

ASSESSMENT OF CLIMATE CHANGE IMPACTS ON SOC DYNAMIC IN RAINFED CEREAL CROPPING SYSTEMS MANAGED WITH CONTRASTING TILLAGE PRACTICES USING A MULTI MODEL APPROACH

I. Iocola^a, S. Bassu^a, R. Farina^b, D. Antichi^c, B. Basso^d, M. Bindi^e, A. Dallamarta^e, F. Danuso^f, L. Doro^{g,h}, R. Ferrise^e, L. Giglioⁱ, F. Ginaldi^j, M. Mazzoncini^c, L. Mula^{a,g}, R. Orsini^k, M. Pasqui^l, G. Seddaiu^{a,g}, R. Tomozeiu^m, D. Ventrellaⁱ, G. Villani^m, P. P. Roggero^{a,g}

^aNRD-UNISS, University of Sassari, Italy; ^bCREA-AA, Rome, Italy; ^cDISAAA-a, University of Pisa, Italy; ^dMichigan State University, USA; ^eDISPAA, University of Florence, Italy; ^fDI4A, University of Udine, Italy; ^gDipartimento di Agraria, University of Sassari, Italy; ^hBlackland Research & Extension, USA; ⁱCREA-AA, Bari, Italy; ^jCREA, Bologna, Italy; ^kDipartimento di Scienze Agrarie, Alimentari ed Ambientali, Marche Polytechnic University, Italy; ⁱCNR-Ibimet, Roma, Italy; ^mArpae-SIMC, Bologna, Italy.

MACSUR Science Conference 2017, Berlin

Introduction

- Sequestration of C in soil by increasing SOC is considered one way to mitigate CC (Maraccini *et al.*, 2012; Wang *et al.*, 2015)
- Different tillage practices affect organic C sequestration capacity in soil. There is still uncertainty of the merit of conservation tillage (i.e., RT, NT) to increasing SOC compared with CT (Gonzalez-Sanchez et al., 2012; Haddaway et al., 2016)
- Simulation models are powerful tools to explore CC mitigation strategies (Ewert et al., 2011; White et al., 2011)

Hypothesis

Using an **ensemble of models** to estimate SOC **improves simulation accuracy**

We assumed that the use of crop models for the dynamic estimation of plant C inputs to soil can improve the reliability of SOC simulations

Objectives

To calibrate and evaluate four crop models using LTE datasets on Mediterranean cereal systems under conventional and conservation tillage management

MME to assess the long-term effects of **contrasting tillage practices on SOC** stocks (0-40cm) in rainfed durum wheat-maize rotations under **current** and **future climate scenarios**

Material and Methods: LTEs

LTE PI

Lowland coastal area with loamy soil. 1994-2008: Mean annual P: 826 mm; Tmean: 14.6°C

Crop system

- 1994-1998: continuous maize
- 1999-2008: durum wheat maize

Factors

- Conventional (CT- 30 cm) vs. Reduced tillage (RT- 15 cm)
- Mineral N: 180 kg N ha⁻¹ WHT; 300 kg N ha⁻¹ MZ

, LTE AN

Hilly, silty-clay soil

1994-2014: Mean annual P: 820 mm; Tmean: 15.3° C Crop system

- 1994-2001: durum wheat sunflower
- 2002-2014: durum wheat maize **Factors**
 - Conventional (CT- 40cm) vs. No tillage (NT)
- Mineral N: 90 kg N ha⁻¹

Material and Methods: Model Setup

Experimental and weather data harmonized in the IC-FAR database (Ginaldi *et al.*, 2016)

Crop models:

- APSIM-Nwheat (Model1)
- DSSAT (Model2)
- EPIC (Model3)
- SALUS (Model4)

Soil C initialization based on land use history (Basso et al., 2011):

- Wheat-Maize rotation 44 yr in AN, and 63 yr in PI
- Before then, the sites were grassland

Material and Methods: Evaluation

$$RRMSE = \frac{100}{\bar{O}} \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}} \longrightarrow RRMSE_{95\%} = \frac{100}{\bar{O}} \sqrt{\frac{\sum_{i=1}^{n} (t_{(n-2)95\%_i} * S_e(i))^2}{n}}$$

$$\boldsymbol{EF} = \frac{\left(\sum_{i=1}^{n} (O_i - 0)^2 - \sum_{i=1}^{n} (P_i - O_i)^2\right)}{\sum_{i=1}^{n} (O_i - \bar{0})^2}$$

$$E = \frac{100}{n} \sum_{i=1}^{n} \frac{(O_i - P_i)}{O_i}$$

$$\implies E_{95\%} = \frac{100}{n} \sum_{i=1}^{n} \frac{(t_{(n-2)95\%_i})}{O_i}$$

$$r = \frac{\sum_{i=1}^{n} (O_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^{n} (P_i - \bar{P})^2}}$$

Observed SOC AN (40cm): 1996, 2002, 2006, 2010 **PI** (30 cm): 1993, 1998, 2008

Smith et al., 1997

 $*S_{e}(i))$

Mean of Ranks

Material and Methods: Climate Scenarios

Generated by setting up a **statistical model** (based on CCA, Tomozeiu *et al.*, 2014) using predictors from **ERA40 reanalysis** and the **seasonal indices** of **T and P from E-OBS gridded data** network for the period 1958-2010.

The statistical downscaling model was applied to the **predictors of CMCC-CM global** model to obtain climate scenarios at local scale over:

CP - Present Climate (period 1971-2000, 360 ppm)

- CF Future Climate RCP4.5 (period 2021-2050, 460ppm)
- CF Future Climate RCP8.5 (period 2021-2050, 490ppm)

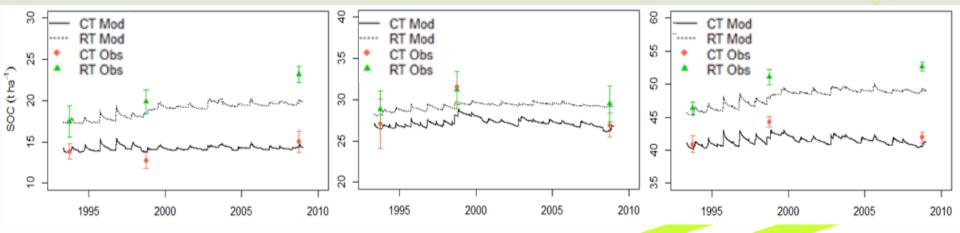
Results: Model Evaluation

	RRMSE	EF	Ε	r	RankMean
Site AN	RRMSE95%=8.36		$E95\% = \pm 6.63$		
Model1	5.85 (4)	0.01 (4)	2.26 (3)	0.63 (5)	4.0
Model2	4.60 (3)	0.39 (3)	0.31 (1)	0.83* (4)	2.8
Model3	7.44 (5)	-0.60 (5)	-6.57 (5)	0.86* (3)	4.5
Model4	3.77 (2)	0.59 (2)	-2.64 (4)	0.91* (2)	2.5
MM_MEAN	3.46 (1)	0.65 (1)	-1.66 (2)	0.95* (1)	1.3
Site PI	RRMSE95%=5.43		E95%=±5.35		
Model1	3.54 (1)	0.90 (1)	2.91 (1)	-	1.0
Model2	5.80 (3)	0.62 (3)	3.71 (2)	0.977* (3)	2.8
Model3	8.68 (5)	0.15 (5)	8.28 (5)	0.962* (4)	4.8
Model4	8.39 (4)	0.20 (4)	7.95 (4)	0.978* (2)	3.5
MM_MEAN	5.55 (2)	0.65 (2)	5.22 (3)	0.999* (1)	2.0

Results: Model Evaluation

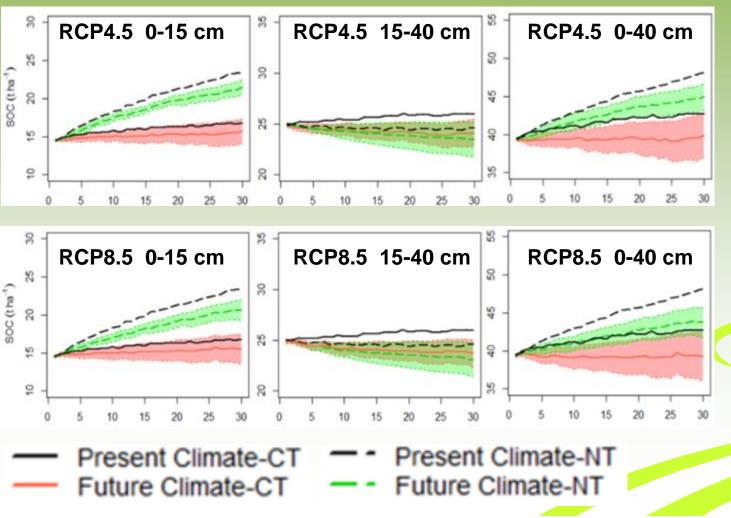
AN 0-15 cm

AN 15-40 cm


AN 0-40 cm

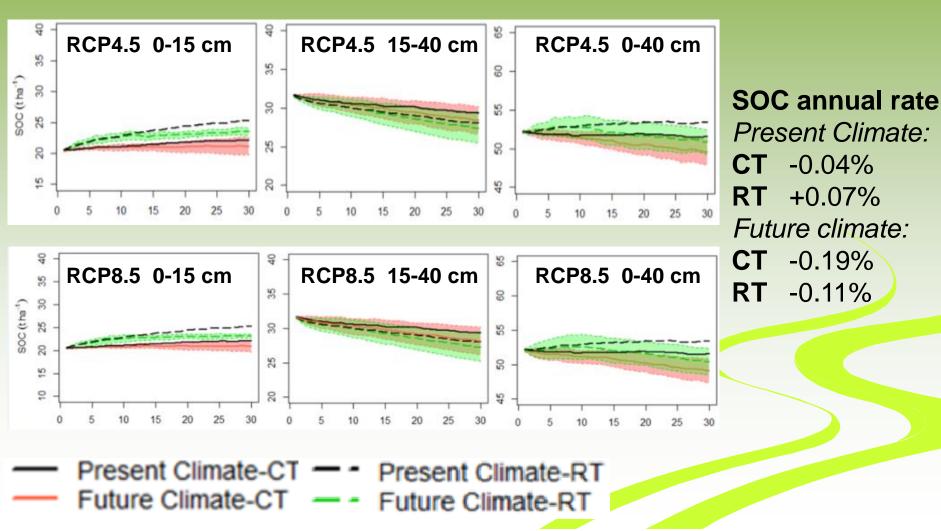
PI 0-10 cm

PI 10-30 cm


PI 0-30 cm

Results: Climate Scenarios - AN

Annual mean T : **+1.8°** C in RCP4.5 and **+2.1°** C in RCP8.5 Mean annual Rain: **-22.5%** in RCP4.5 and **-23.0%** in RCP8.5



SOC annual rate Present Climate: CT +0.28% NT +0.73% Future climate: CT no change NT +0.4%

Results: Climate Scenarios - PI

Annual mean T : **+1.9° C** in RCP4.5 and **+2.1° C** in RCP8.5 Mean annual Rain: **+2.1%** in RCP4.5 and **+4.9%** in RCP8.5

Conclusions

- Better accuracy using the MME
- Conservation tillage systems significantly increase
 C stock
- NT effects were consistent to the annual SOC increase target of 0.4% set by 4PT under changed climate
- Other complementary studies needed (GHG emissions including N₂0, soil C saturation capacity)

For further information: *iiocola@uniss.it*, *pproggero@uniss.it* please visit: www.icfar.it