

Probabilistic assessment of adaptation options from an ensemble of crop models: a case study in the Mediterranean

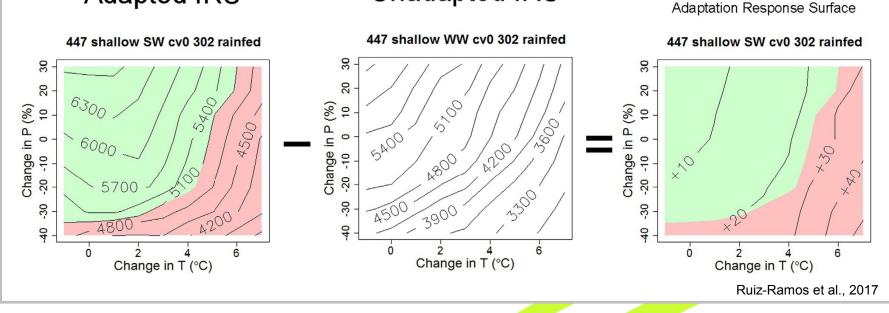
R Ferrise, M Ruiz-Ramos, A Rodríguez, IJ Lorite, N Pirttioja, S Fronzek, T Palosuo, TR Carter, M Bindi, JG Höhn, P Baranowski, S Buis, D Cammarano, N Claas, P Havlinka, H Hoffmann,F Jurecka, KC Kersebaum, J Krzyszczak, M Lana, A. Mechiche-Alami, J Minet, M Montesino, J Porter, F Ruget, Z Steinmetz, P Stratonovitch, I Supit, F Tao, M Trnka, A de Wit **and RP Rötter**

MACSUR Science Conference 2017, Berlin

MÁCSUR

Introduction and Objectives

- Adaptation is needed for dealing with climate change
- Adaptation has to be done at local scale and informed with uncertainty
- Study objectives:
 - to explore adaptation potential of rainfed winter wheat in a water-limited environment, using Adaptation Response Surfaces (ARSs)
 - to estimate the likelihood of the effect of adaptations using Probabilistic Projections (PPs) of climate change


What is an ARS?

- IRS are plotted surfaces showing the response of an impact variable (here Y) to changes in two explanatory variables (here P and T).
- By analyzing adaptation variables such as changes in crop yield (ΔY, %ΔY) when an adaptation option is simulated, these can be interpreted as the adaptation response to potential changes of P and T, i.e. ARS.

Adapted IRS

Unadapted IRS

ARS

What are Probabilistic Climate Projections?

- Probabilistic Climate Projections are climate projections in the form of probability distribution functions (PDFs)
- They provide climate projections with associated uncertainty values

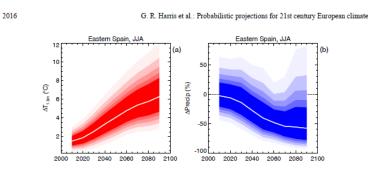


Fig. 5. Evolution of the median (white curve) and the 50, 60, 70, 80 and 90% confidence intervals for: (a) 20 year mean summer surface temperature change for the Eastern Spain grid point, (b) percentage change in 20 year mean summer precipitation for Eastern Spain.

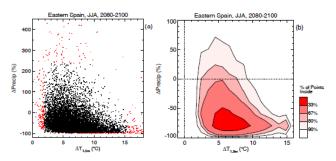
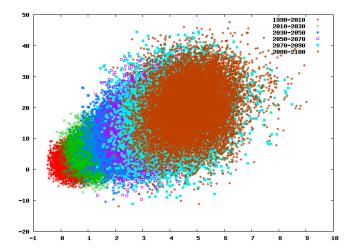
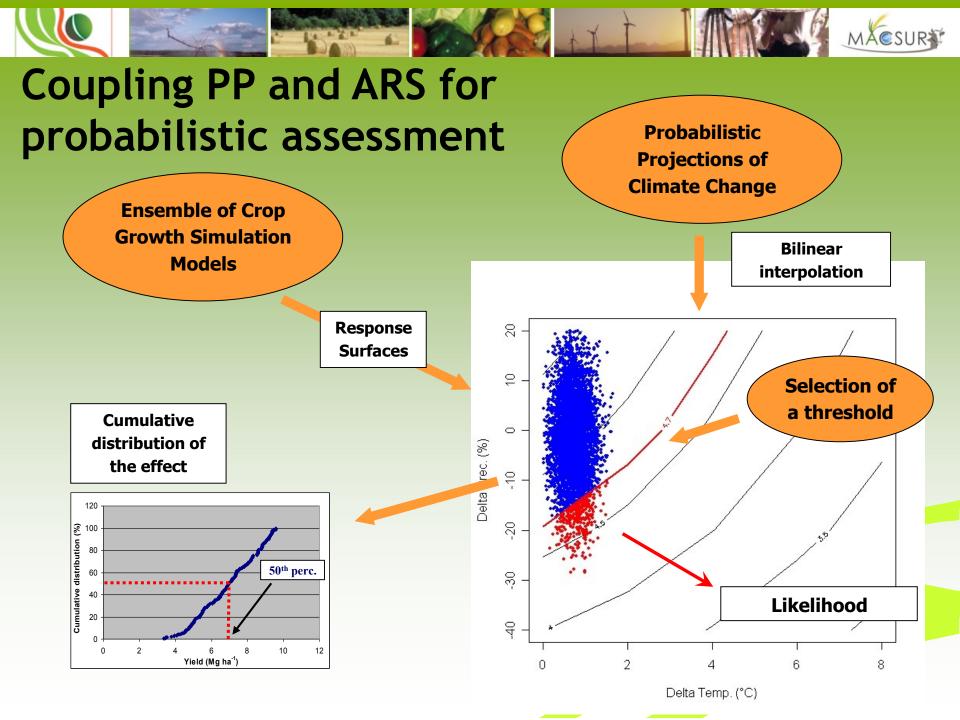
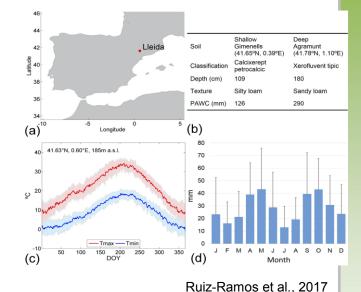




Fig. 6. (a) Scatter plot of 10 000 sampled data points from the joint PDF of surface temperature change and percentage precipitation change for the summer season for Eastern Spain, for the period 2080-2099 relative to the 1961-1990 baseline period. Points that lie in the top and bottom 1% of the marginal distributions are shown in red. (b) Contours of the Winsorised sampled joint probability distribution function in (a).

Joint probabilities of Temperature and Precipitation changes for the next century. Data from: Hadley Centre

Harris et al., 2010



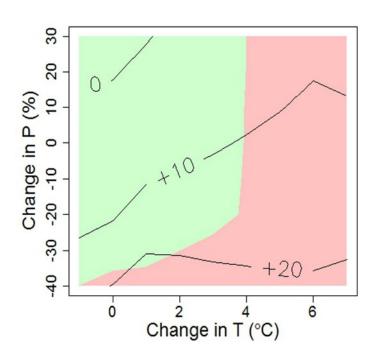
The modelling study

- Crop and study site: Winter wheat at NE-Spain (Lleida)
- Models ensemble:
 - 17 members (14 models)
 - Calibration performance:
 - "Good" according to (Jamieson et al., 1991)
 - %RMSE yield & biomass < 20
 - %RMSE phenology < 11
- Simulation experiment:
 - Baseline period: 1981-2010
 - Standard management: water-limited, optimal nutrients
 - Soil: 2 actual profiles (shallow and deep)
 - Climate
 - Baseline (360 ppm) + 2 levels of CO₂ (447 and 522 ppm)
 - Delta change + seasonal pattern
 - 72 combined changes to baseline T and P (1981-2010):
 - P: -40 % to +30 %
 - T: -1 °C to + 7 °C

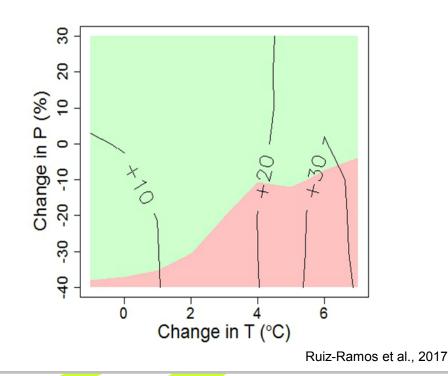
Methodology: Adaptations to be tested

Based on preliminary runs aimed at narrowing the number of simulations

- •Vernalisation:
 - Standard: Winter
 - Spring wheat
- Sowing date
 - Standard: 302 DOY, 28th October
 - Sowing at -15d (earlier)
 - Sowing at +30d (later)
- Phenology
 - The standard cultivar
 - A cultivar with a crop cycle 10% shorter, for WW and SW
 - A cultivar with a crop cycle 10% longer, for WW and SW
- Irrigation
 - Standard: Rainfed (R)
 - Supplementary irrigation (SI) with 40 mm at flowering
 - Full irrigation (I as a reference)



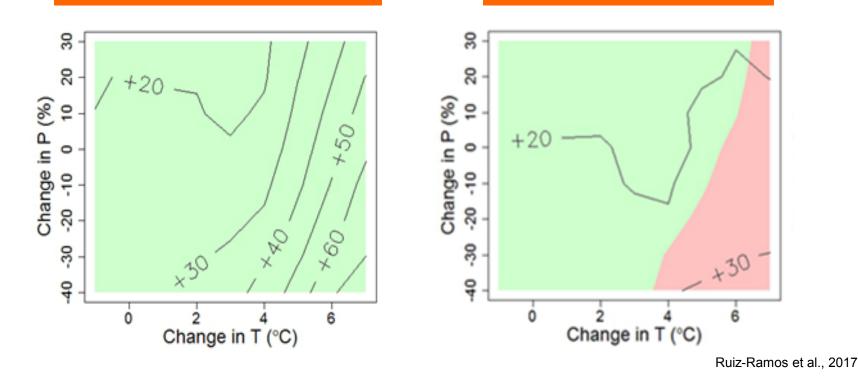
ARS combined adaptations: RAINFED


CO₂ 522 / Shallow soil / Rainfed

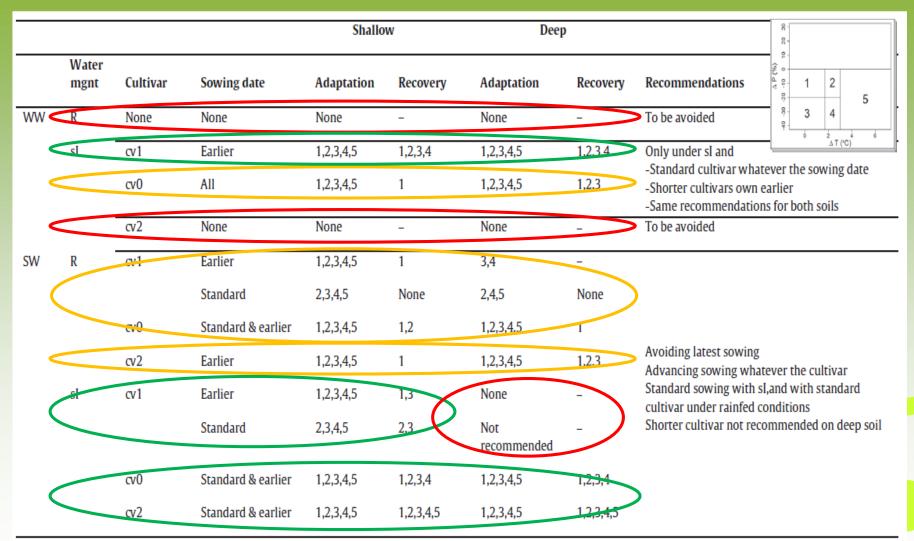
ARS: percentage of median yield change (%) with adaptation

SW/early SD/Shorter cv

SW/early SD/Longer cv


ARS combined adaptations: Suppl. Irr.

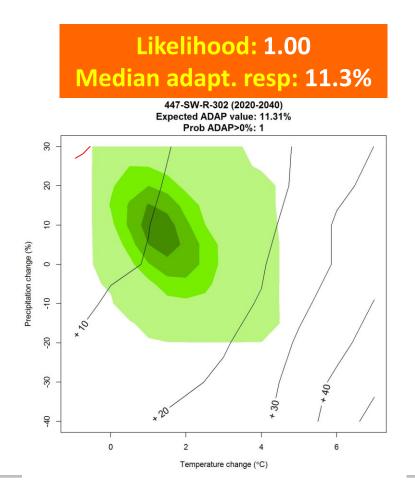
CO₂ 522 / Shallow soil / Supplementary Irrigation


ARS: percentage of median yield change (%) with adaptation

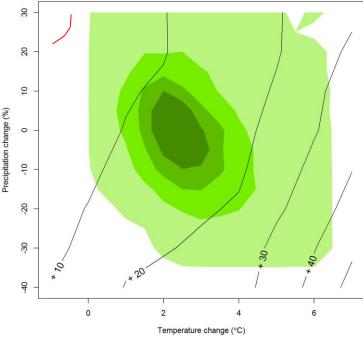
SW/early SD/Longer cv

WW/early SD/Std cv

Adaptation potential: Qualitative assessment


Abbreviations: rainfed (R), supplementary irrigation (sI), shorter, standard and longer crop cycle duration (cv1, cv0 and cv2 respectively), cultivar without vernalization requirements (SW), winter wheat (WW), management (mgnt), not considered because of lack of adaptation response (–).

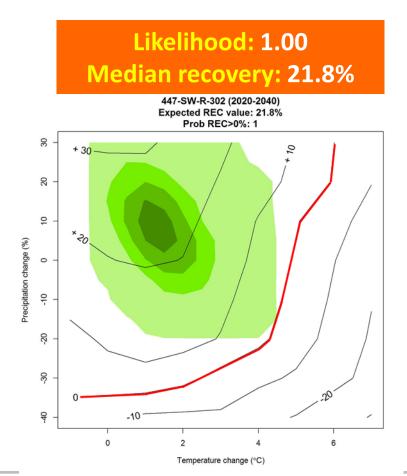
Likelihood of adaptation


Shallow soil/Spring Wheat/std SD and CV/Rainfed PP: HADCM3 A1B (Harris et al. 2010)

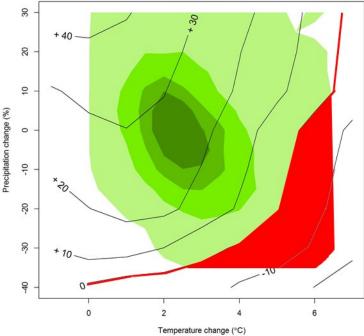
ARS: percentage of median yields change (%) with adaptation

Likelihood: 1.00 Median adpt. resp.: 15.1%

522-SW-R-302 (2040-2060) Expected ADAP value: 15.07% Prob ADAP>0%: 1



Likelihood of recovery


Shallow soil/Spring Wheat/std SD and CV

RRS: % of median yields recovery with adaptation **Recovery:** difference between median yields with adaptation and baseline reference yield

Likelihood: 0.97 Median recovery: 22.2%

522-SW-R-302 (2040-2060) Expected REC value: 22.17% Prob REC>0%: 0.97

Adaptation potential: Quantitative assessment

Shallow Soil				2020-2040 (447 ppm)					2040-2060 (522 ppm)				
				Adaptation		Recovery		Adapt	Adaptation		Recovery		
	Water mgnt	Cultivar	Sowing date	Likelihood	Median (%)	Likelihood	Median (%)	Likelihood	Median (%)	Likelihood	Median (%)		
WW	sl	Short	Earlier	1.00	81	0.98	10.0	1.00	7.4	0.95	10.5		
		Std	Earlier	1.00	18.8	1.00	22.6	1.00	19.6	0.95	18.6		
			Standard	1.00	20.2	1.00	22.2	1.00	22.4	0.97	20.4		
SW	R	Short	Earlier	0.98	5.7	0.97	14.5	0.99	8.7	0.78	12.4		
			Standard	0.88	5.8	0.86	10.3	0.99	9.0	0.78	7.3		
		Std	Earlier	1.00	19.6	0.98	22.2	1.00	14.9	0.89	19.0		
			Standard	1.00	11.3	1.00	21.8	1.00	15.0	0.97	22.2		
		Longer	Earlier	1.00	13.8	0.96	13.5	1.00	15.7	0.92	10.8		
	sl	Short	Earlier	0.98	6.7	0.89	11.3	1.00	9.7	0.79	7.8		
			Standard	0.88	5.0	0.98	13.6	0.98	9.2	0.93	11.7		
		Std	Earlier	1.00	30.6	1.00	27.4	1.00	37.5	1.00	27.1		
			Standard	1.00	28.0	1.00	26.2	1.00	33.1	0.95	23.5		
		Longer	Earlier	1.00	22.0	1.00	40.5	1.00	24.3	1.00	40.1		
			Standard	1.00	12.2	1.00	26.3	1.00	14.9	1.00	27.0		

Adaptation potential: Quantitative assessment

	Shallow Soil				2020-2040 (447 ppm)				2040-2060 (522 ppm)				
			Adaptation		Recovery		Adaptation		Recovery				
	Water	Cultivor	Sowing	Likelihood	Median	Likelihood	Median	Likelihood	Median	Likelihood	Median		
WW	mgnt sl	Cultivar Short	date Earlier		(%)		. ,		(%)		(%)		
VVVV	51	311011	Lainei	1.00	8.1	0.98	10.0	1.00	7.4	0.95	10.5		
		Std	Earlier	1.00	18.8	1.00	22.6	1.00	19.6	0.95	18.6		
			Standard	1.00	20.2	1.00	22.2	1.00	22.4	0.97	20.4		
SW	R	Short	Earlier	0.98	5.7	0.97	14.5	0.99	8.7	0.78	12.4		
			Standard	0.88	5.8	0.86	10.3	0.99	9.0	0.78	7.3		
		Std	Earlier	1.00	19.6	0.98	22.2	1.00	14.9	0.89	19.0		
			Standard	1.00	11.3	1.00	21.8	1.00	15.0	0.97	22.2		
		Longer	Earlier	1.00	13.8	0.96	13.5	1.00	15.7	0.92	10.8		
	sl	Short	Earlier	0.98	6.7	0.89	11.3	1.00	9.7	0.79	7.8		
			Standard	0.88	5.0	0.98	13.6	0.98	9.2	0.93	11.7		
		Std	Earlier	1.00	30.6	1.00	27.4	1.00	37.5	1.00	27.1		
			Standard	1.00	28.0	1.00	26.2	1.00	33.1	0.95	23.5		
		Longer	Earlier	1.00	22.0	1.00	40.5	1.00	24.3	1.00	40.1		
			Standard	1.00	12.2	1.00	26.3	1.00	14.9	1.00	27.0		

Summary & Conclusion

MÁCSUR

- Adaptation is possible!
- A wide scope for adaptation exists when considering combined adaptations
 - There are few feasible options for rainfed (but not NONE)
 - Based on SW, std/longer cycle and earlier SD (Adapt. Resp.: likelihood 100%, median up to 20%; Recovery: likelihood 98%, median 22%)
 - There are many feasible options for SI
 - SW, std/longer cv and earlier SD (Adapt. Resp.: likelihood 100%, median up to 37%; Recovery: likelihood 100%, median 40%)
 - Also for WW (Adapt. Resp.: likelihood 100%, median up to 22%; Recovery: likelihood 97%, median 20%)
- The methodology can be useful for planning and supporting decisions
 - ARSs provide a qualitative assessment of the performance of adaptations
 - ARSs and probabilistic projections of CC integrates the information by providing quantitative values and informing on uncertainties

Thank you!

roberto.ferrise@unifi.it margarita.ruiz.ramos@upm.es alfredo@rguez.eu ignacioj.lorite@juntadeandalucia.es

For further information please visit: www.macsur.eu