötter, F. Ruget , B. Sharif, J. Takáč, M. Trnka, D. Ventrella, K. Waha, M. Wegehenkel, H.-J. Weigel, L. Wu zal

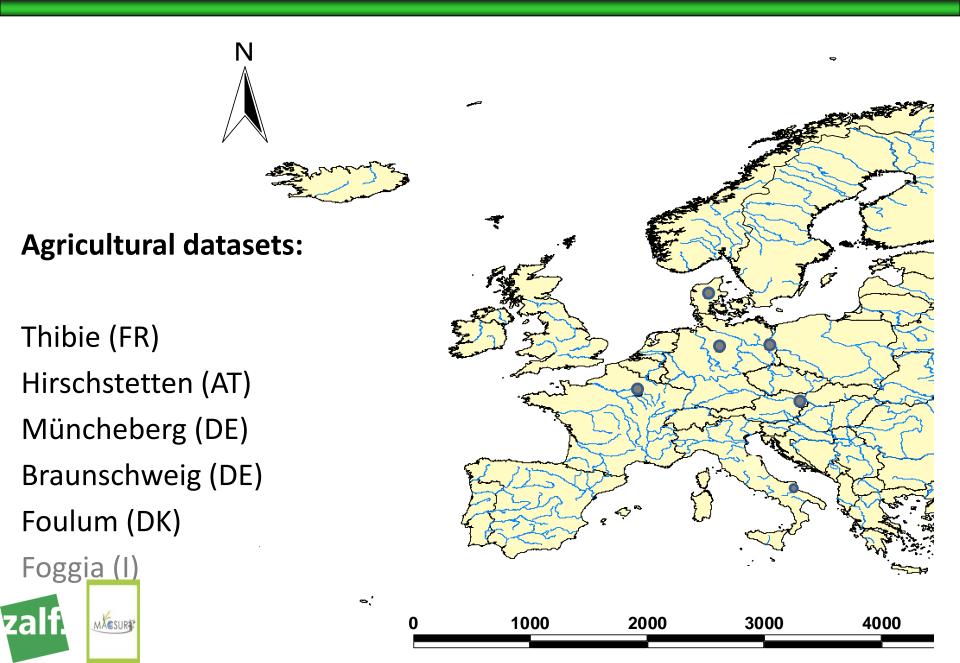
MACSUR

CropM WP1: Model inter-comparison and improvement

- WP leaders: K. Christian Kersebaum & Marco Bindi
- Objectives:
 - Identification of major cropping systems and model capabilities in Europe
 - Create a common protocol for model inter-comparisons and a methodological framework for multi-criteria model evaluation
 - Minimum requirements and classification of data sets depending on data quality and consistency to be used for calibration or validation
 - Performing model inter-comparisons to estimate ranges of model results for uncalibrated and calibrated runs
 - Identifying gaps and deficits of model approaches for their improvement
- Expected outputs:
 - Software and publication on data classification (submitted to EMS)
 - Protocoll and methodological framework for multi-criteria model evaluation
 - Model inter-comparison study on crop rotation effects vs. single year simulation
 - Improvement of crop models regarding their spectrum of crops and processes

ROTATIONEFFECT

Improving yield predictions by crop rotation modelling-?


Study design

- 5 agricultural datasets for crop rotations with different treatments (in total 202 concours)
- (in total 303 seasons)
- 15 modelling teams
- Simulating **rotation** and/or **single-years**
- (Nmin & water content given for first year only)
- Step 1:Model calibration on phenology/biomass of one treatment
- Step 2: Model calibration with full data of one treatment
- Focus on **yield**, biomass, N uptake, phenology, N-leaching, seapage water

Location of datasets

ROTATIONEFFECT: data

1) FACE experiment Braunschweig / GERMANY

6 year crop rotation (2000-2005)

Rotation: w. barley (WB), ryegrass (RyG, catchcrop), sugar beet (SBt), w. wheat (WW), w. barley, rye grass (catch crop), sugar beet, w. wheat

4 Treatments: CO_2 : 374 and 550 ppm, 2 nitrogen treatments (100 and 50%) per CO_2 (6 years)

2) Müncheberg / GERMANY

6 year crop rotation (1992-1996), 4 x shifted by one year

Rotation: winter wheat (WW), winter barley (WB), winter rye (WR), oil radish (OR, catchcrop), sugar beet, winter wheat (WW), winter barley (WB)

2 Treatments: rainfed and irrigated x 4 years

ROTATIONEFFECT: data

3) Lysimeter Hirschstetten / AUSTRIA

7 year crop rotation (1998-2004)

Rotation: *mustard (MUS),* spr. wheat (SW), *mustard (MUS),* spring barley (SB), w. wheat (WW), *mustard (MUS),* potatoes (POT), *w. wheat (WW, green manure),* maize (MAZ), w. wheat (WW)

Treatments: 3 different soils

4) Foulum / DENMARK

11 year crop rotation (2002 – 2012)

Rotation/year 2002		2 2003				2004				2005				2006			2007				2008			2009			2010				2011			2012					
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	23	4	1	2 3	3 4	4 1	2	3	4	1	2 3	4	1	2	3	4 [·]	1 2	3	4	1 2	2 3	4
2 plough				BA	٩R			F	RAF	כ				WHB			WH	B		BA	٩R		RA	P			WH	B			BA	R	B	BAR		V	VHE	3	
3 plough				Wł	ΗB		G	٦V	1/	BA	١R		(GRV 2 /	PEA		WH	B		Wł	ΗB		BA	١R			C)AT	-	WH	ΗB		B	BAR			0)AT	
4 plough				Wł	ΗB		GI	٦V	1/	BA	١R		(GRV 2 /	PEA		WH	B		Wł	ΗB		BA	١R			C)AT		Wŀ	ΗB		B	BAR			0)AT	
2 No till				BA	٩R			F	RAF	כ				WHB			WH	B		BA	٩R		RA	P			WH	B			BA	R	B	BAR		V	VHE	3	
3 No till				Wł	ΗB		GI	٦V	1/	BA	R		(GRV 2/	PEA		WH	B		Wł	ΗB		BA	١R			C)AT		WH	ΗB		B	AR			0	AT	
4 No till				Wł	HB		G	٦V	1/	BA	R		(GRV 2 /	PEA		WН	B		Wł	ΗB		BA	١R			C)AT		Wŀ	ΗB		E	AR			0)AT	

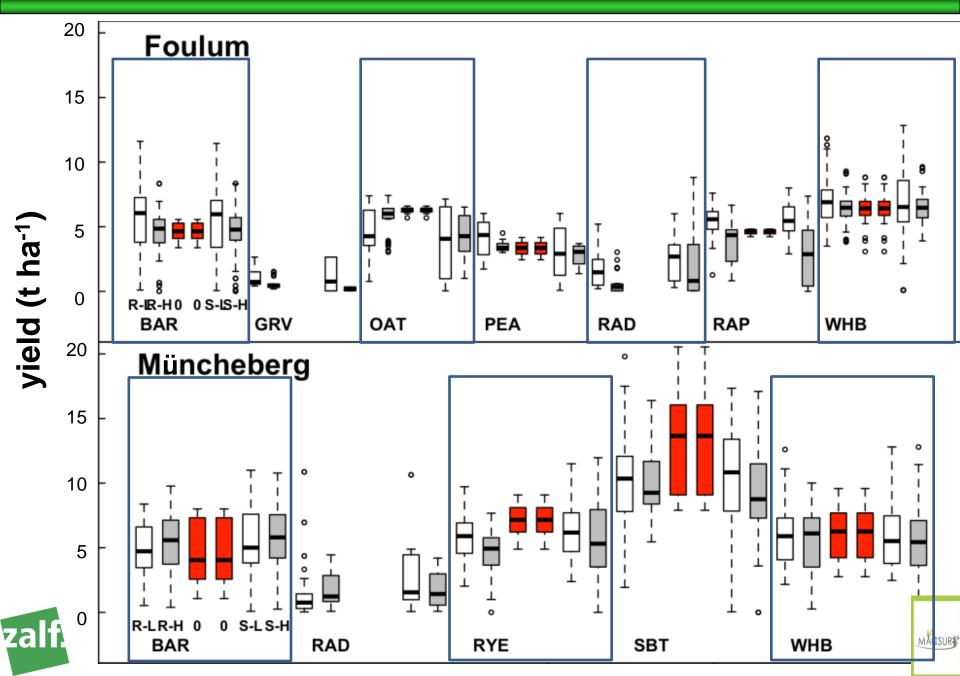
Treatments: crop rotations, residue management and tillage

ROTATIONEFFECT:data

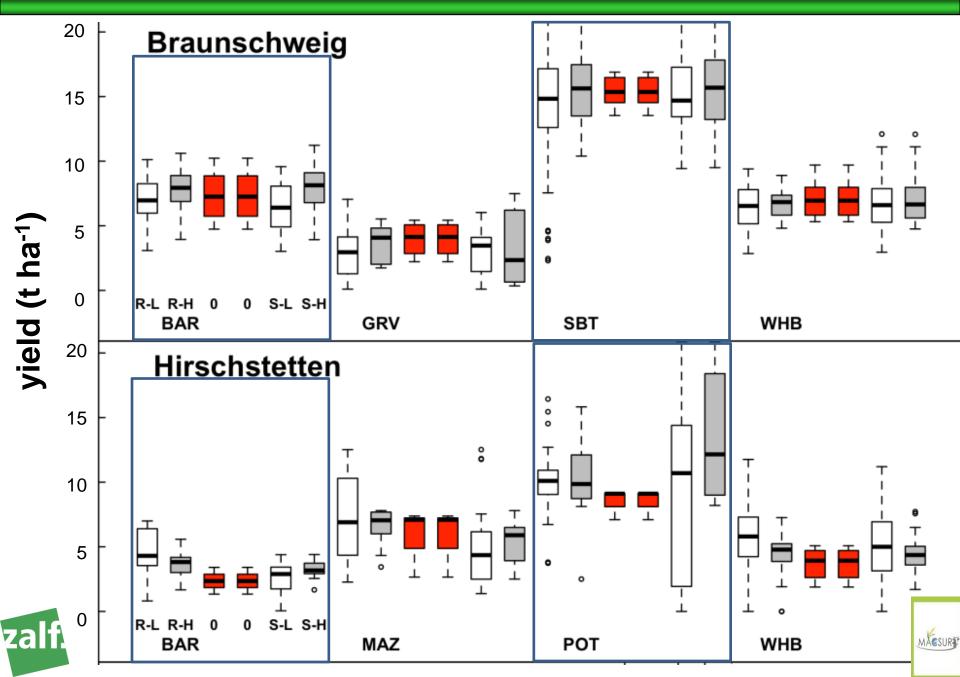
5) Thibie / FRANCE

12 year crop rotation (1991 – 2002)

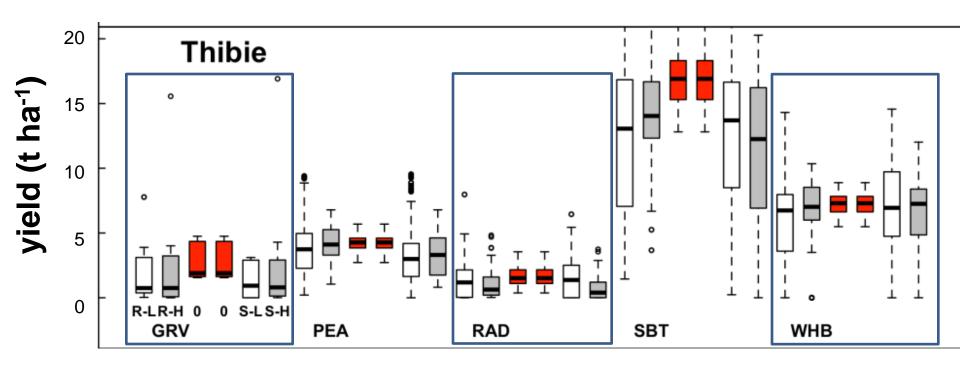
12 Treatments: effects of catch crop establishment and reduced N


Rotatio										-																	
n/year			199			·	1992			1993				1994				1995	5		19	96			1997	,	
			1	2	3	4	1	2 3	4	1	2	2 3	6 4	1		2 3	. 4	4	12	3	4	1	2 :	34	1	2	3
	catch	nitrogen				_	-	PEA/DA		_	_		_				-		PEA/		_		RA	_			
1 PWS		low				WHB			WHE	2		RAD			SBt		ВА	R			/HB					SBT	
	-	nitrogen						DEA/DA		_					501	•			PEA/				RA			501	
1 PWS		low				WHB			WHE	3		RAD			SBt		вА	R	RAD	w	/HB		D			SBT	
_																											
	bare soil	Nitrogen																									
1 PWS	Dale SUII	high					Į.	PEA	WHE	3					SBt	:		PEA		W	/HB					SBT	
		nitrogen																									
1 PWS		low				_		PEA	WHE	3				_	SBt	<u> </u>		PEA		W	/HB			_	_	SBT	
	eetek					1	_						hart														
2 SPW		nitrogen			RA D			SBt	WHE	5		/DAC	WH P			RA D			SBT		/HB	PEA RAD		wн	5		RA D
2 37 11	•	low nitrogen			RA			эы	WHI	5	PEA	DAC	Р WH			RA			361		din				5		RA
2 SPW		low			D			SBt	WHE	3	PEA	/DAC				D			SBT	w	/HB	RAE		WH	3		
1				· · · · ·							, ,	2							19-1								
		Nitrogen											WH														
2 SPW		high						SBt		PEA			B						SBT			PEA		WH	3		
		nitrogen											<mark>WH</mark>														
2 SPW		low						SBt		PEA			B						SBT			PEA		WH	3		
		•										_				_				_					_		
		nitrogen									004					•		Б								PE	
3 WSP	•	low				WHB	5				SBt				PE/	4	WI	18				SBt				A PE	
3 WSP		nitrogen Iow				WHB	2				SBt				PE/	Δ	WH	IB				SBt				PE A	
				1									I		<u>р с</u> ,							551					
[Nitrogen		DA					RA				WH		PE/	ا		WH						BA		PEA/	
3 WSP		high		C		WHB	3		D		SBt		В		RAI			В				SBt		R		RAD	
		nitrogen		DA					RA				wн		PE/	4/		WH						BA		PEA/	
3 WSP		low		С		WHB	3		D		SBt		B		RAI	D		B				SBt		R		RAD	

ROTATIONEFFECT: model applications

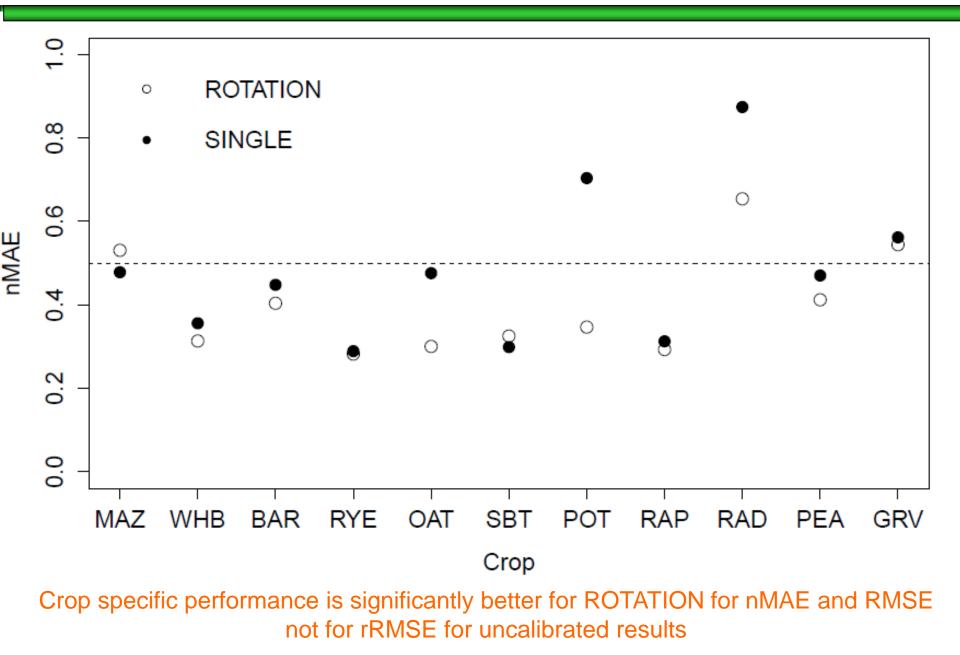

Results of 15 modelling teams

DSSAT 4.6 DSSAT	Сгор	#models ROTATION / SINGLE	#datasets	#observations (seasons)
WOFOST	MAIZE	6/7	1	3
LPJmL	WHEAT	9 / 12	5	96
CROPSYST	BARLEY	9 / 11	5	37
Daisy FASSET	RYE	9/9	1	12
SPACSYS	OAT	6/7	1	8
MONICA	SBEET	9/9	3	64
Theseus Simplace (Lintul5)	ΡΟΤΑΤΟ	6/6	1	3
HERMES	RAPE	8/8	1	4
SWIM	RADISH	4/4	3	42
STICS	PEA	7/9	2	52
APSIM	GRASS	6/6	3	14

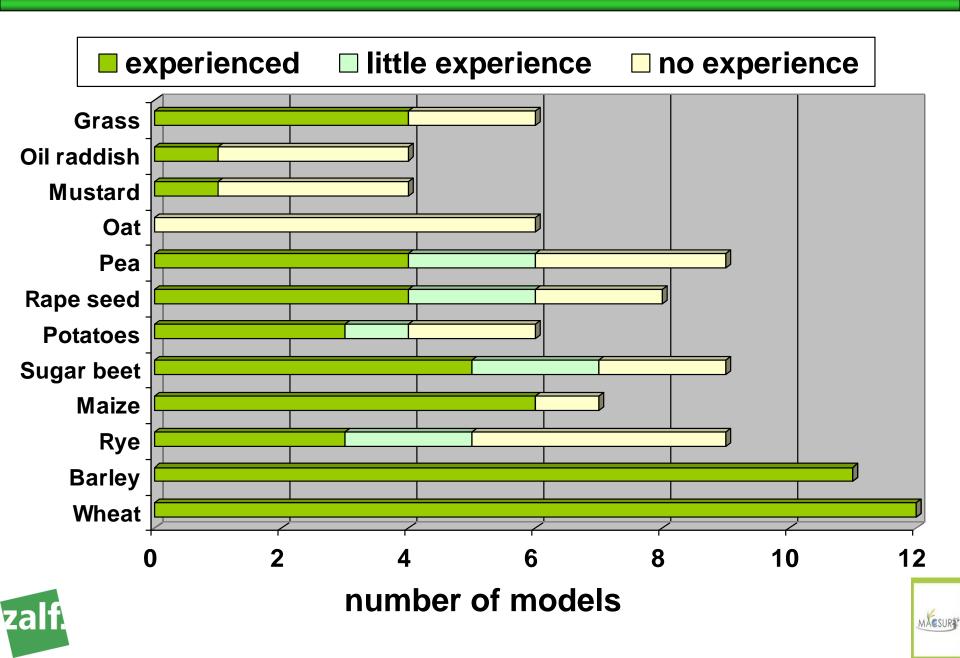

observed and simulated crop yields

observed and simulated crop yields

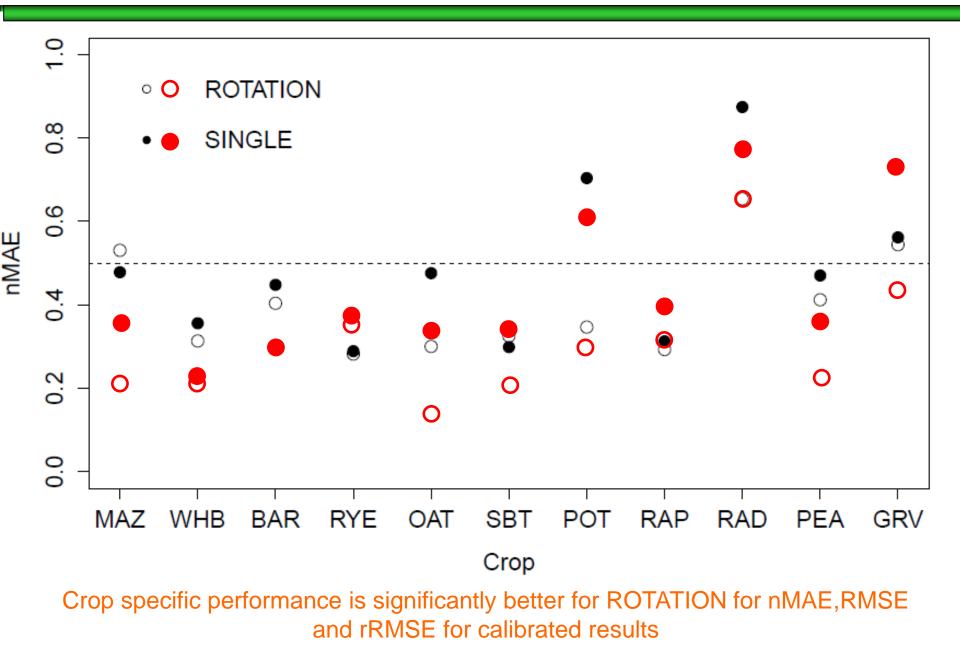
observed and simulated crop yields

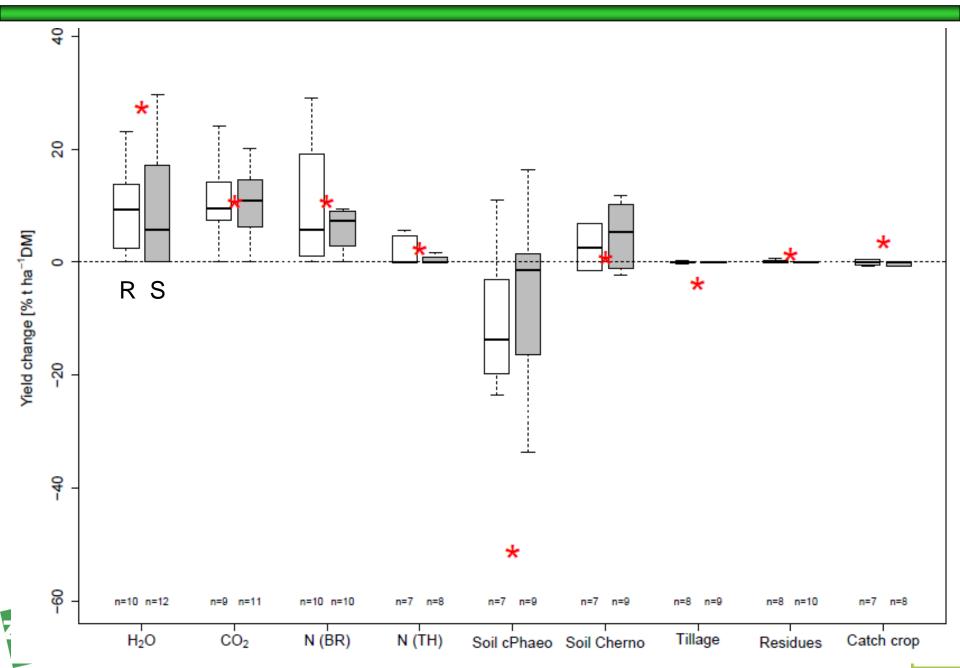


Across all sites, treatments and crops,


the ROTATION results was shown to perform slightly better compared to the SINGLE but significantly only for one (IA) out of three indices

MACSUR

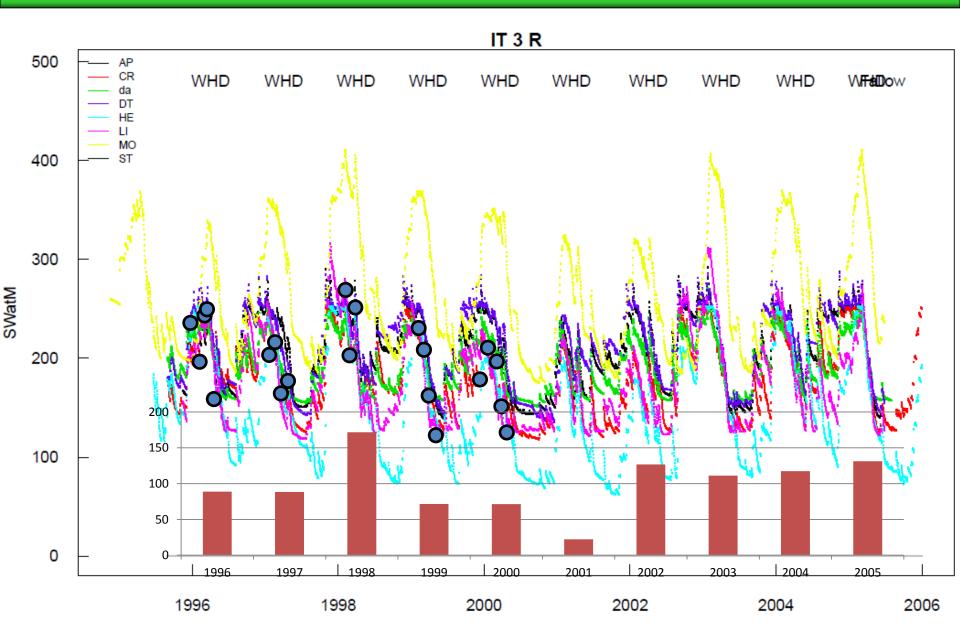

Rel. MAEs of rotation vs. single year simulation (uncal)


model experience regarding single crops

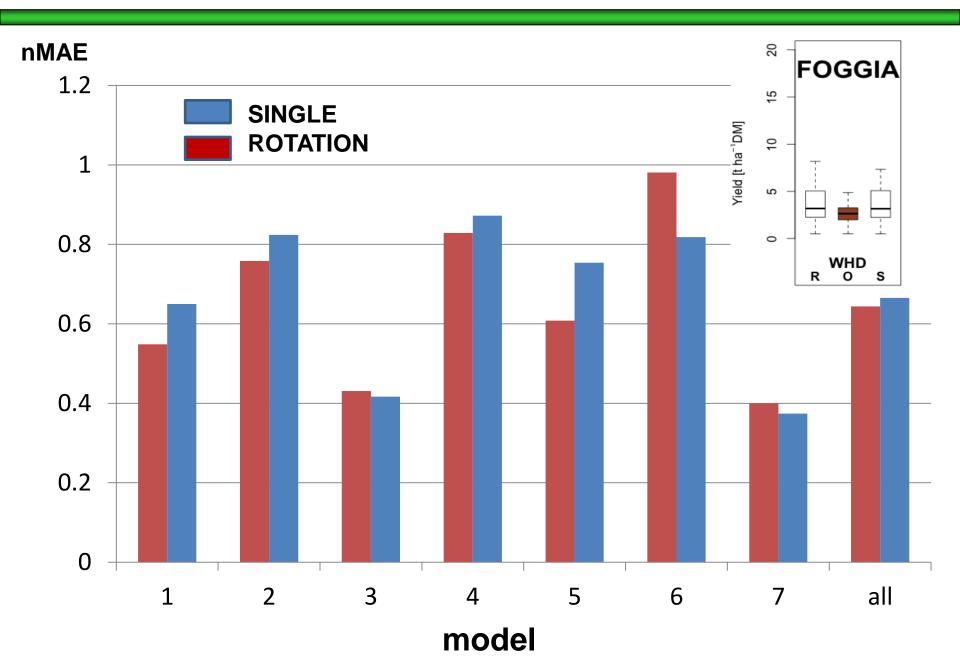
relative MAEs of rotation vs. single year simulation

Yield responses to different treatments

Mediterranean site for crop rotation analysis


Location: Foggia/Italy

Crop rotation: 11 years durum wheat monoculture


Treatments: 4 treatments with different nitrogen applications

(0, 50, 100, 150 kg N/ha) to straw/stubble in autumn

Soil water content at Foggia (0-60 cm)

nMAE of models with ROTATION and SINGLE mode at Foggia

conclusions

- Not all models are capable to run continuous crop rotations
- Continuous simulation via rotation does slightly improve the performance of yield prediction compared to year-by-year calculations for the uncalibrated models.
- Yield predictions of some crops show high uncertainties since they are not yet well parameterized.
- This may reduce quality of continuous runs and explains partly low differences between continuous and single-year runs.
- Calibration improved performance for specific crops and resulted in significantly better performance though continuous simulation.

conclusions

- Carry over effects were limited due to high nitrogen supply and water availability. Therefore, we selected an additional dry site for analysis.
- Model responses to CO₂ and N supply were similar to observed reactions, while response to water supply and soils was underestimated.
- Tillage and residue management showed no short term effects
- Although crop yields were mostly negatively affected by winter water deficit, the performance of the models in ROTATION mode was again only insignificantly better for the uncalibrated Mediterranean site regarding MAE and IA, but not for RMSE for the uncalibrated run.
- Continuous crop rotation is only beneficial if all crops in the rotation are adequately parametrerized and calibrated.

MACSUR

All models are wrong, some models are useful **G.E.P.Box**, 1979

Thank you for your attention

We greatly acknowledge the national fundings within the framework of the JPI FACCE knowledge hub MACSUR

MACSUR