Impact of climate aggregation over different scales on regional NPP modelling

M. Kuhnert, J. Yeluripati, P. Smith, H. Hoffmann, F. Ewert, M. van Oijen, et al.

http://scale-it.net/

Input data for spatial modelling

- -
- . . .
- • •

Change in resolution affects a decrease of extreme weather:

Hoffmann et al., submitted

Objective of the talk

 Estimate the impact of scale effects of weather data on net primary production (NPP).

2. Test the impact extreme weather events on different scales.

Is there a clear trend?

Settings for model approach

- -2 crops: wheat, maize
- -constant management and soil type

-potential growth (PLP) and consideration of water stress (PLW)

-11 models: HERMES, APSIM2, COUP, DAILYDAYCENT, APSIM, STICS CENTURY, AgroC, LandscapeDNDC, LINTUL, MONICA

-5 different resolutions of climate data:

Zhao et a., submitted

Results NPP

WHEAT

Results NPP

MAIZE

Results for wheat NPP (PLP)

Results for wheat NPP (PLW)

Results for maize NPP (PLP)

Results for maize NPP (PLW)

Length of Growing Season

255

240

225

RES1

RES25

How define an extreme event?

P < threshold Extreme

Extreme weather conditions

Extreme

Effects on crops

NPP < threshold

Extreme weather condition

-The **SPEI** drought index based on the difference of **P and PET**

-The calculation considers one 6 month period (Jan.-Jun.) per year

-Values < -1 define extreme dry conditions

Vincente-Serrano et al., 2010; van Oijen et al., 2014

SPEI index [-] -1 - -0.5 -0.5 - 0 0 - 0.5 0.5 - 1 > 1

Example maps for 1982

Risk/vulnerability analysis

Risk: $R = NPP_{non hazardous} - NPP$

Vulnerability: $V = NPP_{non hazardous} - NPP_{hazardous}$

NPP
hazardous:average NPP over grid cells with SPEI < -1</th>NPP
non hazardous:average NPP over grid cells with SPEI > -1NPP:overall average NPP

- SPEI < -1: hazardous conditions
- SPEI > -1: non hazardous conditions

Van Oijen et al., 2014

Risk analysis for COUP (NPP)

Risk analysis wheat (PLP)

Results for wheat: Risk (black) and vulnerability (grey)

Risk analysis wheat (PLW)

Results for wheat: Risk (black) and vulnerability (grey)

Summary

- The resolution affects 0.9-5.5 % (wheat) and 0-3.3 % (maize) changes on the simulated NPP values
- Except for the length of growing season there is no clear trend in the effects
- The impact of extreme weather on NPP is affected by the scale, but the impact of extremes is larger than the impact of scale

Thank you for your attention!

www.scale-it.net

threshold: -1

Method (2)

<i>env</i> (RAIN, mm y⁻¹)	sys (NPP, g m ⁻²	d ⁻¹) Threshold: 500 mm precipitation
200	20	E(<i>sys env</i> non-hazardous): 90 g m ⁻² d ⁻¹
400	30	
400	40	E(<i>sys</i>): 72 g m ⁻² d ⁻¹
600	70	
600	80	E(<i>sys env</i> hazardous) : 30 g m ⁻² d ⁻¹
600	80	
800	90	
800	100	
800	100	
800	110	
Risk:	R = 90	$0 \text{ g m}^{-2} \text{ d}^{-1} - 72 \text{ g m}^{-2} \text{ d}^{-1} = 18 \text{ g m}^{-2} \text{ d}^{-1}$
Vulnerability:	V = 90	$0 \text{ g m}^{-2} \text{ d}^{-1} - 30 \text{ g m}^{-2} \text{ d}^{-1} = 60 \text{ g m}^{-2} \text{ d}^{-1}$

Van Oijen et al., unpublished

Method (2)

Precipitation alone is not a good indicator!

Drought indices:

- SPI: based on precipitation
- SPEI: based on potential evapotranspiration and precipitation

Thresholds:

Results (2)

Van Oijen et al., submitted

Results (2)

Van Oijen et al., submitted

NPP 2003

