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Preface 
This book presents Euclidean Geometry and was designed for a one-semester course preparing 

junior and senior level college students to teach high school Geometry. (I have used it many 

times for a 3000-level Geometry course at Ohio University in Athens.)  

 

The book could also serve as a text for a sophomore or junior level Introduction to Proofs course. 

Axiom systems are introduced at the beginning of the book, and throughout the book there is a 

lot of discussion of how one structures a proof. Care is taken to discuss the idea of negating 

quantified statements, and to discuss the significance of the converse and contrapositive of 

conditional statements. Methods of indirect proof are introduced, both the usual method of 

contradiction and the simpler (and usually overlooked) method of proving the contrapositive. 

 

The book also discusses extensively what it means to use an old theorem in a proof of a new 

theorem. That is, the student must make clear what prior steps in the current proof confirm that 

the hypotheses of the old theorem are satisfied. 

 

Some portions of the text and some of the exercises are flagged as Advanced. This material can 

be omitted, or the Theorems can be accepted without proof. Students who are up for the 

challenge can read those sections and work on those exercises. 

 

The Definitions and Theorems are numbered, and complete lists of them are presented in the 

Appendices. In the print version of the book, the Appendices are bound in a separate cover. 

When I use the book in my course, students are continually asked to justify claims (claims that 

the students make or that are made in the book) by referring to the lists of Definitions and 

Theorems. Students are even allowed to use the lists on quizzes and exams. This instills in them 

the concept of a sequence of Definitions and Theorems that builds on earlier results, and it helps 

them really learn the list.  

 

The axiom system includes the existence of a distance function, coordinate functions, and an 

angle measurement function. This is not the approach of Hilbert (and of books that use Hilbert’s 

approach), in which the behavior of points on a line is dictated by Axioms of Betweenness, and 

then the existence of a distance function can proven as a theorem. I have two reasons for 

choosing to include the existence of a distance function and coordinate functions as an axiom, 

rather than proving them as in theorems. First, the axioms used in high school Geometry books 

usually include the existence of a distance function and coordinate functions as an axiom, so this 

book will more closely align with what students will need to be able to teach in the future.  

 

A second reason for choosing to include the existence of a distance function and coordinate 

functions as an axiom is that I feel that is important to include a variety of proof styles. In this 

book, the proofs involving the Plane Separation Axiom are mostly about logic: arguments often 

boil down to recognizing that the Plane Separation Axiom includes conditional statements, and 

that these conditional statements come with associated contrapositive statements that are also 

true. In books that also contain Axioms of Betweenness, one finds a lot more proofs, about 

behavior of points on lines, that are mostly about logic. I don’t think that students need to study 

that so many proofs of that style. In this book, by contrast, the theorems about the behavior of 

points on lines have proofs that involve the properties of functions. That is because in this book, 
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the behavior of points on lines is entirely determined by the existence of coordinate functions, 

and the definition of a coordinate function involves the idea of one-to-one and onto functions. 

The proofs of theorems about the behavior of points on lines are of a style very different from the 

style of the proofs of theorems involving plane separation. In addition to learning to do proofs of 

a different style, the students benefit from having to work with the definitions of one-to-one and 

onto functions, concepts that are underrepresented in prerequisite courses. 

 

It is significant that the axiom system does not include any axioms about area. The approach is as 

follows. Triangle Similarity for Euclidean Geometry is developed in theorems. One of the last 

result of similarity is a theorem that states that for a Euclidean triangle, the product of base times 

height does not depend on the choice of base. This enables the definition of triangle area in terms 

of base times height. Then the area of more complicated “polygonal regions” is possible by 

subidividing those regions into triangles. Properties of area are proven in theorems. (In the final 

section of the chapter on area, this approach to area is contrasted to the approach taken by high 

school geometry books, where area and area properties are included in the axioms.) 

 

Drawings play a large role in the exposition. Because this is not a commercial textbook, page 

space is not precious. As a result, it is feasible to include many drawings to illustrate proofs that 

might be given only a single drawing in a commercial book. In some of the proofs, a new 

drawing is made for each step of the proof. When teaching the course, I have the students work 

on the skill of making a new, separate, drawing to illustrate each step of their proofs.  

 

Throughout the book, the writing is meant to have a level of precision appropriate for a junior or 

senior level college math course. The language of quantifiers, conditional statements, functions 

and their properties, and function notation are all used. At the end of three chapters, there are 

short sections that compare the presentation of the material in this book to the presentation that 

students will encounter in a high school book, where quantifiers and conditional statements are 

not so clear and where function notation is not used. It is pointed out that a number of theorems 

that have difficult proofs are given as axioms in high school Geometry books. 

 

Each chapter of the book ends with exercises that are organized by section. 

 

Throughout the PDF version of the book, most references are actually hyperlinks. That is, any 

reference to a numbered book section, or numbered theorem, can be clicked on to take the reader 

to see that numbered item. Using the “back arrow” will take the reader back to where they were 

before. 

 

The book was designed to work for a one-semester course. Therefore, much geometry is not 

included. It is important to be clear about what this book does not contain. Here is a short list. 

 

The book does not yet have an index. That will be fixed soon. Meanwhile, the reader of the 

electronic version of the book can, of course, search for a term and turn up all occurrences, 

including the definition (if there is one). 

 

Three dimensional objects are not discussed and are not mentioned in the axioms.  

 

Constructions are not included. This is partly because I did not want the book to be too full. But 

also, I feel that constructions amount to using an alternate axiom system, the axioms that 
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describe what can be constructed with the basic tools. A “construction” is really a proof of 

existence using this alternate axiom system. In many books that I have read, there is not a good 

distinction between the idea of a construction—using the alternate axiom system—and the idea 

of an existence proof—using the regular axiom system. For example, in some books, authors will 

write, in the course of an existence proof, that some object with certain properties can be 

“constructed”. What should really be written is that some object with certain properties can be 

“proven to exist”. For this book, I decided to stick to one axiom system and omit constructions. 

 

Spherical Geometry is not included.  I plan to include a bit of spherical geometry in future 

versions of the book, but not very much. I will include some exercises in the early chapters that 

explore the fact that spherical geometry flunks the earliest of the axioms in this book, the 

Incidence Axioms. In this sense, Spherical Geometry is very different from Euclidean Geometry. 

Because of this, I feel that studying Spherical Geometry will not shed much useful light on 

Euclidean Geometry. That is why I have, for now, omitted it. 

 

Hyperbolic Geometry is not included. I hope to include a substantial amount of Hyperbolic 

Geometry in a future version, but when I do, it will be for a second semester course. However, 

the book in its current form is organized in a way that makes it easy to mention the idea of 

Hyperbolic Geometry during the course, and I do this quite frequently when I teach. The axiom 

system consists of ten “Neutral Geometry” axioms, numbered <N1> through <N10> and an 

eleventh “Euclidean Parallel Axiom”, <EPA>. Chapters three through eight deal only with 

Neutral Geometry—using only the first ten axioms. When I teach the course, I often introduce 

two informal “drawn models” of Neutral Geometry. One is the usual “Euclidean” model where 

straight-looking drawn lines play the role of the undefined lines in the geometry. The second 

model is the Poincare disk model, where drawn circular arcs play the role of the undefined lines 

in the geometry. I frequently ask students to produce both a straight-line illustration and Poincare 

disk illustration for concepts discussed in the first eight chapters. This makes it clear that there 

are (at least) two flavors of Neutral Geometry. Chapters nine through fifteen study the full 

Euclidean Geometry, with all eleven axioms.  Students see that the eleventh axiom, the 

Euclidean Parallel Axiom, really is needed to nail down all of the behavior that one expects in 

Euclidean Geometry. (Remark: One of my students went on to study Hyperbolic Geometry in an 

independent study course with me, using a book about Hyperbolic Geometry. She was constantly 

referring to chapters three through eight of my book for Neutral Geometry theorems and proofs 

that are used in Hyperbolic Geometry.) 

 

The final chapter of the book discusses Maps, Transformations, and Isometries. This chapter 

includes much discussion of functions, inverse functions, maps of the plane, and even includes a 

review of binary operations and groups. It culminates in a proof that the set of isometries of the 

plane is a group, and also has some theorems about classifying isometries. That final chapter is 

not about a “transformational approach” to Euclidean geometry. I hope to include chapters on a 

transformational approach in future versions of the book. 

 

I welcome feedback and suggestions. 

 

Mark Barsamian 

barsamia@ohio.edu 

Ohio University, Athens Ohio 

December, 2017  
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1.Axiom Systems 

1.1. Introduction to Axiom Systems 

1.1.1. Looking Back at Earlier Proofs Courses 

In earlier courses involving proofs, you studied conditional statements—statements of the form 

 

If Statement A is true then Statement B is true. 

 

You saw that the proof of such a conditional statement has the following form: 

 

Proof: 

(1) Statement A is true. (given) 

(2) Some statement (with some justification provided) 

(3) Some statement (with some justification provided) 

(4) Some statement (with some justification provided) 

(5) Statement B is true. (with some justification provided) 

End of Proof 

 

For example, you proved the following conditional statement about integers: 

 

If 𝑛 is odd, then 𝑛2 is odd. 

 

Proof: 

(1) Suppose that 𝑛 is an odd integer. 

(2) There exists some integer 𝑘 such that 𝑛 = 2𝑘 + 1 (by statement (1) and the definition of 

odd) 

(3) 𝑛2 = (2𝑘 + 1)2 = (2𝑘 + 1)(2𝑘 + 1) = 4𝑘2 + 4𝑘 + 1 = 2(2𝑘2 + 2𝑘) + 1 (arithmetic) 

(4) (2𝑘2 + 2𝑘) is an integer (because the set of integers is closed under addition and 

multiplication). Call this integer 𝑚. So, 𝑛 = 2𝑚 + 1 where 𝑚 is an integer. 

(5) 𝑛2 is odd. (by statement (4) and the definition of odd) 

End of Proof 

 

In this proof, the only assumption is the given Statement A. The proof does not prove that 

Statement A is true; it only proves that if statement A is true, then statement B is also true. 

 

 

But in most of your proofs in those earlier courses, certainly in all of the proofs involving basic 

number theory, there were actually unstated assumptions in addition to the explicitly given 

Statement A. The proof above relies on some unstated assumptions about the basic properties of 

integers. These basic properties of integers are not statements that can be proven. Rather, they 

are statements that are assumed to be true. Statements such as 

 

The set of integers is closed under addition and multiplication 

or 
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There is a special number called 1 with the following properties 

1) 1 is not equal to 0. 

2) For all integers 𝑛, 𝑛 ⋅ 1 = 𝑛. 

 

It may seem silly that we are even discussing the above statements. They are so obviously true, 

and we’ve known that they are true since grade school math. We never think about the 

statements, even though we do integer arithmetic all the time. 

 

Well, the statements can not in fact be proven true (or false). We can’t imagine what we would 

do if they were false, though: all of the math we’ve used since grade school would be out the 

window. So we just assume that all the basic properties of the integers are true and we go from 

there. But to be totally honest about all the given information in the Theorem about odd numbers, 

we would need to write the theorem and its proof something like this: 

 

Theorem: If all of the axioms of the integers are true [they would have to be listed 

explicitly here] and 𝑛 is odd, then 𝑛2 is also odd. 

 

Proof: 

(1) Suppose that all of the axioms of the integers are true [they would have to be listed 

explicitly here] and that 𝑛 is an odd integer. 

(2) There exists some integer 𝑘 such that 𝑛 = 2𝑘 + 1 (by statement (1) and the definition of 

odd) 

(3) 𝑛2 = (2𝑘 + 1)2 = (2𝑘 + 1)(2𝑘 + 1) = 4𝑘2 + 4𝑘 + 1 = 2(2𝑘2 + 2𝑘) + 1 (arithmetic) 

(4) (2𝑘2 + 2𝑘) is an integer (because the set of integers is closed under addition and 

multiplication) 

(5) 𝑛2 is odd. (by statement (4) and the definition of odd) 

End of Proof 

 

But in your earlier courses about proofs, the emphasis was on learning how to build a proof. That 

is, you would have been concerned with steps 2 through 5 of the above proof. Since we all know 

how to work with the integers without having to refer to their underlying axioms, the axioms 

were not mentioned. 

1.1.2. Looking Forward 

Having studied in earlier courses the building of proofs of basic number theory theorems, a 

setting where the underlying axioms could go unmentioned, you will study in this book the 

building of proofs of theorems about geometry. In geometry, the underlying axioms are not 

obvious and cannot go unmentioned. In fact, this book will largely be about the axioms, 

themselves. We will start by studying very simple axioms systems, in order to learn how one 

builds proofs based on an explicit axiom system and to learn some of the basic terminology of 

axiom systems. Then, we will turn our attention to more complicated axiom systems. 

1.1.3. Definition of Axiom System 

We will use the term axiom system to mean a finite list of statements that are assumed to be true. 

The individual statements are the axioms. The word postulate is often used instead of axiom. In 

this book, axioms will be labeled with numbers enclosed in angle brackets: <1>, <2>, etc. 
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Example 1 of an axiom system 

<1>   Elvis is dead. 

<2>   Chocolate is the best flavor of ice cream. 

<3>   5 = 7. 

 

Notice that the first statement is one that most people are used to thinking of as true. The second 

sentence is clearly a statement, but one would not have much luck trying to find general 

agreement as to whether it is true or false. But if we list it as an axiom, we are assuming it is true.  

 

The third statement seems to be problematic. If we insist that the normal rules of arithmetic must 

hold, then this statement could not possibly be true. There are two important issues here. The 

first is that if we are going to insist that the normal rules of arithmetic must hold, then that means 

our axiom system is actually larger than just the three statements listed: the axiom system would 

also include the axioms for arithmetic. The second issue is that if we do assume that the normal 

rules of arithmetic must hold, and yet we insist on putting this statement on the list of axioms, 

then we have a “bad” axiom system in the sense that its statements contradict each other. We will 

return to this when we discuss consistency of axiom systems. 

 

So the idea is that regardless of whether or not we are used to thinking of some statement as true 

or false, when we put the statement on a list of axioms we are simply assuming that the statement 

is true. 

 

With that in mind, we could create a slightly different axiom system by modifying our first 

example. 

 

Example 2 of an axiom system 

<1> Elvis is alive. 

<2> Chocolate is the best flavor of ice cream. 

<3> 5 = 7. 

 

The statements of an axiom system are used in conjunction with the rules of inference to prove 

theorems. Used this way, the axioms are actually part of the hypotheses of each theorem proved. 

For example, suppose that we were using the axiom system from Example 2, and we were 

somehow able to use the rules of inference to prove the following theorem from the axioms. 

 

Theorem: If Bob is Blue then Ann is Red. 

 

Then what we really would have proven is the following statement: 

 

Theorem: If ((Elvis is alive) and (Chocolate is the best flavor of ice cream) and (5 = 7) and 

(Bob is Blue)) then Ann is Red. 

1.1.4. Primitive Relations and Primitive Terms 

As you can see from the examples in the previous section, axiom systems may be comprised of 

statements that we are used to thinking of as true, or statements that we are used to thinking of as 

false, or some mixture of the two. More interestingly, an axiom system can be made up of 

statements whose truth we have no way of assessing. The easiest way to get such an axiom 



14   Chapter 1: Axiom Systems 

system is to build statements using words whose meaning has not been defined. In this course, 

we will be doing this in two ways. 

1.1.5. Primitive Relations 

The first way of building statements whose meaning is undefined is to use nouns whose meaning 

is known in conjunction with transitive verbs whose meaning is not known. For instance, 

consider the following sentence about two integers. 

 

“5 is related to 7.” 

 

This is a sentence with the noun 5 as the subject, the noun 7 as the direct object, and the words 

“is related to” as the transitive verb. We have no idea what this sentence might mean, because 

the phrase “is related to” is undefined. That is, the transitive verb is undefined. 

 

Transitive verbs in the written language have a counterpart in the mathematical language: they 

correspond to mathematical relations. The undefined phrase “is related to” in the previous 

paragraph is an example of an undefined relation on the set of integers.  In the context of axiom 

systems, an undefined relation is sometimes called a primitive relation. When one presents an 

axiom system that contains primitive relations—that is, undefined transitive verbs—it is 

important to introduce those primitive relations before listing the axioms. Here is an example of 

an axiom system consisting of sentences built using primitive relations in the manner described 

above. 

 

Axiom System: Axiom System #1 

Primitive Relations: relation on the set of integers spoken “x is related to y” 

Axioms: <1> 5 is related to 7 

<2> 5 is related to 8 

<3> For all integers 𝑥 and 𝑦, if 𝑥 is related to 𝑦, then 𝑦 is related to 𝑥. 

<4> For all integers 𝑥, 𝑦, and 𝑧, if 𝑥 is related to 𝑦 and 𝑦 is related to 𝑧, 

then 𝑥 is related to 𝑧. 

 

We can easily abbreviate the presentation of this axiom system by using the symbols and 

terminology of mathematical relations: 

 

 The set of integers is denoted by the symbol ℤ. (This kind of font is often called “double-

struck” or “blackboard bold”. That is, the symbol ℤ is a double-struck Z, or a blackboard-

bold Z.) 

 The undefined relation is denoted by the symbol ℛ. (script R) 

 The relation ℛ is a relation on the set of integers. From your previous study of relations, 

you should have learned that this means simply that ℛ is a subset: ℛ ⊂ ℤ × ℤ. Because 

the relation ℛ is undefined, we don’t know what that subset is. 

 The symbol ℛ5 7 is used as an abbreviation for the sentence “5 is related to 7”, which 

means that the ordered pair (5,7) is an element of the subset ℛ. That is, (5,7) ∈ ℛ. 

 More generally, the symbol ℛ𝑥 𝑦 is used as an abbreviation for “x is related to y”. 

 A relation on a set is said to be symmetric if it has the following property: 

 

For all elements a and b in the set, if a is related to b, then b is related to a. 
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We see that axiom <3> is simply saying that relation ℛ is symmetric. 

 

 A relation on a set is said to be transitive if it has the following property: 

 

For all elements a, b, and c in the set, if a is related to b, and b is related to c, then a is 

related to c. 

 

We see that axiom <4> is simply saying that relation ℛ is transitive. 

 

Using the symbols and terminology described above, the abbreviated version of Axiom System 

#1 is as follows. 

 

Axiom System: Axiom System #1, abbreviated version 

Primitive Relations: relation ℛ on the set ℤ, spoken “x is related to y” 

Axioms: <1> ℛ5 7 

<2> ℛ5 8  

<3> relation ℛ is symmetric 

<4> relation ℛ is transitive 

 

Observe that each of the axioms is a statement whose truth we have no way of assessing, because 

the relation ℛ is undefined. But we can prove the following theorem. 

 

Theorem for axiom system #1: 7 is related to 8. 

Proof 

(1) 7 is related to 5 (by axioms <1> and <3>) 

(2) 7 is related to 8 (by statement (1) and axioms <2> and <4>) 

End of proof 

 

As mentioned in the previous section, the axioms could be stated explicitly as part of the 

statement of the theorem. (Then we would not really need to state the axiom system separately.) 

 

Theorem: If ((ℛ is a relation on ℤ) and ( ℛ5 7) and ( ℛ5 8) and (ℛ is symmetric) and (ℛ is 

transitive), then ℛ7 8. 

1.1.6. Primitive Terms 

The second way of building statements whose meaning is undefined is to use not only undefined 

transitive verbs, but also undefined nouns. A straightforward way to do this is to introduce sets A 

and B whose elements are undefined. For instance, let 𝐴 be the set of akes and 𝐵 be the set of 

bems, where ake and bem are undefined nouns. Introduce the following sentence: “the ake is 

related to the bem”. Note that this is a sentence with the undefined noun ake as the subject, the 

words “is related to” as the transitive verb, and the undefined noun bem as the direct object. Of 

course we have no idea what this sentence might mean, because the nouns ake and bem are 

undefined. But we now have the following building blocks that can be used to build sentences. 

 the undefined noun: 𝑎𝑘𝑒 

 the undefined noun: 𝑏𝑒𝑚 
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 the undefined sentence: The 𝑎𝑘𝑒 is related to the 𝑏𝑒𝑚. 

Since we don’t know the meaning of the sentence “The 𝑎𝑘𝑒 is related to the 𝑏𝑒𝑚”, we have 

effectively introduced an undefined relation from set 𝐴 to set 𝐵. We could call this undefined 

relation ℛ. Using the standard notation for relations, we could write ℛ ⊂ 𝐴 × 𝐵. The sentence 

“The 𝑎𝑘𝑒 is related to the 𝑏𝑒𝑚” would be denoted by the symbol ℛ𝑎𝑘𝑒 𝑏𝑒𝑚. and would mean that 

the ordered pair(𝑎𝑘𝑒, 𝑏𝑒𝑚)  is an element of the subset ℛ. That is, (𝑎𝑘𝑒, 𝑏𝑒𝑚) ∈ ℛ. 

 

In the context of axiom systems, an undefined noun is sometimes called an undefined term, or a 

primitive term, or an undefined object, or a primitive object. In presentations of axiom systems 

that contain primitive terms, the primitive terms are customarily listed along with the primitive 

relations, before the axioms. Here is an example of an axiom system consisting of sentences built 

using primitive terms and primitive relations in the manner described above. 

 

Axiom System: Axiom System #2 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> For any bem, there are exactly two akes that are related to the bem. 

 

As with Axiom System #1, each of these axioms in Axiom System #2 is a statement whose truth 

we have no way of assessing, because the words ake and bem are undefined and the relation is 

undefined. But we can prove the following theorem. 

 

Theorem #1 for Axiom System #2: There are exactly 6 bems. 

 

Proof 

Part 1: Show that there must be at least 6 bems. 

(1) By axiom <1>, there are four akes. Therefore, it is possible to build six unique 

sets of two akes. Those six sets are {ake1, ake2}, {ake1, ake3}, {ake1, ake4}, 

{ake2, ake3 }, {ake2, ake4}, {ake3, ake4}. 

(2) Consider the set {ake1, ake2}. Axiom <2> tells us that there must be a bem that 

both of these akes are related to. Call it bem1. 

(3) Now consider the set {ake1, ake3}. Axiom <2> tells us that there must be a 

bem that both of these akes are related to. Axiom <3> tells us that it cannot be 

bem1, because there are already two akes that are related to bem1. So there 

must be a new bem that ake1 and ake3 are both related to. Call it bem2. 

(4) Proceeding this way, we see that there must be at least 6 bems, one for each of 

the sets of two akes listed above. 

 

Part 2: Show that there cannot be more than 6 bems. (indirect proof) 

(5) Suppose that there is a 7th bem, called bem7. (assumption for indirect proof) 

(6) By axiom <3>, there must be exactly two akes that are related to bem7. Let 

those two akes be denoted akej and akek, where j ≠ k. From Part 1 of this 

proof, we know that these two akes are also both related to one of the bems 
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numbered bem1, bem2, …,   bem6.  So there are two bems that akej and akek are 

both related to.  

(7) Statement (6) contradicts Axiom <2>. Therefore, our assumption in statement 

(5) was incorrect. There cannot be a 7th bem. 

End of proof 

 

As with the theorem that we proved in the previous section for Axiom System #1, we note that 

the theorem just presented could be written with all of the primitive terms, primitive relations, 

and axioms put into the hypothesis. The resulting theorem statement would be quite long. 

 

Theorem: If Blah Blah Blah then there are exactly 6 bems. 

 

In the exercises, you will prove the following: 

 

Theorem #2 for Axiom System #2: For every ake, there are exactly three bems that the 

ake is related to. 

 

Digression to Discuss Proof Structure 

 

Before going further, it is worthwhile to pause and consider the structure of the proofs of Axiom 

System #2 Theorems #1 and #2. 

 

Note that Theorem #1 is an existential statement: it states that something exists. In order to prove 

the theorem, one must use the axioms. Now consider the three axioms of Axiom System #2. 

Notice that axioms <2> and <3> say something about objects existing, but only in situations 

where some other prerequisite objects are already known to exist. Those axioms are of no use to 

us until after we have proven that those other prerequisite objects do exist. Only axiom <1> says 

simply that something exists, with no prerequisites. So we have no choice but to start the proof 

of Theorem #1 by using axiom <1>. Look back at the proof of Theorem #1, and observe that it 

does start by using axiom <1>. 

 

Now note that Theorem #2 starts with the words “For every ake...”. A statement that begins this 

way is called a universal statement. It claims that each ake in the set of all akes has the stated 

property. (In this case, the property is that there are exactly three bems that the ake is related to.) 

The set of all akes could be considered a sort of universal set in this situation, with Theorem #2 

making a claim about every ake in that universal set. Hence, the name universal statement. 

 

It is important to keep in mind that the universal statement of Theorem #2 does not claim that 

any akes exist. It only makes a claim about an ake that is already known to exist: an ake that is 

given. So a proof of Theorem #2 must start with a sentence introducing a given ake. The given 

ake is known to have only the attributes mentioned before the comma in the “for every...” phrase. 

In the statement of Theorem #2, the phrase simply says “For every ake,...”. That is, the given 

ake is not known to have any other attributes beyond merely exiting. So The start of the proof 

would look like this: 

 

Start of proof of Theorem #2 

(1) Suppose that an ake is given. (Notice that no other attributes are mentioned.) 

(2)  
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(The goal of the proof will be to prove that the given ake does in fact have another attribute, he 

property is that there are exactly three bems that the ake is related to) 

 

Let me reiterate that one does not begin the proof of Theorem #2 by proving that an ake exists. 

Even though Axiom System #2 does have an axiom that states that four akes exist, the statement 

of Theorem #2 does not claim that any akes exist. Theorem #2 only makes a claim about a given 

ake, and so the proof of Theorem #2 must start with the introduction of a given ake. 

 

More generally, in the proof of a universal statement, one must start the proof by stating that a 

generic object is given.  A generic object is an object or objects that have only the attributes 

mentioned right after the words “for all” and before the comma in the theorem statement. The 

given objects are known to have those attributes, but are not known to have any other. (The 

object of the proof is to prove that the given objects do have some other attributes as well.) 

 

End of Digression to Discuss Proof Structure 

 

Our examples of axiom systems with undefined terms and undefined relations seem rather 

absurd, because their axioms are meaningless. What purpose could such abstract collections of 

nonsense sentences possibly serve? Well, the idea is that we will use such abstract axiom 

systems to represent actual situations that are not so abstract. Then for any abstract theorem that 

we have been able to prove about the abstract axiom system, there will be a corresponding true 

statement that can be made about the actual situation that the axiom system is supposed to 

represent. 

 

This begs the question: why study the axiom system at all, if the end goal is to be able to prove 

statements that are about some actual situation? Why not just study the actual situation and prove 

the statements in that context? The answer to that is twofold. First, a given abstract axiom system 

can be recycled, used to represent many different actual situations. By simply proving theorems 

once, in the context of the axiom system, the theorems don’t need to be reproved in each actual 

context. Second, and more important, by proving theorems in the context of the abstract axiom 

system, we draw attention to the fact that the theorems are true by the simple fact of the axioms 

and the rules of logic, and nothing else. This will be very important to keep in mind when 

studying axiomatic geometry. 

1.1.7. Interpretations and Models 

As mentioned above, an axiom system with undefined terms and undefined relations is often 

used to represent an actual situation. This idea of representation is made more precise in the 

following definition. You’ll notice that the representing sort of gets turned around: we think of 

the actual situation as a representation of the axiom system. 

 

Definition 1 Interpretation of an axiom system 

Suppose that an axiom system consists of the following four things 

 an undefined object of one type, and a set 𝐴 containing all of the objects of that type 

 an undefined object of another type, and a set 𝐵 containing all of the objects of that type 

 an undefined relation ℛ from set 𝐴 to set 𝐵 

 a list of axioms involving the primitive objects and the relation 
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An interpretation of the axiom systems is the following three things 

 a designation of an actual set 𝐴′ that will play the role of set 𝐴 

 a designation of an actual set 𝐵′ that will play the role of set 𝐵 

 a designation of an actual relation ℛ′ from 𝐴′ to 𝐵′ that will play the role of the relation ℛ 

 

As examples, for Axiom System #2 from the previous section we will investigate three different 

interpretations invented by Alice, Bob, and Carol. Recall Axiom System #2 included the 

following things 

 an undefined term ake and a set A containing all the akes 

 an undefined term bem and a set B containing all the bems 

 a primitive relation ℛ from set A to set B 

 a list of three axioms involving these undefined terms and the undefined relation 

 

 

Alice’s interpretation of  Axiom System #2. 

 Let 𝐴′ be the set of dots in the picture at right. 

 Let 𝐵′ be the set of segments in the picture at right.  

 Let relation ℛ′ from 𝐴′ to 𝐵′ be defined by saying that the words 

“the ake is related to the segment” mean “the dot touches the 

segment”. 

 

 

Bob’s interpretation of  Axiom System #2. 

 Let 𝐴′ be the set of dots in the picture at right. 

 Let 𝐵′ be the set of segments in the picture at right.  

 Let relation ℛ′ from 𝐴′ to 𝐵′ be defined by saying that the words 

“the dot is related to the segment” mean “the dot touches the 

segment”. 
 

Carol’s interpretation of  Axiom System #2. 

 Let 𝐴′ be the set whose elements are the letters 𝑣, 𝑤, 𝑥, and 𝑦. That is, 𝐴′ = {𝑣, 𝑤, 𝑥, 𝑦}. 

 Let 𝐵′ be the set whose elements are the sets {𝑣, 𝑤}, {𝑣, 𝑥}, {𝑣, 𝑦}, {𝑤, 𝑥}, {𝑤, 𝑦}, and 

{𝑥, 𝑦}. That is, 𝐵′ = {{𝑣, 𝑤}, {𝑣, 𝑥}, {𝑣, 𝑦}, {𝑤, 𝑥}, {𝑤, 𝑦}, {𝑥, 𝑦}}. 

 Let relation ℛ′ from 𝐴′ to 𝐵′ be defined by saying that the words “the letter is related to 

the set” mean “the letter is an element of the set”. 

 

Notice that Alice and Bob have slightly different interepretations of the axiom system. Is one 

better than the other? It turns out that we will consider one to be much better than the other. The 

criterion that we will use is to consider what happens when we translate the Axioms into 

statements about dots and segments. Using a find & replace feature in a word processor, we can 

simply replace every occurrence of 𝑎𝑘𝑒 with 𝑑𝑜𝑡, every occurrence of 𝑏𝑒𝑚 with 𝑠𝑒𝑔𝑚𝑒𝑛𝑡, and 

every occurrence of is related to with touches. Here are the resulting three statements. 

 

Statements: 

1.There are four dots. These may be denoted dot1, dot2, dot3, dot4. 

2. For any two distinct dots, there is exactly one line that both dots touch. 

3. For any line, there are exactly two dots that touch the line. 
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We see that in Bob’s interpretation, all three of these statements are true. In Alice’s interpretation 

the first and third statements are true, but the second statement is false. 

 

What about Carol’s interpretation? We should consider what happens when we translate the 

Axioms into statements about letters and sets. We can simply replace every occurrence of ake 

with letter, every occurrence of bem with set, and every occurrence of is related to with is an 

element of.  

 

Statements: 

1. There are four letters. These may be denoted letter1, letter2, letter3, letter4. 

2. For any two distinct letters, there is exactly one set that both letters are elements of. 

3. For any set, there are exactly two letters that are elements of the set. 

 

We see that in Carol’s interpretation, the translations of the three axioms are three statements that 

are all true. 

 

Let’s formalize these ideas with a definition. 

 

Definition 2 successful interpretation of an axiom system; model of an axiom system 

To say that an interpretation of an axiom system is successful means that when the 

undefined terms and undefined relations in the axioms are replaced with the 

corresponding terms and relations of the interpretation, the resulting statements are all 

true. A model of an axiom system is an interpretation that is successful. 

 

So we would say that Bob’s and Carol’s interpretations are successful: they are models. Alice’s 

interpretation is unsuccessful: it is not a model. 

 

Notice also that Bob’s and Carol’s models are essentially the same in the following sense: one 

could describe a correspondence between the objects and relations of Bob’s model and the 

objects and relations of Carol’s model in a way that all corresponding relationships are 

preserved. Here is one such correspondence. 

 

objects in Bob’s model  objects in Carol’s model 

the lower left dot  the letter v 

the lower right dot  the letter w 

the upper right dot  the letter x 

the upper left dot  the letter y 

the segment on the bottom  the set {𝑣, 𝑤} 

the segment that goes from lower left to upper right  the set {𝑣, 𝑥} 

the segment on the left side  the set {𝑣, 𝑦} 

the segment on the right side  the set {𝑤, 𝑥} 

the segment that goes from upper left to lower right  the set {𝑤, 𝑦} 

the segment across the top  the set {𝑥, 𝑦} 

relation in Bob’s model  relation in Carol’s model 

the dot touches the segment  the letter is an element of the set 
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What did I mean above by the phrase “...in a way that all corresponding relationships are 

preserved...”? Notice that the following statement is true in Bob’s model. 

 

The lower right dot touches the segment on the right side. 

 

If we use the correspondence to translate the terms and relations from Bob’s model into terms 

and relations from Carol’s model, that statement becomes the following statement. 

 

The letter 𝑤 is an element of the set {𝑤, 𝑥}. 

 

This statement is true in Carol’s model. In a similar way, any true statement about relationships 

between dots and segments in Bob’s model will translate into a true statement about relationships 

between letters and sets in Carol’s model. 

 

The notion of two models being essentially the same, in the sense described above, is formalized 

in the following definition. 

 

Definition 3 isomorphic models of an axiom system 

Two models of an axiom system are said to be isomorphic if it is possible to describe a 

correspondence between the objects and relations of one model and the objects and 

relations of the other model in a way that all corresponding relationships are preserved. 

 

It should be noted that it will not always be the case that two models for a given axiom system 

are isomorphic. We will return to this in the next section, when we discuss completeness. 

 

But before going on to read the next section, you should do the exercises for the current section. 

The exercises are found in Section 1.4 on page 29. 

1.2. Properties of Axiom Systems I: Consistency and 

Independence 
In this section, we will discuss three important properties that an axiom system may or may not 

have. They are consistency, completeness, and independence. 

1.2.1. Consistency 

We will use the following definition of consistency. 

 

Definition 4 consistent axiom system 

An axiom system is said to be consistent if it is possible for all of the axioms to be true. 

The axiom system is said to be inconsistent if it is not possible for all of the axioms to be 

true. 

 

We will be interested in determining if a given axiom system is consistent or inconsistent. It is 

worthwhile to think now about how one would prove that an axiom system is consistent, or how 

one would prove that an axiom system is inconsistent. 
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Suppose that one suspects that an axiom system is consistent and wants to prove that it is 

consistent.  One proves that an axiom system is consistent by producing a model for the axiom 

system. For Axiom System #2, we have two models—Bob’s and Carol’s—so the axiom system 

is definitely consistent. 

 

Suppose that one suspects that an axiom system is inconsistent and wants to prove that it is 

inconsistent.  One would be trying to prove that something is not possible. It is not obvious how 

that would be done. The key is found in the Rule of Inference called the Contradiction Rule. 

 

Digression to Consider Different Versions of the Contradiction Rule 

 

We will consider the different versions of the Contradiction Rule. We will number the versions, 

so that we can more easily refer to them later. The Contradiction Rule is presented in lists of 

Rules of Inference in the following basic form: 

 

Contradiction Rule Version 1 (Basic Form) 
~𝑝 → 𝑐 

∴ 𝑝 

 

In this rule, the symbol c stands for a contradiction—a statement that is always false. This rule is 

used in the following way. To prove that statement p is true using the method of contradiction, 

one starts by assuming that statement p was false. One then shows that it is possible to reach a 

contradiction. Therefore, the statement p must be true. 

 

Suppose we replace the statement 𝑝 with the statement ~𝑞. Then the contradiction rule becomes 

 

Contradiction Rule Version 2 
~(~𝑞) → 𝑐 

∴ (~𝑞) 

 

In other words,  

 

Contradiction Rule Version 2 
𝑞 → 𝑐 

∴ ~𝑞 

 

This version of the rule states that if one can demonstrate that statement 𝑞 leads to a 

contradiction, then statement 𝑞 must be false. 

 

There are other versions of this rule as well. Consider what happens if we use a statement 𝑞 of 

the form 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2. 

 

Contradiction Rule Version 3 
(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2) → 𝑐 

∴ ~(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2) 

 

If we apply DeMorgan’s law to the conclusion of this version of the rule, we obtain  

 

Contradiction Rule Contradiction Rule Version 3 
(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2) → 𝑐 

∴ ~𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∨ ~𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2 
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This version of the rule says if one can demonstrate that an assumption that 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 and 

𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2 are both true leads to a contradiction, then at least one of the statements must be 

false. 

 

Finally, consider what happens if we use a whole list of statements. 

 

Contradiction Rule Version 4 
(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2 ∧ ⋯ ∧ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑘) → 𝑐 

∴ ~𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡1 ∨ ~𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡2 ∨ ⋯ ∨ ~𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑘 

 

This version of the rule states that if one can demonstrate that an assumption that a whole list of 

statements is true leads to a contradiction, then at least one of the statements must be false. 

 

End of Digression to Consider Different Versions of the Contradiction Rule 

 

Now return to the notion of an inconsistent axiom system. Recall in an inconsistent axiom 

system, it is impossible for all of the axioms to be true. In other words, at least one of the axioms 

must be false. We see that the Contradiction Rule Version 4 could be used to prove that an axiom 

system is inconsistent. That is, if one can demonstrate that an assumption that a whole list of 

axioms is true leads to a contradiction, then at least one of the axioms must be false. 

 

We can create an example of an inconsistent axiom system by messing up Axiom system #2. We 

mess it up by appending a fourth axiom in a certain way. 

 

Axiom System: Axiom System #3, an example of an inconsistent axiom system 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> For any bem, there are exactly two akes that are related to the bem. 

<4> There is exactly one bem. 

 

Using Axiom System #3, we can prove the following two theorems. 

 

Theorem 1 for Axiom System #3: There are exactly 6 bems. 

The proof is the exact same proof that was used to prove the identical theorem for 

axiom system #2. The proof only uses the first three axioms. 

 

But the statement of Theorem #1 contradicts Axiom <4>! We have demonstrated that an 

assumption that the four axioms from Axiom System #3 are true leads to a contradiction. 

Therefore, at least one of the axioms must be false. In other words, Axiom System #3 is 

inconsistent. 

 

Note that it is tempting to say that it must be axiom <4> that is false, because there was nothing 

wrong with the first three axioms before we threw in the fourth one. But in fact, there is not 

really anything wrong with the fourth axiom in particular. For example, if one discards axiom 
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<3>, then it turns out that the remaining list of axioms is perfectly consistent. Here is such an 

axiom system, with the axioms re-numbered. (You are asked to prove that this axiom system is 

consistent in Exercise [7] at the end of the chapter.) 

 

Axiom System: Axiom System #4, an example of a consistent axiom system 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> There is exactly one bem. 

 

So the problem with Axiom system #3 is not with any one particular axiom. Rather, the problem 

is with the whole set of four axioms. 

 

Before going on to read the next subsection, you should do the exercises for the current 

subsection. The exercises are found in Section 1.4 on page 29. 

1.2.2. Independence 

An axiom system that is not consistent could be thought of as one in which the axioms don’t 

agree; an axiom system that is consistent could be thought of as one in which there is no 

disagreement. In this sort of informal language, we could say that the idea of independence of an 

axiom system has to do with whether or not there is any redundancy in the list of axioms. The 

following definitions will make this precise. 

 

Definition 5 dependent and independent axioms 

An axiom is said to be dependent if it is possible to prove that the axiom is true as a 

consequence of the other axioms. An axiom is said to be independent if it is not possible 

to prove that it is true as a consequence of the other axioms. 

 

We will be interested in determining if a given axiom is dependent or independent. It is 

worthwhile to think now about how one would prove that an axiom is dependent, or how one 

would prove that an axiom is independent. 

 

Suppose that one suspects that a given axiom is dependent and wants to prove that it is 

dependent. To do that, one proves that the statement of the axiom must be true with a proof that 

uses only the other axioms. That is, one stops assuming that the given axiom is a true statement 

and downgrades it to just an ordinary statement that might be true or false. If it is possible to 

prove the statement is true using a proof that uses only the other axioms, then the given axiom is 

dependent. 

 

For an example of a dependent axiom, consider the following list of axioms that was constructed 

by appending an additional axiom to the list of axioms for Axiom System #2. 

 

Axiom System: Axiom System #5, containing a dependent axiom 

Primitive Terms: ake, bem 
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Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> For any bem, there are exactly two akes that are related to the bem. 

<4> There are exactly six bems. 

 

We recognize the first three axioms. They are the axioms from Axiom System #2. And we also 

recognize the statement of axiom <4>. It is the same statement as Theorem #1 for Axiom System 

#2. In other words, it can be proven that axiom <4> is true as a consequence of the first three 

axioms. So Axiom <4> is not independent; it is dependent. 

 

Now suppose that one suspects that a given axiom is independent and wants to prove that it is 

independent. To do that, one stops assuming that the statement of the given axiom is true, and 

downgrades it to just an ordinary statement that might be true or false. One must produce two 

interpretations: 

(1) One interpretation in which the statements of all of the other axioms are true and the 

statement of the given axiom is true. (That is, the statements of all the axioms are true.) 

(2) A second interpretation, in which the statements of all of the other axioms are true and the 

statement of the given axiom is false. 

 

For an example of an independent axiom, consider axiom <3> from Axiom System #2. (Refer to 

Axiom System #2 in Section 1.1.6 on page 15.) Axiom <3> is an independent axiom. To prove 

that it is independent, we stop assuming that the statement of axiom <3> is true, and downgrade 

it to just an ordinary statement that might be true or false. 

 

Now consider two interpretations for Axiom System #2 

 

Bob’s interpretation of  Axiom System #2. 

 Let 𝐴′ be the set of dots in the picture at right. 

 Let 𝐵′ be the set of segments in the picture at right.  

 Let relation ℛ′ from 𝐴′ to 𝐵′ be defined by saying that the 

words “the dot is related to the segment” mean “the dot 

touches the segment”. 
 

Dan’s interpretation of  Axiom System #2. 

 Let 𝐴′ be the set of dots in the picture at right. 

 Let 𝐵′ be the set of segments in the picture at right.  

 Let relation ℛ′ from 𝐴′ to 𝐵′ be defined by saying that the 

words “the dot is related to the segment” mean “the dot 

touches the segment”.  

 

Consider the translation of the statement of axiom <3> into the language of the models: 

 For any 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 there are exactly two dots that touch the segment. 
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We see that in Bob’s interpretation of Axiom System #2, the statement of axiom <3> is true, 

while in Dan’s interpretation of Axiom System #2, the statement of axiom <3> is false. So based 

on these two examples, we can say that in Axiom System #2, axiom <3> is independent. 

 

The following definition is self-explanatory. 

 

Definition 6 independent axiom system 

An axiom system is said to be independent if all of its axioms are independent. An axiom 

system is said to be not independent  if one or more of its axioms are not independent. 

 

To prove that an axiom system is independent, one must prove that each one of its axioms is 

independent. That means that for each of the axioms, one must go through a process similar to 

the one that we went through above for Axiom <3> from Axiom System #2. This can be a huge 

task. 

 

On the other hand, to prove that an axiom system is not independent, one need only prove that 

one of its axioms is not independent. 

 

Before going on to read the next section, you should do the exercises for the current subsection. 

The exercises are found in Section 1.4 on page 29. 

1.3. Properties of Axiom Systems II: Completeness 

1.3.1. Completeness 

Recall that in Section 1.1.7, we found that Bob’s and Carol’s models of Axiom System #2 were 

isomorphic models. It turns out that any two models for that axiom system are isomorphic. Such 

a claim can be rather hard—or impossible—to prove, but it is a very important claim. It 

essentially says that the axioms really “nail down” every aspect of the behavior of any model. 

This is the idea of completeness. 

 

Definition 7 complete axiom system 

An axiom system is said to be complete if any two models of the axiom system are 

isomorphic. An axiom system is said to be not complete if there exist two models that are 

not isomorphic. 

 

It is natural to wonder why the word complete is used to describe this property. One might think 

of it this way. If an axiom system is complete, then it is like a complete set of specifications for a 

corresponding model. All models for the axiom system are essentially the same: they are 

isomorphic.  If an axiom system is not complete, then one does not have a complete set of 

specifications for a corresponding model. The specifications are insufficient, some details are not 

nailed down. As a result, there can be models that differ from each other: models that are not 

isomorphic. 

 

For an example, consider the following new Axiom System #6. 

 

Axiom System: Axiom System #6 

Primitive Terms: ake, bem 
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Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

 

You’ll recognize that Axiom System #6 is just Axiom System #2 without the third axiom. 

 

Recall that in the previous Section 1.2.2, we discussed two interpretations of Axiom System #2: 

Bob’s interpretation and Dan’s interpretation. In both of those interpretations, the statements of 

axiom <1> and <2> were true. But we observed that in Bob’s interpretation, the statement of 

axiom <3> was true, while in Dan’s interpretation, the statement of axiom <3> was false. This 

demonstrated that axiom <3> of Axiom System #2 is an independent axiom. Notice that it also 

demonstrated that Bob’s interpretation is a model of Axiom System #2, while Dan’s 

interpretation is not a model of Axiom system #2. 

 

Now consider Bob’s and Dan’s interpretations as being interpretations of Axiom System #6. 

Observe that for both interpretations, the statements of axioms <1> and <2> are true. From this 

we conclude that both Bob’s and Dan’s interpretations are models of Axiom System #6. 

 

Now observe that these two models of Axiom System #6 are not isomorphic. (There are others as 

well.) To see why, note that in Bob’s model, there are six segments, but in Dan’s model, there is 

only one segment. To prove that two models are isomorphic, one must demonstrate a one-to-one 

correspondence between the objects of one model and the objects of the other model. (And one 

must demonstrate some other stuff, as well.) It would be impossible to come up with a one-to-

one correspondence between the objects of Bob’s model and the objects of Dan’s model, because 

the two models do not have the same number of objects! 

 

The discussion of Bob’s and Dan’s models for axiom system #6 can be generalized to the extent 

that it is possible to formulate an alternate wording of the definition of a complete axiom system. 

Remember that axiom system #6 has two axioms. Consider a feature that distinguished Bob’s 

model from Dan’s model. One obvious feature is the number of segments. As observed above, in 

Bob’s model, there are six segments, but in Dan’s model, there is only one segment. Now 

consider the following statement: 

 

Statement S: There are exactly six bems. 

 

This Statement S is an additional independent statement for axiom system #6.  By that, I mean 

that it is not one of the axioms for Axiom System #6, and there is a model for axiom system #6 

in which Statement S is true (Bob’s model) and there is a model for axiom system #6 in which 

Statement S is false (Dan’s model). The fact that an additonal independent statement can be 

written regarding the number of line segments indicates that axiom system #6 does not 

sufficiently specify the number of line segments. That is, axiom system #6 is incomplete.  

 

More generally, if it is possible to write an additional independent statement regarding the 

primitive terms and relations in an axiom system, then the axiom system is not complete (and 

vice-versa). Thus, an alternate way of wording the definition of a complete axiom system is as 

follows: 
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Definition 8 Alternate definition of a complete axiom system 

An axiom system is said to be not complete if it is possible to write an additonal 

independent statement regarding the primitive terms and relations. (An additional 

independent statement is a statement S that is not one of the axioms and such that there is a 

model for the axiom system in which Statement S is true and there is also a model for the 

axiom system in which Statement S is false.) An axiom system is said to be complete if it is 

not possible to write such an additional independent statement. 

 

We have discussed the fact that Statement S “there are exactly six bems” is an additional 

independent statement for Axiom System #6, because the statement is not an axiom and it cannot 

be proven true on the basis of the axioms. If we wanted to, we could construct a new axiom 

system #7 by appending an axiom to Axiom System #6 in the following manner.  

 

Axiom System: Axiom System #7 (Axiom System #6 with an added axiom) 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> There are exactly six bems. 

 

Of course, Bob’s successful interpretation for Axiom System #6 would be a successful 

interpretation for Axiom System #7, as well. That is, Bob’s interpretation is a model for Axiom 

System #6 and also for Axiom System #7.  But Dan’s successful interpretation for Axiom 

System #6 would not be a successful interpretation for Axiom System #7. That is, Dan’s 

interpretation is a model for Axiom System #6, but not for Axiom System #7. 

 

Keep in mind, that we could have appended a different axiom to Axiom System #6.  

 

Axiom System: Axiom System #8 (Axiom System #6 with a different axiom added) 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> There is exactly one bem. 

We see that Dan’s interpretation is a model for Axiom Systems #6 and #8. On the other hand, 

Bob’s interpretation is a model for Axiom System #6 but not for Axiom System #8. 

 

Before going on to read the next subsection, you should do the exercises for the current 

subsection. The exercises are found in Section 1.4 on page 29. 
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1.3.2. Don’t Use Models to Prove Theorems 

Recall Axiom System #6, presented in the previous Section 1.3.1 on page 26. Now consider the 

following “theorem” and “proof”. 

 

Theorem: In Axiom System #6, there are exactly six bems. 

 

Proof: 

(1) Here is a model of Axiom System #6. We see that there are 

exactly six lines. 

End of Proof  
 

The proof seems reasonable enough, doesn’t it? But wait a minute. That picture above is just one 

model of Axiom System #6. It is Bob’s model. Remember that we also studied Dan’s Model of 

Axiom System #6:  In Dan’s model, there is only one line. So the 

statement of the theorem is not even a true statement for Axiom System #6.  

 

There are two lessons to be learned here:  

(1) Don’t use a model of an axiom system to prove a statement about an axiom system. It is 

possible that the statement is true in the particular model that you have in mind, but is not 

true in general for the axiom system. 

(2) Even if you know that a statement about an axiom system is in fact a valid theorem, you 

still cannot use a particular model to prove the statement. You have to use the axioms. 

1.4. Exercises for Chapter 1 
 

Exercises for Section 1.1 Introduction to Axiom Systems 

 

The first two exercises are about Axiom System #1. That axiom system was introduced in 

Section 1.1.5 and has an undefined relation. 

 

[1] Which of the following interpretations of Axiom System #1 is successful? That is, which of 

these interpretations is a model of Axiom System #1? Explain. 

(a) Interpret the words “𝑥 is related to 𝑦” to mean “𝑥𝑦 > 0”. 

(b) Interpret the words “𝑥 is related to 𝑦” to mean “𝑥𝑦 ≠ 0”. 

(c) Interpret the words “𝑥 is related to 𝑦” to mean “𝑥 and 𝑦 are both even or are both 

odd”. 

Hint: One of the three is unsuccessful. The other two are successful. That is, they are models. 

 

[2] Consider the two models of Axiom System #1 that you found in exercise [1]. For each model, 

determine whether the statement “1 is related to -1” is true or false. 

 

[3] (This exercise is about Axiom System #2. That axiom system was introduced in Section 1.1.6 

and has undefined terms and an undefined relation.) 

Prove Theorem #2 for Axiom System #2. 
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Theorem #2 for Axiom System #2: For every ake, there are exactly three bems that the 

ake is related to. 

 

Hint: In Part 1 of your proof, show that there must be at least three bems. In Part 2 of your proof, 

show that there cannot be more than three bems. Also be sure to review the Digression to 

Discuss Proof Structure at the end of Section 1.1.6. It specifically mentions the structure that 

you will need for your proof. 

 

Exercises for Section 1.2.1 Consistency 

 

Exercises [4], [5] and [6] are about Axiom System #1. That axiom system was introduced in 

Section 1.1.5 and has an undefined relation.) 

 

[4] Is Axiom System #1 consistent? (Hint: Consider your answer to exercise [1].) 

 

[5] Make up an example of a consistent axiom system that includes the axioms of Axiom System 

#1 plus one more axiom. 

 

[6] Make up an example of an inconsistent axiom system that includes the axioms of Axiom 

System #1 plus one more axiom. 

 

[7] (This exercise is about Axiom System #4. That axiom system was introduced in Section 

1.2.1) Prove that Axiom System #4 is consistent by demonstrating a model. (Hint: Produce a 

successful interpretation involving a picture of dots and segments.) 

 

Exercises for Section 1.2.2 Independence 

 

Exercises [8] - [11] explore Axiom System #2, which was introduced in Section 1.1.6 on page 

15. 

 

[8] The goal is to prove that in Axiom System #2, Axiom <1> is independent. To do this, you 

must do two things:  

(1) Produce an interpretation for Axiom System #2 in which the statements of Axioms <2> 

and <3> are true and the statement of Axiom <1> is true. (That is, the statements of all 

three axioms are true.) 

(2) Produce an interpretation for Axiom System #2 in which the statements of Axioms <2> 

and <3> are true and the statement of Axiom <1> is false. 

 

[9] The goal is to prove that in Axiom System #2, Axiom <2> is independent. To do this, you 

must do two things:  

(1) Produce an interpretation for Axiom System #2 in which the statements of all three 

axioms are true. (Hey, you already did this in question [8]!) 

(2) Produce an interpretation for Axiom System #2 in which the statements of Axioms <1> 

and <3> are true and the statement of Axiom <2> is false. 

 

[10] The goal is to prove that in Axiom System #2, Axiom <3> is independent. To do this, you 

must do two things:  
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(1) Produce an interpretation for Axiom System #2 in which the statements of all three 

axioms are true. (Hey, you already did this in question [8]!) 

(2) Produce an interpretation for Axiom System #2 in which the statements of Axioms <1> 

and <2> are true and the statement of Axiom <3> is false. 

 

[11] Is axiom system #2 independent? Explain. 

 

Exercises for Section 1.3.1 Completeness 

 

Exercises [12], [13], [14] are about Axiom System #1. That axiom system was introduced in 

Section 1.1.5 and has an undefined relation. 

 

[12] For Axiom System #1, is the statement “1 is related to -1” an independent statement? 

Explain. (Hint: Consider your answer to exercise [2].) 

 

[13] Based on your answer to exercise [12], is Axiom System #1 complete? Explain. 

 

[14] Make up an example of a statement involving the terms and relations of Axiom System #1 

such that the statement is not independent. 

 

Review Exercise for Chapter 1 Axiom Systems 

 

The Review Exercises for Chapter 1 explore the following new Axiom System #9. 

 

Axiom System: Axiom System #9 

Primitive Terms: ake, bem 

Primitive Relations: relation from A the set of all akes to B the set of all bems, spoken “The ake 

is related to the bem”. 

Axioms: <1> There are four akes. These may be denoted ake1, ake2, ake3, ake4. 

<2> For any two distinct akes, there is exactly one bem that both akes are 

related to. 

<3> For any bem, there are at least two akes that are related to the bem. 

<4> For any bem, there is at least one ake that is not related to the bem. 

 

[15] Produce a model for Axiom System #9 that that uses dots and segments to correspond to 

akes and bems, and that uses the words “the dot touches the segment” to correspond to the words 

“the ake is related to the bem”. That is, draw a picture that works. (Hint: See if one of the 

models for Axiom System #2 will work.) 

 

[16] Is Axiom System #9 consistent? Explain. 

 

[17] Again using dots and segments to correspond to akes and bems, and again using the words 

“the dot touches the segment” to correspond to the words “the ake is related to the bem”, 

produce a model for Axiom System #9 that is not isomorphic to the model that you produced in 

exercise [15]. Hint: start by drawing one line segment that has 3 dots touching it. Then add to 

your drawing whatever dots and segments are necessary to make the drawing satisfy the axioms. 

 



32   Chapter 1: Axiom Systems 

[18] Consider the two models of Axiom System #9 that you found in exercises [15] and [17], and 

consider the statement S: “There exist exactly six bems.” Statement S is a statement about the 

undefined terms of Axiom System #9. 

(a) Is Statement S true or false for the model that you found in exercise [15]? 

(b) Is Statement S true or false for the model that you found in exercise [17]? 

(c) Is Statement S an independent statement for Axiom System #9? (Hint: Consider your 

answers to parts (a) and (b).) 

(d) Is Axiom System #9 complete? Explain. (Hint: Consider your answer to part (c).) 

 

[19] The goal is to prove that in Axiom System #9, Axiom <1> is independent. In question [15], 

you produced an interpretation involving dots and segments in which the statements of all four 

axioms are true. (That is, you produced an interpretation that is a model.) Therefore, all you need 

to do is produce an interpretation for which the statements of Axioms <2>, <3>, and <4> are true 

and but the statement of Axiom <1> is false. Use dots and segments. 

 

[20] The goal is to prove that in Axiom System #9, Axiom <2> is independent. In question [15], 

you produced an interpretation involving dots and segments in which the statements of all four 

axioms are true. (That is, you produced an interpretation that is a model.) Therefore, all you need 

to do is produce an interpretation for which the statements of Axioms <1>, <3>, and <4> are true 

and but the statement of Axiom <2> is false. Use dots and segments. 

 

[21] The goal is to prove that in Axiom System #9, Axiom <3> is independent. In question [15], 

you produced an interpretation involving dots and segments in which the statements of all four 

axioms are true. (That is, you produced an interpretation that is a model.) Therefore, all you need 

to do is produce an interpretation for which the statements of Axioms <1>, <2>, and <4> are true 

and but the statement of Axiom <3> is false. Use dots and segments. 

 

[22] The goal is to prove that in Axiom System #9, Axiom <4> is independent. In question [15], 

you produced an interpretation involving dots and segments in which the statements of all four 

axioms are true. (That is, you produced an interpretation that is a model.) Therefore, all you need 

to do is produce an interpretation for which the statements of Axioms <1>, <2>, and <3> are true 

and but the statement of Axiom <4> is false. Use dots and segments. 

 

[23] Is axiom system #9 independent? Explain. 
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2.Axiomatic Geometries 

2.1. Introduction and Basic Examples 
For the remainder of the course, we will be studying axiomatic geometry. Before starting that 

study, we should be sure and understand the difference between analytic geometry and axiomatic 

geometry. 

2.1.1. What is an analytic geometry? 

Very roughly speaking, an analytic geometry consists of two things: 

 a set of points that is represented in some way by real numbers 

 a means of measuring the distance between two points 

For example, in plane Euclidean analytic geometry, a point is represented by a pair (𝑥, 𝑦) ∈ ℝ2. 

That is, a point is an ordered pair of real numbers. The distance between points 𝑃 = (𝑥1, 𝑦1) and 

𝑄 = (𝑥2, 𝑦2) is obtained by the fomula 𝑑(𝑃, 𝑄) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. In three 

dimensional Euclidean analytic geometry, one adds a 𝑧 coordinate. 

 

In analytic geometry, objects are described as sets of points that satisfy certain equations. A line 

is the set of all points (𝑥, 𝑦) that satisfy an equation of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐; a circle is the set 

of all points that satisfy an equation of the form (𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2, etc. Every aspect of 

the behavior of analytic geometric objects is completely dictated by rules about solutions of 

equations. For example, any two lines either don’t intersect, or they intersect exactly once, or 

they are the same line; there are no other possibilities. That this is true is simply a fact about 

simultaneous solutions of a pair of linear equations in two variables: 

{
𝑎𝑥 + 𝑏𝑦 = 𝑐
𝑑𝑥 + 𝑒𝑦 = 𝑓

 

You will see that in axiomatic geometry, objects are defined in a very different way, and their 

behavior is governed in a very different manner. 

2.1.2. What is an axiomatic geometry? 

Very roughly speaking, an axiomatic geometry is an axiom system with the following primitive 

(undefined) things. 

 

Primitive Objects: point, line 

Primitive Relation: relation from the set of all points to the set of all lines, spoken the point 

lies on the line 

 

Remark: It is not a very confident definition that begins with the words “…roughly speaking…”. 

But in fact, one will not find general agreement about what constitutes an axiomatic geometry. 

My description above will work for our purposes. 

 

You’ll notice, of course, that the axiom system above is essentially the same sort of axiom 

system that we discussed in Chapter 1. The only difference is that we stick to the particular 

convention of using undefined objects called point and line, and an undefined relation spoken the 

point is on the line. It is natural to wonder why we bothered with the meaningless terms ake and 
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bem, when we could have used the more helpful terms point and line. The reason for starting 

with the meaningless terms was to stress the idea that the primitive terms are always 

meaningless; they are not supposed to be helpful. When studying axiomatic geometry, it will be 

very important to keep in mind that even though you may think that you know what a point and a 

line are, you really don’t. The words are as meaningless as ake and bem. On the other hand, 

when studying a model of an axiomatic geometry, we will know the meaning of the objects and 

relations, but we will be careful to always give those objects and relations names other than point 

and line. For instance, we used the names dot and segment in our models that involved drawings. 

The word dot refers to an actual drawn spot on the page or chalkboard; it will be our 

interpretation of the word point, which is an undefined term. 

 

Because the objects and relations in axiomatic geometry are undefined things, their behavior will 

be undefined as well, unless we somehow dictate that behavior. That is the role of the axioms. 

Every aspect of the behavior of axiomatic geometric objects must be dictated by the axioms. For 

example, if we want lines to have the property that two lines either don’t intersect, or they 

intersect exactly once, or they are the same line, then that will have to be specified in the axioms. 

We will return to the notion of what makes axiomatic points and lines behave the way we 

“normally” expect points and lines to behave in Section 2.3, when we study incidence geometry.. 

2.1.3. A Finite Geometry with Four Points 

A finite axiomatic geometry is one that has a finite number of points. Our first example has four 

points. 

 

Axiom System: Four-Point Geometry 

Primitive Objects: point, line 

Primitive Relations: relation from the set of all points to the set of all lines, spoken “The point 

lies on the line”. 

Axioms: <1> There are four points. These may be denoted P1, P2, P3, P4. 

<2> For any two distinct points, there is exactly one line that both points 

lie on. 

<3> For any line, there exist exactly two points that lie on the line. 

 

Notice that the Four-Point Geometry is the same as Axiom System #2, presented in Section 

1.1.6.  The differences are minor, just choices of names. In Axiom System #2, the primitive 

terms are ake and bem; in the Four-Point Geometry, the primitive terms are point and line. In 

Axiom System #2, the primitive relation is spoken “the ake is related to the bem”; In the Four-

Point Geometry, the primitive relation is spoken “the point lies on the line”. Following are two 

theorems of Four-Point Geometry.  

 

Four-Point Geometry Theorem #1: There are exactly six lines. 

You will prove this Theorem in the exercises. 

 

Four-Point Geometry Theorem #2: For every point, there are exactly three lines that the 

point lies on. 

You will prove this Theorem in the exercises. 
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2.1.4. Terminology: Defined Relations 

In Chapter 1, you learned that axiom systems can include primitive—that is, undefined—objects 

and relations. Typically, there will also be objects and relations that are defined in terms of the 

primitive objects and relations. Here are five new definitions of relations and properties. Each is 

defined in terms of the primitive objects, primitive relations, and previous definitions. 

 

Definition 9 passes through 

 words: Line L passes through point P. 

 meaning: Point P lies on line L. 

 

The definition above is introduced simply so that sentences about points and lines don’t have to 

always sound the same. For example, we now have two different ways to express Four-Point 

Geometry Axiom <2>: 

 

 Original wording: For any two distinct points, there is exactly one line that both points lie 

on. 

 Alternate wording: For any two distinct points, there is exactly one line that passes 

through both. 

 

The next two definitions are self-explanatory. 

 

Definition 10 intersecting lines 

 words: Line L intersects line M. 

 meaning: There exists a point (at least one point) that lies on both lines. 

 

Definition 11 parallel lines 

 words: Line L is parallel to line M. 

 symbol: L||M. 

 meaning: Line L does not intersect line M. That is, there is no point that lies on both lines. 

 

It is important to notice what the definition of parallel lines does not say. It does not say that 

parallel lines are lines that have the same slope. That’s good, because we don’t have a notion of 

slope for line in axiomatic geometry, at least not yet. (It would be in analytic geometry, not 

axiomatic geometry, that one might define parallel lines to be lines that have the same slope.) 

 

It’s also worth noting that we have essentially introduced three new relations. The words “Line L 

passes through point P” indicate a relation from the set of all lines to the set of all points. The 

words “Line L intersects line M” indicate a relation on the set of all lines. Similarly, the words 

“Line L is parallel to line M” indicate another relation on the set of all lines. These relations are 

not primitive relations, because they have an actual meaning. Those meanings are given by the 

above definitions, and those definitions refer to primitive terms and relations and to previously 

defined words. This kind of relation is a defined relation. 

 

Here are two additional definitions, also straightforward. 

 

Definition 12 collinear points 

 words: The set of points {P1, P2, … , Pk} is collinear. 
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 meaning: There exists a line L that passes through all the points. 

 

Definition 13 concurrent lines 

 words: The set of lines {L1, L2, … , Lk} is concurrent. 

 meaning: There exists a point P that lies on all the lines. 

 

It’s worth noting that these two definitions are not relations as we have been discussing relations 

so far. Rather, they are simply statements that may or may not be true for a particular set of 

points or a particular set of lines. That is, they are properties that a set of points or a set of lines 

may or may not have. 

 

It is customary to not list the definitions when presenting the axiom system. This is 

understandable, because often there are many definitions, and to list them all would be very 

cumbersome. But it is unfortunate that the definitions are not listed, because it makes them seem 

less important than the other components of an axiom system, and because the reader often does 

not remember the definitions and must go looking for them. 

2.1.5. Recurring Questions about Parallels 

In our study of axiomatic geometry, we will often be interested in the following two questions: 

 

(1) Do parallel lines exist? 

(2) Given a line L and a point P that does not lie on L, how many lines exist that pass through 

P and are parallel to L? 

 

The questions are first raised in the current chapter, in discussions of finite geometries. But they 

will come up throughout the course. 

 

But before going on to read the next section, you should do the exercises for the current section. 

The exercises are found in Section 2.5 on page 56. 

2.2. Fano’s Geometry and Young’s Geometry 

2.2.1. Fano’s Axiom Sytem and Six Theorems 

Let’s return to finite geometries. A more complicated finite geometry is the following. 

 

Axiom System: Fano’s Geometry 

Primitive Objects: point, line 

Primitive Relations: The point lies on the line. 

Axioms: <F1> There exists at least one line. 

<F2> For every line, there exist exactly three points that lie on the line. 

<F3> For every line, there exists a point that does not lie on the line. (at 

least one point) 

<F4> For any two points, there is exactly one line that both points lie on. 

<F5> For any two lines, there exists a point that lies on both lines. (at least 

one point) 

 

We will study the following six theorems of Fano’s Geometry: 
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Fano’s Geometry Theorem #1: There exists at least one point. 

Fano’s Geometry Theorem #2: For any two lines, there is exactly one point that lies on 

both lines. 

Fano’s Geometry Theorem #3: There exist exactly seven points. 

Fano’s Geometry Theorem #4: Every point lies on exactly three lines. 

Fano’s Geometry Theorem #5: There does not exist a point that lies on all the lines. 

Fano’s Geometry Theorem #6: There exist exactly seven lines. 

 

The proofs of the first two theorems of Fano’s Geometry are very basic, and are assigned to you 

in the exercises at the end of this chapter. 

 

In the upcoming subsections 2.2.2 and 2.2.3 and 2.2.4, we will study proofs of Fano’s Geometry 

Theorems #3, #4, and #5. But the proof of Fano’s Theorem #6 will wait until a later subsection 

2.4.2 (Fano’s Sixth Theorem and Self-Duality, which start on page 53). 

2.2.2. Proof of Fano’s Geometry Theorem #3 

The third theorem of Fano’s Geometry is easy to state but somewhat tricky to prove.  

 

Fano’s Geometry Theorem #3: There exist exactly seven points. 

 

Remark about Proof Structure: Notice that Fano’s Theorem #3 is an existential statement: It 

states that something exists. Now consider the five axioms of Fano’s Geometry. Notice that 

axioms <F2>, <F3>, <F4>, and <F5> say something about objects existing, but only in situations 

where some other prerequisite objects are already known to exist. Those axioms are of no use to 

us until after we have proven that those other prerequisite objects do exist. Only axiom <F1> 

says simply that something exists, with no prerequisites. So the proof of Fano’s Theorem #3 

must start by using axiom <F1>. 

 

Here is a proof of Fano’s Theorem #3, with no justifications. In a class drill, you will be asked to 

provide justifications. 

 

Proof of Fano’s Theorem #3 

 

Part 1: Show that there must be at least seven points. 

Introduce Line L1 and points A, B, C, D. 

(1) There exists a line. (Justify.) We can call it L1. (Make a drawing.) 

(2) There are exactly three points on L1. (Justify.) We can call them A, B, C. (Make a new 

drawing.) 
(3) There must be a point that does not lie on L1. (Justify.) We can call it D. (Make a new 

drawing.) 

Introduce Line L2 and point E. 

(4) There must be a line that both A and D lie on. (Justify.) 

(5) The line that both A and D lie on cannot be L1. (Justify.) So it must be a new line. We can 

call it L2. (Make a new drawing.) 

(6) There must be a third point that lies on L2. (Justify.) 

(7) The third point on L2 cannot be B or C. (Justify.) So it must be a new point. We can call 

it E. (Make a new drawing.) 
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Introduce Line L3 and point F. 

(8) There must be a line that both B and D lie on. (Justify.) 

(9) The line that both B and D lie on cannot be L1 or L2. (Justify.) So it must be a new line. 

We can call it L3. (Make a new drawing.) 

(10) There must be a third point that lies on L3. (Justify.) 

(11) The third point on L3 cannot be A, C, or E. (Justify.) So it must be a new point. We can 

call it F. (Make a new drawing.) 

Introduce Line L4 and point G. 

(12) There must be a line that both C and D lie on. (Justify.) 

(13) The line that both C and D lie on cannot be L1 or L2 or L3. (Justify.) So it must be a new 

line. We can call it L4. (Make a new drawing.) 

(14) There must be a third point that lies on L4. (Justify.) 

(15) The third point on L4 cannot be A, B, E, or F. (Justify.) So it must be a new point. We 

can call it G. (Make a new drawing.) 

 

Part 2: Show that there cannot be an eighth point. (Indirect Proof using the Method of 

Contradiction) 

(16) Suppose there is an eighth point. (Justify.) Call it H. 

(17) There must be a line that both A and H lie on. (Justify.) 

(18) The line that both A and H lie on cannot be L1 or L2 or L3 or L4. (Justify.) So it must be a 

new line. We can call it L5. 

(19) There must be a third point that lies on L5. (Justify.) 

(20) Line L5 must intersect each of the lines L1 and L2 and L3 and L4. (Justify.) 

(21) The third point on L5 must be D. (Justify. Be sure to explain clearly) 

(22) So points A, D, H lie on L5. 

(23) We have reached a contradiction. (explain the contradiction) Therefore, our 

assumption in step (16) was wrong. There cannot be an eighth point. 

End of proof 

2.2.3. Proof of Fano’s Geometry Theorem #4 

The fourth theorem of Fano’s geometry is easy to state:  

 

Fano’s Geometry Theorem #4: Every point lies on exactly three lines. 

 

The proof is somewhat easier than the proof of the third theorem. The proof is given below 

without justifications. In the exercises, you will be asked to provide justifications. 

 

Remark About Proof Structure: Note that Fano’s Theorem #4 starts with the words “Every 

point ...”. So the theorem is a universal statement. It is important to keep in mind that the 

universal statement of Theorem #4 does not claim that any points exist. It only makes a claim 

about a point that is already known to exist: a point that is given, in other words. So a proof of 

Theorem #4 must start with a sentence introducing a generic, given point. The start of the proof 

would look something like this: 

 

Start of proof of Fano’s Theorem #4 

(1) Suppose that a point is given. 

(2)  
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Let me reiterate that one does not begin the proof of Fano’s Theorem #4 by proving that a point 

exists, because the statement of Theorem #4 does not claim that any points exist. Theorem #4 

only makes a claim about a given point, and so the proof of Theorem #4 must start with the 

introduction of a given point. 

 

(And remember that more generally, in the proof of a universal statement, one starts the proof by 

stating that a generic object is given. A generic object is an object or objects that have only the 

properties mentioned right after the words “for all” in the theorem statement. The given objects 

are known to have those properties, but are not known to have any other properties. The object of 

the proof is to prove that the given objects do in fact have some other properties as well.) 

 

Here, then, is the proof of Fano’s Theorem #4. 

 

Proof of Fano’s Theorem #4 

(1) Suppose that P is a point in Fano’s geometry. 

Part 1: Show that there must be at least three lines that the given point lies on 

Introduce Line L1. 

(2) There exist exactly seven points in Fano’s geometry. (Justify.) So we can call the given 

point P1. There are six remaining points. 

(3) Choose one of the six remaining points. Call it P2. There are five remaining points. 

(4) There must be a line that both P1 and P2 lie on. (Justify.) We can call it L1. 

(5) There must be a third point on L1. (Justify.) Call the third point P3. So points P1, P2, P3 

lie on line L1. There are four remaining points. 

Introduce Line L2. 

(6) Pick one of the four remaining points. Call it P4. There are now three remaining points. 

(7) There must be a line that both P1 and P4 lie on. (Justify.) 

(8) The line that both P1 and P4 lie on cannot be L1. (Justify.) So it must be a new line. Call it 

L2. 

(9) There must be a third point that lies on L2. (Justify.) 

(10) The third point on L2 cannot be P2 or P3. (Justify.) So it must be one of the three 

remaining points. Call the third point P5. So points P1, P4, P5 lie on line L2. There are 

two remaining points. 

Introduce Line L3. 

(11) Pick one of the two remaining points. Call it P6. There is now one remaining point. 

(12) There must be a line that both P1 and P6 lie on. (Justify.) 

(13) The line that both P1 and P6 lie on cannot be L1 or L2. (Justify.) So it must be a new line. 

Call it L3. 

(14) There must be a third point that lies on L3. (Justify.) 

(15) The third point on L3 cannot be P2 or P3 or P4 or P5. (Justify.) So it must be the last 

remaining point. Call the third point P7. So points P1, P6, P7 lie on line L3.  

Part 2: Show that there cannot be an a fourth line that the given point lies on. 

(16) Suppose there is a fourth line that the given point P1 lies on. (Justify.) Call it L4. 

(17) There must be another point on line L4. (Justify.) Call it Q. 

(18) Point Q must be either P2 or P3 or P4 or P5 or P6 or P7. (Justify.) 

(19) Points P1 and Q both lie on L4, and they also both lie on one of the lines L1 or L2 or L3. 

(20) We have reached a contradiction. (explain the contradiction) Therefore, our 

assumption in step (16) was wrong. There cannot be a fourth line. 

End of proof 
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2.2.4. Proof of Fano’s Geometry Theorem #5 

Here is the fifth theorem for Fano’s Geometry, and a proof with justifications included. 

 

Fano’s Geometry Theorem #5: There does not exist a point that lies on all the lines. 

 

Proof of Fano’s Theorem #5 (Indirect Proof using the Method of Contradiction) 

(1) Suppose that there does exist a point that lies on all of the lines of the geometry. Call it 

P1. (assumption) 

(2) There exist exactly six other points. (by Theorem #3) 

(3) The given point P1 lies on exactly three lines (by Theorem #4) 

(4) Using the notation from the above proof of Theorem #4, we can label the six other points 

and the three lines as follows: 

Points P1, P2, P3 lie on line L1. 

Points P1, P4, P5 lie on line L2. 

Points P1, P6, P7 lie on line L3. 

These are the only lines in the geometry (by step (3) and by our assumption in step (1)) 

(5) Point P2 lies on only one line. (by step (4)) 

(6) Statement (5) contradicts Theorem #4. So our assumption in step (1) was wrong. It cannot 

be true that there exists a point that lies on all of the lines of the geometry. 

End of proof 

2.2.5. Models for Fano’s Geometry 

Here are two successful interpretations of Fano’s Geometry. That is, here are two models. 

 

Letters and Sets Model of Fano’s Geometry 

 Interpret points to be the the letters 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹,  𝐺. 

 Interpret lines as sets {𝐴, 𝐵, 𝐶}, {𝐴, 𝐷, 𝐸}, {𝐴, 𝐹, 𝐺}, {𝐵, 𝐷, 𝐹}, {𝐵, 𝐸, 𝐺}, {𝐶, 𝐷, 𝐺}, {𝐶, 𝐸, 𝐹}. 
 Interpret the words “the point lies on the line” to mean “the letter is an element of the set”. 

Dots and Segments Model of Fano’s Geometry. 

 Interpret points to be dots in the picture at right. 

 Interpret lines to be segments in the picture at right. (The 

dotted segment is curved.) 

 Interpret the words “the point lies on the line” to mean “the 

dot touches the segment”. 
 

. 

2.2.6. Young’s Geometry 

By changing just the fifth axiom in Fano’s Geometry, we obtain Young’s Geometry 

 

Axiom System: Young’s Geometry 

Primitive Objects: point, line 

Primitive Relations: relation from the set of all points to the set of all lines, spoken the point 

lies on the line 

Axioms: <Y1> There exists at least one line. 

<Y2> For every line, there exist exactly three points that lie on the line. 
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<Y3> For every line, there exists a point that does not lie on the line. (at 

least one point) 

<Y4> For any two points, there is exactly one line that both points lie on. 

<Y5> For each line L, and for each point P that does not lie on L, there 

exists exactly one line M that passes through P and is parallel to L. 

We will not study any theorems of Young’s Geometry, but I want you to be aware that it exists 

and to see a model for it. And even though we won’t study any theorems about it, Young’s 

Geometry can help our understanding of Fano’s Geometry. Here is a model. 

 

Letters and Sets Model of Young’s Geometry 

 Interpret points to be the the letters 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹,  𝐺, 𝐻, 𝐼. 

 Interpret lines to be the sets {𝐴, 𝐵, 𝐶}, {𝐴, 𝐷, 𝐺}, {𝐴, 𝐸, 𝐻},  {𝐴, 𝐹, 𝐼}, {𝐵, 𝐷, 𝐻}, {𝐵, 𝐸, 𝐼}, 
{𝐵, 𝐹, 𝐺}, {𝐶, 𝐷, 𝐼}, {𝐶, 𝐸, 𝐺}, {𝐶, 𝐹, 𝐻}, {𝐷, 𝐸, 𝐹}, {𝐺, 𝐻, 𝐼},. 

Interpret words “the point lies on the line” to mean “the letter is an element of the set”. 

 

But before going on to read the next section, you should do the exercises for the current section. 

The exercises are found in Section 2.5 on page 56. 

2.3. Incidence Geometry 

2.3.1. Incidence Relations and Axioms of Incidence 

You will notice that in each of the finite geometries that we have encountered so far, the axioms 

can be classified into two types. 

One type of axiom is just about the primitive objects. Here are two examples. 

 Four-Point Geometry Axiom <1>: There exist exactly four points. 

 Fano’s Axiom <F1>: There exists at least one line. 

A second type of axiom is about the behavior of the primitive relation. Here are two examples. 

 Four-Point Geometry Axiom <2>. For any two distinct points, there is exactly one line 

that both points lie on. 

 Fano’s Axiom <F3>: For every line, there exists a point that does not lie on the line. (at 

least one point) 

In some older books on axiomatic geometry, the primitive relation was written “the line is 

incident upon the point”. Such a primitive relation could be referred to as the incidence relation.  

Axioms such as the two above that described the behavior of the incidence relation were called 

axioms of incidence. Even though most books no longer use the words “…is incident upon…” 

for the primitive relation, it is still fairly common for any axioms that describe the behavior of 

the primitive relation to be referred to as axioms of incidence. This can be confusing. 

2.3.2. The Axiom System for Incidence Geometry 

To add to the confusion, the following axiom system is usually called Incidence Geometry. 

 

Axiom System: Incidence Geometry 

Primitive Objects: point, line 

Primitive Relations: relation from the set of all points to the set of all lines, spoken the point 

lies on the line 

Axioms: <I1> There exist two distinct points. (at least two) 
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<I2> For every pair of distinct points, there exists exactly one line that 

both points lie on. 

<I3> For every line, there exists a point that does not lie on the line. (at 

least one) 

<I4> For every line, there exist two points that do lie on the line. (at least 

two) 

 

We will study the following five theorems of Incidence Geometry: 

 

Incidence Geometry Theorem #1: In Incidence Geometry, if L and M are distinct lines that 

intersect, then they intersect in only one point. 

Incidence Geometry Theorem #2: In Incidence Geometry, there exist three points that are 

not collinear. 

Incidence Geometry Theorem #3: In Incidence Geometry, there exist three lines that are not 

concurrent 

Incidence Geometry Theorem #4: In Incidence Geometry, for every point P, there exists a 

line L that does not pass through P. 

Incidence Geometry Theorem #5: In Incidence Geometry, for every point P, there exist at 

least two lines that pass through P. 

 

Notice that the axioms for Incidence Geometry are less specific than any axiom system that we 

have seen so far. The precise number of points is not even specified. Even so, notice that axioms 

<I2>, <I3>, and <I4> do guarantee that the primitive points and lines in Incidence Geometry will 

have some of the “normal” behavior that we associate with points and lines in analytic geometry, 

or in drawings that we have made since grade school. 

 

For instance, we are used to the fact that two lines can either be parallel, or intersect once, or be 

the same line. That is, distinct lines that are not parallel can only intersect once. It was mentioned 

in Section 2.1.1 that in analytic geometry, lines behave this way as a consequence of behavior of 

solutions of systems of linear equations. In Section 2.1.2, it was mentioned that in axiomatic 

geometry, every aspect of the behavior of points and lines will need to be specified by the 

axioms. The axioms of Incidence Geometry do in fact guarantee that lines have the particular 

behavior we are discussing. Notice that Incidence Geometry Theorem #1 articulates this fact. 

2.3.3. Proof of Incidence Geometry Theorem #1 

Observe that Theorem #1 is a conditional statement. 

 

Incidence Geometry Theorem #1: In Incidence Geometry, if L and M are distinct lines that 

intersect, then they intersect in only one point. 

 

The most common structure for the proof of a conditional statement is a sort of frame, with the 

entire hypothesis of the theorem written in statement (1) of the proof, as a given statement, and 

with the entire conclusion of the theorem written in the final statement of the proof, with some 

justification. For Incidence Geometry Theorem #1, such a frame would look like this: 

 

Proof 

(1) In Incidence Geometry, suppose that 𝐿 and 𝑀 are distinct lines that intersect. (given) 
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* 

* (some steps here) 

* 

(*) Conclude that lines 𝐿 and 𝑀 only intersect in one point. (some justification) 

End of Proof 

 

The steps in the middle must somehow bridge the gap between the first, given, statement and the 

final statement. 

 

Here is a proof of Incidence Geometry Theorem #1 with all of the steps shown but without 

justificiations. (Notice the frame, the proof structure.) You will be asked to provide the 

justifications and identify the contradicton in an exercise. 

 

Proof of Incidence Geometry Theorem 1. 

(1) In Incidence Geometry, suppose that 𝐿 and 𝑀 are distinct lines that intersect. (Justify.) 

(2) Since lines 𝐿 and 𝑀 intersect, there must be at least one point that both lines 𝐿 and 𝑀 pass 

through (by definition of intersect). We can call one such point 𝑃. 

(3) Assume that there is more than one point that that both lines pass through. (Justify.) Then 

there is a second point, that we can call 𝑄. 

(4) Observe that there are two lines that pass through points 𝑃 and 𝑄. 

(5) We have reached a contradiction. (Identify the contradiction.) So our assumption in (3) 

was wrong. There cannot be more than one point that that both lines pass through. 

(6) Conclude that lines 𝐿 and 𝑀 only intersect in one point. (by (1), (2), and (5)) 

End of Proof 

2.3.4. Proof of Incidence Geometry Theorem #2 

Observe that Theorem #2 is an existential statement. 

 

Incidence Geometry Theorem #2: In Incidence Geometry, there exist three points that are 

not collinear. 

 

Now consider the four axioms of Incidence Geometry. Notice that axioms <I2>, <I3>, and <I4> 

say something about objects existing, but only in situations where some other prerequisite 

objects are already known to exist. Those axioms cannot be used until it has been proven that 

those other prerequisite objects do exist. Also notice that Incidence Geometry Theorem #1 does 

not give us the existence of any objects. (Thereom #1 only tells us something about the situation 

where we already know that two distinct, intersecting lines exist.) Only axiom <I1> says simply 

that something exists, with no prerequisites. So the proof of Incidence Geometry Theorem #2 

must start by using axiom <I1>. 

 

Here is a proof of the theorem with all of the steps shown but without justificiations. You will be 

asked to provide the justifications in an exercise. 

 

Proof of Incidence Geometry Theorem #2. 

(1) In Incidence Geometry, two distinct points exist. (Justify.) Call them 𝑃 and 𝑄. 

(2) A line exists that passes through 𝑃 and 𝑄. (Justify.) Call the line 𝐿. 

(3) There exists a point that does not lie on 𝐿. (Justify.) Call the point 𝑅. 
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(4) We already know (by statement (3)) line 𝐿 does not pass through all three points 𝑃, 𝑄, 𝑅. 

But suppose that some other line 𝑀 does pass through all three points. (assumption) 

(5) Observe that points 𝑃 and 𝑄 both lie on line 𝐿 and also both lie on line 𝑀. 

(6) Statement (5) contradicts something. (Explain the contradiction.) Conclude that our 

assumption in step (4) was wrong. That is, there cannot be a line 𝑀 that passes through 

all three points 𝑃, 𝑄, 𝑅. Conclude that the points 𝑃, 𝑄, 𝑅 are non-collinear. 

End of Proof 

2.3.5. Proof of Incidence Geometry Theorem #3 

Observe that Theorem #3 is an existential statement. 

 

Incidence Geometry Theorem #3: In Incidence Geometry, there exist three lines that are not 

concurrent. 

 

Keep in mind that to prove this theorem, we can use any of the four Incidence Geometry axioms 

and also the first two Incidence Geometry Theorems. Of those six statements, only axiom <I1> 

and Theorem #2 say that some objects exist, with no prerequisites. So our proof of Theorem #3 

must start by using either axiom <I1> or Theorem #2.  

 

Here is a proof of the theorem with all of the steps shown but without justificiations. You will be 

asked to provide the justifications in an exercise. 

 

Proof of Incidence Geometry Theorem #3 

Part I: Introduce three lines 𝑳, 𝑴, 𝑵. 

(1) There exist three non-collinear points. (Justify.) Call them 𝐴, 𝐵, 𝐶. 

(2) There exists a unique line that passes through points 𝐴 and 𝐵. (Justify.) Call it 𝐿. 

(3) Line 𝐿 does not pass through point 𝐶. (Justify.) 

(4) Similarly, there exists a line 𝑀 that passes through 𝐵 and 𝐶 and does not pass through 𝐴, 

and a line 𝑁 that passes through 𝐶 and 𝐴 and does not pass through 𝐵. 

Part II: Show that lines 𝑳, 𝑴, 𝑵 are not concurrent. 

(5) Suppose that lines 𝐿, 𝑀, 𝑁 are concurrent. That is, suppose that there exists a point that all 

three lines 𝐿, 𝑀, 𝑁 pass through. (Justify.) 

(6) Any point that all three lines 𝐿, 𝑀, 𝑁 pass through cannot be point 𝐴, 𝐵, or 𝐶. (Justify.) 

So the point that all three lines pass through must be a new point that we can call point 𝐷. 

(7) There are two lines that pass through points 𝐴 and 𝐷. (Justify.) 

(8) We have reached a contradiction. (Explain the contradiction.) So our assumption in (5) 

was wrong. Lines 𝐿, 𝑀, 𝑁 must be non-concurrent. 

End of Proof 

2.3.6. Proof of Incidence Geometry Theorem #4 

Observe that Theorem #4 is a universal statement. 

 

Incidence Geometry Theorem #4: In Incidence Geometry, for every point P, there exists a 

line L that does not pass through P. 

 

As we have discussed before in this book, a direct proof of such a universal statement would 

have to use the following form, starting with the statement that a generic object is given: 
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Direct Proof of Incidence Geometry Theorem #4 

(1) In Incidence Geometry, suppose that a point 𝑃 is given. 

* 

* (Some steps here, including introduction of a line called 𝐿, with the existence of 𝐿 

justified somehow by the axioms and prior theorems of Incidence Geometry) 

* 

(*) Conclude that line 𝐿 does not pass through 𝑃. 

End of Proof 

 

But it is possible to write a very simple indirect proof of Theorem #4, using the method of 

contradiction. In order to do that, we will need to know how to write the negation of the 

statement of the theorem. Hopefully, you have studied the negation of quantified logical 

statements in a previous course. Here is a review (or a crash course, if you have not previously 

studied the topic). 

 

Digression to Discuss the Negation of Quantified Logical Statements 

 

We will call the statement of the theorem Statement S. 

 

S: “For every point 𝑃, there exists a line 𝐿 that does not pass through 𝑃.” 

 

This statement can be abbreviated, using logical symbols: 

 

S abbreviated: “∀ point 𝑃, (∃ line 𝐿 such that (𝐿 does not pass through 𝑃)).” 

 

The negation of statement 𝑆 can formed most easily by simply parking the words “It is not true 

that...” in front. In symbols, one can simply park the negation symbol, “~”, in front. 

 

~S: “It is not true that for every point 𝑃, there exists a line 𝐿 that does not pass through 𝑃.” 

~S abbreviated: “~(∀ point 𝑃, (∃ line 𝐿 such that (𝐿 does not pass through 𝑃))).” 

 

Notice that although the sentence ~S presented above is the negation of S and it was easy to 

create, the form in which it is presented is not very helpful. When dealing with the negations of 

logical statements, it is generally more helpful to rewrite the statements in a form where the 

negation symbol appears as far to the right as possible. We will rewrite statement ~S in steps, 

with the negation symbol moving one notch to the right in each step. 

 

When we move the negation symbol to the right in statement ~S, we will have to change the 

wording of the quantifiers. Here are the rules: 

 When the symbol ~ moves to the right across a universal quantifier, the quantifier 

changes to an existential quantifier. That is, we make the following replacement 

o Replace a statement of this form: “~∀𝑥, predicate” 

o with this form: “∃𝑥 such that ~predicate”. 

 When the symbol ~ moves to the right across an existential quantifier, the quantifier 

changes to a universal quantifier. That is, we make the following replacement 

o Replace a statement of this form this: “~∃𝑥 such that predicate” 
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o with this: “∀𝑥, ~predicate”. 

 

Those instructions are awfully vague, but after a couple of examples, hopefully you will find that 

the instructions are helpful enough. Let’s rewrite statement ~S in steps, moving the negation 

symbol ~ one notch to the right in each step. It is easies to work with the abbreviated form of the 

statement first. For reference, I will show the original form of the negation first: 

 

The original form of the negation 

~S: “It is not true that for every point 𝑃, there exists a line 𝐿 that does not pass through 𝑃.” 

~S abbreviated: “~(∀ point 𝑃, (∃ line 𝐿 such that (𝐿 does not pass through 𝑃))).” 

 

Step one: move the ~symbol one notch to the right. The result is  

~S abbreviated: “∃ point 𝑃 such that ~(∃ line 𝐿 such that (𝐿 does not pass through 𝑃)).” 

~S: “There exists a point 𝑃 such that it is not true that there exists a line 𝐿 such that 𝐿 does 

not pass through 𝑃.” 

 

Step two: move the ~symbol another notch to the right. The result is  

~S abbreviated: “∃ point 𝑃 such that for ∀ line 𝐿, ~(𝐿 does not pass through 𝑃).” 

~S: “There exists a point 𝑃 such that for every line 𝐿, it is not true that 𝐿 does not pass 

through 𝑃.” 

 

At this point, the negation symbol ~ is sitting in front of a phrase that is easy to negate. That is, 

we can simply rewrite the statements as follows. 

 

Step three: rewrite the statement. The result is  

~S abbreviated: “∃ point 𝑃 such that for ∀ line 𝐿, 𝐿 passes through 𝑃).” 

~S: “There exists a point 𝑃 such that for every line 𝐿, 𝐿 passes through 𝑃.” 

 

This version of the negation of ~S is much easier to understand than the original. 

 

End of Digression to Discuss the Negation of Quantified Logical Statements 
 

Now that we know how the negation of statement S looks, we are ready to write a proof of 

Incidence Geometry Theorem #4 using the Method of Contradiction. 

 

Proof Incidence Geometry Theorem #4 (Indirect Proof by Method of Contradiction) 

(1) In Incidence Geometry, assume that the statement of Theorem #4 is false. That is, 

suppose that there exists a point 𝑃 such that for every line 𝐿, 𝐿 passes through 𝑃. 

(2) The set of all lines is concurrent. (by (1) and the definition of concurrent lines) 

(3) Statement (2) contradicts Incidence Geometry Theorem #3, which says that there exist 

three lines that are not concurrent. Therefore our assumption in step (1) was wrong. 

Conclude that the statement of Theorem #4 is true. 

End of Proof 

2.3.7. Proof of Incidence Geometry Theorem #5 

The first thing to notice about our final Incidence Geometry Theorem is that it is a universal 

statement. 
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Incidence Geometry Theorem #5: In Incidence Geometry, for every point P, there exist at 

least two lines that pass through P. 

 

Therefore, the proof must start with the introduction of a generic given point 𝑃. That is, the given 

point 𝑃 is known to have only the attributes mentioned immediately after the “for every” 

statement and before the comma. In the statement of Theorem #5, nothing else is said about point 

𝑃 before the comma. That is, the point 𝑃 is not known to have any attributes at all, other than 

merely existing. (It will be the goal of the proof to show that 𝑃 does in fact have some other 

attirbutes, namely that there exist two lines that pass through it.) So the proof of Theorem #5 will 

have to have the following form: 

 

Proof of Incidence Geometry Theorem #5 

(1) In Incidence Geometry, suppose that a point 𝑃 is given. 

* 

* (Some steps here.) 

* 

(*) Conclude that there exist at least two lines that pass through 𝑃. 

End of Proof 

 

That settles the outer frame of the proof. The inner steps of the proof will use the method of 

Proof by Division into Cases. We should review how that works. 

 

Digression to Discuss the Method of Proof by Division into Cases 

 

The Rule of Proof by Division into Cases is presented in lists of Rules of Inference in the 

following basic form: 

 

Rule of Proof by Division into Cases (simplest form, with two cases) 

𝑝 ∨ 𝑞 
𝑝 → 𝑟 
𝑞 → 𝑟 
∴ 𝑟 

 

The statement of the rule is just four lines, but when the rule is used in a proof, the first three 

lines may correspond to whole sections of the proof. It is important to highlight the appearance 

of the first three lines in the proof, whether they appear as single lines or as a section. And it is 

important to make the statement of the fourth line of the rule (the conclusion) very clear. 

 

In the proof of Incidence Geometry Theorem #5, the use of the Rule of Proof by Division into 

Cases will be spread out. Here is a table that shows how the lines in the rule correspond to the 

lines or sections in the proof. 

 

Line in 

the Rule 
Corresponding Statements or Sections in the Proof of Theorem #5 

𝑝 ∨ 𝑞 

(3) There are two possibilities: 

 Either 𝑃 is one of the three points from statement (2) 

 or 𝑃 is not one of the three points from statement (2). 
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𝑝 → 𝑟 

Case 1 

(4) Suppose that 𝑃 is one of the three points from statement (2). 

(5) 

(6) 

(7) 

(8) Therefore there are at least two distinct lines through 𝑃 in this case. 

𝑞 → 𝑟 

Case 2 

(9) Suppose that 𝑃 is not one of the three points from statement (2). 

(10) 

(11) 

(12) Therefore there are at least two distinct lines through 𝑃 in this case. 

∴ 𝑟 
Conclusion 

(13) Conclude that in either case, there exist at least two distinct lines through 𝑃.. 

 

End of Digression to discuss the Method of Proof by Division into Cases 

 

Now that we have discussed the Method of Proof by Division into Cases, the full proof of 

Theorem #5 should be easier to understand. Here is the theorem and its full proof. You will be 

asked to justify some of the statements in the proof in a homework exercise. 

 

Incidence Geometry Theorem #5: In Incidence Geometry, for every point P, there exist at 

least two lines that pass through P. 

 

Proof 

(1) In Incidence Geometry, suppose that a point 𝑃 is given. 

(2) There exist three non-collinear points. (Justify.) 

(3) There are two possibilities: 

 Either 𝑃 is one of the three points from statement (2) 

 or 𝑃 is not one of the three points from statement (2) 

Case 1 

(4) Suppose that 𝑃 is one of the three points from statement (2). Then let the other two points 

from statement (2) be named 𝐵 and 𝐶. So the three non-collinear points are 𝑃, 𝐵, 𝐶. 

(5) There exists a line through points 𝑃 and 𝐵. (Justify.) Call it 𝑃𝐵 ⃡    . 

(6) There exists a line through points 𝑃 and 𝐶. (Justify.) Call it 𝑃𝐶 ⃡   . 

(7) Lines 𝑃𝐵 ⃡     and 𝑃𝐶 ⃡    are not the same line. (Justify.) 

(8) Therefore there are at least two distinct lines through 𝑃 in this case 

Case 2 

(9) Suppose that 𝑃 is not one of the three points from statement (2). Then let the three points 

from statement (2) be named 𝐴, 𝐵, 𝐶.  

(10) Lines 𝑃𝐴 ⃡    , 𝑃𝐵 ⃡    , 𝑃𝐶 ⃡    exist. (Justify.) 

(11) Notice that is possible that two of the symbols in statement (10) could in fact represent 

the same line. For example, even though points 𝑃, 𝐴, 𝐵 are distinct points, it could be that 

they are collinear. If that were the case, then the symbols 𝑃𝐴 ⃡     and 𝑃𝐵 ⃡     would represent the 

same line. But regardless of whether or not 𝑃 is collinear with certain pairs of the points 

𝐴, 𝐵, 𝐶, we know that the three symbols 𝑃𝐴 ⃡    , 𝑃𝐵 ⃡    , 𝑃𝐶 ⃡    cannot all three represent the same 

line. (Justify. That is, explain how we know that the symbols 𝑷𝑨 ⃡    , 𝑷𝑩 ⃡    , 𝑷𝑪 ⃡     cannot all 
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three represent the same line.) That is, the three symbols 𝑃𝐴 ⃡    , 𝑃𝐵 ⃡    , 𝑃𝐶 ⃡    represent at least 

two distinct lines, and possibly three. 

(12) Therefore there are at least two distinct lines through 𝑃 in this case 

Conclusion 

(13) Conclude that in either case, there exist at least two distinct lines through 𝑃. 

End of Proof 

2.3.8. Summaryof Proofs of Incidence Geometry Theorems 

In our proofs of the five Incidence Geometry theorems, we discussed a number of basic concepts 

of proof structure: 

 We discussed the simplest “frame” structure for the proof of a conditional statement a 

statement of the form If A then B). (in the proof of Theorem #1) 

 We discussed the fact that in the proof of an existence statement, one must start the proof 

with a statement about something existing, and go from there (in the proofs of Theorems 

#2 and #3) 

 We used the method of proof by contradiction (in the proofs of Theorems #1 and #4), and 

discussed the importance of knowing how to form the negations of quantified logical 

statements when proving by method of contradiction (in the proof of Theorem #4) 

 We discussed the fact that in the proof of a universal statement, one must start the proof 

by stating that a generic object is given. (In the discussions of Theorems #4 and #5) 

 We used the method of proof by division into cases (in the proof of Theorem #5). 

These proof structure concepts are crucial to learning how to read and write proofs. We will 

revisit them throughout the book. 

2.3.9. Models of Incidence Geometry; Abstract versus Concrete Models; 

Relative versus Absolute Consistency 

It is interesting to consider the question of whether or not the Axiom System for Incidence 

Geometry is Consistent. That is, whether or not it is possible to find a model. Remember that a 

model is a successful interpretation. Let’s try using Four-Point Geometry as an interpretation. 

(Recall that Four-Point Geometry was introduced in Section 2.1.3 on page 34. 

 

objects in Incidence Geometry  objects in the Four-Point Geometry 

points  points 

lines  lines 

relation in Incidence Geometry  relation in Four-Point Geometry 

the point lies on the line  the point lies on the line 

 

To determine whether or not the interpretation is successful, we use the interpretation to translate 

the axioms of Incidence Geometry into statements in Four-Point Geometry and then consider 

whether or not the resulting statements are true in Four-Point Geometry. 

 

Incidence Geometry axioms  statements in Four-Point Geometry True? 

<I1> There exist two 

distinct points. (at least two) 
 

Statement 1: There exist two distinct 

points. (at least two) 

true because of 

Four-Point 

Geometry Axiom 

<1> 
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<I2> For every pair of 

distinct points, there exists 

exactly one line that both 

points lie on. 

 

Statement 2: For every pair of 

distinct points, there exists exactly 

one line that both points lie on. 

true because of 

Four-Point 

Geometry Axiom 

<2> 

<I3> For every line, there 

exists a point that does not 

lie on the line. (at least one) 

 

Statement 3: For every line, there 

exists a point that does not lie on the 

line. (at least one) 

true because of 

Four Point 

Geometry Axioms 

<3> and <1> 

<I4> For every line, there 

exist two points that do lie 

on the line. (at least two) 

 

Statement 3: For every line, there 

exist two points that do lie on the 

line. (at least two) 

true because of 

Four-Point 

Geometry Axiom 

<3> 

 

The table above demonstrates that Four-Point Geometry can provide a successful interpretation 

of Incidence Geometry. That is, Four-Point Geometry can be a model of Incidence Geometry. 

This demonstrates that Incidence Geometry is consistent. Sort of… 

 

The concept of consistency seemed to be about demonstrating that the words of the axiom 

system could be interpreted as actual, concrete things. It is a little unsatisfying that we have only 

demonstrated that the words of Incidence Geometry can be interpreted as other words from 

another axiom system. That’s a little bit like paying back an I.O.U. with another I.O.U. It would 

be more satisfying if we had an interpretation involving actual, concrete things. Here’s one that 

uses a picture: 

 

objects in Incidence Geometry  objects in the picture at right 

 

points  dots 

lines  line segments 

relation in Incidence Geometry  relation in the picture at right 

the point lies on the line  the dot touches the line segment 

 

To determine whether or not the interpretation is successful, we use the interpretation to translate 

the axioms of Incidence Geometry into statements about the picture, and then consider whether 

or not the resulting statements about the picture are true. 

 

axioms of Incidence Geometry  statements about the picture True? 

<I1> There exist two distinct points. 

(at least two) 
 

Statement 1: There exist two distinct dots. 

(at least two) 
true 

<I2> For every pair of distinct 

points, there exists exactly one line 

that both points lie on. 

 

Statement 2: For every pair of distinct 

dots, there exists exactly one line segment 

that both dots touch. 

true 

<I3> For every line, there exists a 

point that does not lie on the line. (at 

least one) 

 

Statement 3: For every line, segment there 

exists a dot that does not touch the line 

segment. (at least one) 

true 

<I4> For every line, there exist two 

points that do lie on the line. (at 

least two) 

 

Statement 4: For every line segment, there 

exist two dots that touch the line segment. 

(at least two) 

true 
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The table above demonstrates that the picture with four dots and six line segments can provide a 

successful interpretation of Incidence Geometry. That is, the picture with four dots and six line 

segments can be a model of Incidence Geometry. This demonstrates that Incidence Geometry is 

consistent. 

 

There is terminology that applies to the above discussion 

 

Definition 14 Abstract Model, Concrete Model, Relative Consistency, Absolute Consistency 

 An abstract model of an axiom system is a model that is, itself, another axiom system. 

 A concrete model of an axiom system is a model that uses actual objects and relations. 

 An axiom system is called relatively consistent if an abstract model has been 

demonstrated. 

 An axiom system is called absolutely consistent if a concrete model has been 

demonstrated. 

 

The Four-Point Geometry is an example of an abstract model for Incidence Geometry. The 

picture with four dots and six line segments is an example of a concrete model. 

 

It is possible for an axiom system to be both relatively consistent and absolutely consistent. The 

fact that Four-Point Geometry is a model for Incidence Geometry merely proves that Incidence 

Geometry is Relatively Consistent. But we can also say that Incidence Geometry is absolutely 

consistent because of the model involving the picture with four dots.  

 

In the exercises, you will prove that Fano’s Geometry and Young’s Geometry are also models of 

incidence geometry. Before going on to read the next section, you should do the exercises for the 

current section. The exercises are found in Section 2.5 on page 56. 

2.4. Advanced Topic: Duality 

2.4.1. The Four-Line Geometry and Duality 

Look back at the Four-Point Geometry, presented in Section 2.1.3. Using the find & replace 

feature in a word processor, we can make the following replacements in the axiom system to 

create a new axiom system. 

 Replace every occurrence of point in the original with line in the new axiom system. 

 Replace every occurrence of line in the original with point in the new axiom system. 

 Replace every occurrence of lies on in the original with passes through in the new. 

 

The resulting Axiom System is as follows: 

 

Axiom System: Four-Line Geometry 

Primitive Objects: line, point 

Primitive Relations: relation from the set of all lines to the set of all points, spoken “The line 

passes through the point”. 

Axioms: <1> There are four lines. These may be denoted line1, line2, line3, line4. 

<2> For any two distinct lines, there is exactly one point that both lines 

pass through. 

<3> For any point, there are exactly two lines that pass through the point. 
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Remember that there were two theorems in Four-Point Geometry. 

Four-Point Geometry Theorem #1: There are exactly six lines. 

Four-Point Geometry Theorem #2: For every point, there are exactly three lines that the 

point lies on. 

 

Realize that we can use the same find & replace operations to change the wording of the 

statements of those two theorems. We obtain two new statements. 

 

New Statement #1: There are exactly six points. 

New Statement #2: For every line, there exist exactly three points that the line passes 

through. 

 

Are these new statements true in Four-Line Geometry? That is, can they be proven using a proof 

that refers to the axioms of Four-Line Geometry? Well, remember that the new statements are 

translations of statements that are theorems in the Four-Point Geometry. We can use the same 

find & replace operations to change the wording of the proofs of the Four-Point Theorems, and 

the result will be new proofs of the corresponding Four-Line Theorems. In other words, the 

theorems of Four-Point Geometry translate into valid theorems in Four-Line Geometry: 

 

Four-Line Geometry Theorem #1: There are exactly six points. 

Four-Line Geometry Theorem #2: For every line, there exist exactly three points that the 

line passes through. 

 

Here are two successful interpretations of Four-Line Geometry. That is, here are two models. 

 

Segments and Dots Model of the Four-Line Geometry. 

 Interpret lines to be segments in the picture at right.  

 Interpret points to be dots in the picture at right. 

 Interpret the words “the line passes through the point” to 

mean “the segment touches the dot”. 

 

Sets and Letters Model of the Four-Line Geometry  

 Interpret lines to be the sets {𝐴, 𝐵, 𝐶}, {𝐴, 𝐷, 𝐸}, {𝐵, 𝐸, 𝐹}, and {𝐶, 𝐷, 𝐹}. 
 Interpret points to be the the letters 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹. 

 Interpret the words “the line passes through the point” to mean “the set contains the 

letter”. 

 

What we have just done is very significant: we were able to describe a new axiomatic geometry 

and state a valid theorems about it without having to do any new work to prove the theorems. 

The only work involved was that we had to be very clear about the translation that we used. The 

translation that we used is often useful when studying axiomatic geometry. The underlying 

concept is called duality and is described in the following definition. 

 

Definition 15 the concept of duality and the dual of an axiomatic geometry 
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Given any axiomatic geometry with primitive objects point and line, primitive relation 

“the point lies on the line”, and defined relation “the line passes through the point”, one 

can obtain a new axiomatic geometry by making the following replacements. 

 

 Replace every occurrence of point in the original with line in the new axiom system. 

 Replace every occurrence of line in the original with point in the new axiom system. 

 Replace every occurrence of lies on in the original with passes through in the new. 

 Replace every occurrence of passes through in the original with lies on in the new. 

 

The resulting new axiomatic geometry is called the dual of the original geometry. The 

dual geometry will have primitive objects line and point, primitive relation “the line 

passes through the point”, and defined relation “the point lies on the line.” Any theorem 

of the original axiom system can be translated as well, and the result will be a valid 

theorem of  the new dual axiom system. 

 

We will use the concept of duality occasionally throughout this course. Note that in general, the 

dual of an axiomic geometry is different from the original axiomatic geometry. For example, the 

Four-Point Geometry has four points and six lines, while its dual, the Four-Line Geometry, has 

four lines and six points. The two geometries are not the same. 

2.4.2. Fano’s Sixth Theorem and Self-Duality 

In the previous section, we presented the Four-Line Geometry as the dual of the Four-Point 

Geometry. We discussed the fact that the proven theorems of the Four-Point Geometry could be 

recycled in the sense that they could be translated into theorems of the Four-Line Geometry. 

Because we had already proved the Four-Point Geometry Theorems, we did not need to prove 

the Four Line Geometry theorems. Or rather, we could prove them by simply pointing out the 

dual nature of the two geometries. Duality is a sophisticated concept, and you might wonder if it 

might have been simpler to just skip the introduction of duality and just prove the Four-Line 

Geometry theorems from scratch. You would be right about that: the Four-Line Geometry 

theorems could have been proven with short proofs that did not mention duality. 

 

But the point of duality is that there are situations where one can avoid a very long proof by 

using duality. In this section, we will apply the principle of duality to prove the sixth theorem for 

Fano’s Geometry. The theorem is very easy to state. 

 

Fano’s Geometry Theorem #6: There exist exactly seven lines. 

 

But the proof of Fano’s Geometry Theorem #6 is hard. It would be good to approach the proof in 

a smart way. I will discuss two approaches that could be called the “hedgehog” and the “fox” 

approaches. The ancient Greek poet Archilochus wrote “…the fox knows many little things, but 

the hedgehog  knows one big thing…”. In a famous essay, the 20th-century philosopher Isaiah 

Berlin expanded upon this idea to divide writers and thinkers into two categories: hedgehogs, 

who view the world through the lens of a single defining idea, and foxes who draw on a wide 

variety of experiences and for whom the world cannot be boiled down to a single idea. (Thanks, 

Wikipedia!) 
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In math, it is good to be at times a hedgehog and at other times a fox. The first time I saw Fano’s 

Theorem #6, I proved it like a hedgehog, using the same approach that worked in my proofs of 

Fano’s Theorems #3 and #4. Here’s an outline of my proof. 

 

Hedgehog’s Proof of Fano’s Theorem #6: There exist exactly seven lines 

Part 1 Show that at least seven lines exist. 

Introduce Line L1. 

Introduce Line L2. 

Introduce Line L3. 

Introduce Line L4. 

Introduce Line L5. 

Introduce Line L6. 

Introduce Line L7. 

Part 2 Show that there cannot be an eighth line. 

 

It was somewhat comforting to know that the same approach that worked in proving Fano’s 

Theorem #3 and #4 would work to prove Fano’s Theorem #6. But the resulting proof was 48 

steps long.  Let’s think like a fox, and see if we can shorten that proof somehow. Or maybe 

eliminate the proof altogether… 

 

Recall the concept of duality, from Definition 15 on page 52. Consider the dual of Fano’s 

Geometry. Remember that we obtain the dual by doing word substitions according to Definition 

15. For clarity, I will number the resulting dual axioms with the prefix DF. 

 

Axiom System: The dual of Fano’s Geometry 

Primitive Objects: line, point 

Primitive Relations: The line passes through the point. 

Axioms: <DF1> There exists at least one point. 

<DF2> Exactly three lines pass through each point. 

<DF3> There does not exist a point that all the lines of the geometry pass 

through. 

<DF4> For any two lines, there is exactly one point that both lines pass 

through. 

<DF5> For any two points, there is at least one line that passes through 

both points. 

 

The same word substitutions give us the following list of theorems in the Dual of Fano’s 

Geometry. ( 

 

Dual of Fano’s Geometry Theorem #1: There exists at least one line. 

Dual of Fano’s Geometry Theorem #2: For any two points, there is exactly one line that 

passes through both points. 

Dual of Fano’s Geometry Theorem #3: There exist exactly seven lines. 

Dual of Fano’s Geometry Theorem #4: Every line passes through exactly three points. 

Dual of Fano’s Geometry Theorem #5: There does not exist a line that passes through all 

the points of the geometry. 
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By the principle of Duality, we know that the five theorems are valid theorems in the Dual of 

Fano’s Geometry. Think for a minute what that means. It means that the Dual of Fano’s 

Theorems #1 through #5 can be proven using proofs based on the Dual of Fano’s Axioms, that 

is, statements <DF1> through <DF5>. (We don’t have to write down those proofs, because we 

know that they are simply translations of the proofs of Fano’s Theorems #1 through #5.) If we 

assume that statements <DF1> through <DF5> are true statements (make them axioms) then the 

Dual of Fano’s Theorems #1 through #5 are also true statements. 

 

But what if we were in a situation where statements <DF1> through <DF5> are known to be true, 

so that we didn’t have to assume that they were true? Well, in that situation, we would know that 

the Dual of Fano’s Theorems #1 through #5 are also true statements, because the same proofs 

mentioned above would still work. 

 

With that in mind, let’s consider the truth of statements <DF1> through <DF5> in Fano’s 

Geometry. 

 

Statement <DF1>: There exists at least one point. 

This statement is true in Fano’s Geometry because of Fano’s Geometry Theorem #1: There 

exists at least one point. 

 

Statement <DF2>: Exactly three lines pass through each point. 

This statement is true in Fano’s Geometry because of Fano’s Geometry Theorem #4: Every point 

lies on exactly three lines. 

 

Statement <DF3>: There does not exist a point that all the lines of the geometry pass 

through. 

This statement is true in Fano’s Geometry because of Fano’s Geometry Theorem #5: There does 

not exist a point that lies on all the lines. 

 

Statement <DF4>: For any two lines, there is exactly one point that both lines pass through. 

This statement is true in Fano’s Geometry because of Fano’s Geometry Theorem #2: For any 

two lines, there is exactly one point that lies on both lines. 

 

Statement <DF5>: For any two points, there is at least one line that passes through both 

points. 

This statement is true in Fano’s Geometry because of Fano’s Geometry Axiom <F4> For any 

two points, there is exactly one line that both points lie on. 

 

We see that statements <DF1> through <DF5> are true in Fano’s Geometry. Therefore, we know 

that in Fano’s Geometry, the Dual of Fano’s Theorems #1 through #5 are also true statements. In 

particular, the Dual of Fano’s Theorem #3 is true. This theorem says that there exist exactly 

seven lines. But that statement is also the claim of Fano’s Theorem #6. So we have proven 

Fano’s Theorem #6 without having to write down a new proof of it. That is foxy. 

 

It would be good to summarize what we did in an outline. 

 

Fox’s Proof of Fano’s Theorem #6: There exist exactly seven lines. 
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Part 1: Write down the statements of the five axioms for the Dual of Fano’s 

Geometry. These are denoted <DF1>, <DF2>, … , <DF5>. 

Part 2: Demonstrate that statements <DF1>, <DF2>, … , <DF5> are actually true in 

Fano’s Geometry, by referring to Fano’s Theorems #1, #4, #5, #2, and Fano’s 

Axiom <F4>. 

Part 3: Point out that by the principal of duality, the Dual of Fano’s Theorems #1 

through #5 are automatically true in Fano’s Geometry. 

Part 4: (Conclusion) Point out that the Dual of Fano’s Theorem #3 says that there 

exist exactly seven lines. 

End of Proof 

 

It might seem that Fox’s proof is actually longer—its development has taken two full pages—

and more conceptually difficult than Hedgehog’s proof. But after encountering a few examples 

that make use of the principle of duality, you will find that it will not seem so difficult, and that it 

can significantly shorten and clarify proofs. 

 

Note that the key to Fox’s proof of Fano’s Theorem #6 was the fact that all of the statements of 

the axioms for the Dual of Fano’s Geometry are true statements in Fano’s Geometry, itself. 

There is a name for this: we say that Fano’s Geometry is self-dual. 

 

Definition 16 self-dual geometry 

An axiomatic geometry is said to be self-dual if the statements of the dual axioms are true 

statements in the original geometry. 

 

It is important to remember that most geometries are not self-dual. For example, in 2.1.3, we 

studied the Four-Point Geometry. Four Point Geometry Theorem #2 says that there are exactly 

six lines. In Section 2.4.1 on page 51 we studied the dual geometry, called the Four-Line 

Geometry. Four-Line Geometry Axiom <1> says that there are exactly four lines. This axiom of 

Four-Line Geometry is not a true statement in Four-Point Geometry. So Four-Point Geometry is 

not self-dual. 

2.5. Exercises For Chapter 2 
Exercises for Section 2.1 Introduction and Basic Examples 

 

Exercises [1] - [5] are about Four-Point Geometry, introduced in Section 2.1.3. 

 

In the reading, it was pointed out that Four-Point Geometry is basically just Axiom System #2 

from Section 1.1.6, but with some of the wording changed. All proofs of statements about Axiom 

System #2 can be recycled, with their wording changed, into proofs of corresponding statements 

about the Four-Point Geometry. In exercises [1] - [3], you will do some of this recycling. 

 

[1] Prove Four-Point Geometry Theorem #1. (Hint: translate the proof of Theorem #1 of Axiom 

System #2 that is presented in the text.) 

 

[2] Prove Four-Point Geometry Theorem #2. (Hint: translate the proof of Theorem #2 of Axiom 

System #2 that you produced in Section 1.4 Exercise [3].) 
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[3] Are the Four-Point Geometry axioms independent? Explain. (Hint: Study Section 1.4 

Exercises [8] - [11].) 

 

The remaining two exercises about Four-Point Geometry are not adaptations of facts presented in 

our discussion of Axiom System #2. They are new. 

 

[4] Prove that in the Four-Point Geometry, parallel lines exist. (In Section 2.1.5, you were 

introduced to two recurring questions about parallel lines in axiomatic geometry. This is one of 

the questions.) 

 

[5] In the Four-Point Geometry, given a line L and a point P that does not lie on L, how many 

lines exist that pass through P and are parallel to L? Explain. (This is the other recurring question 

about parallel lines in axiomatic geometry.) 

 

Exercises for Section 2.2 Fano’s Geometry and Young’s Geometry 

Exercises [6] - [12] are about Fano’s Geometry, introduced in Section 2.2.1 on page 36. 

 

[6] Prove Fano’s Geometry Theorem #1. (presented in Section 2.2.1, on page 36.) 

 

[7] Prove Fano’s Geometry Theorem #2. (presented in Section 2.2.1, on page 36.) Hint: Your 

proof should be very much like your proof in exercise [16] of Section 1.4. That is, use one of the 

axioms to state that any two lines intersect. Then assume that the lines intersect more than once, 

and show that you reach a contradiction. 

 

[8] Justify the steps in the proof of Fano’s Geometry Theorem #3. (presented in Section 2.2.2) 

 

[9] Justify the steps in the proof of Fano’s Geometry Theorem #4. (presented in Section 2.2.3) 

 

[10] In Fano’s Geometry, do parallel lines exist? 

 

[11] In Fano’s Geometry, given a line L and a point P that does not lie on L, how many lines 

exist that pass through P and are parallel to L? 

 

[12] Prove that Fano’s axioms are independent. Hint: It is fairly easy to prove that axioms <F1> 

through <F4> are independent. Proving that axiom <F5> is independent can seem daunting. You 

must come up with an interpretation in which the statements of axioms <F1>, <F2>, <F3>, <F4> 

are true, but the statement of axiom <F5> is false. My advice is that you postpone this part of the 

question until you read about Young’s Geometry. And you might want to do this problem at the 

same time that you do exercise [13]. 

 

Exercises [13] - [16] explore Young’s Geometry, introduced in Section 2.2.6 on page 40. 

 

[13] Are Young’s axioms consistent? Explain. 

 

[14] Prove that Young’s axioms are independent. Hint: See exercises [12] and [13]. 

 

[15] Are there parallel lines in Young’s Geometry? Explain. 

 



58   Chapter 2: Axiomatic Geometries 

[16] In Young’s Geometry, given a line L and a point P that does not lie on L, how many lines 

exist that pass through P and are parallel to L? Explain. 

 

Exercises for Section 2.3 Incidence Geometry 

 

[17] Justify the steps in the proof of Incidence Geometry Theorem #1. (presented in Section 2.3.3 

on page 42.) 

 

[18] Justify the steps in the proof of Incidence Geometry Theorem #2. (presented in Section 2.3.4 

on page 43.) 

 

[19] Justify the steps in the proof of Incidence Geometry Theorem #3. (presented in Section 2.3.5 

on page 44.) 

 

[20] Justify the steps in the proof of Incidence Geometry Theorem #5. (presented in Section 2.3.7 

on page 46.) 

 

[21] Prove that Fano’s Geometry (presented in Section 2.2.1) is a model of Incidence Geometry. 

Is it a concrete model or an abstract model? Explain. 

 

[22] Prove that Young’s Geometry (presented in Section 2.2.6) is a model of Incidence 

Geometry. Hint: The proof that works for [16] should also work for this problem. Is it a concrete 

model or an abstract model? Explain. 

[23] Prove Incidence Geometry Theorem #1, which was presented in Section 2.3.3 on page 42. 

 

[24] Prove Incidence Geometry Theorem #2, which was presented in Section 2.3.4 on page 43. 

 

[25] Prove Incidence Geometry Theorem #3, which was presented in Section 2.3.5 on page 44. 

 

[26] Prove Incidence Geometry Theorem #4, which was presented in Section 2.3.6 on page 44. 

 

[27] Prove Incidence Geometry Theorem #5, which was presented in Section 2.3.7 on page 46. 

 

[28] Explain why each of the pictures below could not be an incidence geometry. 

 

 

 
 

 

 
picture (a) picture (b) picture (c) picture (d) 

. 

Exercises for Section 2.4 Advanced Topic: Duality 

 

Here is a new axiom system, along with a theorem that we won’t prove, but will assume as true: 

 

Axiom System: Five-Point Geometry 

Primitive Objects: point, line 
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Primitive Relations: relation from the set of all points to the set of all lines, spoken “The point 

lies on the line”. 

Axioms: <1> There are five points. These may be denoted P1, P2, P3, P4, P5. 

<2> For any two distinct points, there is exactly one line that both points 

lie on. 

<3> For any line, there exist exactly two points that lie on the line. 

Five-Point Geometry Theorem #1: There are exactly ten lines. 

 

[29] Write down the axiom system for the Dual of Five-Point Geometry. 

 

[30] How many points exist in the Dual of Five-Point Geometry? Explain. 

 

Review Exercise for Chapters 1 and 2 

 

[31] (A) The goal is to make up a new geometry that is consistent but not complete. I have 

provided the primitive terms and and relations. You provide the list of axioms. 

 

Axiom System: Example of a Geometry that is Consistent but not Complete 

Primitive Objects: point, line 

Primitive Relations: “The point lies on the line”. 

Axioms: You make up the list of axioms. 

 

(B) Explain how you know that the geometry is consistent. 

(C) Explain how you know that the geometry is not complete. 
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.
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3.Neutral Geometry I: The Axioms of 

Incidence and Distance 
We want an axiom system to prescribe the behavior of points and lines in a way that accurately 

represents the “straight line” drawings that we have been making throughout our lives. 

Remember, though, that in the language of axiom systems we turn the idea of representation 

around and say that we want the “straight line” interpretation to be a model of our axiom system. 

And because our “straight line” drawings and the usual Analytic Geometry of the 𝑥 − 𝑦 plane 

behave the same way, we would expect that the usual Analytic Geometry would also be a model. 

But we want those to be the only models of our axiom system. Or rather, we want any other 

models of the axiom system to be isomorphic to the Analytic Geometry Model. That is, we 

would like our axiom system to be complete. 

. 

3.1. Neutral Geometry Axioms and First Six Theorems 
In Chapters 3 through 8,we will study an axiom system called Neutral Geometry. It has ten 

axioms, and we will see that it captures much of the behavior that we are used to seeing in our 

straight-line drawings and in Analytic Geometry of the 𝑥 − 𝑦 plane. However, later in the 

course, we will discuss the fact that the axiom system for Neutral Geometry is incomplete. An 

eleventh axiom will be added to make the axiom system complete, and the resulting axiom 

system will be called Euclidean Geometry. But that is far in the future. For now, we will study 

Neutral Geometry. Here is the definition. 

 

Definition 17 The Axiom System for Neutral Geometry 

Primitive Objects: point, line 

Primitive Relation: the point lies on the line 

Axioms of Incidence and Distance 

<N1> There exist two distinct points. (at least two) 

<N2> For every pair of distinct points, there exists exactly one line that both points 

lie on. 

<N3> For every line, there exists a point that does not lie on the line. (at least one) 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

<N5> (The Ruler Axiom) Every line has a coordinate function. 

Axiom of Separation 

Complete 

Axiom 

System 

Ordinary Analytic 

Geometry of 

the 𝑥 − 𝑦 plane 

Straight 

Line 

Drawings 

model model 

isomorphic 

our goal: 
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<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets 

called half-planes, denoted 𝐻1 and 𝐻2, with the following three properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

Axioms of Angle measurement 

<N7> (Angle Measurement Axiom) There exists a function 𝑚: 𝒜 → (0,180), called 

the Angle Measurement Function. 

<N8> (Angle Construction Axiom) Let 𝐴𝐵       be a ray on the edge of the half-plane 𝐻. 

For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃       with point 

𝑃 in 𝐻 such that 𝑚(∠𝑃𝐴𝐵) = 𝑟. 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of ∠𝐵𝐴𝐶, then 

𝑚(∠𝐵𝐴𝐶) = 𝑚(∠𝐵𝐴𝐷) + 𝑚(∠𝐷𝐴𝐶). 

Axiom of Triangle Congruence 

<N10> (SAS Axiom) If there is a one-to-one correspondence between the vertices of 

two triangles, and two sides and the included angle of the first triangle are 

congruent to the corresponding parts of the second triangle, then all the 

remaining corresponding parts are congruent as well, so the correspondence is a 

congruence and the triangles are congruent. 

 

In this chapter, we will study only the first five axioms, the so-called Axioms of Incidence and 

Distance. Notice that we have seen Axioms <N1>, <N2>, and <N3> in previous axiom systems. 

In particular, all three of those axioms were included in the axiom system called Incidence 

Geometry that we studied in Section 2.3.2, The Axiom System for Incidence Geometry, 

beginning on page 41. In that section, you saw the presentation of Incidence Geometry Theorems 

#1 through #5, which could be proven using just those three axoms. It is convenient, then, to use 

those five theorems as the first five theorems of our new Neutral Geometry. That is, those first 

five theorems use only the first three Neutral Geometry axioms, and you have already seen a 

discussion of the proofs of the theorems, back in Section 2.3.2. Here are the theorems, presented 

now as theorems of Neutral Geometry: 

 

Theorem 1 In Neutral Geometry, if 𝐿 and 𝑀 are distinct lines that intersect, then they 

intersect in only one point. 

 

Theorem 2 In Neutral Geometry, there exist three non-collinear points. 

 

Theorem 3 In Neutral Geometry, there exist three lines that are not concurrent. 

 

Theorem 4 In Neutral Geometry, for every point 𝑃, there exists a line that does not pass 

through 𝑃. 

 

Theorem 5 In Neutral Geometry, for every point 𝑃, there exist at least two lines that pass 

through 𝑃. 

 

Notice the theorem numbering. This is the beginning of a sequence of theorems that ends with 

Theorem 160 in Chapter 14. 
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There is Some Subtlety in the Issue of a Line 𝑳 Through Points 𝑷 and 𝑸. 

 

Consider the following question: Given any points 𝑃 and 𝑄, is there a line that passes through 𝑃 

and 𝑄, and is it unique? This seems like an easy question. Axiom <N2> clearly states “Given any 

two distinct points, there is exactly one line that both points lie on.” But notice that the axiom 

includes the qualifier two distinct points, and my question did not include that qualifier. 

 

Certainly, if it is known that points 𝑃 and 𝑄 are distinct, then Axiom <N2> guarantees that there 

exists exactly one line that both points lie on. But what if points 𝑃 and 𝑄 are not distinct? That is, 

what if point 𝑄 is actually the same point as point 𝑃?  In this case, is there a line that passes 

through 𝑃, and is it unique? Well, Theorem 5 (on page 62) says that there are at least two lines 

that pass through point 𝑃. So there definitely is a line through point 𝑃, and it definitely is not 

unique. 

 

So in any situation where it is known that points 𝑃 and 𝑄 are distinct, it makes sense to talk of 

the unique line that passes through points 𝑃 and 𝑄. Here is a symbol that we can use for that: 

 

Definition 18 the unique line passing through two distinct points 

words: line 𝑃, 𝑄 

symbol: 𝑃𝑄 ⃡     

usage: 𝑃 and 𝑄 are distinct points 

meaning: the unique line that passes through both 𝑃 and 𝑄. (The existence and uniqueness of 

such a line is guaranteed by Axiom <N2>.) 

 

In any situation where it is not known if points 𝑃 and 𝑄 are distinct, it is okay to talk of a line 

that passes through points 𝑃 and 𝑄, but one must not assume that such a line is unique, and one 

must not assume that such a line is guaranteed by Axiom <N2>. If it turns out that points 𝑃 and 

𝑄 are distinct, then the existence of the line is guaranteed by Axiom <N2> and the line is unique; 

If it turns out that points 𝑃 and 𝑄 are not distinct, then the existence of the line is guaranteed by 

Theorem 5, not by Axiom <N2>, and the line is definitely not unique. 

 

The previous paragraph is summarized in the following theorem. 

 

Theorem 6 In Neutral Geometry, given any points 𝑃 and 𝑄 that are not known to be distinct, 

there exists at least one line that passes through 𝑃 and 𝑄. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 3.11 on page 94. 

3.2. The Distance Function and Coordinate Functions 

in Drawings 
In the finite geometries that we have studied so far, there has been no mention of distance. In this 

book, we are studying Abstract Neutral and Euclidean Geometry. (In Chapters 3 through 8, we 

study Abstract Neutral Geometry. Our study of Euclidean Geometry begins in Chapter 9.)  I have 

said that our axiomatic geometry is to be an abstract version of the “straight-line” drawings that 
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we have been making all of our lives. In those drawings, we are able to measure distance. So, our 

axiomatic geometry must include some axioms or theorems that specify how that is done. 

 

Before we study the axioms about distance in Neutral Geometry (a study that begins in Section 

3.4, The Distance Function and Coordinate Functions in Neutral Geometry), it will be helpful to 

consider what we do when we measure distance in drawings. In the current section, we will study 

that process of measuring distance in drawings and to try to describe the process with some 

precision. 

Consider the drawn line 𝐿 shown below. 

 
In the next drawing, below, I have put a ruler alongside the line. The ruler can be used to assign a 

real number to each point on the line. That is, when placed alongside the line, the ruler can be 

thought of as a function with domain the set of points on line 𝐿 and codomain the set of real 

numbers. Such a function is called a coordinate function. We could give this coordinate function 

the name 𝑓. In symbols, 𝑓: 𝐿 → ℝ. 

 
To see this coordinate function 𝑓 in action, consider the three drawn points 𝐴, 𝐵, 𝐶 shown on line 

𝐿 in the drawing below.  

 
If we use the three drawn points 𝐴, 𝐵, 𝐶 as input to the function 𝑓, the resulting outputs are three 

real numbers, called the coordinates of the three points. 

 

 The coordinate of drawn point 𝐴 is the real number 𝑓(𝐴) = −2. 

 The coordinate of drawn point 𝐵 is the real number 𝑓(𝐵) = 3. 

 The coordinate of drawn point 𝐶 is the real number 𝑓(𝐶) = 7.6. 

 

Notice that we have had to do some abstract thinking when making these measurements. For 

one, the drawn point 𝐴 is off the end of the ruler. We had to imagine the ruler extending beyond 

what is shown. Also, the point 𝐶 lies between two marks on the ruler. We had to imagine 

subdivisions on the ruler. So there is a certain amount of abstraction in our use of ordinary 

drawing tools. 

 

What about measuring distance? Using the technique that we have used since grade school, we 

would say that the distance between 𝐴 and 𝐵 is 5, while the distance between 𝐶 and 𝐵 is 4.6. A 

precise description of how we got these numbers is as follows 

 

𝐿 

5 6 4 7 8 9 3 2 1 

coordinate function 𝑓 

𝐿 

5 6 4 7 8 9 3 2 1 

coordinate function 𝑓 

𝐿 𝐴 𝐵 𝐶 
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 The distance between 𝐴 and 𝐵 is |𝑓(𝐴) − 𝑓(𝐵)| = |(−2) − 3| = |−5| = 5. 

 The distance between 𝐶 and 𝐵 is |𝑓(𝐶) − 𝑓(𝐵)| = |(7.6) − 3| = |4.6| = 4.6. 

 

So it seems that in drawings we can simply define the distance between two points as follows. 

 

To find the distance between drawn points 𝐴 and 𝐵: 

 Put a ruler alongside the line 𝐿 that passes through points 𝐴 and 𝐵. 

 The placement of the ruler alongside the line gives us a coordinate function 𝑓: 𝐿 → ℝ. 

The coordinates of points 𝐴 and 𝐵 are the real numbers 𝑓(𝐴) and 𝑓(𝐵). 

 The distance between points 𝐴 and 𝐵 is defined to be the real number |𝑓(𝐴) − 𝑓(𝐵)|. 
 

The process just described for measuring distance between drawn points can be thought of as a 

function. The input to the function is a pair of drawn points. The output of the function is the real 

number called the distance between the points. We could call this function the distance function 

for drawn points. 

 

In this section, we studied the process of measuring distance in drawings, describing the process 

using function terminology. The overall process was given the name distance function. But the 

process involved a couple of steps. Two of those steps were to place a ruler alongside the line 

and read numbers from the ruler. That part of process was given the name coordinate function.  

In the next section, we will study the process of measuring distance in Analytic Euclidean 

Geometry. We will see the familiar distance function for Analytic Geometry. In addition, we will 

see that it is possible to define coordinate functions for Analytic Geometry. 

3.3. The Distance Function and Coordinate Functions 

in Analytic Geometry 
In Analytic Euclidean Geometry, points are ordered pairs of real numbers (𝑥, 𝑦). The set of all 

points is the set of all ordered pairs or real numbers, denoted by the symbol ℝ × ℝ or by the 

more abbreviated symbol ℝ2. 

 

In Analytic Euclidean Geometry, lines are sets of points that satisfy line equations. That is, 

equations of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑎, 𝑏, 𝑐 are real number constants. For example, a line 𝐿 

could be described as follows. 

 

𝐿 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2𝑥 + 3𝑦 = 5} 
 

In Analytic Euclidean Geometry, the distance function is the function 𝑑: ℝ2 × ℝ2 → ℝ defined 

by the following equation 

 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

 

The concepts of points, lines, and the distance function in Analytic Geometry are not new to you. 

But you have probably never seen something called a coordinate function in Analytic Geometry. 

That is mainly because your prior school work in Analytic Geometry has not needed coordinate 

functions. We won’t need them in this book, either, but we will study them so that you can see 

that they exist and behave in a way analogous to the coordinate functions that we introduced for 
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drawings. We will consider two lines called 𝐿 and 𝑀, and will see the introduction of coordinate 

functions for those lines. 

 

Let 𝐿 be the line described as follows. 

𝐿 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 = 3} 

 

Line 𝐿 is horizontal, parallel to the x-axis but 3 units above the x-axis. Let 𝐴 and 𝐵 be the two 

points 𝐴 = (7,3) and 𝐵 = (5,3). Both points are on line 𝐿. 

 
Observe that the distance between 𝐴 and 𝐵 is 

 

𝑑(𝐴, 𝐵) = 𝑑((7,3), (5,3)) = √(5 − 7)2 + (3 − 3)2 = √(−2)2 + (0)2 = 2 

 

Define the function 𝑓: 𝐿 → ℝ by the equation 

 

𝑓(𝑥, 𝑦) = 𝑥 
 

Using points 𝐴 and 𝐵 as inputs to the function 𝑓, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real number 𝑓(𝐴) = 𝑓(7,3) = 7. 

 When point B is the input, the output is the real number 𝑓(𝐵) = 𝑓(5,3) = 5. 

 

Also observe that 

|𝑓(𝐴) − 𝑓(𝐵)| = |7 − 5| = |2| = 2 
 

so the equation  
|𝑓(𝐴) − 𝑓(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. The equation tells us that the real number |𝑓(𝐴) − 𝑓(𝐵)| is equal to the distance 

between points 𝐴 and 𝐵.The fact that this equation is satified is what qualifies 𝑓 to be called a 

coordinate function for line 𝐿. (Recall that in the previous section, when discussing rulers and 

distance in drawings, we observed that in drawings the real number |𝑓(𝐴) − 𝑓(𝐵)| is equal to 

the distance between points 𝐴 and 𝐵. So the relationship between coordinate functions and 

distance in Analytic Geometry is the same as the relationship between coordinate functions and 

distance in drawings.) 

 

We can rewrite the two sentences above about inputs and outputs, using instead the terminology 

of coordinate functions and coordinates. We can say that using the coordinate function 𝑓, we 

obtain the following coordinates for points 𝐴 and 𝐵. 

 

𝐿 
𝐵 

(5,3) 

𝐴 

(7,3) 

𝑥 

𝑦 
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 The coordinate of point 𝐴 is the real number 𝑓(𝐴) = 𝑓(7,3) = 7. 

 The coordinate of point 𝐵 is the real number 𝑓(𝐵) = 𝑓(5,3) = 5. 

 

Now consider the slanting line 𝑀 described as follows. 

 

𝑀 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 𝑦 = 4} 
 

That is, 𝑦 = −𝑥 + 4. Let 𝐴 and 𝐵 be the two points 𝐴 = (7, −3) and 𝐵 = (5, −1) on line 𝑀. 

 
Observe that the distance between 𝐴 and 𝐵 is 

 

𝑑(𝐴, 𝐵) = 𝑑((7, −3), (5, −1)) = √(5 − 7)2 + (−1 − (−3))
2

= √(−2)2 + (2)2 = √8 = 2√2 

 

Suppose that we define a function 𝑓: 𝑀 → ℝ by the equation 

 

𝑓(𝑥, 𝑦) = 𝑥 
 

This function 𝑓 looks just like the function 𝑓 that was a coordinate function for line 𝐿. Let’s 

investigate to see if the function 𝑓 could be a coordinate function for line 𝑀. Using points 𝐴 and 

𝐵 as inputs to the function 𝑓, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real real number 𝑓(𝐴) = 𝑓(7, −3) = 7. 

 When point 𝐵 is the input, the output is the real real number 𝑓(𝐵) = 𝑓(5, −1) = 5. 

 

Observe that 

|𝑓(𝐴) − 𝑓(𝐵)| = |7 − 5| = |2| = 2 
 

So the equation  
|𝑓(𝐴) − 𝑓(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is not satisfied! For this reason, we say that 𝑓 is not qualified to be called a coordinate function 

for line 𝑀. 

 

It is useful to examine what was wrong with our function 𝑓 above. Notice the following values: 

 

𝑀 

𝐵 (5, −1) 

𝐴 
(7, −3) 

𝑥 

𝑦 
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𝑑(𝐴, 𝐵) = 2√2 
|𝑓(𝐴) − 𝑓(𝐵)| = 2 

 

The two values are off by a factor of √2. That gives us an idea for how we might change the 

definition of function 𝑓 in order to make it qualify to be called a coordinate function. We can 

define a new function 𝑓: 𝑁 → ℝ by the equation 

𝑓(𝑥, 𝑦) = 𝑥√2 

Using points 𝐴 and 𝐵 as inputs to the new function 𝑓, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real real number 𝑓(𝐴) = 𝑓(7, −3) = 7√2. 

 When point 𝐵 is the input, the output is the real real number 𝑓(𝐵) = 𝑓(5, −1) = 5√2. 

 

Observe that 

|𝑓(𝐴) − 𝑓(𝐵)| = |7√2 − 5√2| = |2√2| = 2√2 

 

So the equation  
|𝑓(𝐴) − 𝑓(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. In other words, this new function 𝑓 is qualified to be called a coordinate function for 

line 𝑀. 

 

As we did for earlier, we can rewrite the two sentences above about inputs and outputs, using 

instead the terminology of coordinate functions and coordinates. We can say that using the 

coordinate function 𝑓, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of point 𝐴 is the real number 𝑓(𝐴) = 𝑓(7,3) = 7√2. 

 The coordinate of point 𝐵 is the real number 𝑓(𝐵) = 𝑓(5,3) = 5√2. 

 

In a homework exercise, you will be asked to determine which functions could be coordinate 

functions for a given line. And you will be asked to come up with a coordinate function of your 

own. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 3.11 on page 94. 

3.4. The Distance Function and Coordinate Functions 

in Neutral Geometry 
Now we will return to our study of Abstract Neutral Geometry. We will no longer be thinking of 

points as dots in a drawing or as ordered pairs of numbers, and we will no longer be thinking of 

lines as something that we draw with a ruler or as sets of ordered pairs of numbers. We will go 

back to having points and lines being primitive, undefined objects whose properties are specified 

by the axioms. And the distance function will not be the concrete function given by the equation 

involving the square root. We will not know a formula for the distance function. All we will 

know about it is that it has certain properties that we will prove in theorems 

 



3.4: The Distance Function and Coordinate Functions in Neutral Geometry 69 

We will see that distance and coordinate functions in Neutral Geometry mimic the essential 

features of distance and coordinate functions in drawings and in Analytic Geometry. 

 

The simplest way to ensure that it is possible to measure distance in an axiomatic geometry is to 

just include an axiom stating that a “distance function” exists. That is, indeed, the approach that 

is taken in our axiom system for Neutral Geometry. However, there are details to be worked out. 

 

To begin with, we need to be clear about what it is that we are measuring the distance between. 

We want to measure the distance between two points. In order to describe the process, it is 

helpful to have a symbol for the set of all points. 

 

Definition 19 The set of all abstract points is denoted by the symbol 𝒫 and is called the plane. 

 

With the above definition of the symbol 𝒫 and with our knowledge of standard function notation 

from previous courses, we are now ready to understand the wording of Axiom <N4>. 

 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

 

The function notation 𝑑: 𝒫 × 𝒫 → ℝ tells us that the symbol 𝑑 stands for a function with domain 

the set 𝒫 × 𝒫 of ordered pairs of points. That is, the input to the function will be a pair of the 

form (𝑃, 𝑄), where 𝑃 ∈ 𝒫  and 𝑄 ∈ 𝒫 are points. The function notation also tells us that the 

codomain is the set of real numbers. That is, when a pair of points (𝑃, 𝑄) is used as input to the 

function, the resulting output is a real number, denoted by the symbol 𝑑(𝑃, 𝑄). The real number 

𝑑(𝑃, 𝑄) is called the distance between points 𝑃 and 𝑄. 

 

Because the distance between two points is mentioned so often, most books adopt an abbreviated 

symbol for it. 

 

Definition 20 abbreviated symbol for the distance between two points 

abbreviated symbol: 𝑃𝑄 

meaning: the distance between points 𝑃 and 𝑄, that is, 𝑑(𝑃, 𝑄) 

 

We will not use this notation in the current chapter, but we will use it in coming chapters. 

 

What are the properties of the Distance Function on the Set of Points, the function 𝑑? In 

Mathematics, the term distance function is usually used for a particular kind of function, one that 

is known (or assumed) to possess certain particular properties. In this book, the Distance Axiom 

<N4> tells us nothing about the properties of the Distance Function on the Set of Points. The 

axiom merely tells us that the function exists. Later in the book, theorems will be presented that 

describe the properties of the function. (The first of those theorems will show up in Section 3.6 

Two Basic Properties of the Distance Function in Neutral Geometry, which starts on page 74.) 

 

Now on to Coordinate Functions in Neutral Geometry. 

 

As mentioned above, axiom <N4> merely states that a function 𝑑: 𝒫 × 𝒫 → ℝ exists and is 

called the Distance Function on the Set of Points. The axiom does not specify how the function 𝑑 
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behaves. We need another axiom to give more specifics about the behavior and use of the 

function 𝑑. We would like the axiom to specify that the abstract distance can be measured in a 

manner a lot like the way that we measure distance in drawings. In drawings, we measure the 

distance between two points 𝑃 and 𝑄 by putting a ruler alongside the two points. The ruler is 

used to assign a number to each point. The absolute value of the difference of the two numbers is 

the distance between the two points. (That process was described in Section 3.2, The Distance 

Function and Coordinate Functions in Drawings) In order to capture this behavior in an axiom, 

we will use the concept of a coordinate function. 

 

Definition 21 Coordinate Function 

Words: 𝑓 is a coordinate function on line 𝐿. 

Meaning: 𝑓 is a function with domain 𝐿 and codomain ℝ (that is, 𝑓: 𝐿 → ℝ) that has the 

following properties: 

(1) 𝑓 is a one-to-one correspondence. That is, 𝑓 is both one-to-one and onto. 

(2) 𝑓 “agrees with” the distance function 𝑑 in the following way: 

For all points 𝑃,𝑄 on line 𝐿, the equation |𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) is true. 

Additional Terminology: In standard function notation, the symbol 𝑓(𝑃) denotes the output 

of the coordinate function 𝑓 when the point 𝑃 is used as input. Note that 𝑓(𝑃) is a real 

number. The number 𝑓(𝑃) is called the coordinate of point 𝑃 on line 𝐿. 

Additional Notation: Because a coordinate function is tied to a particular line, it might be a 

good idea to have a notation for the coordinate function that indicates which line the 

coordinate function is tied to. We could write 𝑓𝐿 for a coordinate function on line 𝐿. With 

that notation, the symbol 𝑓𝐿(𝑃) would denote the coordinate of point 𝑃 on line 𝐿. But 

although it might be clearer, we do not use the symbol 𝑓𝐿. We just use the symbol 𝑓. 

 

With the above definition of Coordinate Function, we are now ready to understand the wording 

of Axiom <N5>. 

 

<N5> (The Ruler Axiom) Every line has a coordinate function. 

 

Coordinate functions will play a role in our abstract geometry that is analogous to the roles 

played by rulers in drawings (That role was described in Section 3.2, The Distance Function and 

Coordinate Functions in Drawings) and by coordinate functions in Analytic Geometry (That role 

was described in Section 3.3, The Distance Function and Coordinate Functions in Analytic 

Geometry). The analogy will be explored more in coming sections. But before going on to that, 

we should point out that simply knowing that each line has a coordinate function tells us 

something very important about the set of points on a line. 

 

Theorem 7 about how many points are on lines in Neutral Geometry 

In Neutral Geometry, given any line 𝐿, the set of points that lie on 𝐿 is an infinite set. More 

precisely, the set of points that lie on 𝐿 can be put in one-to-one correspondence with the set 

of real numbers ℝ. (In the terminology of sets, we would say that the set of points on line 𝐿 

has the same cardinality as the set of real numbers ℝ.) 

 

This theorem is worth discussing a bit. First, contrast what the theorem says with what we knew 

about lines in some of our previous geometries in Chapter 2. 
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 Four Point Geometry 

o Four Point Axiom  <3> For any line, there exist exactly two points that lie on the line. 

 Four Line Geometry 

o Four-Line Geometry Theorem #2: For every line, there exist exactly three points that 

the line passes through. 

 Fano’s Geometry 

o Fano’s Axiom <F2> For every line, there exist exactly three points that lie on the line. 

 Young’s Geometry 

o Young’s Axiom <Y2> For every line, there exist exactly three points that lie on the 

line. 

 Incidence Geometry 

o Incidence Axiom <I4> For every line, there exist two points that lie on the line (at 

least two points) 

 

We see that most of the geometries that we studied in Chapter 2 had lines with only a finite 

number of points lying on them.  Incidence Geometry is the only geometry that we studied in 

Chapter 2 that might have lines with an infinite set of points lying on them. But that was not a 

requirement. That is, we saw examples of Incidence Geometries that had lines with only a finite 

number of points. 

 

Also notice that Theorem 7 (about how many points are on lines in Neutral Geometry), found on 

page 70, is very different from Neutral Axiom <N2>. That axiom says that given any two 

distinct points, there is exactly one line that both points lie on. The axiom does not say that given 

any line, there are exactly two points that lie on it. We see that the second statement is not even 

true. That is, Theorem 7 tells us that in Neutral Geometry, given any line, the set of points that 

lie on it is an infinite set. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 3.11 on page 94. 

3.5. Diagram of Relationship Between Coordinate 

Functions & Distance Functions 
In Section 3.4 (The Distance Function and Coordinate Functions in Neutral Geometry), which 

started on page 68, we discussed the function 𝑑 called the Distance Function on the Set of Points. 

This is a function that takes as input a pair of points and produces as output a real number called 

the distance between the points. It is illuminating to think about a different distance function on a 

different set, the set of real numbers, ℝ. 

 

We are all familiar with the idea that to find the distance between two numbers on the number 

line, one takes the absolute value of their difference. That is, the distance between 𝑥 and 𝑦 is 
|𝑥 − 𝑦|. We want to describe this using the terminology and notation of functions. That is, we 

would like to say that the calculation |𝑥 − 𝑦| describes the working of some function. 

 

We will call the function a “distance function”, but we must be careful because we already 

discussed something called a distance function when we were discussing the Distance Axiom 

<N4>. The distance function in our current discussion is not the same one as the one mentioned 
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in axiom <N4>. The distance function mentioned in axiom <N4> measures the distance between 

two points and is called the Distance Function on the Set of Points. Our current distance function 

measures the distance between real numbers, so we will call it the Distance Function on the Set 

of Real Numbers and will denote it by the symbol 𝑑ℝ. 

 

The domain of the Distance Function on the Set of Points, the function 𝑑, is the set 𝒫 × 𝒫 of 

ordered pairs of points. In the current discussion, we are measuring the distance between two real 

numbers, so the domain of the Distance Function on the Set of Real Numbers, the function 𝑑ℝ, 

will be the set ℝ × ℝ of ordered pairs of real numbers.  

 

Given any two real numbers, the distance between them is a real number. In the terminology of 

functions, we say that the codomain of the Distance Function on the Set of Real Numbers, the 

function 𝑑ℝ, is the set of Real Numbers, ℝ. 

 

Using the terminology and symbols of the preceeding discussion, we are ready to state a 

definition. 

 

Definition 22 Distance Function on the set of Real Numbers 

Words: The Distance Function on the Set of Real Numbers 

Meaning: The function 𝑑ℝ: ℝ × ℝ → ℝ defined by 𝑑ℝ(𝑥, 𝑦) = |𝑥 − 𝑦|. 
 

For examples of the use of the Distance Function on the Set of Real Numbers, consider the 

following calculations. 

𝑑ℝ(5,7) = |5 − 7| = |−2| = 2 

𝑑ℝ(7,5) = |7 − 5| = |2| = 2 

𝑑ℝ(5,5) = |5 − 5| = |0| = 0 

𝑑ℝ(−5, −7) = |(−5) − (−7)| = |2| = 2 
 

Having introduced the Distance Function on the Set of Real Numbers, the function 𝑑ℝ, we now 

will use the function 𝑑ℝ to shed new light on the Distance Function on the Set of Points, the 

function 𝑑. 

 

Observe that given points 𝑃 and 𝑄, there are two different processes that can be used to produce 

a real number. 

 

Process #1: 

Feed the pair of points (𝑃, 𝑄) into the Distance Function on the Set of Points, the function 𝑑, 

to get a real number, denoted 𝑑(𝑃, 𝑄) called the distance between 𝑃 and 𝑄. This process 

could be illustrated with an arrow diagram: 

 
The bottom half of the diagram, we have seen before. It is the arrow diagram that tells us that 

the symbol 𝑑 represents a function with domain 𝒫 × 𝒫 and codomain ℝ. The top part of the 

diagram has been added. It shows what happens to an actual pair of points. 

 

Process #2: (This is a two-step process.) 

𝒫 × 𝒫 ℝ 

(𝑃, 𝑄) 𝑑(𝑃, 𝑄) 
𝑑 



3.5: Diagram of Relationship Between Coordinate Functions & Distance Functions 73 

First Step: Let 𝐿 be a line passing through points 𝑃 and 𝑄 and let 𝑓 be a coordinate function 

for line 𝐿. Feed point 𝑃 into 𝑓 to get a real number 𝑓(𝑃), and feed point 𝑄 into 𝑓 to get a 

real number 𝑓(𝑄). This gives us a pair of real numbers, (𝑓(𝑃), 𝑓(𝑄)). 

Second Step: Feed the pair of real numbers (𝑓(𝑃), 𝑓(𝑄)) into the Distance Function on the 

Set of Real Numbers, the function 𝑑ℝ, to get a real number, denoted 𝑑ℝ(𝑓(𝑃), 𝑓(𝑄)). We 

know exactly how the Distance Function on the Set of Real Numbers works. The real 

number 𝑑ℝ(𝑓(𝑃), 𝑓(𝑄)) is just |𝑓(𝑃) − 𝑓(𝑄)|. 
 

The two-step process can be illustrated with a two-step arrow diagram: 

 
 

So we have two different processes that can be used to turn a pair of points into a single real 

number. An obvious question is this: do the two processes give the same result? That is, for any 

points 𝑃 and 𝑄 and a coordinate function 𝑓 on a line 𝐿 passing through 𝑃 and 𝑄, does 𝑑(𝑃, 𝑄) 

equal |𝑓(𝑃) − 𝑓(𝑄)|? Well, the fact that 𝑓 is a coordinate function guarantees that the two 

results will always match. 

𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)| 
𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 #1 = 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 #2 

 

The fact that these two processes always yield the same result can be illustrated by combining 

the two arrow diagrams into a single, larger diagram. In order to improve readability, we will 

bend the diagram for process #2. The resulting diagram is 

 
In the diagram, we see that there are two different routes to get from a pair of points (that is, an 

element of 𝒫 × 𝒫) to the set of real numbers, ℝ. The slanting arrow is Process #1. The two-step 

path that goes straight across and then straight down is Process #2. The circled equal sign in the 

middle of the diagram indicates that these two paths always yield the same result. In diagram 

jargon, we say that the diagram commutes. 

 

We can superimpose on the diagram some additional symbols that show what happens to an 

actual pair of points. 

 

𝒫 × 𝒫 ℝ × ℝ 

(𝑃, 𝑄) (𝑓(𝑃), 𝑓(𝑄)) 
𝑓 × 𝑓 

ℝ 

|𝑓(𝑃) − 𝑓(𝑄)| 
𝑑ℝ 

= 

𝒫 × 𝒫 ℝ × ℝ 
𝑓 × 𝑓 

ℝ 

𝑑ℝ 
𝑑 

= 

𝒫 × 𝒫 ℝ × ℝ 

(𝑃, 𝑄) (𝑓(𝑃), 𝑓(𝑄)) 
𝑓 × 𝑓 

ℝ |𝑓(𝑃) − 𝑓(𝑄)| 

𝑑ℝ 
𝑑 

𝑑(𝑃, 𝑄) 



74   Chapter 3: Neutral Geometry I: The Axioms of Incidence and Distance 

The two diagrams above may seem rather strange to you, but these sorts of diagrams are very 

common in higher-level math. Remember that the two diagrams are merely illustrations of what 

it means when we say that a function 𝑓 is a coordinate function. They illustrate the relationship 

between a coordinate function 𝑓 and the distance function 𝑑. 

3.6. Two Basic Properties of the Distance Function in 

Neutral Geometry 
As mentioned in Section 3.4 (The Distance Function and Coordinate Functions in Neutral 

Geometry), which started on page 68,the Distance Axiom <N4> tells us that the Distance 

Function on the Set of Points, the function 𝑑, exists, but the axiom does not tell us anything 

about the properties of that function. All of the facts that we want to state about the properties of 

the Distance Function on the Set of Points will have to be proven in theorems. Most of those 

theorems will be stated and proven in the current chapter, using proofs that rely on the important 

relationship between the Distance Function and Coordinate Functions. That relationship was 

introduced in the definition of Coordinate Function (Definition 21 on page 70) and was 

illustrated in diagrams in the previous section. 

 

For all points 𝑃,𝑄 on line 𝐿, the equation |𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) is true. 

 

In this section, we will prove that 𝑑 has two important properties. 

 

The first property of 𝑑 that we will prove is the property of being positive definite. 

 

Theorem 8 The Distance Function on the Set of Points, the function 𝑑, is Positive Definite. 

For all points 𝑃 and 𝑄, 𝑑(𝑃, 𝑄) ≥ 0, and 𝑑(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄. That is, if 

and only if 𝑃 and 𝑄 are actually the same point. 

Proof 

(1) Let 𝑃 and 𝑄 be any two points, not necessarily distinct. 

(2) Let 𝐿 be a line passing through 𝑃 and 𝑄. (The existence of such a line is guaranteed by 

Theorem 6 (In Neutral Geometry, given any points 𝑃 and 𝑄 that are not known to be 

distinct, there exists at least one line that passes through 𝑃 and 𝑄.) found on page 63.) 

(3) Let 𝑓 be a coordinate function for line 𝐿. (A coordinate function exists by axiom <N5>.) 

(4) By the definition of Coordinate Function (Definition 21 on page 70), we know that 

𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)|. This tells us that 𝑑(𝑃, 𝑄) ≥ 0. 

(5) Suppose that 𝑃 and 𝑄 are actually the same point. Then their coordinates 𝑓(𝑃) and 𝑓(𝑄) 

will be the same real number, so 𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)| = 0. 

(6) Now suppose that 𝑃 and 𝑄 are not the same point. Because coordinate functions are one-to-

one, the coordinates 𝑓(𝑃) and 𝑓(𝑄) will not be the same real number. So the difference 
|𝑓(𝑃) − 𝑓(𝑄)| will not be zero. Therefore, 𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)| ≠ 0. 

(7) The previous two steps tell us that 𝑑(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄. 

End of proof 

 

The second property of 𝑑 that we will prove is the property of being symmetric. 

 

Theorem 9 The Distance Function on the Set of Points, the function 𝑑, is Symmetric. 

For all points 𝑃 and 𝑄, 𝑑(𝑃, 𝑄) = 𝑑(𝑄, 𝑃). 
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Proof 

Let 𝑃 and 𝑄 be any two points. Let 𝐿 be a line passing through 𝑃 and 𝑄, and let 𝑓 be a 

coordinate function for line 𝐿. 

𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)| (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 

= |𝑓(𝑄) − 𝑓(𝑃)| 
= 𝑑(𝑄, 𝑃)   (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 

End of proof 

 

The two properties of the Neutral Geometry distance function that we have studied in this 

section--the fact that the distance function is positive definite and symmetric--are properties that 

will be important to us in future proofs, but they are both properties that you have probably never 

thought about or used when measuring distance in drawings or in Analytic Geometry. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 3.11 on page 94. 

3.7. Ruler Placement in Drawings 
As mentioned in Section 3.4, coordinate functions in Neutral Geometry are defined in a way that 

seems to mimic the role played by rulers and coordinate functions in drawings. But in that 

section, we did not explore the behavior of coordinate functions very much. In the next few 

sections, we will study the concept of ruler placement in drawings, in Analytic Geometry, and in 

Neutral Geometry. Although you have probably not used the name ruler placement before, the 

term does describe things that you have certainly done when using a ruler to measure things. 

 

To be more precise, in this section we will study three behaviors of rulers in drawings: Ruler 

Sliding, Ruler Flipping, and Ruler Placement. In Section 3.8 (Ruler Placement in Analytic 

Geometry, starting on page 81) and in Section 3.9 (Ruler Placement in Neutral Geometry, 

starting on page 87), we will see that there are analogs of Ruler Sliding, Ruler Flipping, and 

Ruler Placement in Analytic Geometry and in Neutral Geometry, as well. 

 

First Behavior of Rulers in Drawings: Ruler Sliding 

 

The first behavior of rulers in drawings that we will consider is that of sliding the ruler along the 

line. In Section 3.2 (The Distance Function and Coordinate Functions in Drawings, starting on 

page 63), we put a ruler alongside a drawn line 𝐿. The placement of the ruler alongside the line 

gave us a coordinate function that we called 𝑓, In symbols, we wrote 𝑓: 𝐿 → ℝ. To see this 

coordinate function 𝑓 in action, we considered the three drawn points 𝐴, 𝐵, 𝐶 shown on line 𝐿 in 

the drawing below. 

 
If we use the three drawn points 𝐴, 𝐵, 𝐶 as input to the function 𝑓, the resulting outputs are three 

real numbers, called the coordinates of the three points. 

 

5 6 4 7 8 9 3 2 1 

coordinate function 𝑓 
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 The coordinate of drawn point 𝐴 is the real number 𝑓(𝐴) = −2. 

 The coordinate of drawn point 𝐵 is the real number 𝑓(𝐵) = 3. 

 The coordinate of drawn point 𝐶 is the real number 𝑓(𝐶) = 7.6. 

 

Consider what happens if we use the same ruler that we used above, but slide it three units to the 

left. (“Right” is the direction of increasing numbers; “left” is the direction of decreasing 

numbers.) The result is a new coordinate function that we can call 𝑔. In symbols, 𝑔: 𝐿 → ℝ.  

 
If we use the three points 𝐴, 𝐵, 𝐶 as input to the coordinate function 𝑔, the resulting outputs are 

three real numbers listed below. 

 

 The coordinate of drawn point 𝐴 is the real number 𝑔(𝐴) = 1. 

 The coordinate of point 𝐵 is the real number 𝑔(𝐵) = 6. 

 The coordinate of point 𝐶 is the real number 𝑔(𝐶) = 10.6. 

 

Using the coordinate function 𝑔, we find that the distance between 𝐴 and 𝐵 is 5 and the distance 

between 𝐶 and B is 4.6. So the distances between the points are unchanged. Good. 

 

Notice that for any point 𝑃 on line 𝐿, the coordinate obtained using coordinate function 𝑔 is 

always going to be 3 greater than the coordinate obtained using coordinate function 𝑓. That is, 

 

𝑔(𝑃) = 𝑓(𝑃) + 3 
 

More generally, if we slide ruler along line 𝐿 by some amount, we will obtain a new coordinate 

function that we could call coordinate function 𝑔, and the coordinates produced by the two 

coordinate functions 𝑓 and 𝑔 would be related by the equation  

 

𝑔(𝑃) = 𝑓(𝑃) + 𝑐 
 

where 𝑐 is a real number constant that will depend on how far the ruler was slid. (And which way 

it was slid! If we slide the ruler to the right, then the constant 𝑐 will be a negative number.) 

 

We could also think of this the other way around in the following sense: Suppose we are given a 

real number −7. Is there a way to place the ruler so that it will provide a coordinate function 𝑔 

with the property that for any point 𝑃 on line 𝐿, 

 

𝑔(𝑃) = 𝑓(𝑃) + (−7) = 𝑓(𝑃) − 7? 
 

Of course there is. To place the ruler for coordinate function 𝑔, one should slide the ruler 7 units 

to the right of the spot that it was in for coordinate function 𝑓. 

 

More generally, given any real number 𝑐, the equation  
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𝑔(𝑃) = 𝑓(𝑃) + 𝑐 
 

describes a new coordinate function that can be achieved by sliding the ruler that produced 

coordinate function 𝑓 to some new spot alongside line 𝐿. 

 

Let’s take a moment to briefly look ahead at something found in Section 3.9 (Ruler Placement in 

Neutral Geometry). The Theorem 10 claim (A) on page 87 says. 

 

Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. 

(A) (Ruler Sliding) If 𝑐 is a real number constant and 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 

𝑔(𝑃) = 𝑓(𝑃) + 𝑐, then 𝑔 is also a coordinate function for line 𝐿. 

 

We see that Theorem 10 claim (A) is simply telling us that our abstract coordinate functions will 

exhibit behavior analogous to the sliding behavior of drawn rulers discussed above.  

 

Second Behavior of Rulers in Drawings: Ruler Flipping 

 

The second behavior of rulers in drawings that we will consider is that of flipping the ruler.We 

start by reviewing the placement of the ruler that gave us coordinate function 𝑓. 

 
If we use the three drawn points 𝐴, 𝐵, 𝐶 as input to the function 𝑓, the resulting outputs are three 

real numbers, called the coordinates of the three points. 

 The coordinate of drawn point 𝐴 is the real number 𝑓(𝐴) = −2. 

 The coordinate of drawn point 𝐵 is the real number 𝑓(𝐵) = 3. 

 The coordinate of drawn point 𝐶 is the real number 𝑓(𝐶) = 7.6. 

 

Now flip the ruler around, keeping the zero in the same spot on the line, so that the numbers go 

to the left. (My drawing program won’t let me flip the characters upside down.) This placement 

gives us a new coordinate function, one that we can call 𝑔. 

 
If we use the three drawn points 𝐴, 𝐵, 𝐶 as input to the function 𝑔, the resulting outputs are three 

real numbers, called the coordinates of the three points. 

 

 The coordinate of drawn point 𝐴 is the real number 𝑔(𝐴) = 2. 

 The coordinate of drawn point 𝐵 is the real number 𝑔(𝐵) = −3. 

 The coordinate of drawn point 𝐶 is the real number 𝑔(𝐶) = −7.6. 
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Notice that for any point 𝑃 on line 𝐿, the coordinate obtained using coordinate function 𝑔 is 

always going to the negative of the coordinate obtained using coordinate function 𝑓. That is, 

 

𝑔(𝑃) = −𝑓(𝑃) 

 

Let’s again take a moment to briefly look ahead at something found in Section 3.9 (Ruler 

Placement in Neutral Geometry). The Theorem 10 claim (B) on page 87 says. 

 

Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. 

(B) (Ruler Flipping) If 𝑐 is a real number constant and 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 

𝑔(𝑃) = −𝑓(𝑃), then 𝑔 is also a coordinate function for line 𝐿. 

 

We see that Theorem 10 claim (B) is simply telling us that our abstract coordinate functions will 

exhibit behavior analogous to the flipping behavior of drawn rulers discussed above. 

 

Combining Sliding and Flipping: Ruler Placement in Drawings 

 

The third behavior of rulers in drawings that we will consider is that of ruler placement. That 

name may sound vague and unhelpful, but the name refers to the following simple idea. Given 

two drawn points in a drawing, it is often useful to put the end of a ruler on one of the points, and 

have the numbers on the ruler go in the direction of the other point. That is, given points 𝐴 and 𝐵 

on a line, we often want the ruler placed so that the resulting coordinate function has two 

properties: 

 

 the coordinate of point 𝐴 is zero 

 the coordinate of point 𝐵 is positive 

 

With an actual ruler and a drawing, we can simply put the ruler on the drawing in the right way. 

But it will be helpful to describe the process of getting the ruler into the correct position in a 

more abstract way, so that we may see that the process generalizes to the abstract coordinate 

functions of Neutral Geometry. We can get the ruler into the right position by a combination of 

sliding and flipping. 

 

Suppose that we are given points 𝐴 and 𝐵 lying on some line 𝐿. Put a ruler alongside line 𝐿. 

Placed alongside the line like this, the ruler gives us a coordinate function for line 𝐿. We can call 

the coordinate function 𝑓. A drawn example is shown below. 

 
Notice that in our drawn example, 

  

𝑓(𝐴) = 2 
𝑓(𝐵) = −3 
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So coordinate function 𝑓 does not have either of the properties that we desire. 

 

Now we will move the ruler to obtain a coordinate function that does have our desired properties. 

It will be done in two steps. 

 

Step 1: Ruler Sliding 

 

Let 𝑐 be the real number defined by 𝑐 = 𝑓(𝐴). That is, 𝑐 is the real number coordinate of point 𝐴 

using coordinate function 𝑓 on line 𝐿. In our drawn example, 𝑐 = 𝑓(𝐴) = 2. Move the ruler 𝑐 

units to the right along line 𝐿. (“Right” is the direction of increasing numbers on the ruler. Also 

note that if the number 𝑐 is negative, then “moving the ruler 𝑐 units to the right” will actually 

mean that the ruler gets moved to the left. For example, if 𝑐 = −7, then moving the ruler 𝑐 = −7 

units to the right will mean that the ruler actually gets moved 7 units to the left.) This new 

placement of the ruler gives us a new coordinate function for line 𝐿. We can call the new 

coordinate function 𝑔. The result of doing this in our drawn example is shown below, where we 

have moved the ruler 2 units to the right. 

 
Notice that in our drawn example, 

  

𝑔(𝐴) = 0 
𝑔(𝐵) = −5 

 

So coordinate function 𝑔 in our drawn example has the first property that we desire, but not the 

second property. 

 

This behavior of the coordinate function 𝑔 can be described abstractly. Because the ruler was 

moved 𝑐 units to the right, the coordinates produced by functions 𝑓 and 𝑔 will be related by the 

equation 

 

𝑔(𝑃) = 𝑓(𝑃) − 𝑐 
 

In this equation, the letter 𝑃 represents an arbitrary point on line 𝐿. Observe that we know that 

the value of the constant 𝑐 is just 𝑐 = 𝑓(𝐴). So the coordinates produced by functions 𝑓 and 𝑔 

will be related by the equation 

 

𝑔(𝑃) = 𝑓(𝑃) − 𝑓(𝐴) 
 

Again, the letter 𝑃 represents an arbitrary point on line 𝐿. Notice what happens when we let 𝑃 =
𝐴. 

 

𝑔(𝐴) = 𝑓(𝐴) − 𝑓(𝐴) = 0 

5 6 4 7 8 9 3 2 1 

coordinate function 𝑔 

𝐿 𝐵 𝐴 



80   Chapter 3: Neutral Geometry I: The Axioms of Incidence and Distance 

 

That is, the new coordinate function 𝑔 has the special property that it assigns a coordinate of zero 

to point 𝐴. Observe that in our above drawing, 𝑔(𝐴) = 0. 

 

Step 2: Ruler Flipping 

 

Remember that we are interested in describing abstractly how to place the ruler so that it has two 

properties 

 

 the coordinate of point 𝐴 is zero 

 the coordinate of point 𝐵 is positive. 

 

In our drawn example, the coordinate function 𝑔 has the first property, but not the second. We 

can fix this by simply flipping the ruler over so that the zero end remains at point 𝐴 but the 

positive numbers go in the direction of point 𝐵. The resulting placement of the ruler gives us a 

new coordinate function, one that we can call ℎ. A picture is shown below.  

 
Notice that in our drawn example, 

ℎ(𝐴) = 0 
ℎ(𝐵) = 5 

 

So coordinate function ℎ in our drawn example has both properties that we desire. 

 

This behavior of the coordinate function ℎ can be described abstractly. Because the ruler was 

flipped so that its zero remained at the same point but the numbers went the other direction, the 

coordinates produced by functions 𝑔 and h will be related by the equation 

 

ℎ(𝑃) = −𝑔(𝑃) 

In this equation, the letter 𝑃 represents an arbitrary point on line 𝐿.  

 

Conclusion 

 

It is helpful to reiterate what we have done. Given points 𝐴 and 𝐵 on a line, we wanted a ruler 

placed so that the resulting coordinate function has two properties: 

 

 the coordinate of point 𝐴 is zero 

 the coordinate of point 𝐵 is positive 

 

We saw that using a two step process of Ruler Sliding and Ruler Flipping, a ruler could be 

placed in the correct position. 
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Let’s again take a moment to briefly look ahead at something found in Section 3.9 (Ruler 

Placement in Neutral Geometry). The Theorem 11 (Ruler Placement Theorem) on page 87 says. 

 

If 𝐴 and 𝐵 are distinct points on some line 𝐿, then there exists a coordinate function ℎ for 

line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

 

We see that Theorem 11 is simply telling us that our abstract coordinate functions will exhibit 

behavior analogous to the ruler placement behavior of drawn rulers discussed above. 

3.8. Ruler Placement in Analytic Geometry 
In Section 3.3 The Distance Function and Coordinate Functions in Analytic Geometry (starting 

on page 65), we saw the introduction of coordinate functions for two lines called 𝐿 and 𝑀. In this 

section, we will revisit those coordinate functions and obtain additional, new coordinate function 

for lines 𝐿 and 𝑀 by modifying those old coordinate functions. We will see how the 

modifications of the coordinate functions could be thought of as Ruler Sliding, Ruler Flipping, 

and Ruler Placement for coordinate functions in Analytic Geometry. 

3.8.1. Examples involving the line 𝑳. 

Our first example in Section 3.3 The Distance Function and Coordinate Functions in Analytic 

Geometry (starting on page 65) involved the line 𝐿 defined as follows. 

 

𝐿 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 = 3} 
 

This is a horizontal line, parallel to the x-axis but 3 units above the x-axis. Points 𝐴 = (7,3) and 

𝐵 = (5,3) are on line 𝐿. 

 
In this section, we will be interested in finding a coordinate function for line 𝐿 that has the 

following two properties:  

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

In Section 3.3 we saw the introduction of a coordinate function for line 𝐿. The coordinate 

function was the function 𝑓: 𝐿 → ℝ defined by the equation 

𝑓(𝑥, 𝑦) = 𝑥 
 

Recall that using the function 𝑓, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of 𝐴 is the real number 𝑓(𝐴) = 𝑓(7,3) = 7. 
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 The coordinate of 𝐵 is the real number 𝑓(𝐵) = 𝑓(5,3) = 5. 

 

We see that using the coordinate function 𝑓, 

 

 The coordinate of 𝐴 is not zero. 

 The coordinate of 𝐵 is positive. 

 

So coordinate function 𝑓 does not have the two properties that we want. But it turns out that we 

can modify coordinate function 𝑓 to obtain a new coordinate function that does have the two 

properties that we want. The modification will be done in two steps. 

 

Modification Step 1: Ruler Sliding 

 

Define a new function 𝑔: 𝐿 → ℝ is by the equation 

 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝐴) = 𝑓(𝑥, 𝑦) − 7 = 𝑥 − 7 
 

Notice that the function 𝑔 is obtained by adding a constant −7 to the function 𝑓. 

 

Using points 𝐴 and 𝐵 as inputs to the function 𝑔, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real number 𝑔(𝐴) = 𝑔(7,3) = 0. 

 When point B is the input, the output is the real number 𝑔(𝐵) = 𝑔(5,3) = −2. 

 

Also observe that 

|𝑔(𝐴) − 𝑔(𝐵)| = |0 − (−2)| = |2| = 2 

 

so the equation  
|𝑔(𝐴) − 𝑔(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. The fact that this equation is satified is what qualifies 𝑔 to be called a coordinate 

function for line 𝐿. We can rewrite the two sentences above about inputs and outputs, using 

instead the terminology of coordinate functions and coordinates. We can say that using the 

coordinate function 𝑔, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of point 𝐴 is the real number 𝑔(𝐴) = 𝑔(7,3) = 0. 

 The coordinate of point 𝐵 is the real number 𝑔(𝐵) = 𝑔(5,3) = −2. 

 

Observe that using coordinate function 𝑔, 

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is negative. 

 

So coordinate function 𝑔 has the first of the two properties that we want, but it does not have the 

second property. 
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Realize that the mathematical operation of adding a constant −7 to the function 𝑓 corresponds to 

sliding the ruler for 𝑓 seven units along the line 𝐿. The resulting new ruler--the new coordinate 

function--is named 𝑔. So we see that the operation of sliding a ruler along a line in a drawing has 

an analog in the world of Analytic Geometry: it corresponds to adding a constant to a coordinate 

function to get a new coordinate function. 

 

Modification Step 2: Ruler Flipping 

 

Define a new function ℎ: 𝐿 → ℝ by the equation 

 

ℎ(𝑥, 𝑦) = −𝑔(𝑥, 𝑦) = −(𝑓(𝑥, 𝑦) − 𝑓(𝐴)) = −(𝑓(𝑥, 𝑦) − 7) = 7 − 𝑓(𝑥, 𝑦) = 7 − 𝑥 

 

Notice that the function ℎ is obtained by multiplying the function 𝑔 by −1. 

 

Using points 𝐴 and 𝐵 as inputs to the function ℎ, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real number ℎ(𝐴) = ℎ(7,3) = 0. 

 When point B is the input, the output is the real number ℎ(𝐵) = ℎ(5,3) = 2. 

 

Also observe that 

|ℎ(𝐴) − ℎ(𝐵)| = |0 − 2| = |−2| = 2 
 

so the equation  
|ℎ(𝐴) − ℎ(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. The fact that this equation is satified is what qualifies ℎ to be called a coordinate 

function for line 𝐿. We can rewrite the two sentences above about inputs and outputs, using 

instead the terminology of coordinate functions and coordinates. We can say that using the 

coordinate function ℎ, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of point 𝐴 is the real number ℎ(𝐴) = ℎ(7,3) = 0. 

 The coordinate of point 𝐵 is the real number ℎ(𝐵) = ℎ(5,3) = 2. 

 

Observe that using coordinate function ℎ, 

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

So coordinate function ℎ has both of the two properties that we want. 

 

Realize that the mathematical operation of multiplying the function 𝑔 by −1 corresponds to 

flipping the ruler for 𝑔. The resulting new ruler--the new coordinate function--is named ℎ. So we 

see that the operation of flipping a ruler in a drawing has an analog in the world of Analytic 

Geometry: it corresponds to multiplying a coordinate function by −1 to get a new coordinate 

function. 

 

Conclusion: Ruler Placement in Analytic Geometry 
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In this subsection, we started with a line 𝐿. We wanted a coordinate function for line L that 

would have the following two properties:  

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

We started with a coordinate function 𝑓 that did not have these properties. Then we modified 𝑓 

in two steps. In Step 1, we obtained a new coordinated function 𝑔 by adding a real number 

constant to 𝑓. This was analogous to Ruler Sliding in a drawing. In Step 2, we obtained a new 

coordinate function ℎ by multiplying 𝑔 by the number −1. This was analogous to Ruler Flipping 

in a drawing. We observed that the function ℎ had both of the properties that we wanted. So the 

two step modification was analagous to Ruler Placement in a drawing. 

3.8.2. Examples involving the line 𝑴. 

Our second example in Section 3.3 The Distance Function and Coordinate Functions in Analytic 

Geometry (starting on page 65) involved the slanting line 𝑀 defined as follows. 

 

𝑀 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 𝑦 = 4} 
 

That is, 𝑦 = −𝑥 + 4. Points 𝐴 = (7, −3) and 𝐵 = (5, −1) are on on line 𝑀. 

 
As we did above for line 𝐿, we will be interested in finding a coordinate function for line 𝑀 that 

has the following two properties:  

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

In Section 3.3 we saw the introduction of a coordinate function for line 𝑀. The coordinate 

function was the function 𝑓: 𝑀 → ℝ defined by the equation 

𝑓(𝑥, 𝑦) = 𝑥√2 
 

Recall that using the function 𝑓, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of 𝐴 is the real number 𝑓(𝐴) = 𝑓(7,3) = 7√2. 

 The coordinate of 𝐵 is the real number 𝑓(𝐵) = 𝑓(5,3) = 5√2. 

𝑀 

𝐵 (5, −1) 

𝐴 
(7, −3) 

𝑥 

𝑦 
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We see that using the coordinate function 𝑓, 

 

 The coordinate of 𝐴 is not zero. 

 The coordinate of 𝐵 is positive. 

 

So coordinate function 𝑓 does not have the two properties that we want. But again, it turns out 

that we can modify coordinate function 𝑓 to obtain a new coordinate function that does have the 

two properties that we want. Again, the modification will be done in two steps. 

 

Modification Step 1: Ruler Sliding 

 

Define a new function 𝑔: 𝑀 → ℝ is by the equation 

 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝐴) = 𝑓(𝑥, 𝑦) − 7√2 = 𝑥√2 − 7√2 
 

Notice that the function 𝑔 is obtained by adding a constant −7√2 to the function 𝑓. 

 

Using points 𝐴 and 𝐵 as inputs to the function 𝑔, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real number 𝑔(𝐴) = 𝑔(7,3) = 0. 

 When point B is the input, the output is the real number 𝑔(𝐵) = 𝑔(5,3) = −2√2. 

 

Also observe that 

|𝑔(𝐴) − 𝑔(𝐵)| = |0 − (−2√2)| = |2√2| = 2√2 

 

so the equation  
|𝑔(𝐴) − 𝑔(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. The fact that this equation is satified is what qualifies 𝑔 to be called a coordinate 

function for line 𝑀. We can rewrite the two sentences above about inputs and outputs, using 

instead the terminology of coordinate functions and coordinates. We can say that using the 

coordinate function 𝑔, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of point 𝐴 is the real number 𝑔(𝐴) = 𝑔(7,3) = 0. 

 The coordinate of point 𝐵 is the real number 𝑔(𝐵) = 𝑔(5,3) = −2√2. 

 

Observe that using coordinate function 𝑔, 

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is negative. 

 

So coordinate function 𝑔 has the first of the two properties that we want, but it does not have the 

second property. 
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Realize that the mathematical operation of adding a constant −7√2 to the function 𝑓 corresponds 

to sliding the ruler for 𝑓 a distance of 7√2 units along the line 𝑀. The resulting new ruler--the 

new coordinate function--is named 𝑔. Again we see that the operation of sliding a ruler along a 

line in a drawing has an analog in the world of Analytic Geometry: it corresponds to adding a 

constant to a coordinate function to get a new coordinate function. 

 

Modification Step 2: Ruler Flipping 

 

Define a new function ℎ: 𝑀 → ℝ by the equation 

 

ℎ(𝑥, 𝑦) = −𝑔(𝑥, 𝑦) 
= −(𝑓(𝑥, 𝑦) − 𝑓(𝐴)) 

= −(𝑓(𝑥, 𝑦) − 7√2) 

= 7√2 − 𝑓(𝑥, 𝑦) 

= 7√2 − 𝑥√2 
 

Notice that the function ℎ is obtained by multiplying the function 𝑔 by −1. 

 

Using points 𝐴 and 𝐵 as inputs to the function ℎ, we obtain the following outputs. 

 

 When point 𝐴 is the input, the output is the real number ℎ(𝐴) = ℎ(7,3) = 0. 

 When point B is the input, the output is the real number ℎ(𝐵) = ℎ(5,3) = 2√2. 

 

Also observe that 

|ℎ(𝐴) − ℎ(𝐵)| = |0 − 2√2| = |−2√2| = 2√2 

 

so the equation  
|ℎ(𝐴) − ℎ(𝐵)| = 𝑑(𝐴, 𝐵) 

 

is satisfied. The fact that this equation is satified is what qualifies ℎ to be called a coordinate 

function for line 𝐿. We can rewrite the two sentences above about inputs and outputs, using 

instead the terminology of coordinate functions and coordinates. We can say that using the 

coordinate function ℎ, we obtain the following coordinates for points 𝐴 and 𝐵. 

 

 The coordinate of point 𝐴 is the real number ℎ(𝐴) = ℎ(7,3) = 0. 

 The coordinate of point 𝐵 is the real number ℎ(𝐵) = ℎ(5,3) = 2√2. 

 

Observe that using coordinate function ℎ, 

 

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

So coordinate function ℎ has both of the two properties that we want. 

 

Realize that the mathematical operation of multiplying the function 𝑔 by −1 corresponds to 

flipping the ruler for 𝑔. The resulting new ruler--the new coordinate function--is named ℎ. Again 
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we see that the operation of flipping a ruler in a drawing has an analog in the world of Analytic 

Geometry: it corresponds to multiplying a coordinate function by −1 to get a new coordinate 

function. 

 

Conclusion: Ruler Placement in Analytic Geometry 

 

In this subsection we, we started with a line 𝑀. We wanted a coordinate function for line 𝑀 that 

would have the following two properties:  

 The coordinate of 𝐴 is zero. 

 The coordinate of 𝐵 is positive. 

 

We started with a coordinate function 𝑓 that did not have these properties. Then we modified 𝑓 

in two steps. In Step 1, we obtained a new coordinated function 𝑔 by adding a real number 

constant to 𝑓. This was analogous to Ruler Sliding in a drawing. In Step 2, we obtained a new 

coordinate function ℎ by multiplying 𝑔 by the number −1. This was analogous to Ruler Flipping 

in a drawing. We observed that the function ℎ had both of the properties that we wanted. So the 

two step modification was analagous to Ruler Placement in a drawing. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 3.11 on page 94. 

3.9. Ruler Placement in Neutral Geometry 
Having studied Ruler Sliding, Ruler Flipping, and Ruler Placement in both drawings and 

Analytic Geometry, we are ready to see how the abstract version of each of those three behaviors 

is manifest in Neutral Geometry. Notice that the Neutral Geometry axioms do not say anything 

about Ruler Sliding, Ruler Flipping, or Ruler Placement. We will have to prove in theorems that 

the three behaviors do, in fact, occur in Neutral Geometry. 

 

Here is the first theorem about ruler behavior in Neutral Geometry. It has to do with Ruler 

Sliding and Ruler Flipping. 

 

Theorem 10 (Ruler Sliding and Ruler Flipping) Lemma about obtaining a new coordinate 

function from a given one 

Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. 

(A) (Ruler Sliding) If 𝑐 is a real number constant and 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 

𝑔(𝑃) = 𝑓(𝑃) + 𝑐, then 𝑔 is also a coordinate function for line 𝐿. 

(B) (Ruler Flipping) If 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 𝑔(𝑃) = −𝑓(𝑃), then 𝑔 is also a 

coordinate function for line 𝐿. 

 

A digression to discuss proof structure 

 

Before embarking on the proof, it is worthwhile to discuss the proof structure. We will consider 

the structure of the proof of Statement (A) and then I will present the proof. A similar structure 

will be needed for the proof of Statement (B), which you will prove as an exercise. 

 

Since Statement (A) is a conditional statement, step (1) of the proof will of course be simply a 

statement of the hypothesis of Statement (A), and the final step of the proof will be a statement 



88   Chapter 3: Neutral Geometry I: The Axioms of Incidence and Distance 

of the conclusion of Statement (A), with some justification provided. Look ahead to the proof 

provided below and confirm that it does indeed begin and end in this way. 

 

Now, working backwards from the end of the proof, let’s think about how the final statement of 

the proof will need to be justified. The final statement of the proof says that some function 𝑔 is a 

coordinate function for some line 𝐿. But coordinate function is a defined term. The only way to 

prove that some function is a coordinate function is to prove that the function does indeed have 

all of the characteristics described in the definition of coordinate function. For reference, here is 

part of that definition. 

 

Definition 21: Coordinate Function (page 70) 

Words: 𝑓 is a coordinate function on line 𝐿. 

Meaning: 𝑓 is a function with domain 𝐿 and codomain ℝ (that is, 𝑓: 𝐿 → ℝ) that has the 

following properties: 

(1) 𝑓 is a one-to-one correspondence. That is, 𝑓 is both one-to-one and onto. 

(2) 𝑓 “agrees with” the distance function 𝑑 in the following way: 

For all points 𝑃,𝑄 on line 𝐿, the equation |𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) is true. 

 

If we want to prove that 𝑔 is a coordinate function for line 𝐿, we will need to prove that 𝑔 does 

have all the characteristics listed above. That means we will need to prove four things: 

 

1. Prove that 𝒈 is a function with domain 𝑳 and codomain ℝ (that is, 𝒈: 𝑳 → ℝ). Notice 

that 𝑔: 𝐿 → ℝ is already stated as part of the description of 𝑔 in Statement (A), as if it 

were already known to be a fact. How is it already known? Well, the proof of the fact 

is so easy that once you see the proof in this remark, you will understand why the 

proof of the fact is omitted in the real proof. 

To prove that 𝑔: 𝐿 → ℝ is true, we would need to prove that 𝑔 will 

accept any given point on line 𝐿 as input, and will produce exactly 

one real number as output. So suppose that 𝑃 is some given point on 

line 𝐿. Then 𝑓(𝑃) is a real number, by the fact that 𝑓: 𝐿 → ℝ is true 

since 𝑓 is known to be a coordinate function. Then 𝑓(𝑃) + 𝑐 is also 

a real number. But 𝑔(𝑃) = 𝑓(𝑃) + 𝑐. That means that 𝑔(𝑃) does in 

fact represent a real number. So 𝑔: 𝐿 → ℝ is true. 

So the proof that 𝑔: 𝐿 → ℝ is so easy that the fact is stated without proof, as part of 

Statement (A). 

 

2. Prove that 𝒈 is one-to-one. Recall that to say that a function is one-to-one means that if 

two inputs cause two outputs that are equal, then the two inputs must have also been 

equal as well. In our situation, we must prove that if 𝑔(𝑃) = 𝑔(𝑄), then 𝑃 = 𝑄. 

 

3. Prove that 𝒈 is onto. Recall that to say that a function is onto means that for any desired 

output in the codomain, there exists an input in the domain that will cause the 

function to give that desired output. In our situation, we must prove that for any real 

number y, there exists some point 𝑃 on line 𝐿 such that𝑔(𝑃) = 𝑦. 

 

4. Prove that 𝒈 “agrees with” the distance function 𝒅 in the following way: 

For all points 𝑃, 𝑄 on line 𝐿, the equation |𝑔(𝑃) − 𝑔(𝑄)| = 𝑑(𝑃, 𝑄) is true. 
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If you look ahead to the proof of Statement (A), you will see that the proof is organized into 

three sections, corresponding to items 2, 3, and 4 on the above list. 

 

End of digression 

 

Here, then, is the proof of Theorem 10 Statement (A): 

 

Proof that Statement (A) is true 

(1) Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. And suppose that 𝑐 is a real 

number constant, and that 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 𝑔(𝑃) = 𝑓(𝑃) + 𝑐. 

Prove that the function 𝒈 is one-to-one. 

(2) Suppose that 𝑃, 𝑄 are points on line 𝐿 such that 𝑔(𝑃) = 𝑔(𝑄). 

(3) Then 𝑓(𝑃) + 𝑐 = 𝑓(𝑄) + 𝑐. (by definition of how function 𝑔 works.) 

(4) Then 𝑓(𝑃) = 𝑓(𝑄). (by arithmetic) 

(5) Then 𝑃 = 𝑄. (by statement 4 and the fact that function 𝑓 is known to be one-to-one 

because 𝑓 is known to be a coordinate function.) 

(6) Conclude that function 𝑔 is one-to-one. (by steps (2), (5) and the definition of one-to-one) 

Prove that the function 𝒈 is onto. 

(7) Suppose that a real number 𝑦 is given. (This is our desired output from the function 𝑔.) 

(8) Observe that 𝑦 − 𝑐 is also a real number. Consider this new real number as a desired 

output for the function 𝑓. Because function 𝑓 is known to be a coordinate function, we 

know that 𝑓 is onto. That is, there exists an input in the domain that will cause the 

function 𝑓 to give the desired output of 𝑦 − 𝑐. In other words, there exists some point 𝑃 

on line 𝐿 such that 𝑓(𝑃) = 𝑦 − 𝑐.  

(9) Now consider what happens when we use the point 𝑃 as input to the function 𝑔. The 

corresponding output is 𝑔(𝑃) = 𝑓(𝑃) − 𝑐 = (𝑦 − 𝑐) + 𝑐 = 𝑦. In other words, there 

exists some point 𝑃 on line 𝐿 such that 𝑔(𝑃) = 𝑦. 

(10) Conclude that function 𝑔 is onto. (by steps (7), (9) and the definition of onto) 

Prove that the function 𝒈 “agrees with” the distance function 𝒅. 

(11) For any two points 𝑃 and 𝑄 on line 𝐿, we have 

|𝑔(𝑃) − 𝑔(𝑄)| = |(𝑓(𝑃) + 𝑐) − (𝑓(𝑄) + 𝑐)| 
= |𝑓(𝑃) − 𝑓(𝑄)| 
= 𝑑(𝑃, 𝑄) 

Conclusion 

(12) Conclude that 𝑔 is a coordinate function for line 𝐿. (by steps (6) (10), (11), and the 

definition of Coordinate Function (Definition 21). 

End of proof that Statement (A) is true 

 

As mentioned above, you will be asked to prove Theorem 10 Statement (B) as an exercise. 

 

Here is the second theorem about ruler behavior in Neutral Geometry. It has to do with Ruler 

Placement. 

 

Theorem 11 Ruler Placement Theorem 

If 𝐴 and 𝐵 are distinct points on some line 𝐿, then there exists a coordinate function ℎ for 

line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 
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Proof 

 

Part 1: Find a coordinate function with the correct behavior at 𝑨. 

(1) Suppose that 𝐴 and 𝐵 are distinct points on some line 𝐿. 

(2) There exists a coordinate function 𝑓 for line 𝐿. (Justify.) 

(3) Let 𝑐 be the real number defined by 𝑐 = 𝑓(𝐴). That is, 𝑐 is the real number coordinate of 

point 𝐴 using coordinate function 𝑓 on line 𝐿. 

(4) Let 𝑔 be the function 𝑔: 𝐿 → ℝ defined by 𝑔(𝑃) = 𝑓(𝑃) − 𝑐. 

(5) The function 𝑔 is also a coordinate function for line 𝐿. (Justify.) 

(6) Observe that 𝑔(𝐴) = 𝑓(𝐴) − 𝑐 = 𝑓(𝐴) − 𝑓(𝐴) = 0. 

 

Part 2: Find a coordinate function with the correct behavior at both 𝑨 and 𝑩. 

(7) We know that 𝑔(𝐵) ≠ 0 (Justify.). Therefore, 𝑔(𝐵) will be either positive or negative. 

Case 1: Suppose that 𝒈(𝑩) is positive. 

(8) If 𝑔(𝐵) is positive, then we can just let ℎ be coordinate function 𝑔. Then ℎ is a coordinate 

function for line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

Case 2: Suppose that 𝒈(𝑩) is negative. 

(9) If 𝑔(𝐵) is negative, then let ℎ be the function ℎ: 𝐿 → ℝ defined by ℎ(𝑃) = −𝑔(𝑃). 

(10) The function ℎ is also a coordinate function for line 𝐿. (Justify.) 

(11) Observe that ℎ(𝐴) = −𝑔(𝐴) = −0 = 0. 

(12) Also observe that ℎ(𝐵) = −𝑔(𝐵) = −𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 

(13) So ℎ is a coordinate function for line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

Conclusion of Cases 

(14) We see that in either case, it is possible to define a coordinate function ℎ for line 𝐿 such 

that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

End of proof 

 

Here, it is worthwhile to pause for a moment and consider the significance of the proofs of 

Theorem 10 and Theorem 11. 

 

Back in Section 3.7 (Ruler Placement in Drawings, which began on page 75), the notions of 

Ruler Sliding, Ruler Flipping, and Ruler Placement in drawings were very concrete. They are 

actual things that you do with real rulers. Then in Section 3.8 (Ruler Placement in Analytic 

Geometry, which began on page 81), you saw analogous notions of Ruler Sliding, Ruler 

Flipping, and Ruler Placement in Analytic Geometry. You worked with actual equations, and the 

distance function and coordinate functions were given by actual formulas, whose inputs involved 

numbers and whose outputs were numbers. Ruler Sliding, Ruler Flipping, and Ruler Placement 

were described by actual formulas. 

 

Now you have seen that there are notions of Ruler Sliding, Ruler Flipping, and Ruler Placement 

in Neutral Geometry, as well. But in Neutral Geometry, the distance function is not given by a 

formula, and coordinate functions are not given by a formula. Indeed, there is no way that they 

could be given by formulas, because the inputs to the functions are points, which in Neutral 

Geometry are undefined objects. So in the proofs of Theorem 10 and Theorem 11, the distance 

function 𝑑 and the coordinate functions 𝑓, 𝑔, ℎ are abstract, not given by formulas. The notions 

of Ruler Sliding, Ruler Flipping, and Ruler Placement are described in terms of actual 

mathematical operations done to these abstract functions. The theorems were proved by referring 
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to the definition of an abstract coordinate function and by careful use of the definitions of one-to-

one functions and onto functions. 

3.10. Distance and Rulers in High School Geometry 

Books 
Many High School Geometry books use a set of axioms called the SMSG (School Mathematics 

Study Group) axioms. Here are the first four SMSG axioms. (The word postulate is used instead 

of the word axiom.) 

 

SMSG Postulate 1: Given any two distinct points there is exactly one line that contains 

them. 

SMSG Postulate 2: (Distance Postulate) To every pair of distinct points there corresponds a 

unique positive number. This number is called the distance between the two points.  

SMSG Postulate 3: (Ruler Postulate) The points of a line can be placed in a correspondence 

with the real numbers such that:  

 To every point of the line there corresponds exactly one real number.  

 To every real number there corresponds exactly one point of the line.  

 The distance between two distinct points is the absolute value of the difference of 

the corresponding real numbers. 

SMSG Postulate 4: (Ruler Placement Postulate) Given two points 𝑃 and 𝑄 of a line, the 

coordinate system can be chosen in such a way that the coordinate of 𝑃 is zero and the 

coordinate of 𝑄 is positive. 

 

Distance in the SMSG Axioms 

 

Compare the SMSG Postulate 2 (the Distance Postulate) to our Neutral Geomtry axiom about 

distance: 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

 

There is one obvious difference in the two axioms: Our distance axiom <N4> uses the 

terminology of functions, while the SMSG distance postulate does not. Why not? Well, the 

terminology of functions, and the symbols used as an abbreviation for that terminology, are 

something that is typically taught in a 2nd- or 3rd-year college course. So a high school book 

cannot use notation such as 𝑑: 𝒫 × 𝒫 → ℝ. 

 

But there is another, more important, difference between the two axioms. The SMSG postulates 

only talk about the distance between two points that are known to be distinct, while our Neutral 

Geometry Axioms talk about the distance between any two points, not necessarily distinct. If you 

consider what our neutral geometry axioms tell us about how our neutral geometry distance 

function 𝑑 behaves, you will see that if points 𝑃 and 𝑄 are actually the same point, then 

𝑑(𝑃, 𝑄) = 0. (Can you explain why?) But if you consider what the SMSG postulates tell us 

about distance between points in their geometry, if points 𝑃 and 𝑄 are actually the same point, 

then the distance 𝑑(𝑃, 𝑄) is undefined. 
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You might think that this discussion is silly, that everybody knows that if points 𝑃 and 𝑄 are 

actually the same point, then 𝑑(𝑃, 𝑄) = 0, even if the SMSG axioms don’t say so. But the point 

is we don’t know it unless the axioms say that it is true (or we prove it in a theorem). So in our 

Neutral Geometry, we can say that if points 𝑃 and 𝑄 are actually the same point, then 𝑑(𝑃, 𝑄) =
0, while in the SMSG geometry, we cannot say that. 

 

You might wonder if it really matters whether or not our distance function is capable of 

measuring the distance 𝑑(𝑃, 𝑄) if points 𝑃 and 𝑄 are actually the same point. Well, it is indeed 

useful to be able to do that. And in the definition of a distance function conventionally used in 

mathematics, points 𝑃 and 𝑄 are allowed to be the same point. 

 

One more note: Notice that in the distance formula from Analytic Geometry (the formula 

involving the square root), points 𝑃 and 𝑄 can be the same point. If they are, then 𝑑(𝑃, 𝑄) = 0. 

 

Coordinates in the SMSG Axioms 

 

Compare what the SMSG Axioms say about coordinates to what our Neutral Geometry Axioms 

and Definitions say about coordinates: 

 

From the SMSG Axioms: 

 

SMSG Postulate 3: (Ruler Postulate) The points of a line can be placed in a correspondence 

with the real numbers such that:  

 To every point of the line there corresponds exactly one real number.  

 To every real number there corresponds exactly one point of the line.  

 The distance between two distinct points is the absolute value of the difference of 

the corresponding real numbers. 

 

From our Neutral Geometry Axioms and Definitions, we have a definition and an axiom: 

 

Definition 21 Coordinate Function 

Words: 𝑓 is a coordinate function on line 𝐿. 

Meaning: 𝑓 is a function with domain 𝐿 and codomain ℝ (that is, 𝑓: 𝐿 → ℝ) that has the 

following properties: 

(1) 𝑓 is a one-to-one correspondence. That is, 𝑓 is both one-to-one and onto. 

(2) 𝑓 “agrees with” the distance function 𝑑 in the following way: 

For all points 𝑃,𝑄 on line 𝐿, the equation |𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) is true. 

Additional Terminology: In standard function notation, the symbol 𝑓(𝑃) denotes the output 

of the coordinate function 𝑓 when the point 𝑃 is used as input. Note that 𝑓(𝑃) is a real 

number. The number 𝑓(𝑃) is called the coordinate of point 𝑃 on line 𝐿. 

Additional Notation: Because a coordinate function is tied to a particular line, it might be a 

good idea to have a notation for the coordinate function that indicates which line the 

coordinate function is tied to. We could write 𝑓𝐿 for a coordinate function on line 𝐿. With 

that notation, the symbol 𝑓𝐿(𝑃) would denote the coordinate of point 𝑃 on line 𝐿. But 

although it might be clearer, we do not use the symbol 𝑓𝐿. We just use the symbol 𝑓. 

 

<N5> (The Ruler Axiom) Every line has a coordinate function. 
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Notice that the main difference is that our Neutral Geometry uses the terminology and notation 

of functions, while the SMSG axioms do not. But again notice that when the SMSG Postulate 

describes the relationship between the coordinates of two points on a line and the distance 

between those two points, the points are required to be two distinct points. No such requirement 

is made in our Neutral Geometry. 

 

Ruler Placement in the SMSG Axioms 

 

Finally, notice that Ruler Placement behavior is guaranteed in both the SMSG geometry and in 

our Neutral Geometry, but in different ways: 

 

From the SMSG Geometry: 

 

SMSG Postulate 4: (Ruler Placement Postulate) Given two points 𝑃 and 𝑄 of a line, the 

coordinate system can be chosen in such a way that the coordinate of 𝑃 is zero and 

the coordinate of 𝑄 is positive. 

 

From our Neutral Geometry: 

 

Theorem 11 Ruler Placement Theorem 

If 𝐴 and 𝐵 are distinct points on some line 𝐿, then there exists a coordinate 

function ℎ for line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

 

You see that the SMSG Axioms include a Postulate that guarantees Ruler Placement behavior, 

while in our Neutral Geometry, Ruler Placement behavior is proven as a theorem. 

 

Remember that if an axiom that can be proven true (or false) as a consequence of the other 

axioms, then that axiom is not an independent axiom. We see that the SMSG Axioms includes an 

axiom (SMSG Postulate 4, the Ruler Placement Postulate) that is not independent. So the set of 

SMSG Axioms is not an independent axiom system. 

 

An obvious question is, why include an axiom that is not independent? Why not just leave it off 

the axiom list and prove it as a theorem, as we have? 

 

For an answer to that question, consider what was involved in our proof of Neutral Geometry 

Theorem 11, the Ruler Placement Theorem. In Section 3.9 (Ruler Placement in Neutral 

Geometry, which starts on page 87), we first proved Theorem 10 (Ruler Sliding and Ruler 

Flipping). The statement of that theorem used function terminology and notation. Remember that 

high school students don’t know that terminology. If we were to try to reword the statement of 

the theorem for a high school audience, without using function terminology and notation, we 

would find that the statement would become much more cumbersome. And the proof of the 

theorem is densly-written, using both function notation and absolute value notation. That proof is 

simply above the level of a high school course. Similarly, our proof of Neutral Geometry 

Theorem 11, the Ruler Placement Theorem, also made extensive use of function terminology and 

notation. Again, the proof is above the level of a high school course. 
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So our list of ten Neutral Geometry axioms is shorter than the list of SMSG axioms, and our list 

of axioms is independent. But a trade-off is that in our course, we have to prove some difficult 

theorems. 

3.11. Exercises for Chapter 3 
Exercises for Section 3.1 Neutral Geometry Axioms and First Six Theorems 

 

[1] How are points defined in Neutral Geometry? 

 

[2] How are lines defined in Neutral Geometry? 

 

[3] In Neutral Geometry, what does it mean to say that “the point lies on the line”? 

 

[4] After graduation, you land a job hosting the show “Geometry Today” on National Public 

Radio. Somebody calls in to complain about Axiom <N2>. He says that lines in Neutral 

Geometry should not be limited to containing only two points, because clearly lines in drawings 

contain more than two points. How do you respond? 

 

[5] What do the Neutral Geometry axioms say about parallel lines? 

 

[6] Prove Neutral Geometry Theorem 1 (In Neutral Geometry, if 𝐿 and 𝑀 are distinct lines that 

intersect, then they intersect in only one point.), which was presented on page 61. 

 

[7] Prove Neutral GeometryTheorem 2 (In Neutral Geometry, there exist three non-collinear 

points.), which was presented on page 61. 

 

[8] Prove Neutral GeometryTheorem 3 (In Neutral Geometry, there exist three lines that are not 

concurrent.), which was presented on page 61. 

 

[9] Prove Neutral GeometryTheorem 4 (In Neutral Geometry, for every point 𝑃, there exists a 

line that does not pass through 𝑃.), which was presented on page 61. 

 

[10] Prove Neutral GeometryTheorem 5 (In Neutral Geometry, for every point 𝑃, there exist at 

least two lines that pass through 𝑃.), which was presented on page 61. 

 

Exercises for Section 3.3 The Distance Function and Coordinate Functions in Analytic 

Geometry 

 

[11] Let 𝐿 be the line described as the set 𝐿 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 = 𝑥 + 3}. Let 𝐴 and 𝐵 be the 

two points 𝐴 = (7,10) and 𝐵 = (5,8). Both points are on line 𝐿. 

(A) Find 𝑑(𝐴, 𝐵). 

(B) Define the function 𝑓: 𝐿 → ℝ by the equation 𝑓(𝑥, 𝑦) = 𝑥.  

(i) Find 𝑓(𝐴). 

(ii) Find 𝑓(𝐵). 

(iii) Find |𝑓(𝐴) − 𝑓(𝐵)|. 
(iv) Is the equation |𝑓(𝐴) − 𝑓(𝐵)| = 𝑑(𝐴, 𝐵) true? 

(v) Could 𝑓 be a coordinate function for line 𝐿? Explain. 
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(C) Define the function 𝑔: 𝐿 → ℝ by the equation 𝑔(𝑥, 𝑦) = 𝑥√2.  

(i) Find 𝑔(𝐴). 

(ii) Find 𝑔(𝐵). 

(iii) Find |𝑔(𝐴) − 𝑔(𝐵)|. 
(iv) Is the equation |𝑔(𝐴) − 𝑔(𝐵)| = 𝑑(𝐴, 𝐵) true? 

(v) Could 𝑔 be a coordinate function for line 𝐿? Explain. 

 

Exercises for Section 3.4 The Distance Function and Coordinate Functions in Neutral 

Geometry 

 

[12] In Section 3.3, The Distance Function and Coordinate Functions in Analytic Geometry, 

which started on page 65, we discussed the familiar distance function 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

That was familiar and not too hard. Why can’t we just define distance that way in Neutral 

Geometry? Why were we never given any formula for the Neutral Geometry distance function? 

 

[13] Prove Neutral GeometryTheorem 7 (about how many points are on lines in Neutral 

Geometry), which was presented on page 70. 

 

Exercises for Section 3.6 Two Basic Properties of the Distance Function in Neutral 

Geometry 

 

[14] Justify the steps in the proof of Theorem 9 (The Distance Function on the Set of Points, the 

function 𝑑, is Symmetric.), which was presented on page 74. 

 

Exercises for Section 3.8 Ruler Placement in Analytic Geometry 

 

[15] Let 𝐿 be the line described as the set 𝐿 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 = 𝑥 + 3}. Let 𝐴 and 𝐵 be the 

two points 𝐴 = (7,10) and 𝐵 = (5,8). Both points are on line 𝐿. Find a coordinate function ℎ for 

line 𝐿 such that when using the coordinate function ℎ, 

 

 The coordinate of 𝐴 is zero. That is, ℎ(𝐴) = 0. 

 The coordinate of 𝐵 is positive. That is, ℎ(𝐵) is positive. 

 

[16] Let 𝑀 be the vertical line described as the set 𝑀 = {(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 3}. Let 𝐴 and 𝐵 

be the two points 𝐴 = (3,10) and 𝐵 = (3,8). Both points are on line 𝑀. Find a coordinate 

function ℎ for line 𝑀 such that when using the coordinate function ℎ, 

 

 The coordinate of 𝐴 is zero. That is, ℎ(𝐴) = 0. 

 The coordinate of 𝐵 is positive. That is, ℎ(𝐵) is positive. 

 

Exercises for Section 3.9 Ruler Placement in Neutral Geometry 

 

[17] Justify the steps in the proof of Theorem 10A (Ruler Sliding), which was presented on page 

87. 

 

[18] Prove Theorem 10B (Ruler Flipping), which was presented on page 87. 
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[19] Justify the steps in the proof of Theorem 11 (Ruler Placement Theorem), which was 

presented on page 89. 

 

 

Exercises for Section 3.10 Distance and Rulers in High School Geometry Books 

 

[20] In the reading, we discussed that the SMSG Axioms do not use function terminology or 

function notation, and that there is at least one SMSG Axiom (SMSG Postulate 4, the Ruler 

Placement Postulate) the appears in our Neutral Geometry as a theorem (our Neutral Geometry 

Theorem 11, the Ruler Placement Theorem). Consider our Neutral Geometry Theorem 10: 

 

Theorem 10: (Ruler Sliding and Ruler Flipping) Lemma about obtaining a new coordinate 

function from a given one 

Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. 

(A) (Ruler Sliding) If 𝑐 is a real number constant, and 𝑔 is the function 𝑔: 𝐿 → ℝ defined 

by 𝑔(𝑃) = 𝑓(𝑃) + 𝑐, then 𝑔 is also a coordinate function for line 𝐿. 

(B) (Ruler Flipping) If 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 𝑔(𝑃) = −𝑓(𝑃), then 𝑔 is 

also a coordinate function for line 𝐿. 

 

Suppose that you wanted to include the statement of our Neutral Geometry Theorem 10 as a 

Postulate to be included in the list of SMSG Axioms, to be used by high school students. Try 

rewriting the statement Neutral Geometry Theorem 10 in the style of the other SMSG postulates. 

That is, rewrite it without using function terminology or function notation. 

 

 

 
.
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4.Neutral Geometry II: More about the 

Axioms of Incidence and Distance 

4.1. Betweenness 
In the previous chapter, we focused on understanding the idea of the distance function and 

coordinate functions. The discussion and the theorems were mostly about examining the 

behavior of the distance function and coordinate functions (or rulers) in drawings and in Analytic 

Geometry, and then proving (in Theorem 10 (Ruler Sliding and Ruler Flipping) and Theorem 11 

(Ruler Placement Theorem)) that the abstract distance function and abstract coordinate functions 

in Neutral Geometry behave in the same way.  

 

Now we turn our attention to another concept from the world of drawings: the notion of 

betweenness. We will see that there is an analogous notion of betweenness in Neutral Geometry. 

 

The notion of betweenness is an important one in geometry. Given three distinct points lying on 

a line in a drawing, we are all familiar with the simple idea that one of the points is “between” 

the other two. We expect that our axiomatic geometry will have the same behavior. But 

remember that if we want our axiomatic geometry to have a certain behavior, we need to specify 

that behavior in the axioms, or prove in a theorem that the axiom system does have the behavior. 

In our axiom system, it turns out that we do not need to include any axioms specifically about 

betweenness. Rather, we can define precisely what we mean by betweenness, and then prove in 

theorems that our abstract geometry will in fact have the betweenness behavior that we expect. 

 

Many of the theorems in this chapter have proofs that are rather tedious and involve a level of 

detail slightly above what is really needed for a Junior-level course in Axiomatic Geometry. The 

proofs are included for readers interested in advanced topics and for graduate students. 

4.1.1. Betweenness of Real Numbers 

We start by defining betweenness for real numbers and observing some facts about it. We do this 

for two reasons: (1) it introduces us to some of the terminology and symbols commonly used in 

discussions about betweenness and (2) it will turn out that the definition betweenness of points 

and theorems about betweenness of points will make use of the facts of betweenness for real 

numbers. Here is our first definition. 

 

Definition 23 betweenness for real numbers 

words: “𝑦 is between 𝑥 and 𝑧”, where 𝑥, 𝑦, and 𝑧 are real numbers. 

symbol: 𝑥 ∗ 𝑦 ∗ 𝑧, where 𝑥, 𝑦, and 𝑧 are real numbers 

meaning: 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥. 

additional symbol: the symbol 𝑤 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧 means 𝑤 < 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥 < 𝑤, etc. 

The following theorem states some facts about betweenness for real numbers.  Its claims are 

simple and mostly follow from the definition of betweenness and from the axioms for the real 

numbers. In this book, we won’t bother proving things that are really just consequences of the 

axioms for the real numbers. So we will accept this theorem without proof. 

 



98   Chapter 4: Neutral Geometry II: More about the Axioms of Incidence and Distance 

Theorem 12 facts about betweenness for real numbers 

(A) If 𝑥 ∗ 𝑦 ∗ 𝑧 then 𝑧 ∗ 𝑦 ∗ 𝑥. 

(B) If 𝑥, 𝑦, 𝑧 are three distinct real numbers, then exactly one is between the other two. 

(C) Any four distinct real numbers can be named in an order 𝑤, 𝑥, 𝑦, 𝑧 so that 𝑤 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧. 

(D) If 𝑎 and 𝑏 are distinct real numbers, then  

(D.1) There exists a real number 𝑐 such that 𝑎 ∗ 𝑐 ∗ 𝑏. 

(D.2) There exists a real number 𝑑 such that 𝑎 ∗ 𝑏 ∗ 𝑑 

 

The fact about real numbers proven in the next theorem does not play much of a role in 

computations involving real numbers. But the fact is useful in a future proof, so we state and 

prove the fact here. In other words, the following theorem could be called a Lemma. The proof is 

included for readers interested in advanced topics, and for graduate students. 

 

Theorem 13 Betweenness of real numbers is related to the distances between them. 

Claim: For distinct real numbers 𝑥, 𝑦, 𝑧, the following are equivalent 

(A) 𝑥 ∗ 𝑦 ∗ 𝑧 

(B) |𝑥 − 𝑧| = |𝑥 − 𝑦| + |𝑦 − 𝑧|. That is, 𝑑ℝ(𝑥, 𝑧) = 𝑑ℝ(𝑥, 𝑦) + 𝑑ℝ(𝑦, 𝑧). 

 

Proof (for readers interested in advanced topics and for graduate students) 

Part I: Show that (A)  (B) 

(1) Suppose that real numbers 𝑥, 𝑦, 𝑧 have the property 𝑥 ∗ 𝑦 ∗ 𝑧. 

(2) Either 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥. 

Case 1: 𝒛 < 𝑦 < 𝑥 

(3) If 𝑧 < 𝑦 < 𝑥, then  

|𝑥 − 𝑧| = 𝑥 − 𝑧 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑥 − 𝑧 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 
= 𝑥 − 𝑦 + 𝑦 − 𝑧 (𝑡𝑟𝑖𝑐𝑘) 
= |𝑥 − 𝑦| + |𝑦 − 𝑧| (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑥 − 𝑦 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑦 − 𝑧 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

Case 2: 𝒙 < 𝑦 < 𝑧 

(4) If 𝑥 < 𝑦 < 𝑧, then  

|𝑥 − 𝑧| = |𝑧 − 𝑥| 
= 𝑧 − 𝑥 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑧 − 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 
= 𝑧 − 𝑦 + 𝑦 − 𝑥 (𝑡𝑟𝑖𝑐𝑘) 
= |𝑧 − 𝑦| + |𝑦 − 𝑥| (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑧 − 𝑦 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑦 − 𝑥 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 
= |𝑥 − 𝑦| + |𝑦 − 𝑧| 

Conclusion of cases 

(5) We see that in either case, |𝑥 − 𝑧| = |𝑥 − 𝑦| + |𝑦 − 𝑧|  is true, so statement (2) is true. 

End of proof of Part I. 

 

Part II: Show that ~(A)  ~(B) 

(1) Suppose that Statement (A) is false.  That is, suppose that real numbers 𝑥, 𝑦, 𝑧 do not 

have the property 𝑥 ∗ 𝑦 ∗ 𝑧. 

(2) Either 𝑦 ∗ 𝑥 ∗ 𝑧 or 𝑥 ∗ 𝑧 ∗ 𝑦. (Justify.) 

Case 1: 𝒚 ∗ 𝒙 ∗ 𝒛 

(3) If 𝑦 ∗ 𝑥 ∗ 𝑧 then |𝑦 − 𝑧| = |𝑦 − 𝑥| + |𝑥 − 𝑧| by result of Proof Part I with letters 

changed. 

(4) Subtracting, we find that  

|𝑥 − 𝑧| = −|𝑦 − 𝑥| + |𝑦 − 𝑧| 
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= −|𝑥 − 𝑦| + |𝑦 − 𝑧| 
= |𝑥 − 𝑦| + |𝑦 − 𝑧| − 2|𝑥 − 𝑦| 

We see that |𝑥 − 𝑧| does not equal |𝑥 − 𝑦| + |𝑦 − 𝑧| because there is an additional term 

−2|𝑥 − 𝑦|. (We know that this additional term is nonzero because 𝑥 ≠ 𝑦.) Therefore, 

statement (B) is false. 

Case 2: 𝒙 ∗ 𝒛 ∗ 𝒚 

(5) If 𝑥 ∗ 𝑧 ∗ 𝑦 then |𝑥 − 𝑦| = |𝑥 − 𝑧| + |𝑧 − 𝑦| by result of Proof Part I with letters 

changed. 

(6) Subtracting, we find that  

|𝑥 − 𝑧| = |𝑥 − 𝑦| − |𝑧 − 𝑦| 
= |𝑥 − 𝑦| − |𝑦 − 𝑧| 
= |𝑥 − 𝑦| + |𝑦 − 𝑧| − 2|𝑦 − 𝑧| 

We see that |𝑥 − 𝑧| does not equal |𝑥 − 𝑦| + |𝑦 − 𝑧| because there is an additional term 

−2|𝑦 − 𝑧|. (We know that this additional term is nonzero because 𝑦 ≠ 𝑧.) Therefore, 

statement (B) is false. 

Conclusion of Cases 

(7) In either case, we see that Statement (B) is false. 

End of proof of part II 

4.1.2. Betweenness of Points 

In the previous section, we established some of the terminology of betweenness for real numbers, 

and stated some of the facts about the behavior of betweenness for real numbers. In the current 

section, we will develop the notion of betweenness of points. As mentioned above, we will find 

that the notion of betweenness of points and theorems about betweenness of points make 

frequent use of the facts about betweenness of real numbers. 

 

The first theorem of the section is really just a Lemma that will make it possible to define 

betweenness of points in a simple way. The proof is included for readers interested in advanced 

topics, and for graduate students. 

 

Theorem 14 Lemma about betweenness of coordinates of three points on a line 

If 𝑃, 𝑄, 𝑅 are three distinct points on a line 𝐿, and 𝑓 is a coordinate function on line 𝐿, and 

the betweenness expression 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅) is true, then for any coordinate function 

𝑔 on line 𝐿, the expression 𝑔(𝑃) ∗ 𝑔(𝑄) ∗ 𝑔(𝑅) will be true. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that 𝑃, 𝑄, 𝑅 are three distinct points on a line 𝐿, and 𝑓 is a coordinate function on 

line 𝐿, and 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅), and that 𝑔 is a coordinate function on line 𝐿. 

(2) Observe that 

|𝑔(𝑃) − 𝑔(𝑅)| = 𝑑(𝑃, 𝑅)  (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 
= |𝑓(𝑃) − 𝑓(𝑅)|   (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 
= |𝑓(𝑃) − 𝑓(𝑄)| + |𝑓(𝑄) − 𝑓(𝑅)|  (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 
= 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅)   (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 
= |𝑔(𝑃) − 𝑔(𝑄)| + |𝑔(𝑄) − 𝑔(𝑅)|   (𝒋𝒖𝒔𝒕𝒊𝒇𝒚) 

(3) Therefore, by Theorem 13, we know that 𝑔(𝑃) ∗ 𝑔(𝑄) ∗ 𝑔(𝑅). 

End of proof 
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We see that for distinct points 𝑃, 𝑄, 𝑅 lying on a line 𝐿, the betweenness properties of the real 

number coordinates of the three points does not depend on which coordinate function we use on 

line 𝐿. Because of this fact, we are able to make the following definition of betweenness for 

points. 

 

Definition 24 betweenness of points 

words: “𝑄 is between 𝑃 and 𝑅”, where 𝑃, 𝑄, 𝑅 are points. 

symbol: 𝑃 ∗ 𝑄 ∗ 𝑅, where 𝑃, 𝑄, 𝑅 are points. 

meaning: Points 𝑃, 𝑄, 𝑅 are collinear, lying on some line 𝐿, and there is a coordinate 

function 𝑓 for line 𝐿 such that the real number coordinate for 𝑄 is between the real 

number coordinates of 𝑃 and 𝑅. That is, 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅). 

remark: By Theorem 14, we know that it does not matter which coordinate function is used 

on line 𝐿. The betweenness property of the coordinates of the three points will be the 

same regardless of the coordinate function used. 

additional symbol: The symbol 𝑃 ∗ 𝑄 ∗ 𝑅 ∗ 𝑆 means 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅) ∗ 𝑓(𝑆), etc. 

 

In Theorem 12 (facts about betweenness for real numbers) on page 98, we saw a number of 

obvious properties of betweenness for real numbers. The following theorem states that there are 

entirely analogous properties of betweenness for points on a line. Because of the way that we 

defined betweenness for points on a line in terms of betweenness of their real number 

coordinates, the proof of this theorem will be easy and will make use of the facts about 

betweenness of real numbers listed in Theorem 12.  

 

Theorem 15 Properties of Betweenness for Points 

(A) If 𝑃 ∗ 𝑄 ∗ 𝑅 then 𝑅 ∗ 𝑄 ∗ 𝑃. 

(B) For any three distinct collinear points, exactly one is between the other two. 

(C) Any four distinct collinear points can be named in an order 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 ∗
𝑄 ∗ 𝑅 ∗ 𝑆. 

(D) If 𝑃 and 𝑅 are distinct points, then 

(D.1) There exists a point 𝑄 such that 𝑃 ∗ 𝑄 ∗ 𝑅. 

(D.2) There exists a point 𝑆 such that 𝑃 ∗ 𝑅 ∗ 𝑆. 

 

Proof (for readers interested in advanced topics and for graduate students) 

Proof of Statement (A) 

(1) Suppose that 𝑃 ∗ 𝑄 ∗ 𝑅. 

(2) Points 𝑃, 𝑄, 𝑅 are collinear, lying on some line 𝐿, and there is a coordinate function 𝑓 for 

line 𝐿 such that 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅). (Justify.) 

(3) 𝑓(𝑅) ∗ 𝑓(𝑄) ∗ 𝑓(𝑃). (Justify.) 

(4) 𝑅 ∗ 𝑄 ∗ 𝑃. (Justify.) 

End of proof of Statement (A) 

 

Proof of Statement (B) 

(1) Suppose that 𝑃, 𝑄, 𝑅 are distinct, collinear points, lying on some line 𝐿. 

(2) There is a coordinate function 𝑓 for line 𝐿. (Justify.) This coordinate function gives us real 

number coordinates 𝑓(𝑃) and 𝑓(𝑄) and 𝑓(𝑅) for the three points. 

(3) The three real numbers 𝑓(𝑃) and 𝑓(𝑄) and 𝑓(𝑅) are distinct. (Justify.) 
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(4) Exactly one of the three real numbers 𝑓(𝑃) and 𝑓(𝑄) and 𝑓(𝑅) is between the other two 

(Justify.) 

(5) Exactly one of the points 𝑃, 𝑄, 𝑅 lies between the other two. (Justify.) 

End of proof of Statement (B) 

 

Proof of Statement (C) 

(1) Suppose that four distinct, collinear points are given, lying on some line 𝐿. 

(2) There is a coordinate function 𝑓 for line 𝐿. (Justify.) This coordinate function gives us real 

number coordinates for the four points. 

(3) The four real number coordinates are distinct. (Justify.) 

(4) The four real number coordinates can be named in increasing order, 𝑝 < 𝑞 < 𝑟 < 𝑠. With 

this naming, we can say that the four real numbers have the betweenness property  𝑝 ∗ 𝑞 ∗
𝑟 ∗ 𝑠. 

(5) Let 𝑃 = 𝑓−1(𝑝) and 𝑄 = 𝑓−1(𝑞) and 𝑅 = 𝑓−1(𝑟) and 𝑆 = 𝑓−1(𝑠). 

(6) Then 𝑃 ∗ 𝑄 ∗ 𝑅 ∗ 𝑆. (Justify.) 

End of proof of Statement (C) 

 

The Proof of Statement (D) is left to the reader 

 

In Theorem 13 (Betweenness of real numbers is related to the distances between them.), found 

on page 98, we saw that betweenness of real numbers is related to the distances between them. 

The following theorem states an analogous relationship for betweenness of points. Expect that 

the proof of this theorem will make use of Theorem 13. The proof is included for readers 

interested in advanced topics, and for graduate students. 

 

Theorem 16 Betweenness of points on a line is related to the distances between them. 

Claim: For distinct collinear points 𝑃, 𝑄, 𝑅, the following are equivalent 

(A) 𝑃 ∗ 𝑄 ∗ 𝑅 

(B) 𝑑(𝑃, 𝑅) = 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅). 

 

Proof (for readers interested in advanced topics and for graduate students) 

Part I: Show that (A)  (B) 

(1) Suppose that Statement (A) is true. That is, suppose that collinear points 𝑃, 𝑄, 𝑅 have the 

property 𝑃 ∗ 𝑄 ∗ 𝑅. 

(2) The three points 𝑃, 𝑄, 𝑅 lie on some line 𝐿, and there is a coordinate function 𝑓 for line 𝐿 

such that 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅). (Justify.) 

(3) |𝑓(𝑃) − 𝑓(𝑅)| = |𝑓(𝑃) − 𝑓(𝑄)| + |𝑓(𝑄) − 𝑓(𝑅)|  (Justify.) 

(4) 𝑑(𝑃, 𝑅) = 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) (Justify.) So Statement (B) is true. 

End of proof of Part I 

 

Part II: Show that ~(A)  ~(B): This part of the proof is left to the reader. 

4.1.3. A Lemma about Distances Between Three Distinct, Collinear 

Points 

A new fact about the function 𝑑 will be useful in the proof of Theorem 65 (The Distance 

Function Triangle Inequality for Neutral Geometry), found in Section 7.4 on page 175. The new 

useful fact can be proven using only the axioms and theorems that we have studied so far, so we 
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will prove the fact here and return to it when we get to Theorem 65. Because the fact is only used 

once in the rest of the book, we will call it a Lemma. 

 

To understand the statement of the Lemma, suppose that 𝑃, 𝑄, 𝑅 are distinct collinear points. If 

𝑃 ∗ 𝑄 ∗ 𝑅, then Theorem 16 tells us that 𝑑(𝑃, 𝑅) = 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅). What if 𝑃 ∗ 𝑄 ∗ 𝑅 is not 

true? The answer is the statement of the Lemma. The proof is included for readers interested in 

advanced topics and for graduate students. 

 

Theorem 17 Lemma about distances between three distinct, collinear points. 

If 𝑃, 𝑄, 𝑅 are distinct collinear points such that 𝑃 ∗ 𝑄 ∗ 𝑅 is not true, 

then the inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that 𝑃, 𝑄, 𝑅 are distinct, collinear points and that 𝑃 ∗ 𝑄 ∗ 𝑅 is not true. 

(2) There are two possibilities: Either 𝑄 ∗ 𝑃 ∗ 𝑅 is true or 𝑃 ∗ 𝑅 ∗ 𝑄 is true. (by Theorem 15) 

 

Case (i) 𝑸 ∗ 𝑷 ∗ 𝑹 is true. 

(3) If 𝑄 ∗ 𝑃 ∗ 𝑅 is true, then Theorem 16 tells us that 𝑑(𝑄, 𝑅) = 𝑑(𝑄, 𝑃) + 𝑑(𝑃, 𝑅). In this 

case, we can subtract to obtain the equation 𝑑(𝑃, 𝑅) = 𝑑(𝑄, 𝑅) − 𝑑(𝑄, 𝑃). We can 

manipulate this equation in the following way: 

𝑑(𝑃, 𝑅) = 𝑑(𝑄, 𝑅) − 𝑑(𝑄, 𝑃) 
= −𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) 
=  𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) − 2𝑑(𝑃, 𝑄) 
< 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅)     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 2𝑑(𝑃, 𝑄) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

 

Case (ii) 𝑷 ∗ 𝑹 ∗ 𝑸 is true. 

(4) If 𝑃 ∗ 𝑅 ∗ 𝑄 is true then an argument like the one in Step (3) would show that the 

inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Conclusion of Cases 

(5)We see that in either case, the inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

End of Proof 

4.1.4. Conclusion 

In this section, we discussed the notion of betweenness for real numbers. We found that collinear 

points have analogous betweenness behavior. The existence of coordinate functions for lines was 

the underlying reason for the analogous behavior. In the next section, we will find that 

coordinate functions can play a key role in definitions of some new geometric objects. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 4.5 on page 113. 

4.2. Segments, Rays, Angles, Triangles 
Our first two new definitions are for segments and rays. Notice the use of coordinate functions in 

the definitions. 

 

Definition 25 segment, ray 
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words and symbols: “segment 𝐴, 𝐵”, denoted 𝐴𝐵̅̅ ̅̅ , and “ray 𝐴, 𝐵”, denoted 𝐴𝐵       

usage: 𝐴 and 𝐵 are distinct points.  

meaning: Let 𝑓 be a coordinate function for line 𝐴𝐵 ⃡     with the property that 𝑓(𝐴) = 0 and 𝑓(𝐵) 

is positive. (The existence of such a coordinate function is guaranteed by Theorem 

11 (Ruler Placement Theorem).) 

 Segment 𝐴𝐵̅̅ ̅̅  is the set 𝐴𝐵̅̅ ̅̅ = {𝑃 ∈ 𝐴𝐵 ⃡     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑓(𝑃) ≤ 𝑓(𝐵)}. 

 Ray 𝐴𝐵       is the set 𝐴𝐵      = {𝑃 ∈ 𝐴𝐵 ⃡     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑓(𝑃)}. 

additional terminology:  

 Points 𝐴 and 𝐵 are called the endpoints of segment 𝐴𝐵̅̅ ̅̅ . 

 Point 𝐴 is called the endpoint of ray 𝐴𝐵      . 

 The length of a segment is defined to be the distance between the endpoints. That is, 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑑(𝐴, 𝐵). As mentioned in Definition 20, many books use the symbol 

𝐴𝐵 to denote 𝑑(𝐴, 𝐵). Thus we have the following choice of notations: 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑑(𝐴, 𝐵) = 𝐴𝐵 
 

In drawings, it is obvious that a segment 𝐴𝐵̅̅ ̅̅  is a subset of ray 𝐴𝐵      . The same is true in our 

Axiomatic Geometry. We will need to use that fact frequently in this book, and so we should 

state it as a theorem. It is so easy to prove that it should be called a corollary of the definitions. 

 

Theorem 18 (Corollary) Segment 𝐴𝐵̅̅ ̅̅  is a subset of ray 𝐴𝐵      . 

Proof 

(1) Suppose that point 𝑃 is an element of segment 𝐴𝐵̅̅ ̅̅ . (We must show that 𝑃 is also an 

element of ray 𝐴𝐵      .) 

(2) 𝐴 and 𝐵 are distinct points. (Justify.) 

(3) There exists a coordinate function 𝑓 for line 𝐴𝐵 ⃡     such that 𝑓(𝐴) = 0 and 𝑓(𝐵) is positive. 

(Justify.) 

(4) The inequality 0 ≤ 𝑓(𝑃) ≤ 𝑓(𝐵) is true. (Justify.) 

(5) So the inequality 0 ≤ 𝑓(𝑃) is true. (Justify.) 

(6) So point 𝑃 is an element of ray 𝐴𝐵      . (Justify.) 

End of Proof 
 

A simple but important fact about rays has to do with the notation. 

 

Theorem 19 about the use of different second points in the symbol for a ray. 

If 𝐴𝐵       and 𝐶 is any point of 𝐴𝐵       that is not 𝐴, then 𝐴𝐵      = 𝐴𝐶      . 

 

Proof (for readers interested in advanced topics and for graduate students) 

The proof is left to the reader as an exercise. 

 

The next three definitions make use of segments and rays. 

 

Definition 26 Opposite rays are rays of the form 𝐵𝐴       and 𝐵𝐶       where 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Definition 27 angle 

words: “angle 𝐴, 𝐵, 𝐶” 
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symbol: ∠𝐴𝐵𝐶 

usage: 𝐴, 𝐵, 𝐶 are non-collinear points.  

meaning: Angle 𝐴, 𝐵, 𝐶 is defined to be the following set: ∠𝐴𝐵𝐶 = 𝐵𝐴      ∪ 𝐵𝐶       

additional terminology: Point 𝐵 is called the vertex of the angle. Rays 𝐵𝐴       and 𝐵𝐶       are each 

called a side of the angle. 

 

Definition 28 triangle 

words: “triangle 𝐴, 𝐵, 𝐶” 

symbol: Δ𝐴𝐵𝐶 

usage: 𝐴, 𝐵, 𝐶 are non-collinear points.  

meaning: Triangle 𝐴, 𝐵, 𝐶 is defined to be the following set: Δ𝐴𝐵𝐶 = 𝐴𝐵̅̅ ̅̅ ∪ 𝐵𝐶̅̅ ̅̅ ∪ 𝐶𝐴̅̅ ̅̅  

additional terminology: Points 𝐴, 𝐵, 𝐶 are each called a vertex of the triangle. Segments 𝐴𝐵̅̅ ̅̅  

and 𝐵𝐶̅̅ ̅̅  and 𝐶𝐴̅̅ ̅̅  are each called a side of the triangle. 

 

Notice that the definitions of angle and triangle make no mention of any sort of “interior” of 

those objects. We will formulate a notion of interior for angles and triangles in the next chapter. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 4.5 on page 113. 

4.3. Segment Congruence 
In drawings, we have a notion of whether or not segments are the “same size”. We determine 

whether or not two segments are the same size by measuring their lengths. In this chapter, we 

have introduced a notion of segment length into our abstract Neutral Geometry, so it will be easy 

to also introduce a notion of “same size” for segments. The term that we will use is congruent. 

 

Definition 29 segment congruence 

Two line segments are said to be congruent if they have the same length. The symbol ≅ is 

used to indicate this. For example 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  means 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝐷̅̅ ̅̅ ). Of course, 

this can also be denoted 𝑑(𝐴, 𝐵) = 𝑑(𝐶, 𝐷) or 𝐴𝐵 = 𝐶𝐷. 

 

It is fruitful to discuss the properties of segment congruence using the terminology of relations. 

For that, we should first review some of that terminology. 

 

First, we will review the basic notation for a relation. 

 

Suppose that we are given a relation ℛ on some set 𝐴. When 𝑥 and 𝑦 are elements of the set 𝐴 

(that is, when 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴), the symbol ℛ𝑦𝑥  is read as a sentence “x is related to y”. 

 

For example, let 𝐴 be the set of integers, and define ℛ to be the less than relation. That is, define 

the symbol ℛ𝑦𝑥  to mean 𝑥 < 𝑦. Then the symbol ℛ75  would mean “5 < 7”, which is a true 

sentence. On the other hand, the symbol ℛ57  would mean “7 < 5”, which is a false sentence. In 

general, the sentence ℛ𝑦𝑥  may be true or false. Writing down the sentence, either in words or in 

symbols, does not imply that the sentence is true.  
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Notice that segment congruence is a relation on the set of line segments. That is, the symbol ≅ 

gets put in between two other symbols that represent line segments, and the resulting sentence 

may be true or it may be false. For in the example, for the drawing below, the sentence 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  

is true, but the sentence 𝐴𝐵̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅  is false. 

 
 

Now that we have reviewed the basic notation for relations, we can discuss three important 

properties that general relations may or may not have. The are the reflexive, symmetric, and 

transitive properties. 

 

Definition 30 reflexive property 

words: Relation ℛ is reflexive. 

usage: ℛ is a relation on some set 𝐴.  

meaning: Element of set 𝐴 is related to itself. 

abbreviated version: For every 𝑥 ∈ 𝐴, the sentence ℛ𝑥𝑥  is true. 

More concise abbreviaton: ∀𝑥 ∈ 𝐴, ℛ𝑥𝑥  
 

Definition 31 symmetric property 

words: Relation ℛ is symmetric. 

usage: ℛ is a relation on some set 𝐴.  

meaning: If 𝑥 is related to 𝑦, then 𝑦 is related to 𝑥. 

abbreviated version: For every 𝑥, 𝑦 ∈ 𝐴, if ℛ𝑦𝑥  is true then ℛ𝑥𝑦  is also true. 

More concise abbreviaton: ∀𝑥, 𝑦 ∈ 𝐴, 𝑖𝑓 ℛ𝑦𝑥  𝑡ℎ𝑒𝑛 ℛ𝑥𝑦  

 

Definition 32 transitive property 

words: Relation ℛ is transitive. 

usage: ℛ is a relation on some set 𝐴.  

meaning: If 𝑥 is related to 𝑦 and 𝑦 is related to 𝑧, then 𝑥 is related to 𝑧. 

abbreviated: For every 𝑥, 𝑦, 𝑧 ∈ 𝐴, if ℛ𝑦𝑥  is true and ℛ𝑧𝑦  is true, then ℛ𝑧𝑥  is also true. 

More concise abbreviaton: ∀𝑥, 𝑦 ∈ 𝐴, 𝑖𝑓 ℛ𝑦𝑥  𝑎𝑛𝑑 ℛ𝑧𝑦  𝑡ℎ𝑒𝑛 ℛ𝑧𝑥  

 

Consider some familiar mathematical relations in light of these definitions. 

 

For example, the “less than” relation, denoted by the symbol “<” is not reflexive and not 

symmetric, but it is transitive. 

 

On the other hand, the “less than or equal to” relation, denoted by the symbol “≤” is reflexive, is 

not symmetric, and is transitive. 

 

There is a special name for a relation that has all three of the above properties. 

 

Definition 33 equivalence relation 

words: Relation ℛ is an equivalence relation. 

A B E F C 

D 
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usage: ℛ is a relation on some set 𝐴. 

meaning: ℛ is reflexive and symmetric and transitive. 

 

Now that we have reviewed the terminology of relations, we are ready to understanding the 

wording of the following theorem. 

 

Theorem 20 Segment congruence is an equivalence relation. 

 

It is worthwhile to discuss the proof of Theorem 20 in some detail, because there are a few 

similar theorems later in the book. You will be asked to prove those theorems on your own. 

 

Proof of Theorem 20 

 

Part 1: Prove that segment congruence is reflexive. 

 

Segment congruence is a relation on the set of all line segments. To prove that the relation has 

the reflexive property, we must prove that the relation of segment congruence satisfies the 

definition of the reflexive property. 

 

The reflexive property is the following sentence: 

 

For every 𝑥 ∈ 𝐴, the sentence ℛ𝑥𝑥  is true. 

 

But in our case, the relation ℛ is the relation of segment congruence, and the set 𝐴 is the set of 

all line segments. That is, we would rewrite the reflexive property as follows: 

 

For every line segment 𝐶𝐷̅̅ ̅̅ , the sentence 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. 

 

Observe that this sentence is a universal statement about line segments. Recall what we have 

discussed about proof structure for universal statements: we must start the proof by introducing a 

given generic line segment, and we must end the proof by saying that the segment is congruent to 

itself. 

 

Proof Structure for Part 1: 

(1) Suppose a line segment 𝐶𝐷̅̅ ̅̅  is given. 

 

(some steps here) 

 

(*) Conclude that the sentence 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (We will need to justify this.) 

End of proof for Part 1 

 

Now our job is to figure out how to fill in the missing details of this proof. In general, many 

mathematical proofs involve some sort of “leap”, some sort of inspiration. That can be very 

intimidating. You might look at the proof structure above and have no idea how to proceed 

forward from statement (1). But that is not surprising, because statement (1) does not really give 

you any clue as to how to proceed. The key is to look ahead to the final step, and try to work 

backwards from there. 
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The final statement says that 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . We need to justify that statement. Keep in mind that the 

statement of segment congruence is a defined statement (See Definition 29 of segment 

congruence on page 104.) The statement 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  really just means that 𝑑(𝐶, 𝐷) = 𝑑(𝐶, 𝐷). So 

if we want to prove that 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ , we have only one way to do it: we must first prove that 

𝑑(𝐶, 𝐷) = 𝑑(𝐶, 𝐷) and then use Definition 29 to say that 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . Thus we have narrowed the 

gap in our proof structure. Our proof now looks like this:  

 

Proof Structure for Part 1: 

(1) Suppose a line segment 𝐶𝐷̅̅ ̅̅  is given. 

 

(some steps here) 

 

(*) The sentence 𝑑(𝐶, 𝐷) = 𝑑(𝐶, 𝐷) is true. (We will need to justify this.) 

(*) Conclude that the sentence 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (By the previous statement and  

Definition 29 of line segment congruence.) 

End of proof for Part 1 

 

Now keep in mind that the distance between points 𝐶 and 𝐷 is a real number. We know that 

every real number is equal to itself, by the reflexive property of real number equality. That gives 

us a way to justify the sentence 𝑑(𝐶, 𝐷) = 𝑑(𝐶, 𝐷). But we also need to have first introduced the 

real number that we are talking about. That is, we need to state how we know that the real 

number 𝑑(𝐶, 𝐷) even exists. For this, we can use an axiom. 

 

It turns out that we are now ready to completely fill the gap in our proof structure. Our final 

proof looks like this: 

 

Proof for Part 1: 

(1) Suppose a line segment 𝐶𝐷̅̅ ̅̅  is given. 

(2) The real number 𝑑(𝐶, 𝐷) exists. (by axiom <N4>) 

(3) 𝑑(𝐶, 𝐷) = 𝑑(𝐶, 𝐷). (By (2) and the reflexive property of real number equality.) 

(4) Conclude that 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . (By the (3) and  Definition 29 of line segment congruence.) 

End of proof for Part 1 

 

A quick summary of our approach in writing the Proof for Part 1 will help us in the rest of the 

proof. 

 We began by translating the statement of the reflexive property (from the definition) into 

a statement about segment congruence. 

 We observed that the statement to be proven was a universal statement about line 

segments. That gave us the idea of a “frame” for the proof, the first and last statements of 

the proof. 

 We noted that the final statement of the proof needed to be justified. Since the final 

statement used a defined expression—segment congruence—we knew that the only way 

to justify it would be to use the definition of segment congruence. That gave us the 

justification for the final statement and also indicated what would need to be the next-to-

final statement. 
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 Our goal was to prove the reflexive property of segment congruence. A key statement 

turned out to be statement (3), which was justified by the reflexive property of real 

number equality. This makes sense, because segment congruence was defined in terms of 

equality of lengths, which are real numbers. 

 

We will find that a similar approach will work in the Proof for Part 2. In particular, we will find 

that a key step the proof of the symmetry property of segment congruence will use the symmetry 

property of real number equality. 

 

Part 2: Prove that segment congruence is symmetric. 

 

We will follow the approach that we used in the Proof of Part 1. 

 

Translate the statement of the symmetric property into a statement about segment 

congruence. 

 

The symmetric property is the following sentence: 

 

For every 𝑥, 𝑦 ∈ 𝐴, if ℛ𝑦𝑥  is true then ℛ𝑥𝑦  is also true. 

 

But in our case, the relation ℛ is the relation of segment congruence, and the set 𝐴 is the set of 

all line segments. That is, we would rewrite the symmetric property as follows: 

 

For every pair of line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅ , if 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅  then 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . 

 

Determine the “frame” for the proof. 

 

Observe that this sentence is a universal statement about line segments. Recall what we have 

discussed about proof structure for universal statements: we must start the proof by introducing a 

pair of given generic line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅  that are known to have the property 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ , and 

we must end the proof by saying that 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . 

 

Proof Structure for Part 2: 

(1) Suppose line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅  are given and that 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

 

(some steps here) 

 

(*) Conclude that the sentence 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (We will need to justify this.) 

End of proof for Part 2 

 

Work backward from the final statement. 

 

The final statement says that 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . We need to justify that statement. As we did in the Proof 

of Part 1, we note that the statement of segment congruence is a defined statement (See 

Definition 29 of segment congruence on page 104.) The statement 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  really just means 

that 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷). So if we want to prove that 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ , we have only one way to do it: 



4.3: Segment Congruence 109 

We must first prove that 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷) and then use Definition 29 to say that 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . 

Thus we have narrowed the gap in our proof structure. Our proof now looks like this:  

 

Proof Structure for Part 2: 

(1) Suppose line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅  are given and that 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

 

(some steps here) 

 

(*) The sentence 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷) is true. (We will need to justify this.) 

(*) Conclude that the sentence 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (By the previous statement and  

Definition 29 of line segment congruence.) 

End of Proof for Part 2 

 

Something New in the Proof for Part 2: Work forward from the first statement. 

 

So far in our building of the Proof for Part 2, we have followed the same steps that we followed 

when building our Proof for Part 1, and we have succeeded in narrowing the gap in the proof. 

But at this point, the Proof for Part 2 becomes more complicated than the Proof for Part 1. 

 

Look back two paragraphs at our discussion of the final statement of the proof. We observed that 

the final statement of the proof was 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ , and that this statement used a defined term 

(segment congruence). The only way to justify that statement was by using the definition line 

segment congruence (Definition 29). That gave us an idea for how to work backwards from the 

final statement of the proof. 

 

Now consider the first statement of the proof. It says that 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . This statement uses a 

defined term (segment congruence). The only thing that we can do with the information that the 

segments are congruent is to use the definition of segment congruence to translate the 

information into a different form. This gives us an idea of how to work forward from statement 

(1). Our proof now looks like this: 

 

Proof Structure for Part 2: 

(1) Suppose line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅  are given and that 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

(2) The sentence 𝑑(𝐶, 𝐷) = 𝑑(𝐸, 𝐹) is true. (By statement (1) and Definition 29 of line 

segment congruence.) 

 

(some steps here) 

 

(*) The sentence 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷) is true. (We will need to justify this.) 

(*) Conclude that the sentence 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (By the previous statement and 

Definition 29 of line segment congruence.) 

End of proof for Part 2 

 

Finishing touches 

 

So far, we have narrowed the gap in our proof substantially simply by observing things that we 

have no choice about. That is, we had no choice about the “frame” of the proof: the frame was 
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dictated by the fact that the statement to be proven was a universal statement. And we had no 

choice about how to work backwards from the final statement: since the final statement was a 

statement involving a defined term (segment congruence), we had no choice but to work 

backwards using the definition of that term. Similarly, we had no choice about how to work 

forwards from the first statement. 

 

But how do we close the gap? How do we make the jump from the statement 𝑑(𝐶, 𝐷) = 𝑑(𝐸, 𝐹) 

to the statement 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷)? That’s easy: the two symbols 𝑑(𝐶, 𝐷) and 𝑑(𝐸, 𝐹) represent 

real numbers. If we wanted to, we could rename them 𝑥 and 𝑦. If we know that 𝑥 = 𝑦, then we 

also automatically know that 𝑦 = 𝑥 by the symmetric property of real number equality. So we 

are ready to close the gap and finish our Proof of Part 2. The final proof looks like this: 

 

Proof Structure for Part 2: 

(1) Suppose line segments 𝐶𝐷̅̅ ̅̅ , 𝐸𝐹̅̅ ̅̅  are given and that 𝐶𝐷̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

(2) 𝑑(𝐶, 𝐷) = 𝑑(𝐸, 𝐹) (By (1) and Definition 29 of line segment congruence.) 

(3) 𝑑(𝐸, 𝐹) = 𝑑(𝐶, 𝐷) is true. (By (2) and the symmetric property of real number 

equality.) 

(4) Conclude that the sentence 𝐸𝐹̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  is true. (By (3)and Definition 29 of line segment 

congruence.) 

End of proof for Part 2 

 

Notice that goal was to prove the symmetric property of segment congruence. A key statement 

turned out to be statement (3), which was justified by the symmetric property of real number 

equality. This makes sense, because segment congruence was defined in terms of equality of 

lengths, which are real numbers. And it is exactly the same thing that happened in our proof of 

the reflexive property of segment congruence. 

 

In the exercises, you will be asked to prove the transitive property of segment congruence. You 

will find the the same approach that we used in the proofs of the reflexive and symmetric 

properties will work for the proof of the transitive property. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 4.5 on page 113. 

4.4. Segment Midpoints 
In drawings, the midpoint of a line segment is a point that is on the segment and that is 

equidistant from the endpoints of the segment. We are comfortable with the idea that in 

drawings, every segment has exactly one midpoint. We would like to be able to define the 

midpoint of an abstract line segment in an analogous way, and to know that each abstract line 

segment has exactly one midpoint. It is easy enough to make a definition of a midpoint of an 

abstract line segment. But we will need a couple of theorems to state that every line segment has 

exactly one midpoint. We start with the definition: 

 

Definition 34 midpoint of a segment 

Words: 𝑀 is a midpoint of Segment 𝐴, 𝐵. 

Meaning: 𝑀 lies on 𝐴𝐵 ⃡     and 𝑀𝐴 = 𝑀𝐵. 
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Now we need a theorem stating that every line segment has exactly one midpoint. Surprisingly, 

that will take a bit of work. It is helpful to start by thinking about how we actually find the 

midpoint of a segment in a drawing: We use a ruler to find the point whose ruler marking is 

midway between the ruler markings of the endpoints of the segment. Our abstract Neutral 

Geometry allows us to do the same sort of thing with a coordinate function on a line. This next 

theorem makes the process precise and proves that it does indeed find a midpoint. The proof is 

included for readers interested in advanced topics, and for graduate students. 

 

Theorem 21 About a point whose coordinate is the average of the coordinates of the endpoints. 

Given 𝐴𝐵̅̅ ̅̅ , and Point 𝐶 on line 𝐴𝐵 ⃡    , and any coordinate function 𝑓 for line 𝐴𝐵 ⃡    , the 

following are equivalent: 

(i) The coordinate of point 𝐶 is the average of the coordinates of points 𝐴 and 𝐵. 

That is, 𝑓(𝐶) =
𝑓(𝐴)+𝑓(𝐵)

2
. 

(ii) Point 𝐶 is a midpoint of segment 𝐴𝐵̅̅ ̅̅ . That is, 𝐶𝐴 = 𝐶𝐵. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that 𝐴𝐵̅̅ ̅̅  and Point 𝐶 on line 𝐴𝐵 ⃡    , and a coordinate function 𝑓 for line 𝐴𝐵 ⃡     are given. 

 

Part I:Show that (i)  (ii). 

(2) Suppose that Statement (i) is true. That is, suppose that 𝑓(𝐶) =
𝑓(𝐴)+𝑓(𝐵)

2
. 

(3) Observe that 

𝑑(𝐶, 𝐴) = |𝑓(𝐶) − 𝑓(𝐴)| = |
𝑓(𝐴) + 𝑓(𝐵)

2
− 𝑓(𝐴)| = |

𝑓(𝐵) − 𝑓(𝐴)

2
| 

and that 

𝑑(𝐶, 𝐵) = |𝑓(𝐶) − 𝑓(𝐵)| = |
𝑓(𝐴) + 𝑓(𝐵)

2
− 𝑓(𝐵)| = |

𝑓(𝐴) − 𝑓(𝐵)

2
| = |

𝑓(𝐵) − 𝑓(𝐴)

2
|. 

That is, 𝐶𝐴 = 𝐶𝐵. So statement (ii) is true. 

End of Part I 

 

Part II:Show that (ii)  (i). 

(4) Suppose that Statement (ii) is true. That is, suppose that 𝐶𝐴 = 𝐶𝐵. 

(5) It must be true that 𝐴 ∗ 𝐶 ∗ 𝐵. (If 𝐶 ∗ 𝐴 ∗ 𝐵, then Theorem 16 (Betweenness of points on a 

line is related to the distances between them.) would tell us that 

𝑑(𝐶, 𝐵) = 𝑑(𝐶, 𝐴) + 𝑑(𝐴, 𝐵) 

But this combined with the fact that 𝑑(𝐶, 𝐴) = 𝑑(𝐶, 𝐵) would imply that 𝑑(𝐴, 𝐵) = 0. This 

is impossible. Similarly, we can show that 𝐴 ∗ 𝐵 ∗ 𝐶 is also impossible.) 

(6) Therefore, we can use Theorem 16 to say that 

𝑑(𝐴, 𝐵) = 𝑑(𝐴, 𝐶) + 𝑑(𝐶, 𝐵) 
= 𝑑(𝐴, 𝐶) + 𝑑(𝐴, 𝐶)   (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑑(𝐶, 𝐴) = 𝑑(𝐶, 𝐵)) 

= 2𝑑(𝐴, 𝐶) 

and hence 𝑑(𝐴, 𝐶) =
𝑑(𝐴,𝐵)

2
. 

(7) We also know that 𝑓(𝐴) ∗ 𝑓(𝐶) ∗ 𝑓(𝐵). (Justify.) 

(8) Either 𝑓(𝐴) < 𝑓(𝐶) < 𝑓(𝐵) or 𝑓(𝐵) < 𝑓(𝐶) < 𝑓(𝐴). (Justify.) 

Case I: 𝒇(𝑨) < 𝑓(𝑪) < 𝑓(𝑩) 

(9) Suppose that 𝑓(𝐴) < 𝑓(𝐶) < 𝑓(𝐵). 
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(10) Then 

𝑓(𝐶) = 𝑓(𝐶) − 𝑓(𝐴) + 𝑓(𝐴)   (𝑡𝑟𝑖𝑐𝑘) 
= |𝑓(𝐶) − 𝑓(𝐴)| + 𝑓(𝐴)    (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓(𝐶) − 𝑓(𝐴) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 
= 𝑑(𝐴, 𝐶) + 𝑓(𝐴)   (𝑗𝑢𝑠𝑡𝑖𝑓𝑦) 

=
𝑑(𝐴, 𝐵)

2
+ 𝑓(𝐴)   (𝑗𝑢𝑠𝑡𝑖𝑓𝑦) 

=
|𝑓(𝐵) − 𝑓(𝐴)|

2
+ 𝑓(𝐴)   (𝑗𝑢𝑠𝑡𝑖𝑓𝑦) 

=
𝑓(𝐵) − 𝑓(𝐴)

2
+ 𝑓(𝐴)   (𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝑓(𝐵) − 𝑓(𝐴) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

=
𝑓(𝐵) + 𝑓(𝐴)

2
 

so statement (i) is true. 

Case II: 𝒇(𝑩) < 𝑓(𝑪) < 𝑓(𝑨) 

(11) Suppose that 𝑓(𝐵) < 𝑓(𝐶) < 𝑓(𝐴). Observe that these inequalities look just like the 

inequalities in step (9), but with the 𝐴 and 𝐵 symbols interchanged. We could build a string 

of equations here by interchanging the 𝐴 and 𝐵 symbols in step (10) and the result would 

be the equation 𝑓(𝐶) =
𝑓(𝐵)+𝑓(𝐴)

2
. So statement (i) is true. 

Conclusion of Cases 

(12) We see that statement (i) is true in either case. 

End of Part II and End of Proof 

 

The previous theorem has an immediate corollary that tells us that if a point has a coordinate that 

is the average of the coordinates of the endpoints when using a particular coordinate function, 

then the same thing will be true when using any other coordinate function.  

 

Theorem 22 Corollary of Theorem 21. 

Given 𝐴𝐵̅̅ ̅̅ , and Point 𝐶 on line 𝐴𝐵 ⃡    , and any coordinate functions 𝑓 and 𝑔 for line 𝐴𝐵 ⃡    , the 

following are equivalent: 

(i) 𝑓(𝐶) =
𝑓(𝐴)+𝑓(𝐵)

2
. 

(ii) 𝑔(𝐶) =
𝑔(𝐴)+𝑔(𝐵)

2
. 

Proof (for readers interested in advanced topics and for graduate students) 

The proof is left to the reader. 

 

We are now able to state a theorem about the existence and uniqueness of midpoints.  

 

Theorem 23 Every segment has exactly one midpoint. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose segment 𝐴𝐵̅̅ ̅̅  is given. 

Existence of a midpoint 

(2) There exists a coordinate function 𝑓 for line 𝐴𝐵 ⃡    . (Justify.) 

(3) There exists a point 𝑀 with coordinate 𝑓(𝑀) =
𝑓(𝐴)+𝑓(𝐵)

2
. (Justify.) 

(4) 𝑀 is a midpoint of segment 𝐴𝐵̅̅ ̅̅ . (Justify.) 

Uniqueness of the midpoint. 
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(5) Suppose that point 𝑀 and 𝑁 are midpoints of segment 𝐴𝐵̅̅ ̅̅ . 

 

(*) some missing steps 

 

(#) Therefore, points 𝑀 and 𝑁 must be the same point. (Justify.) 

End of proof 

 

We have just seen that the idea of the existence of a unique midpoint—a very simple concept in a 

drawing—was a little tricky to nail down in our axiomatic geometry. The following theorem 

expresses another fact that is fairly simple to understand, but whose proof is fairly detailed. The 

proof is included for readers interested in advanced topics, and for graduate students. 

 

Theorem 24 Congruent Segment Construction Theorem. 

Given a segment 𝐴𝐵̅̅ ̅̅  and a ray 𝐶𝐷      , there exists exactly one point 𝐸 on ray 𝐶𝐷       such that 

𝐶𝐸̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) There exists a coordinate function for line 𝐶𝐷 ⃡     such that 𝑓(𝐶) = 0 and 𝑓(𝐷) is positive. 

(Justify.) 

Show that such a point 𝑬 exists. 

(2) Let 𝐸 = 𝑓−1(𝑑(𝐴, 𝐵)). That is, 𝐸 is the point on line 𝐶𝐷 ⃡     whose coordinate 𝑓(𝐸) is the real 

number 𝑑(𝐴, 𝐵). 

(3) Then 𝑑(𝐶, 𝐸) = |𝑓(𝐸) − 𝑓(𝐶)| = |𝑑(𝐴, 𝐵) − 0| = 𝑑(𝐴, 𝐵). (Justify.) This tells us that 

𝐶𝐸̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . 

Show that the point 𝑬 is unique. 

(4) Suppose that 𝐸′ is a point on ray 𝐶𝐷       such that 𝐶𝐸′̅̅ ̅̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . (we will show that 𝐸′ must be 𝐸.) 

 

(*) some missing steps 

 

(#) Point 𝐸′ must be 𝐸. (Justify.) 

End of Proof 

 

The final two theorems of the section are simple to understand and to prove. Their proofs are left 

to you as exercises. 

 

Theorem 25 Congruent Segment Addition Theorem. 

If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅  then 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅. 

 

Theorem 26 Congruent Segment Subtraction Theorem. 

If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅ then 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅ . 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 4.5 on page 113. 

4.5. Exercises for Chapter 4 
Exercises for Section 4.1 Betweenness 
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[1] Suppose 𝐴 ∗ 𝐵 ∗ 𝐶. Need 𝐴, 𝐵, 𝐶 be distinct points? Explain. 

 

[2] (Advanced) Justify the steps in the proof of Theorem 14 (Lemma about betweenness of 

coordinates of three points on a line) which was presented on page 99. 

 

[3] (Advanced) Justify the steps in the proof of Theorem 15 (Properties of Betweenness for 

Points) Statements (A), (B), (C) which was presented on page 100. Write your own proof of 

Statement (D). 

 

[4] (Advanced) Justify the steps in the proof of Theorem 16 (Betweenness of points on a line is 

related to the distances between them.) Part I which was presented on page 101. Write your own 

proof Part II. 

 

Exercises for Section 4.2 Segments, Rays, Angles, Triangles 

 

[5] Justify the steps in the proof of Theorem 18 ((Corollary) Segment 𝐴𝐵̅̅ ̅̅  is a subset of ray 𝐴𝐵      .), 

which was presented on page 103. 

 

[6] (Advanced) Prove Theorem 19 (about the use of different second points in the symbol for a 

ray.), which was presented on page 103. 

 

[7] Refer to the definition of angle. (Definition 27 on page 103.) In the three figures below, the 

object in figure (1) consists of just the points inside, the object in figure (2) consists of just the 

rays, and the object in figure (3) consists of the rays and the points inside. Which figure is a valid 

illustration of an angle ∠𝐴𝐵𝐶? Explain. 

 
 

[8] Jack says that ∠𝐴𝐵𝐶 is the negative of ∠𝐶𝐵𝐴. Zack insists that ∠𝐴𝐵𝐶 and ∠𝐶𝐵𝐴 are the 

same thing. Who is right, Jack or Zack? Explain.  

 

[9] Does either of the figures below depict a valid angle ∠𝐴𝐵𝐶? Explain why or why not. 

 
 

[10] Refer to the definition of triangle. (Definition 28 on page 104.) In the three figures below, 

the object in figure (1) consists of just the points inside, the object in figure (2) consists of just 

the segments, and the object in figure (3) consists of the segments and the points inside. Which 

figure is a valid illustration of an triangle Δ𝐴𝐵𝐶? Explain. 

𝐴 𝐵 

𝐶 

𝐴 𝐵 

𝐶 

𝐴 𝐵 

𝐶 

figure (1) figure (2) figure (3) 

𝐴 𝐵 𝐶 

figure (1) figure (2) 

𝐴 𝐵 𝐶 
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[11] Jack says that the symbols Δ𝐴𝐵𝐶 and Δ𝐵𝐴𝐶 mean different things. Zack insists that Δ𝐴𝐵𝐶 

and Δ𝐵𝐴𝐶 mean the same thing. Who is right, Jack or Zack? Explain.  

 

Exercises for Section 4.3 Segment Congruence 

 

[12] In the reading, you explored part of the proof of Theorem 20 (Segment congruence is an 

equivalence relation.), presented on page 106. You saw detailed discussions of Proof Part 1 

(segment congruence is reflexive) and Proof Part 2 (segment congruence is symmetric). Write 

your own proof of Part 3: segment congruence is transitive. 

 

[13] Recall that in our axiomatic geometry, parallel lines are defined to be lines that do not 

intersect. (Definition 11, found on page 35) Using the terminology of relations, we could think of 

“parallel” as a relation on the set of all lines. Is the parallel relation an equivalence relation? 

Explain. 

 

[14] How are parallel lines usually defined in analytic geometry? Is the usual parallel relation 

from analytic geometry an equivalence relation? Explain. 

 

Exercise for Section 4.4 Segment Midpoints 

 

[15] (Advanced) Justify the steps in the proof of Theorem 21 (About a point whose coordinate is 

the average of the coordinates of the endpoints.), which was presented on page 111. 

 

[16] (Advanced) Prove Theorem 22 (Corollary of Theorem 21.), which was presented on p. 112. 

 

[17] (Advanced) Justify the steps in the proof of Theorem 23 (Every segment has exactly one 

midpoint.), which was presented on page 112. Write the missing steps. 

 

[18] (Advanced) Justify the steps in the proof of Theorem 24 (Congruent Segment Construction 

Theorem.), which was presented on page 113. Write the missing steps. 

 

[19] Prove Theorem 25 (Congruent Segment Addition Theorem.), which was presented on p. 

113. 

 

[20] Prove Theorem 26 (Congruent Segment Subtraction Theorem.), presented on page 113. 

  

𝐴 𝐵 

𝐶 

figure (1) figure (2) figure (3) 
𝐴 𝐵 

𝐶 

𝐴 𝐵 

𝐶 
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5.Neutral Geometry III: The Separation 

Axiom 

5.1. Introduction to The Separation Axiom and Half-

Planes 
In the previous chapter, we saw that the Neutral Geometry Axioms of Incidence and Distance 

ensured that there is a notion of distance in our abstract geometry that agrees with our notions 

about distance in drawings. In the current chapter, we will discuss other kinds of behavior of 

drawings and show how the Neutral Geometry axioms ensure that our abstract geometry will 

exhibit the same behaviors. Here are five examples of familiar behavior of drawings: 

 

Example #1: Consider the way a drawn line 𝐿 “splits” the plane of a 

drawing. Notice three things:  

(1) Any point must be either on line 𝐿 or on one side of it or the 

other. 

(2) If two points are on the same side of line 𝐿, then the segment 

connecting those two points also lies on the same side of 𝐿 and 

does not intersect 𝐿. 

(3) If two points are on opposite sides of line 𝐿, then the segment 

connecting those two points will intersect line 𝐿. 

 

Example #2: In a drawing, any line that intersects a side of a triangle at 

a point that is not a vertex must also intersect at least one of the 

opposite sides.  

Example #3: Drawn triangles have an “inside” and an “outside”. 

 
Example #4:  In a drawing, any ray drawn from a vertex into the inside 

of a triangle must hit the opposite side of the triangle somewhere and 

go out.  

Example #5: In a drawing, a triangle cannot enclose a ray. The endpoint 

and part of the ray may fit inside the triangle, but the ray must poke out 

somewhere.  
 

It turns out that in the list of axioms for Neutral Geometry, a single new axiom will ensure that 

our axiomatic geometry will have these same behaviors and many others. That axiom is called 

the Plane Separation Axiom. 

 

<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets called half-

planes, denoted 𝐻1 and 𝐻2, with the following properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

 

𝐿 

inside 

outside 
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This axiom describes the behavior that we observed in the first example, above. But the wording 

of the axiom doesn’t quite match the wording of the observation. To understand the wording of 

the axiom, we will need to review a bit of set terminology. 

For example, what about behavior (1) in Example #1 above? 

 

(1) Any point must be either on line 𝐿 or on one side of it or the other. 

 

There is no statement in Axiom <N6> that is worded this way. But consider property (i) in 

Axiom <N6>: 

 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

 

Remember that the set of all points is denoted by the symbol 𝒫. To say that the three sets 

𝐿, 𝐻1, 𝐻2  form a partition of the set of all points means that the union 𝐿 ∪ 𝐻1 ∪ 𝐻2 = 𝒫 and also 

that the three sets 𝐿, 𝐻1, 𝐻2 are mutually disjoint. In other words, every point 𝑃 lies in exactly 

one of the sets 𝐿, 𝐻1, 𝐻2. So we see that property (i) in Axiom <N6> guarantees that our 

axiomatic geometry will have behavior analogous to behavior (1) in Example #1 above. 

 

Now consider behavior (2) in Example #1 above: 

 

(2) If two points are on the same side of line 𝐿, then the segment connecting those two points 

also lies on the same side of 𝐿 and does not intersect 𝐿. 

 

There is no statement in Axiom <N6> that is worded this way. But consider property (ii) in 

Axiom <N6>: 

 

(ii) Each of the half-planes is convex. 

 

The word convex appears in Axiom <N6>, but not in our observation about drawings. The 

definition is probably familiar to you: 

 

Definition 35 convex set 

 Without names: A set is said to be convex if for any two distinct points that are elements 

of the set, the segment that has those two points as endpoints is a subset of the set.  

 With names: Set 𝑆 is said to be convex if for any two distinct points 𝑃, 𝑄 ∈ 𝑆, the 

segment 𝑃𝑄̅̅ ̅̅ ⊂ 𝑆. 

 

The fact that each of the half-planes is convex tells us that if two points 𝑃, 𝑄 lie in one of the 

half-planes, then segment 𝑃𝑄̅̅ ̅̅  will be contained in that half plane. The fact that the sets 𝐿, 𝐻1, 𝐻2 

are mutually disjoint then tells us that segment 𝑃𝑄̅̅ ̅̅  will not intersect line 𝐿. So we see that 

properties (1) and (ii) in Axiom <N6> guarantee that our axiomatic geometry will have behavior 

analogous to behavior (2) in Example #1 above. 

 

Finally, consider behavior (3) in Example #1 above: 

 

(3) If two points are on opposite sides of line 𝐿, then the segment connecting those two points 

will intersect line 𝐿. 
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Property (iii) in Axiom <N6> seems to be about the same sort of behavior. It says, 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

But notice that the wording of the observation about the drawn example is a bit different from 

the wording of the axiom. The observation about drawings mentions points being on the “same 

side” or on “opposite sides”, while the Axiom mentions the idea of a point being in one half-

plane or the other. This difference can be bridged by defining the terms of same-side and 

opposite side. I will also introduce the term edge of a half-plane. 

 

Definition 36 same side, opposite side, edge of a half-plane. 

Two points are said to lie on the same side of a given line if they are both elements of the 

same half-plane created by that line. The two points are said to lie on opposite sides of the 

line if one point is an element of one half-plane and the other point is an element of the other. 

The line itself is called the edge of the half-plane. 

 

With the definition of the terminology of same side and opposite side, we see that property (iii) 

in Axiom <N6> guarantees that our axiomatic geometry will have behavior analogous to 

behavior (3) in Example #1 above. 

 

Throughout the rest of the course, we will frequently use axiom <N6> in proofs to justify 

statements that say that two particular points are on the same side of some line, or on different 

sides of some line, or that some line segment connecting two points does not intersect some line, 

or that it does intersect some line. In those situations, it will be useful to observe that the 

statements <N6>(ii) and <N6>(iii) can be written as conditional statements and that those 

conditional statements have contrapositive statements that are logically equivalent to the original 

statements. 

 

Here is Axiom <N6>(ii) restated in conditional form, along with the contrapositive. 

 

<N6> (ii) If points 𝑃 and 𝑄 are in the same half plane, 

then segment 𝑃𝑄̅̅ ̅̅  does not intersect line 𝐿. 

<N6> (ii) (contrapositive) If segment 𝑃𝑄̅̅ ̅̅  does intersect line 𝐿 (at a point between 𝑃 and 𝑄), 

then points 𝑃 and 𝑄 are in different half planes. 

 

Here is Axiom <N6>(iii) restated in conditional form, along with the contrapositive. 

 

<N6>(iii) If points 𝑃 and 𝑄 are in different half planes, 

then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿 (at a point between 𝑃 and 𝑄). 

<N6>(iii) (contrapositive) If segment 𝑃𝑄̅̅ ̅̅  does not intersect line 𝐿, 

then points 𝑃 and 𝑄 are in the same half plane. 

 

 

Digression about using Conditional Statements and their Contrapositives 

 

A digression about using conditional statements and their contrapositives. Suppose that two 

axioms are stated in the form of conditional statements, as follows. 
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 Axiom <100>: If the dog is blue, then the car is red. 

 Axiom <101>: If the car is red, then the bear is hungry. 

 

The contrapositives of these two axioms would be the following statements: 

 

 Axiom <100> (contrapositive): If the car is not red, then the dog is not blue. 

 Axiom <101> (contrapositive): If the bear is not hungry, then the car is not red. 

 

Remember that the contrapositive statements are logically equivalent to the original statements. 

 

Suppose that we wanted to prove that the car is red. Then clearly, we would use Axiom <100>. 

Our strategy would be to first prove somehow that the dog is blue, and then use Axiom <100> to 

say that the car is red. Note that we would not use Axiom <101> to prove that the car is red. 

Axiom <101> tells us something about the situation where we already know that the car is red. 

(It tells us that in this situation, the bear is hungry.) 

 

Now, suppose that we wanted to prove that the car was not red. It is important to realize that 

Axiom <100> does not help us in this case! If we want to prove that the car is not red, then we 

need to use Axiom <101> (contrapositive). Our strategy would be to first prove somehow that 

the bear is not hungry, and then use Axiom <101> (contrapositive) to say that the car is not red. 

 

This discussion is relevant to your use of Neutral Geometry Axiom <N6> (ii) and <N6> (iii) in 

proofs. For instance, suppose that you want to prove that two points 𝑃 and 𝑄 are in the same half 

plane of some line 𝐿. You should not use Axiom <N6> (ii). That axiom says something about the 

situation where you already know that points 𝑃 and 𝑄 are in the same half plane. (It says that in 

that situation, segment 𝑃𝑄̅̅ ̅̅  does not intersect line 𝐿. Rather, you should use Axiom <N6> (iii) 

(contrapositive). Your strategy should be to prove somehow that segment 𝑃𝑄̅̅ ̅̅  does not intersect 

line 𝐿, and then use Axiom <N6> (iii) (contrapositive) to say that points 𝑃 and 𝑄 are in the same 

half plane. 

 

End of Digression about using Conditional Statements and their Contrapositives 

 

In the remaining sections of this chapter, we will see how the Separation Axiom <N6> ensures 

that our abstract geometry will have behavior like that observed in Examples #2  through #5 

above. Before going on, though, it is worthwhile to study one simple-sounding theorem that is 

just about half-planes. You will justify the steps and make drawings in a class drill. 

 

 

Theorem 27 Given any line, each of its half-planes contains at least three non-collinear points. 

 

Proof 

(1) Given any line, call it 𝐿1. (Make a drawing.) 

Introduce points 𝑨 and 𝑩. 

(2) There exist two distinct points on 𝐿1. (Justify.) Call them 𝐴 and 𝐵. (Make a new 

drawing.) 

 

Part I: Introduce Half-Plane 𝑯𝑪 and show that it contains three non-collinear points. 
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(3) There exists a point not on 𝐿1. (Justify.) Call it 𝐶. (Make a new drawing.) 

(4) Point 𝐶 lies in one of the two half-planes determined by line 𝐿1. (Justify.) Call it 𝐻𝐶. 

(Make a new drawing.) 

Introduce line 𝑳𝟐. 

(5) There exists a unique line passing through 𝐴 and 𝐶. (Justify.) 

(6) The line passing through 𝐴 and 𝐶 is not 𝐿1. (Justify.) So it must be new. Call it 𝐿2. 

(Make a new drawing.) 

Introduce line 𝑳𝟑. 

(7) There exists a unique line passing through 𝐵 and 𝐶. (Justify.) 

(8) The line passing through 𝐵 and 𝐶 is not 𝐿1 or 𝐿2. (Justify.) So it must be new. Call it 𝐿3. 

(Make a new drawing.) 

Introduce point 𝑫. 

(9) There exists a point such that 𝐴 ∗ 𝐶 ∗ 𝑃𝑜𝑖𝑛𝑡. (Justify.) 

(10) This point cannot be the same as any of our previous three points. (Justify.) So it must 

be a new point. Call it 𝐷. So 𝐴 ∗ 𝐶 ∗ 𝐷. (Make a new drawing.) 

(11) Point 𝐷 is in half-plane 𝐻𝐶. (Justify.) 

Introduce point 𝑬. 

(12) There exists a point such that 𝐵 ∗ 𝐶 ∗ 𝑃𝑜𝑖𝑛𝑡. (Justify.) 

(13) This must be a new point. (Justify.) Call it 𝐸. So 𝐵 ∗ 𝐶 ∗ 𝐸. (Make a new drawing.) 

(14) Point 𝐸 is in half-plane 𝐻𝐶. (Justify.) 

Conclusion of Part I: 

(15) Points 𝐶 and 𝐷 and 𝐸 are non-collinear. (Justify.) 

 

Part II: Introduce Half-Plane 𝑯𝑭 and show that it contains three non-collinear points. 

Introduce point 𝑭. 

(16) There exists a point such that 𝐶 ∗ 𝐴 ∗ 𝑃𝑜𝑖𝑛𝑡. (Justify.) 

(17) This must be a new point. (Justify.) Call it 𝐹. So 𝐶 ∗ 𝐴 ∗ 𝐹. (Make a new drawing.) 

(18) Point 𝐹 is not in half-plane 𝐻𝐶. (Justify.). Let 𝐻𝐹 be the half-plane containing 𝐹. 

Introduce point 𝑮. 

(19) There exists a point such that 𝐴 ∗ 𝐹 ∗ 𝑃𝑜𝑖𝑛𝑡. (Justify.) 

(20) This must be a new point. (Justify.) Call it 𝐺. So 𝐴 ∗ 𝐹 ∗ 𝐺. (Make a new drawing.) 

(21) Point 𝐺 is in half-plane 𝐻𝐹. (Justify.) 

Introduce point 𝑯. 

(22) There exists a point such that 𝐶 ∗ 𝐵 ∗ 𝑃𝑜𝑖𝑛𝑡. (Justify.) 

(23) This must be a new point. (Justify.) Call it 𝐻. So 𝐶 ∗ 𝐵 ∗ 𝐻. (Make a new drawing.) 

(24) Point 𝐻 is in half-plane 𝐻𝐹. (Justify.)  

Conclusion of Part II: 

(25) Points 𝐹 and 𝐺 and 𝐻 are non-collinear. (Justify.) 

End of Proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 

5.2. Theorems about lines intersecting triangles 
The only geometric objects that we know about so far are points, lines, rays, segments, angles, 

and triangles. To more fully understand the significance of Separation Axiom <N6>, we will in 

the next four sections of this book explore what the Separation Axiom tells us about the 
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relationships between those objects. In this section we will study two theorems about lines 

intersecting triangles. 

 

Recall Example #2 of the previous section: 

Example #2: In a drawing, any line that intersects a side of a triangle at 

a point that is not a vertex must also intersect at least one of the opposite 

sides.  
 

The first of the two theorems that we will study in this section is known as Pasch’s Theorem. It 

shows that abstract triangles and lines in our axiomatic geometry will have the same kind of 

behavior that Example #2 observes in drawings. You will justify the steps in a class drill. 

 

Theorem 28 (Pasch’s Theorem) about a line intersecting a side of a triangle between vertices 

If a line intersects the side of a triangle at a point between vertices, then the line also 

intersects the triangle at another point that lies on at least one of the other two sides. 

Proof 

(1) Suppose that line 𝐿 intersects side 𝐴𝐵̅̅ ̅̅  of Δ𝐴𝐵𝐶 at a point 𝐷 such that 𝐴 ∗ 𝐷 ∗ 𝐵. 

(2) Points 𝐴 and 𝐵 are on opposite sides of line 𝐿. (Justify.) Let 𝐻𝐴 and 𝐻𝐵 be their 

respective half-planes. 

(3) Exactly one of the following statements is true. (Justify.) 

(i) 𝐶 lies on 𝐿. (Make a drawing for case (i).) 

(ii) 𝐶 is in 𝐻𝐴. (Make a drawing for case (ii).) 

(iii) 𝐶 is in 𝐻𝐵. (Make a drawing for case (iii).) 

Case (i) 

(4) If 𝐶 lies on 𝐿, then 𝐿 intersects both 𝐴𝐶̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  at point 𝐶. (Justify.) 

Case (ii) 

(5) If 𝐶 is in 𝐻𝐴, then points 𝐵 and 𝐶 lie on opposite sides of 𝐿. (Justify.) 

(6) In this case, 𝐿 will intersect 𝐵𝐶̅̅ ̅̅  at a point between 𝐵 and 𝐶. (Justify.) 

Case (iii) 

(7) If 𝐶 is in 𝐻𝐵, then points 𝐴 and 𝐶 lie on opposite sides of 𝐿. (Justify.) 

(8) In this case, 𝐿 will intersect 𝐴𝐶̅̅ ̅̅  at a point between 𝐴 and 𝐶. (Justify.) 

Conclusion of cases 

(9) In every case, we see that 𝐿 intersects 𝐴𝐶̅̅ ̅̅  or 𝐵𝐶̅̅ ̅̅  or both. 

End of Proof 

 

The second of the two theorems that we will study in this section is about about a line 

intersecting two sides of a triangle. You will prove it in an exercise. 

 

Theorem 29 about a line intersecting two sides of a triangle between vertices 

If a line intersects two sides of a triangle at points that are not vertices, then the line cannot 

intersect the third side. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 



5.3: Interiors of angles and triangles 123 

5.3. Interiors of angles and triangles 
In the previous section, we studied two theorems that showed how the Separation Axiom <N6> 

could dictate some of the behavior of lines intersecting triangles. 

 

Recall our discussion of familiar behavior of drawings in Section 5.1. Our third example was: 

 

Example #3: Drawn triangles have an “inside” and an “outside”. 

 
 

In the current section, we will introduce the concept of the interiors and exteriors of abstract 

angles and triangles in our axiomatic geometry.  

 

Here are the definitions of angle interior and triangle interior. 

 

Definition 37 Angle Interior 

Words: The interior of ∠𝐴𝐵𝐶. 

Symbol:  𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) 

Meaning: The set of all points 𝐷 that satisfy both of the following conditions. 

Points 𝐷 and 𝐴 are on the same side of line 𝐵𝐶 ⃡    . 

Points 𝐷 and 𝐶 are on the same side of line 𝐴𝐵 ⃡    . 

Meaning abbreviated in symbols: 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) = 𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴) 

 
Related term: The exterior of ∠𝐴𝐵𝐶 is defined to be the set of points that do not lie on the 

angle or in its interior. 

 

Note that since it is the intersection of convex sets, an angle interior is a convex set. 

 

Definition 38 Triangle Interior 

Words: The interior of Δ𝐴𝐵𝐶. 

Symbol:  𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) 

Meaning: The set of all points 𝐷 that satisfy all three of the following conditions. 

Points 𝐷 and 𝐴 are on the same side of line 𝐵𝐶 ⃡    . 

Points 𝐷 and 𝐵 are on the same side of line 𝐶𝐴 ⃡    . 

Points 𝐷 and 𝐶 are on the same side of line 𝐴𝐵 ⃡    . 

Meaning abbreviated in symbols: 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) = 𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐶𝐴 ⃡    (𝐵). 

inside 

outside 

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) 

𝐴 

= 𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐴𝐵 ⃡    (𝐶) 

𝐴 
𝐴 𝐵 𝐵 𝐵 

𝐶 𝐶 𝐶 
= ∩ 

Drawing: 
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Related term: The exterior of Δ𝐴𝐵𝐶 is defined to be the set of points that do not lie on the 

triangle or in its interior. 

 

Note that a triangle interior is a convex set. Also note that we can write  

 

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) = 𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐶𝐴 ⃡    (𝐵) 

= (𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴)) ∩ (𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐶𝐴 ⃡    (𝐵)) ∩ (𝐻𝐶𝐴 ⃡    (𝐵) ∩ 𝐻𝐴𝐵 ⃡    (𝐶)) 

= 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐵) ∩ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐶) ∩ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴) 
 

So the interior of a triangle is equal to the intersection of the interiors of its three angles. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 

5.4. Theorems about rays and lines intersecting triangle 

interiors 
Returning again to our discussion of familiar behavior of drawings in Section 5.1, recall that our 

fourth example was: 

 

Example #4: In a drawing, any ray drawn from a vertex into the inside 

of a triangle must hit the opposite side of the triangle somewhere and 

go out.  

 

In the current section, we will prove that in our axiomatic geometry, abstract rays and triangles 

behave the same way. The theorem, called the Crossbar Theorem, is a very difficult theorem to 

prove; we will need six preliminary theorems before we get to it! We start with a fairly simple 

theorem about rays that have an endpoint on a line but do not lie on the line. The proof is 

surprisingly tedious. Even so, I include the proof here and include the justification of its steps as 

an exercise, because studying its steps will provide a good review of a variety of concepts. 

 

Theorem 30 about a ray with an endpoint on a line 

If a ray has its endpoint on a line but does not lie in the line, 

then all points of the ray except the endpoint are on the same side of the line. 

 

Proof 

𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) 

𝐴 

= 𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐴𝐵 ⃡    (𝐶) 

𝐴 
𝐴 𝐵 𝐵 𝐵 

𝐶 𝐶 𝐶 
= ∩ 

Drawing: 

∩ 

∩ 

𝐻𝐶𝐴 ⃡    (𝐵) 

𝐶 

𝐴 
𝐵 
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(1) Let 𝐴𝐵       be a ray such that 𝐴 lies on a line 𝐿 and 𝐵 does not lie on 𝐿, and let 𝐶 be any point 

of 𝐴𝐵       that is not 𝐴. (Make a drawing.) (Our goal is to prove that point 𝐶 lies on the 

same side of line 𝐿 as point 𝐵.) 

Introduce a special coordinate function and consider coordinates. 

(2) Let 𝑀 be line 𝐴𝐵 ⃡    . 

(3) The only intersection of lines 𝐿 and 𝑀 is point 𝐴. (Justify.) 

(4) There exists a coordinate function ℎ for line 𝑀 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

(Justify.) (Make a new drawing.) 

(5) Using coordinate function ℎ, the coordinate of point 𝐶 is positive. That is ℎ(𝐶) is 

positive. (Justify.) (Make a new drawing.) 

Show that line segment 𝑪𝑩̅̅ ̅̅  does not intersect line 𝑳. 

(6) Let 𝐷 be any point on line segment 𝐵𝐶̅̅ ̅̅ . (Make a new drawing.) Observe that point D 

lies on line 𝑀. 

(7) Using coordinate function ℎ, the coordinate of point 𝐷 is positive. That is ℎ(𝐷) is 

positive. (Justify.) (Make a new drawing.) 

(8) Point 𝐷 is not point 𝐴. (Justify.) 

(9) Point 𝐷 does not lie on line 𝐿. (Justify.) Therefore, line segment 𝐵𝐶̅̅ ̅̅  does not intersect 

line 𝐿. 

Conclusion 

(10) Conclude that points 𝐵 and 𝐶 are in the same half-plane of line 𝐿. (Justify.) That is, 

point 𝐶 lies on the same side of line 𝐿 as point 𝐵. 

End of Proof 

 

The preceeding theorem has two corollaries. (The word corollary has more than one usage in 

mathematics. I use the word here to mean a theorem whose proof is a simple application of some 

other theorem, with no other tricks.) You will be asked to prove both of them in exercises. 

 

Theorem 31 (Corollary of Theorem 30) about a ray with its endpoint on an angle vertex 

If a ray has its endpoint on an angle vertex and passes through a point in the angle interior, 

then every point of the ray except the endpoint lies in the angle interior. 

 

Theorem 32 (Corollary of Theorem 30.) about a segment that has an endpoint on a line 

If a segment that has an endpoint on a line but does not lie in the line, 

then all points of the segment except that endpoint are on the same side of the line. 

 

Here is a corollary of Theorem 32. You will be asked to prove it in an exercise. 

 

Theorem 33 (Corollary of Theorem 32.) Points on a side of a triangle are in the interior of the 

opposite angle. 

If a point lies on the side of a triangle and is not one of the endpoints of that side, 

then the point is in the interior of the opposite angle. 

 

The next theorem is not so interesting in its own right, but it gets used occasionally throughout 

the rest of the book in proofs of other theorems. Because of this, I call it a Lemma. Its name will 

help you remember what the Lemma says, by reminding you of the picture.  
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Theorem 34 The Z Lemma 

If points 𝐶 and 𝐷 lie on opposite sides of line 𝐴𝐵 ⃡    , 

then ray 𝐴𝐶       does not intersect ray 𝐵𝐷       . 

 

Proof  
(1) Suppose that points 𝐶 and 𝐷 lie on opposite sides of line 𝐴𝐵 ⃡    . Let 𝐻𝐶 and 𝐻𝐷 be their 

respective half-planes. 

(2) Points 𝐴 and 𝐵 are distinct points on line 𝐴𝐵 ⃡    . (We cannot refer to line 𝐴𝐵 ⃡     unless points 𝐴 

and 𝐵 are distinct.) 

(3) Every point of ray 𝐴𝐶       except endpoint 𝐴 lies in half-plane 𝐻𝐶. (Justify.) 

(4) Every point of ray 𝐵𝐷        except endpoint 𝐵 lies in half-plane 𝐻𝐷. (Justify.) 

(5) Ray 𝐴𝐶       does not intersect ray 𝐵𝐷       . (by (2), (3), (4) and the fact that the three sets 𝐴𝐵 ⃡     and 

𝐻𝐶 and 𝐻𝐷 are mutually disjoint.) 

End of Proof 
 

Here, finally, is the Crossbar Theorem. Remember that it will prove that abstract triangles and 

rays have the sort of behavior that Example #4 described for drawings: 

 

Example #4: In a drawing, any ray drawn from a vertex into the inside 

of a triangle must hit the opposite side of the triangle somewhere and 

go out.  

 

You will see that the proof relies on Pasch’s Theorem (Theorem 28) and on repeated applications 

of the Z Lemma (Theorem 34). 

 

Theorem 35 The Crossbar Theorem 

If point 𝐷 is in the interior of ∠𝐴𝐵𝐶, then 𝐵𝐷        intersects 𝐴𝐶̅̅ ̅̅  at a point between 𝐴 and 𝐶. 

Proof 

 

(1) Suppose that point 𝐷 is in the interior of ∠𝐴𝐵𝐶. 

 

 
 

Introduce a point 𝑬 that will allow us to use Pasch’s Theorem. 

(2) There exists a point 𝐸 such that 𝐴 ∗ 𝐵 ∗ 𝐸 (by 

Theorem 15). Observe that line 𝐵𝐷 ⃡     intersects side 

𝐸𝐴̅̅ ̅̅  of Δ𝐸𝐴𝐶 at point 𝐵 such that 𝐸 ∗ 𝐵 ∗ 𝐴. 

(3) Line 𝐵𝐷 ⃡     intersects Δ𝐸𝐴𝐶 at one other point. (by 

(2) and Pasch’s Theorem (Theorem 28))  

 
(4) The second point of intersection of line 𝐵𝐷 ⃡     and triangle Δ𝐸𝐴𝐶 cannot be on line 𝐴𝐸̅̅ ̅̅  

(because that would violate axiom <N2>), and it cannot be point 𝐶 (because that would 
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also violate axiom <N2>) so line 𝐵𝐷 ⃡     must intersect side either 𝐴𝐶̅̅ ̅̅  or side 𝐸𝐶̅̅ ̅̅ , but not at 

one of the endpoints 𝐴, 𝐶, 𝐸. 

Introduce a point 𝑭. 

(5) There exists a point 𝐹 such that 𝐷 ∗ 𝐵 ∗ 𝐹 (by 

Theorem 15). Observe that rays 𝐵𝐷        and 𝐵𝐹       are 

opposite rays. 

 
Get more precise about particular rays intersecting particular segments 

(6) Exactly one of the following must be true (by (4) and (5)). 

(i) Ray 𝐵𝐹       intersects segment 𝐴𝐶̅̅ ̅̅  at a point between 𝐴 and 𝐶. 

(ii) Ray 𝐵𝐹       intersects segment 𝐸𝐶̅̅ ̅̅  at a point between 𝐸 and 𝐶. 

(iiii) Ray 𝐵𝐷        intersects segment 𝐸𝐶̅̅ ̅̅  at a point between 𝐸 and 𝐶. 

(iv) Ray 𝐵𝐷        intersects segment 𝐴𝐶̅̅ ̅̅  at a point between 𝐴 and 𝐶. 

 

Establish points that are on opposite sides of lines so that we can use the Z Lemma. 

(7) Points 𝐶 and 𝐷 lie on the same side of line 𝐴𝐵 ⃡     (by (1) and definition of angle interior). 

(8) Points 𝐷 and 𝐹 lie on opposite sides of line 𝐴𝐵 ⃡     (because line 𝐴𝐵 ⃡     intersects segment 𝐷𝐹̅̅ ̅̅  

at point 𝐵 and point 𝐵 is between points 𝐷 and 𝐹, by (5)). 

(9) Therefore, points 𝐶 and 𝐹 lie on opposite sides of line 𝐴𝐵 ⃡     (by (7) and (8)). 

(10) Points 𝐶 and 𝐹 also lie on opposite sides of line 𝐵𝐸 ⃡     (since 𝐴, 𝐵, 𝐸 are collinear by (2)). 

(11) Points 𝐴 and 𝐷 lie on the same side of line 𝐵𝐶 ⃡     (by (1) and definition of angle interior). 

(12) Points 𝐴 and 𝐸 lie on opposite sides of line 𝐵𝐶 ⃡     (because line 𝐵𝐶 ⃡     intersects segment 𝐴𝐸̅̅ ̅̅  

at point 𝐵 and point 𝐵 is between points 𝐴 and 𝐸, by (2)). 

(13) Therefore, points 𝐷 and 𝐸 lie on opposite sides of line 𝐵𝐶 ⃡     (by (11) and (12)). 

 

Use the Z Lemma three times. 

(14) Ray 𝐵𝐹       does not intersect ray 𝐴𝐶       (by the Z 

Lemma (Theorem 34) applied to line 𝐴𝐵 ⃡     

and points 𝐶 and 𝐹 that lie on opposite sides 

of it by (9)) 

(15) Therefore, ray 𝐵𝐹       does not intersect segment 

𝐴𝐶̅̅ ̅̅  (because segment 𝐴𝐶̅̅ ̅̅  is a subset of ray 

𝐴𝐶      ). So statement (6i) is not true. 
 

(16) Ray 𝐵𝐹       does not intersect ray 𝐸𝐶       (by the Z 

Lemma applied to line 𝐵𝐸 ⃡     and points 𝐶 and 

𝐹 that lie on opposite sides of it by (10)) 

(17) Therefore, ray 𝐵𝐹       does not intersect segment 

𝐸𝐶̅̅ ̅̅ . So statement (6ii) is not true. 
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(18) Ray 𝐵𝐷        does not intersect ray 𝐶𝐸       (by the Z 

Lemma applied to line 𝐵𝐶 ⃡     and points 𝐷 and 

E that lie on opposite sides of it by (13)) 

(19) Therefore, ray 𝐵𝐷        does not intersect segment 

𝐶𝐸̅̅ ̅̅ . So statement (6iii) is not true. 

 

Conclusion 

(20) Ray 𝐵𝐷        must intersect segment 𝐴𝐶̅̅ ̅̅  at a point 

between 𝐴 and 𝐶 (by (6), (15), (17), (19)). 

End of Proof 

 
 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 

5.5. A Triangle Can’t Enclose a Ray or a Line 
Returning for the last time to our discussion of familiar behavior of drawings in Section 5.1, 

recall that our fifth example was: 

 

Example #5: In a drawing, a triangle cannot enclose a ray. The endpoint 

and part of the ray may fit inside the triangle, but the ray must poke out 

somewhere.  
 

Similarly, in a drawing it is impossible to fit a line inside a triangle. The line must poke out at 

two points. In this section, we will prove that abstract rays, lines, and triangles have the same 

properties. 

 

The first theorem of the section proves that a triangle cannot enclose a ray. 

 

Theorem 36 about a ray with its endpoint in the interior of a triangle 

If the endpoint of a ray lies in the interior of a triangle, then the ray intersects the triangle 

exactly once. 

 

Proof (for readers interested in advanced topics and for graduate students) 

The proof is left to the reader. 

 

The second theorem of the section proves that a triangle cannot enclose a line. 

 

Theorem 37 about a line passing through a point in the interior of a triangle 

If a line passes through a point in the interior of a triangle, then the line intersects the triangle 

exactly twice. 

Proof 

(1) Suppose that line 𝐿 passes through point 𝑃 in the interior of Δ𝐴𝐵𝐶. (Make a drawing.) 
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(2) There exist points 𝑄, 𝑅 on line 𝐿 such that 𝑄 ∗ 𝑃 ∗ 𝑅. (Justify. Update your drawing.) 

(3) Ray 𝑃𝑄       intersects Δ𝐴𝐵𝐶 exactly once. (Justify.) 

(4) Ray 𝑃𝑅       intersects Δ𝐴𝐵𝐶 exactly once. (Justify.) 

(5) Line 𝐿 intersects Δ𝐴𝐵𝐶 exactly twice. (Justify.) 

End of Proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 

5.6. Convex quadrilaterals 
As mentioned at the start of Section 5.2 (Theorems about lines intersecting triangles) on page 

121, the only geometric objects that we know about so far are points, lines, rays, segments, 

angles, and triangles. In the previous four sections, we explored what the Separation Axiom 

<N6> tells us about the relationships between those objects. In the current section we will 

introduce a new geometric object, the quadrilateral, and explore what Axiom <N6> tells us about 

the object. 

 

Definition 39 quadrilateral 

words: “quadrilateral 𝐴, 𝐵, 𝐶, 𝐷” 

symbol: □𝐴𝐵𝐶𝐷 

usage: 𝐴, 𝐵, 𝐶, 𝐷 are distinct points, no three of which are collinear, and such that the segments 

𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅ , 𝐷𝐴̅̅ ̅̅  intersect only at their endpoints. 

meaning: quadrilateral 𝐴, 𝐵, 𝐶, 𝐷 is the set □𝐴𝐵𝐶𝐷 = 𝐴𝐵̅̅ ̅̅ ∪ 𝐵𝐶̅̅ ̅̅ ∪ 𝐶𝐷̅̅ ̅̅ ∪ 𝐷𝐴̅̅ ̅̅  

additional terminology: Points 𝐴, 𝐵, 𝐶, 𝐷 are each called a vertex of the quadrilateral. 

Segments 𝐴𝐵̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  and 𝐷𝐴̅̅ ̅̅  are each called a side of the quadrilateral. 

Segments 𝐴𝐶̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅  are each called a diagonal of the quadrilateral. 

 

Notice that it is not simply enough that we have four distinct points, no three of which are 

collinear. The requirement that the segments 𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅ , 𝐷𝐴̅̅ ̅̅  intersect only at their endpoints 

means that we must be careful how we name the points. Here are two drawings to illustrate. 

 
The drawing on the right is not a quadrilateral because segments 𝐴𝐷̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  intersect at a point 

that is not an endpoint of either segment. (Don’t be fooled by the fact that the drawing does not 

have a large dot at that spot. Back in Chapters 1 and 2, when we were studying finite geometries, 

the only “points” in our drawings were the large dots that we intentionally drew. But now that we 

are studying Neutral Geometry, our lines contain an infinite number of points, one for each real 

number. So there is a point at the place where the drawn lines cross.) 

 

In this section, we will classify quadrilaterals into one of two types. I will define the properties 

that distinguish the two types precisely later. Right now, I just want to draw examples of the two 

types and observe some things about the drawings. In particular, I want to observe whether 
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quadrilateral not a quadrilateral 
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Statements (i), (ii), and (iii) are true or false. Shown below is a table that presents examples of 

the two types, along with observations about Statements (i), (ii), and (iii). 

 

type of drawing: type I type II 

drawing: 

  
Statement (i): 

All the points of any given 

side lie in the same half-plane 

of the line determined by the 

opposite side. 

True 

False, because there is a side 

whose points do not all lie in the 

same half-plane of the line 

determined by the opposite side. 

Statement (ii): 

The diagonal segments 

intersect. 

True 

False, because the diagonal 

segments do not intersect 

(although the lines containing the 

diagonal segments do intersect.) 

Statement (iii): 

Each vertex is in the interior 

of the opposite angle. 

True 

False, because there is a vertex 

that is not in the interior of the 

opposite angle. 

Notice that in our two drawings, either all three statements (i), (ii), (iii) are true or they all are 

false. That is, the three statements are equivalent. The following theorem proves that in our 

axiomatic geometry, quadrilaterals behave the same way.  

 

Theorem 38 Three equivalent statements about quadrilaterals 

For any quadrilateral, the following statements are equivalent: 

(i) All the points of any given side lie on the same side of the line determined by the 

opposite side. 

(ii) The diagonal segments intersect. 

(iii) Each vertex is in the interior of the opposite angle. 

Proof that (i)  (ii) 

(1) Suppose that for quadrilateral □𝐴𝐵𝐶𝐷, statement (i) is true. 

Show that point 𝑨 is in the interior of angle ∠𝑩𝑪𝑫 and use the Crossbar Theorem 

(2) Points 𝐴 and 𝐵 are on the same side of line 𝐶𝐷 ⃡    . (by (1)) 

(3) Points 𝐴 and 𝐷 are on the same side of line 𝐶𝐵 ⃡    . (by (1)) 

(4) Point 𝐴 is in the interior of angle ∠𝐵𝐶𝐷. (by (2) and (3)) 

(5) Ray 𝐶𝐴       intersects segment 𝐵𝐷̅̅ ̅̅  at a point 𝑃 between 𝐵 and 𝐷. (by Theorem 35, The 

Crossbar Theorem) 

Change letters to get more results of the same sort 

(6) In steps (2) – (5), make the following replacements: 𝐴 → 𝐵 and  𝐵 → 𝐶 and 𝐶 → 𝐷 and 

𝐷 → 𝐴 and 𝑃 → 𝑄. The result will be a proof that point 𝐵 is in the interior of angle 

∠𝐶𝐷𝐴 and that ray 𝐷𝐵        intersects segment 𝐶𝐴̅̅ ̅̅  at a point 𝑄 between 𝐶 and 𝐴. 

Wrap-up. 
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(7) Points 𝑃 and 𝑄 must be the same point. (because lines 𝐴𝐶 ⃡     and 𝐵𝐷 ⃡     can only intersect at 

one point, by Theorem 1 (In Neutral Geometry, if 𝐿 and 𝑀 are distinct lines that intersect, 

then they intersect in only one point.)) 

(8) The point 𝑃 = 𝑄 lies on both segments 𝐴𝐶̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅ . (by (5), (6),(7)) That is, the diagonals 

intersect. Conclude that statement (ii) is true. 

End of proof that (i)  (ii) 

 

Proof that (ii)  (iii) 

(1) Suppose that for quadrilateral □𝐴𝐵𝐶𝐷, statement (ii) is true. That is, the diagonal 

segments 𝐴𝐶̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅  intersect at some point 𝑃.  

Show that point 𝑷 lies in the interior of ∠𝑨𝑩𝑪. 

(2) Point 𝑃 lies in the interior of ∠𝐴𝐵𝐶. (by Theorem 33 ((Corollary of Theorem 32.) Points 

on a side of a triangle are in the interior of the opposite angle.)) 

(3) All the points of ray 𝐵𝑃       except 𝐵 lie in the interior of ∠𝐴𝐵𝐶. (by Theorem 31 ((Corollary 

of Theorem 30) about a ray with its endpoint on an angle vertex)) 

(4) Point 𝐷 lies in the interior of ∠𝐴𝐵𝐶. (because 𝐷 is on ray 𝐵𝑃      ) 

Change letters to get more results of the same sort 

(7) In steps (2) – (4), make the following replacements: 𝐴 → 𝐵 and  𝐵 → 𝐶 and C→ 𝐷 and 

𝐷 → 𝐴. The result will be a proof that point 𝐴 is in the interior of angle ∠𝐵𝐶𝐷. 

(8) Making analogous replacements, we can prove that point 𝐶 is in the interior of angle 

∠𝐷𝐴𝐵 and that point 𝐷 is in the interior of angle ∠𝐴𝐵𝐶. 

(9) Conclude that statement (iii) is true. (by (4),(7),(8)) 

End of proof that (ii)  (iii) 

Proof that (iii)  (i) 

(1) Suppose that for quadrilateral □𝐴𝐵𝐶𝐷, statement (iii) is true. That is, each vertex lies in 

the interior of the opposite angle.  

Consider point 𝑩. 

(2) Point 𝐵 lies in the interior of ∠𝐶𝐷𝐴. (by (1)) 

(3) Points 𝐴 and 𝐵 are on the same side of line 𝐶𝐷 ⃡    . (by (2) and definition of angle interior) 

(4) All the points of side 𝐴𝐵̅̅ ̅̅  are on the same side of line 𝐶𝐷 ⃡    . (by (3) and the fact that half-

planes are convex.) 

(5) Points 𝐵 and 𝐶 are on the same side of line 𝐷𝐴 ⃡    . (by (2) and definition of angle interior) 

(6) All the points of side 𝐵𝐶̅̅ ̅̅  are on the same side of line 𝐷𝐴 ⃡    . (by (5) and the fact that half-

planes are convex.)  

Change letters to get more results of the same sort. 

(7) In steps (2) – (6), make the following replacements: 𝐴 → 𝐶 and  𝐵 → 𝐷 and C→ 𝐴 and 

𝐷 → 𝐵. The result will be a proof that. All the points of side 𝐶𝐷̅̅ ̅̅  are on the same side of 

line 𝐴𝐵 ⃡     and that all the points of side 𝐷𝐴̅̅ ̅̅  are on the same side of line 𝐵𝐶 ⃡    .  

Conclusion. 

(8) Conclude that all the points of any given side lie on the same side of the line determined 

by the opposite side. (by (4), (6), (7)) That is, Statement (i) is true. 

End of proof that (iii)  (i) 

 

The preceeding theorem tells us that in our axiomatic geometry the three statements about 

quadrilaterals are indeed equivalent. Therefore, we can use any one of the three statements as the 

definition of a “Type I” quadrilateral. Most geometry books refer to this type of quadrilateral as a 
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“convex quadrilateral,” so I will use that terminology. And I will use statement (i) as the 

definition. 

 

Definition 40 convex quadrilateral 

A convex quadrilateral is one in which all the points of any given side lie on the same side of 

the line determined by the opposite side. A quadrilateral that does not have this property is 

called non-convex. 

 

Digression to Discuss the Definition of a Convex Quadrilateral 

 

It should be remarked the definition of a convex quadrilateral does not resemble our previous 

Definition of a convex set. Recall that definition. 

 

Definition 35 of a convex set. 

 Without names: A set is said to be convex if for any two distinct points that are elements 

of the set, the segment that has those two points as endpoints is a subset of the set.  

 With names: Set 𝑆 is said to be convex if for any two distinct points 𝑃, 𝑄 ∈ 𝑆, the 

segment 𝑃𝑄̅̅ ̅̅ ⊂ 𝑆. 

 

This earlier definition of convex is familiar, resembling the kind of defnition of convex that you 

probably first encountered in grade school. It is natural to wonder why this early definition could 

not be used to define the notion of a convex quadrilateral. The reason is that a quadrilateral is 

never convex in the sense of that earlier definition of the word. Consider the two figures below. 

 
In both figures, notice that points P,Q lie on the quadrilateral, and point R does not lie on the 

quadrilateral. Using Definition 35 of a convex set, we would have to say that neither quadrilateral 

is convex. This is not very satisfying, because quad EFGH looks convex. 

 

Clearly, the problem is that we are not considering the interior of the quadrilateral. Suppose that 

we used the following definition of convex quadrilateral: 

 

One candidate for a definition of convex quadrilateral. 

A quadrilateral would be called convex if the union of the quadrilateral and the interior of 

the quadrilateral are convex in the sense of Definition 35 of a convex set. That is, a 

quadrilateral ABCD would be said to be convex if for any two distinct points P,Q that lie 

on the quad, the segment 𝑃𝑄̅̅ ̅̅  is contained in the union of the quad and its interior. 

 

If we could use this definition, then quad ABCD would not be convex because, for instance, 

point R does not lie on the quad or in the interior of the quad. However quad EFGH would be 

considered convex because, for instance, point R does lie in the interior of the quad.  
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The candidate definition seems great. So why don’t we use it? Well, it is surprisingly hard to 

give a make a definition of the interior of a quadrilateral using the terminology of our axiomatic 

geometry. Indeed, except for triangles, it is hard to make a definition of the interior of any 

polygon in our axiomatic geometry. (To see a bit of the difficulty, look ahead to Section 11.1, on 

page 243.) So we won’t use a definition of convex quadrilateral (or convex polygon) that relies 

on the notion of the interior. That’s why we use Definition 40 of Convex Quadrilateral. 

 

End of Digression to Discuss the Definition of a Convex Quadrilateral 
 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 5.8 on page 134. 

5.7. Plane Separation in High School Geometry Books 
We were introduced to the SMSG axioms back in Section 3.10 Distance and Rulers in High 

School Geometry Books (on page 91) We observed that because they were written for a high 

school audience, the SMSG Postulates are written without some of the mathematical terminology 

that we are using in this book. It is interesting to compare the Plane Separation Postulate in 

theSMSG axiom system to our Neutral Geometry Axiom Plane Separation Axiom. 

 

SMSG Postulate 9: (Plane Separation Postulate) Given a line and a plane containing it, the 

points of the plane that do not lie on the line form two sets such that:  

 each of the sets is convex  

 if 𝑃 is in one set and 𝑄 is in the other, then segment 𝑃𝑄̅̅ ̅̅  intersects the line.  

 

<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets called 

half-planes, denoted 𝐻1 and 𝐻2, with the following properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

 

Compare what the two axioms say about half-planes 

 Our Neutral Geometry Axiom <N6> uses the terminology of half-planes, and has names 

for the half-planes. They are given the names 𝐻1, 𝐻2 and when they are discussed in 

statements (i) and (iii), they are referred to by name 

 SMSG Postulate 9 does not use the term half-plane. The first sentence of the axiom 

simply says that there are “two sets”. When the axiom refers to thes sets in the next two 

sentences, it can only refer to them as “one set” or “the other”. 

 

Compare what the two axioms say about partitions. 
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 Our Neutral Geometry Axiom <N6> says explicitly (in statement (i)) that the three sets 

𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

 SMSG Postulate 9 does not seem to say anything about a partition. But actually, if you 

read the first sentence of SMSG Postulate 9 very carefully, you will realize that it does 

contain the essence of a partition. That is, if a point does not lie on the line, then it 

apparently lies in one of the “two sets”. Well, actually, the SMSG postulate does not say 

that the point has to lie in only one of the two sets. That is, the SMSG postulate does not 

ever say that the two sets are disjoint. That is an error in the SMSG postulates. 

5.8. Exercises for Chapter 5 
Exercises for Section 5.1 Introduction to The Separation Axiom and Half-Planes 

[1] The term half-plane is discussed in Section 5.1 which begins on page 117. Which of these 

figures is the best illustration of a half-plane in Neutral Geometry? Explain. 

 

[2] In a drawing, if two points 𝑃, 𝑄 are on the same side of line 𝐿, then 

the segment connecting those two points also lies on the same side of 𝐿 

and does not intersect 𝐿. What guarantees that the same sort of thing will 

happen with abstract points and lines in Neutral Geometry? Explain. 
 

[3] Suppose that in some proof, you want to prove that two points 𝐴 and 𝐵 are in the same half 

plane of some line 𝐿. What should be your strategy?  

 

[4] Suppose that in some proof, you want to prove that two points 𝐴 and 𝐵 are not in the same 

half plane of some line 𝐿. What should be your strategy?  

 

[5] Illustrate and justify the steps in the proof of Theorem 27 (Given any line, each of its half-

planes contains at least three non-collinear points.) presented on page 120. 

 

Exercises for Section 5.2 Theorems about lines intersecting triangles 

 

[6] Illustrate and justify the steps in the proof of Theorem 28 ((Pasch’s Theorem) about a line 

intersecting a side of a triangle between vertices) presented on page 122. 

 

[7] Prove Theorem 29 (about a line intersecting two sides of a triangle between vertices) 

presented on page 122. 

 

Exercises for Section 5.3 Interiors of angles and triangles 

 

𝐿 𝑄 

𝑃 

figure (1) figure (2) figure (3) 

2 
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[8] Refer to the definition of Angle Interior (Definition 37, found on page 123). Suppose that in 

some proof, you want to prove that some point 𝑃 is in the interior of some angle ∠𝐴𝐵𝐶. What 

should be your strategy? 

 

Exercises for Section 5.4 Theorems about rays and lines intersecting triangle interiors 

 

[9] Illustrate and justify the steps in the proof of Theorem 30 (about a ray with an endpoint on a 

line) presented on page 124. 

 

[10] Prove Theorem 31 ((Corollary of Theorem 30) about a ray with its endpoint on an angle 

vertex) presented on page 125. 

 

[11] Prove Theorem 32 ((Corollary of Theorem 30.) about a segment that has an endpoint on a 

line) presented on page 125. 

 

[12] Prove Theorem 33 ((Corollary of Theorem 32.) Points on a side of a triangle are in the 

interior of the opposite angle.) presented on page 125. 

 

[13] Justify the steps in the proof of Theorem 34 (The Z Lemma) presented on page 126. 

 

Exercises for Section 5.5 A Triangle Can’t Enclose a Ray or a Line 

[13] (Advanced) Prove Theorem 36 (about a ray with its endpoint in the interior of a triangle) 

presented on page 128. 

 

[14] Illustrate and justify the steps in the proof of Theorem 37 (about a line passing through a 

point in the interior of a triangle) presented on page 128. 

 

Exercises for Section 5.6 Convex quadrilaterals 

[15] Illustrate the proof of Theorem 38 (Three equivalent statements about quadrilaterals) 

presented on page 130. 
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. 
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6.Neutral Geometry IV: The Axioms of Angle 

Measurement 
In Chapter 3, Neutral Geometry I: The Axioms of Incidence and Distance, we saw that our 

axiomatic geometry has a notion of distance that agrees with our notion of distance in drawings. 

It was the Axioms of Incidence and Distance (<N1> through <N5>) that specified the pertinent 

behavior. 

 

In drawings, we measure the size of angles with a protractor. We would like to have a similar 

notion in our axiomatic geometry, with analogous behavior. In the current chapter, we will be 

introduced to the Axioms of Angle Measurement. These axioms will ensure that our axiomatic 

geometry will have a notion of angle measure that mimics our use of a protractor to measure 

angles in drawings. We will encounter no surprises there, mostly just introductions of 

terminology. Then, angle congruence will be defined in terms of equality of angle measure, just 

as segment congruence was defined in terms of equality of segment length in Chapter 3. 

6.1. The Angle Measurement Axiom 
When we measure the size of a drawn angle with a protractor, the result is a number between 0 

and 180. We tack on the suffix “degrees”, as in “37 degrees”, or tack on a superscript open 

circle, such as in 37° as an abbreviation for “degrees”. We want to have a notion of angle 

measure in our abstract geometry, but I would like it to not include the term “degree” or the 

superscript open circle,°. In order to do that, we need to consider what role the word “degrees” 

plays in our angle measurements in drawings. 

 

Consider the protractors shown in the three drawings on the next page. Each drawing shows a 

few marks, but the actual protractors have more marks, as follows. 

 

 Protractor A has equally spaced marks from 0 to 180. 

 Protractor B has equally spaced marks from 0 to 200. 

 Protractor C has equally spaced marks from 0 to 𝜋 in increments of 
𝜋

128
. (These are all 

irrational numbers, and only a few of the marks are shown.) But this protractor also has a 

few extra marks thrown in, at the numbers 1, 2, and 3. (These are rational numbers.) 

 

Suppose that somebody uses one of the protractors to measure an angle and then tells you that 

the angle has measure 2. Is that enough information to give you an idea of how the angle looks? 

Of course not. Without knowing which protractor was used to measure the angle, you can’t 

visualize the angle. Only if you are told the number and also told which protractor was used, will 

the measurement be of any use. When the tag “degrees” or “gradians” or “radians” is put after a 

number, it is merely indicating that the number is a measure of an angle, and the tag is indicating 

which type of protractor is in use—type A or B or C. 
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If it has been declared that all measurements of angle size in drawings are to be made with 

protractors only of type A, then there would be no need to add the tag “degrees” to the 

measurements. It would be known that any number that is a measure of an angle will be a 

number that was obtained using a protractor of type A, the one that goes from 0 to 180. 

 

Now consider an equivalent situation in axiomatic geometry. 

 To say that the measure of an angle is 2 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  or 2° would mean that the measure of 

the angle is 2 when using an angle measurement function with codomain (0,180). 

 To say that the measure of an angle is 2 𝑔𝑟𝑎𝑑𝑖𝑎𝑛𝑠 would mean that the measure of the 

angle is 2 when using an angle measurement function with codomain (0,200). 

 To say that the measure of an angle is 2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 would mean that the measure of the 

angle is 2 when using an angle measurement function with codomain (0, 𝜋). 
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In this book, we will only be using one angle measurement function. Denoted by the letter 𝑚, its 

codomain is the set (0,180). Because we will only be using that one angle measurement 

function, we do not need to add a tag to our angle measurements. So instead of writing 

𝑚(∠𝐴𝐵𝐶) = 2°, we will more simply write 𝑚(∠𝐴𝐵𝐶) = 2. 

 

Note that the codomain of the angle measurement function 𝑚 is (0,180), not [0,180]. That is, 

the measure of an angle will always be a real number 𝑟 such that 0 < 𝑟 < 180. What about 𝑟 =
0 and 𝑟 = 180? In drawings, if the measure of an angle ∠𝐴𝐵𝐶 is 0, 

it means that the angle looks like the upper drawing at right. If the 

measure of an angle ∠𝐴𝐵𝐶 is 180, it means that the angle looks 

like the lower drawing. In both cass, 𝐴, 𝐵, 𝐶 are collinear. In our 

axiomatic geometry, the definition of angle includes the 

requirement that 𝐴, 𝐵, 𝐶 be non-collinear. We will not have abstract angles that are analogous to 

the “zero angle” or “straight angle” from our drawings. So our angle measurement function 𝑚 

will never need to produce an output of 0 or 180. 

 

Because 𝑚 is a function, we should know how to describe it in function notation. For that, we 

will need a symbol for the set of all angles. 

 

Definition 41 The set of all abstract angles is denoted by the symbol 𝒜. 

 

Using that symbol for the set of all angles, we can specify the function 𝑚 as follows: 

 

<N7> (Angle Measurement Axiom) There exists a function 𝑚: 𝒜 → (0,180), called the 

Angle Measurement Function. 

 

The notation indicates that 𝑚 is a function that takes as input an angle and produces as output a 

real number between 0 and 180. 

 

Even though the statement of the Angle Measurement Axiom is very simple, it is worthwhile to 

illustrate the statement with a drawing and to discuss the use of the axiom. Here is a drawing that 

illustrates the statement of the axiom: 

 
 

There are a couple of very important things to observe about the statement of Axiom <N7>. 

 Axiom <N7> does not give us the existence of the angle. The existence of the angle must 

have already been proved before Axiom <N7> can be used. 

 Axiom <N7> does not tell us anything specific about the number 𝑟 beyond the simple 

fact that the number exists and has a value in the range 0 < 𝑟 < 180. No other properties 

may be assumed for the number 𝑟. That means that whenever Axiom <N7> gets used in a 

proof, it marks the appearance of a 𝑛𝑒𝑤 number 𝑟. The new number 𝑟 has no relation to 

any number that has already appeared in the proof. Suppose, for instance, that a proof 

𝑟 

𝐶 

𝐴 𝐵 
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step states that some angle has measure 37, or has measure equal to the measure of some 

other angle. The number 37 already existed in the proof, and the measure of the other 

angle already existed. Neither of those claims can be justified by Axiom <N7>.  They 

would have to be justified in some other way. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 6.8 on page 153. 

6.2. The Angle Construction Axiom 
Here is the Angle Construction Axiom. Its statement is illustrated by the drawing below. 

 

<N8> (Angle Construction Axiom) Let 𝐴𝐵       be a ray on the edge of the half-plane 𝐻. For 

every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃       with point 𝑃 in 𝐻 

such that 𝑚(∠𝑃𝐴𝐵) = 𝑟. 

 
It is worth noting that the axiom says that there is exactly one 

ray 𝐴𝑃      . It does not say that there is exactly one point 𝑃, and 

that is for a good reason. There are many such points 𝑃. 

Consider the drawing at right. Observe that 

 

𝑚(∠𝑃1𝐴𝐵) = 𝑚(∠𝑃2𝐴𝐵) = 𝑚(∠𝑃3𝐴𝐵) = 𝑟  
 

Notice that in the drawing, the three symbols 𝐴𝑃1
        , 𝐴𝑃2

        , 𝐴𝑃3
         all represent the same ray. Theorem 

19 (about the use of different second points in the symbol for a ray.), found on page 103, tells us 

that the same thing is true in our abstract geometry. If abstract points 𝑃2 and 𝑃3 lie on abstract 

ray 𝐴𝑃1
        , then the three symbols 𝐴𝑃1

        , 𝐴𝑃2
        , 𝐴𝑃3

         all represent the same abstract ray. The Angle 

Construction Axiom <N8> is worded to reflect this. The abstract ray 𝐴𝑃       is unique; the abstract 

point 𝑃 is not. 

 

There are a couple of very important things to observe about the statement of Axiom <N8>. 

 Axiom <N8> does not give us the existence of the half-plane 𝐻, or the ray 𝐴𝐵       on the 

edge of the half-plane, or the number 𝑟. The existence of those things must have already 

been proved before Axiom <N8> can be used. 

 Axiom <N8> does not tell us anything specific about the ray 𝐴𝑃       beyond the simple fact 

that the point 𝑃 lies somewhere in half-plane 𝐻 and that 𝑚(∠𝑃𝐴𝐵) = 𝑟. No other 

properties may be assumed for the point 𝑃. That means that whenever Axiom <N8> gets 

used in a proof, it marks the appearance of a 𝑛𝑒𝑤 point 𝑃. The new point 𝑃 has no 
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relation to any objects (except half-plane 𝐻 and points 𝐴, 𝐵) that have already appeared in 

the proof. 

 

Another thing worth mentioning is that we can rephrase the Angle Construction Axiom using the 

terminology of the properties of functions. The axiom is telling us that under certain conditions, 

the angle measurement function is one-to-one and onto. To see how, recall that the symbol 𝒜 

represents the set of all angles. Suppose that 𝐴, 𝐵, 𝐶 are non-collinear points. Then points 𝐴, 𝐵 

determine a unique line 𝐴𝐵 ⃡    , and point 𝐶 is not on this line. The symbol 𝐻𝐶 could be used to 

denote the half-plane created by line 𝐴𝐵 ⃡     and containing point 𝐶. Ray 𝐴𝐵       is on the edge of the 

half-plane 𝐻𝐶. We could define the symbol 𝒜𝐴𝐵      ,𝐻𝐶
 to denote the set of all angles ∠𝐵𝐴𝑃 such 

that 𝑃 ∈ 𝐻𝐶. This is the set of all angles that have ray 𝐴𝐵       as one of their sides and have some ray 

𝐴𝑃      , where 𝑃 ∈ 𝐻𝐶, as their other side. Of course, this collection of angles is a proper subset of 

the set of all angles. In symbols, we could write 𝒜𝐴𝐵      ,𝐻𝐶
⊊ 𝒜. We can restrict the angle 

measurement function 𝑚 to the smaller set 𝒜𝐴𝐵      ,𝐻𝐶
. That is, we can consider using the function 

𝑚 only on the angles in that set. The symbol 𝑚|𝒜𝐴𝐵      ,𝐻𝐶
 is used to denote the angle measurement 

function 𝑚 restricted to the smaller set 𝒜𝐴𝐵      ,𝐻𝐶
. The angle construction axiom says that this 

restricted angle measurement function is both one-to-one and onto. 

6.3. The Angle Measure Addition Axiom 
In our drawings, we know that if a drawn point 𝐷 is in the inside of a drawn angle ∠𝐴𝐵𝐶, then 

 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐴𝐵𝐷 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐷𝐵𝐶 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐴𝐵𝐶 
 

That is, if 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐴𝐵𝐷 = 𝑥 and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐷𝐵𝐶 = 𝑦 and 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 ∠𝐴𝐵𝐶 = 𝑧, then 𝑥 + 𝑦 = 𝑧. An example is shown in the 

drawing at right. The angle addition axiom simply ensures that the same 

thing will happen with abstract angles in our axiomatic geometry. 

 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of 

∠𝐴𝐵𝐶, then 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 𝑚(∠𝐴𝐵𝐶).  

 

We should introduce some terminology for angles of the sort mentioned in Axiom <N9>. 

 

Definition 42 adjacent angles 

Two angles are said to be adjacent if they share a side but have disjoint interiors. That is, the 

two angles can be written in the form ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶, where point 𝐶 is not in the interior 

of ∠𝐴𝐵𝐷 and point 𝐴 is not in the interior of ∠𝐷𝐵𝐶.  

 

The following theorem states a small fact that is used frequently throughout the rest of the book. 

But simple as the fact is to state, it is surprisingly hard to prove. The proof is included here for 

readers interested in advanced topics and for graduate students. 

 

Theorem 39 about points in the interior of angles 

Given: points 𝐶 and 𝐷 on the same side of line 𝐴𝐵 ⃡    .  

Claim: The following are equivalent: 

𝑧 

𝐵 𝐴 
𝑥 

𝐷 𝐶 

𝑦 
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(I) 𝐷 is in the interior of ∠𝐴𝐵𝐶. 

(II) 𝑚(∠𝐴𝐵𝐷) < 𝑚(∠𝐴𝐵𝐶). 

 

Proof (for readers interested in advanced topics and for graduate students) 

Proof that (I)  (II)  

(1) Suppose that 𝐷 is in the interior of ∠𝐴𝐵𝐶. (Make a drawing.) 

(2) 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 𝑚(∠𝐴𝐵𝐶). (by the Angle Measure Addition Axiom <N9>) 

(3) 𝑚(∠𝐴𝐵𝐷) < 𝑚(∠𝐴𝐵𝐶). (because 𝑚(∠𝐷𝐵𝐶) is positive, by Axiom <N7>.) 

End of proof that (1)  (2) 

 

Proof that (~I)  (~II)  

(4) Suppose that 𝐷 is not in the interior of ∠𝐴𝐵𝐶. 

(5) There are two possibilities for point 𝐷. (Justify.) 

(i) Point 𝐷 lies on line 𝐵𝐶 ⃡    . 

(ii) Points 𝐷 and 𝐴 lie on opposite sides of line 𝐵𝐶 ⃡    .  

Case (i): Point 𝑫 lies on line 𝑩𝑪 ⃡    . 

(6) Suppose that point 𝐷 lies on line 𝐵𝐶 ⃡    . (Make a new drawing.) 

(7) Then ray 𝐵𝐷        is the same ray as 𝐵𝐶      . (Justify.) So angle ∠𝐴𝐵𝐷 is the same angle as ∠𝐴𝐵𝐶. 

Thus, 𝑚(∠𝐴𝐵𝐷) = 𝑚(∠𝐴𝐵𝐶). So Statement (II) is false in this case. 

 

Case (ii): Points 𝑫 and 𝑨 lie on opposite sides of line 𝑩𝑪 ⃡    . 

(8) Suppose that points 𝐷 and 𝐴 lie on opposite sides of line 𝐵𝐶 ⃡    . (Make a new drawing.) 

(9) Segment 𝐴𝐷̅̅ ̅̅  intersects line 𝐵𝐶 ⃡     at a point 𝐸 between 𝐴 and 𝐷. (Justify.) 

(10) Points 𝐸 and 𝐴 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) 

(11) Points 𝐸 and 𝐶 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) 

(12) Points 𝐴 and 𝐶 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) 

(13) Point 𝐶 is in the interior of ∠𝐴𝐵𝐷. (Justify.) 

(14) 𝑚(∠𝐴𝐵𝐶) + 𝑚(∠𝐶𝐵𝐷) = 𝑚(∠𝐴𝐵𝐷). (Justify.) 

(15) 𝑚(∠𝐴𝐵𝐶) < 𝑚(∠𝐴𝐵𝐷). (Justify.) So Statement (II) is false in this case.  

 

Conclusion of cases 

(16) We see that Statement (II) is false in either case..  

End of proof that (~I)  (~II) 
 

The idea of an angle bisector is very simple. Here’s a definition. 

 

Definition 43 angle bisector 

An angle bisector is a ray that has its endpoint at the vertex of the angle and passes through a 

point in the interior of the angle, such that the two adjacent angles created have equal 

measure. That is, for an angle ∠𝐴𝐵𝐶, a bisector is a ray 𝐵𝐷        such that 𝐷 ∈ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) 

and such that 𝑚(∠𝐴𝐵𝐷) = 𝑚(∠𝐷𝐵𝐶). 

 

The following theorem about the existence and uniqueness of angle bisectors is very important 

and its statement is not surprising. The proof relies on axioms <N8> and <N9> and on the 

previoius theorem about points in the interior of angles. You will justify it in a class drill. (Your 
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justifications may refer to any prior theorem and use Neutral Axioms <N2> through <N9>. You 

may not use Axiom  <N10>.) 

 

Theorem 40 Every angle has a unique bisector. 

Proof 

(1) Suppose that angle ∠𝐴𝐵𝐶 is given. (Make a drawing.) 

Introduce special ray 𝑩𝑫        and show that it is a bisector of ∠𝑨𝑩𝑪. 

(2) The real number 𝑚(∠𝐴𝐵𝐶) exists. (Justify.) 

(3) Let 𝑟 =
1

2
𝑚(∠𝐴𝐵𝐶). Let 𝐻𝐶 be the half-plane created by line 𝐴𝐵 ⃡     that contains point 𝐶. 

Observe that ray 𝐵𝐴       lies on the edge of this half-plane. (Make a new drawing.) 

(4) There exists a ray 𝐵𝐷        such that 𝐷 ∈ 𝐻𝐶 and 𝑚(∠𝐴𝐵𝐷) = 𝑟. (Justify.) (Make a new 

drawing.) 

(5) Point 𝐷 is in the interior of ∠𝐴𝐵𝐶. (by statements (2), (3), and Theorem 39 II  I) (Make 

a new drawing.) 

(6) 𝑚(∠𝐴𝐵𝐷) = 𝑚(∠𝐷𝐵𝐶). (Justify. This will take 2 or 3 steps) 

(7) Ray 𝐵𝐷        is a bisector of ∠𝐴𝐵𝐶. (Justify.) (Make a new drawing.) 

Show that ray 𝑩𝑫        is the only bisector of ∠𝑨𝑩𝑪. 

(8) Suppose that ray 𝐵𝐸       is a bisector of ∠𝐴𝐵𝐶. (Make a new drawing.) 

(9) Point 𝐸 is in the interior of ∠𝐴𝐵𝐶 and 𝑚(∠𝐴𝐵𝐸) = 𝑚(∠𝐸𝐵𝐶). (Justify.) (Make a new 

drawing.) 

(10) 𝑚(∠𝐴𝐵𝐸) =
1

2
𝑚(∠𝐴𝐵𝐶). (Justify.) 

(11) Points 𝐸 and 𝐶 are on the same side of line 𝐴𝐵 ⃡    . (Justify.) (Make a new drawing.) 

(12) Point 𝐸 is in half-plane 𝐻𝐶. (Justify.) (Make a new drawing.) 

(13) Ray 𝐵𝐸       is the same ray as 𝐵𝐷       . (Justify.) (Make a new drawing.) 

End of Proof 

 

The above proof of Theorem 40 about the existence & uniqueness of an angle bisector depended 

on Theorem 39 about points in the interior of angles. Considered as a pair, those two theorems 

could be thought of as a long and difficult two-part proof of the existence & uniqueness of an 

angle bisector. Having gotten through that difficult two-part proof, I will now tell you the 

charming news that in the next chapter we will find that if we use the Axiom of Triangle 

Congruence, <N10>, there is a much easier proof of the existence and uniqueness of the angle 

bisector. Most books present only that easier proof. But it is worthwhile to study the two difficult 

proofs that we just studied, for at least three reasons: (1) they show that the existence & 

uniqueness of the angle bisector does not depend on the notion of triangle congruence, (2) the 

proof of Theorem 40 lets us see the Axiom of Separation used in conjunction with the Axioms of 

Angle Measurement and (3) seeing both the difficult proofs above and the forthcoming easier 

proof will provide us motivation to always search for alternate ways of proving things. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 6.8 on page 153. 

6.4. The Linear Pair Theorem 
Consider the angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 in the drawing at right below. Points 𝐴, 𝐵, 𝐶 are collinear. 
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I have superimposed a protractor on the drawing. We 

see that if the protractor measure of drawn angle 

∠𝐴𝐵𝐷 is 𝑥 

and the protractor measure of drawn angle ∠𝐷𝐵𝐶 is 

𝑦, 

then 𝑥 + 𝑦 = 180.  

We expect an analogous thing to happen in our abstract geometry. Will it? 

 

To answer that question, it will help to introduce the terminology of a linear pair of angles. 

 

Definition 44 linear pair 

Two angles are said to be a linear pair if they share one side, and the sides that they do not 

share are opposite rays. That is, if the two angles can be written in the form ∠𝐴𝐵𝐷 and 

∠𝐷𝐵𝐶, where 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Now, what about the sum of the measures of the abstract angles in a linear pair? Notice that the 

drawn linear pair in our drawing could be considered as just a special case of the drawing of 

adjacent angles at the beginning of Section 6.3, on page 141. All that is special about the drawn 

linear pair is the additional fact that 𝐴, 𝐵, 𝐶 are collinear. One might wonder if the Angle 

Addition Axiom <N9> will guarantee that abstract angles in an abstract linear pair will satisfy 

the equation 

 

𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 180. 
 

The answer to this question is no, for a fairly simple reason. The Angle Addition Axiom <N9> 

refers to three angles: ∠𝐴𝐵𝐷, ∠𝐷𝐵𝐶, ∠𝐴𝐵𝐶. If two angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 form a linear pair, 

then the three points 𝐴, 𝐵, 𝐶 are collinear, so they will not form an angle ∠𝐴𝐵𝐶. So the Angle 

Addition Axiom does not apply in the situation where two angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 form a 

linear pair. So if we want to know that the equation 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 180 is true for 

angles in a linear pair, it will have to be specified in an another axiom or proven in a theorem. 

 

It turns out that we don’t need to specify in an additional axiom that the equation is true for 

angles in a linear pair, because we can prove it in a theorem.  

 

Theorem 41 Linear Pair Theorem.  

If two angles form a linear pair, then the sum of their measures is 180. 

 

Proof (for readers interested in advanced topics and for graduate students) 
(1) Suppose that two angles form a linear pair. 

(2) The angles can be labeled ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 where 𝐴 ∗ 𝐵 ∗ 𝐶. (Justify.) (Make a 

drawing.) 

(3) Let 𝑥 = 𝑚(∠𝐴𝐵𝐷) and 𝑦 = 𝑚(∠𝐷𝐵𝐶). (Update your drawing.) 

 

Show that 𝒙 + 𝒚 cannot be less than 𝟏𝟖𝟎. 

(4) Suppose that 𝑥 + 𝑦 < 180. (assumption) 

(5) Let 𝑟 = 𝑥 + 𝑦. 

(6) Then 0 < 𝑥 < 𝑟 < 180. (Justify.) 

180 

𝐵 𝐶 

𝑦 

𝐷 

𝑥 

𝐴 
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(7) Let 𝐻𝐷 be the half-plane created by line 𝐴𝐶 ⃡     that contains point 𝐷. (Make a new drawing.) 

(8) There exists a ray 𝐵𝐸       such that 𝐸 ∈ 𝐻𝐷 and 𝑚(∠𝐴𝐵𝐸) = 𝑟. (Justify.) (Make a new 

drawing.) 

(9) Observe that 𝐵𝐶       and 𝐵𝐸       are not the same ray (because 𝐸 does not lie on line 𝐴𝐵 ⃡    ). 

(10) Point 𝐷 is in the interior of ∠𝐴𝐵𝐸. (Justify.) 

(11) 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐸) = 𝑟. (Justify.) 

(12) Therefore, 𝑚(∠𝐷𝐵𝐸) = 𝑦. (Make a new drawing.) 

(13) Ray 𝐵𝐷        intersects segment 𝐴𝐸̅̅ ̅̅  at a point between 𝐴 and 𝐸. (Justify.) We can label the 

point of intersection 𝐹. (Make a new drawing.) 

(14) Points 𝐴 and 𝐸 are on opposite sides of line 𝐵𝐷 ⃡    . (Justify.) 

(15) Points 𝐴 and 𝐶 are on opposite sides of line 𝐵𝐷 ⃡    . (Justify) 

(16) Points 𝐸 and 𝐶 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) 

(17) Let 𝐻𝐶 be the half-plane created by line 𝐵𝐷 ⃡     that contains point 𝐶. Observe that this half-

plane also contains point 𝐸. (Make a new drawing.) 

(18) Rays 𝐵𝐶       and 𝐵𝐸       have 𝐶 ∈ 𝐻𝐶 and 𝐸 ∈ 𝐻𝐶 and 𝑚(∠𝐷𝐵𝐶) = 𝑦 and 𝑚(∠𝐷𝐵𝐸) = 𝑦 but 

they are not the same ray. (by steps (17), (3), (12), (9)) .(Make a new drawing.) 

(19) Statement (18) is a contradiction. (What does it contradict?) Therefore, our assumption 

in step (4) was incorrect. That is, 𝑥 + 𝑦 cannot be less than 180. 

 

Show that 𝒙 + 𝒚 cannot be greater than 𝟏𝟖𝟎. 

(20) Suppose that 𝑥 + 𝑦 > 180. (assumption) (Make a new drawing.) 

(21) Then 0 < 180 − 𝑥 < 𝑦 < 180. (Justify.) 

(22) Let 𝑟 = 180 − 𝑥. Then 0 < 𝑟 < 𝑦 < 180. 

(23) Let 𝐻𝐶 be the half-plane created by line 𝐵𝐷 ⃡     that contains point 𝐶. (Make a new 

drawing.) 

(24) There exists a ray 𝐵𝐺       such that 𝐺 ∈ 𝐻𝐶 and 𝑚(∠𝐷𝐵𝐺) = 𝑟. (Justify.) (Make a new 

drawing.) 

(25) Point 𝐺 is in the interior of ∠𝐷𝐵𝐶. (Justify.) (Make a new drawing.)  

(26) Points 𝐺 and 𝐷 are on the same side of line 𝐵𝐶 ⃡     (which is also line 𝐵𝐴 ⃡    ). (Justify.) (Make 

a new drawing.) 

(27) Ray 𝐵𝐺       intersects segment 𝐶𝐷̅̅ ̅̅  at a point between 𝐶 and 𝐷. (Justify.) We can label the 

point of intersection 𝐾. (Make a new drawing.) 

(28) Points 𝐶 and 𝐷 are on opposite sides of line 𝐵𝐺 ⃡    . (Justify.) 

(29) Points 𝐶 and 𝐴 are on opposite sides of line 𝐵𝐺 ⃡    . (Justify) 

(30) Points 𝐴 and 𝐷 are on the same side of line 𝐵𝐺 ⃡    . (Justify.) 

(31) Point 𝐷 is in the interior of ∠𝐴𝐵𝐺. (Justify.) 

(32) 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐺) = 𝑚(∠𝐴𝐵𝐺). (Justify.) 

(33) 𝑥 + 𝑟 = 𝑚(∠𝐴𝐵𝐺). (Justify.) 

(34) 𝑥 + (180 − 𝑥) = 𝑚(∠𝐴𝐵𝐺). (Justify.) 

(35) 180 = 𝑚(∠𝐴𝐵𝐺). (Justify.) 

(36) Statement (36) is a contradiction. (What does it contradict?) Therefore, our assumption in 

step (20) was incorrect. That is, 𝑥 + 𝑦 cannot be greater than 180. 

Conclusion 

(37) Conclude that 𝑥 + 𝑦 = 180. 

End of Proof 
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Now that you see how difficult the proof of the Linear Pair Theorem is, you can understand why 

a typical high school book would simply include the statement as an axiom. We were introduced 

to the SMSG axioms back in Section 3.10 Distance and Rulers in High School Geometry Books 

(on page 91) Here is the SMSG axiom about linear pairs, an axiom used in many high school 

books: 

 

SMSG Postulate 14: (Supplement Postulate) If two angles form a linear pair, then they are 

supplementary. 

 

There is a converse for the Linear Pair Theorem. The converse is stated as here as a theorem but 

is not proven. You will be asked to prove it in a homework exercise. 

 

Theorem 42 Converse of the Linear Pair Theorem 

If adjacent angles have measures whose sum is 180, then the angles form a linear pair. 

That is, if angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 are adjacent and 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 180, 

then 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Proof (for readers interested in advanced topics and for graduate students) 
The proof is left to the reader. 

 

The concept of a vertical pair of angles is very simple. Here is the definition. 

 

Definition 45 vertical pair 

A vertical pair is a pair of angles with the property that the sides of one angle are the opposite 

rays of the sides of the other angle.  

 

It is a shame that such a non-descriptive name has become standard for the type of angles just 

described. It would make so much more sense to call them an “opposite pair”! But even with the 

non-descriptive name for the angles, everybody seems to remember the following theorem about 

them. 

 

Theorem 43 Vertical Pair Theorem  

If two angles form a vertical pair then they have the same measure. 

Proof 

(1) Suppose that two angles form a vertical pair. 

(2) The angles can be labeled ∠𝐴𝐵𝐶 and ∠𝐷𝐵𝐸, where 𝐴 ∗ 𝐵 ∗ 𝐷 and 𝐶 ∗ 𝐵 ∗ 𝐸. 

 

Fill in the missing steps, with justifications. 

 

(*) 𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐷𝐵𝐸). (Justify.) 

End of Proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 6.8 on page 153. 
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6.5. A digression about terminology 
One of the difficult things about axiomatic geometry is the sheer number of definitions involved. 

To some extent, this is unavoidable because there are many configurations of objects possible, 

and many observations that can be made about them. If we described every configuration and 

every observation using only the primitive terms (point, line, and lies on), our writing would 

become so bloated that it would be unreadable. So we introduce defined objects and defined 

terms to streamline our writing. But it is also a fact that there are more geometry terms in 

common usage than are actually necessary in any particular version of geometry. 

 

That last sentence is vague, so let me give an example. In this book, we have defined congruent 

segments to mean segments that have the same length. Within this book, the use of the 

expression congruent segments is completely unnecessary and adds a layer of notational hassle 

that can only cloud our understanding. Everytime you read something like “segment 𝐴𝐵̅̅ ̅̅  is 

congruent to segment 𝐶𝐷̅̅ ̅̅ ”, you have to remind yourself to perform a little internal translation 

and register the true meaning of the phrase, “segments 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  have the same length”. There 

is no question that this book would be clearer if we just omitted the definition of segment 

congruence and always referred to segments with the same length instead. 

 

So why don’t we do that? Why don’t all books do that? Let me start by answering the second 

question. In some axiomatic geometry books, there are no axioms about distance and coordinate 

functions. Think about what that implies. If there is no distance function, one cannot define the 

length of a line segment in terms of distance. If there are no coordinate functions, then one 

cannot define betweenness of points in terms of their coordinates. In some such books, one finds 

axioms about betweenness of points and congruence of segments, where between and congruent 

are primitive, undefined terms.  So the answer to the second question is that some books use 

terms like congruent segments because those books are presenting a different version of 

axiomatic geometry. 

 

For example, Hilbert’s axioms for Euclidean geometry are an axiom system in which between 

and congruent are primitive, undefined terms. One of his axioms is the following: 

 

Hilbert’s Congruence Axiom 3. If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅  

then 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅. 

 

That axiom uses only the primitive terms point, between, and congruent segments (abbreviated in 

symbols) and the logical connectives If-then and and. There is no extra layer of definitions to be 

decoded, no fat that could be trimmed to make the writing clearer. 

 

But what about the first question? If it would clarify this book to omit the definition of segment 

congruence and refer to segments with the same length instead, why not do it? The answer is that 

books should use as universal a language as possible, so that the material presented one book can 

be more easily compared to the material in others. For example, consider our Neutral Geometry 

Theorem 25. 

 

Theorem 25 Congruent Segment Addition Theorem. 

If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅  then 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅. 
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The words and symbols of our Theorem 25 exactly match the words and symbols of Hilbert’s 

Congruence Axiom 3. In our book, the statement is a theorem, not an axiom, and the terms 

between and congruent segments are defined terms, not primitive. 

But if it is sometimes worthwhile to keep a few more definitions in use than are absolutely 

necessary, it is also sometimes important to avoid certain definitions. The term supplementary 

angles is one that we will not use in this book. Even so, it is important for you to know about the 

term and to be aware of its uses in other books. 

 

In the book Euclidean and Non-Euclidean Geometries by Greenberg, the term supplementary 

angles is defined the way that I define linear pair in this book. In Greenberg’s book, a theorem 

proves that if two angles are supplementary, then the sum of their measures is 180. 

 

In the book Elementary Geometry from an Advanced Standpoint by Moise, the expression linear 

pair is defined in the same way that I define linear pair in this book. In Moise’s book, the 

expression supplementary angles is defined to mean angles whose measures add up to 180. A 

theorem proves that if two angles form a linear pair, then they are supplementary. 

 

In my book, I have chosen to use the term linear pair because the words have something to do 

with how the angles actually look. I will avoid all use of the expression supplementary angles 

because the expression is unnecessary and has inconsistent usages in the literature. If I want to 

talk about angles whose measures add up to 180, I will refer to them that way, rather than using 

some defined term. 

 

Enough of this digression. Let’s move on to study some new things. 

6.6. Right Angles and Perpendicular Lines 
Before defining right angles, it is useful to state and prove the following theorem. 

 

Theorem 44 about angles with measure 90 

For any angle, the following two statements are equivalent.  

(i) There exists another angle that forms a linear pair with the given angle and that has 

the same measure. 

(ii) The given angle has measure 90. 

Proof 

(1) Suppose that ∠𝐴𝐵𝐶 is given. 

Proof that (i)  (ii) 

(2) Suppose that statement (i) is true. That is, suppose that there exists an angle ∠𝐶𝐵𝐷 such 

that the two angles form a linear pair and such that 𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐶𝐵𝐷). 

 

(Fill in the missing steps.) 

 

(*) 𝑚(∠𝐴𝐵𝐶) = 90. That is, statement (ii) is true. 

Proof that (ii)  (i) 

(*) Suppose that statement (ii) is true. That is, suppose that 𝑚(∠𝐴𝐵𝐶) = 90. 

(*) There exists a point 𝐷 such that 𝐴 ∗ 𝐵 ∗ 𝐷. (Justify.) 

 

(Fill in the missing steps.) 
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(*) 𝑚(∠𝐶𝐵𝐷) = 90. (Justify.) 

(*) Summarizing, the two angles ∠𝐴𝐵𝐶 and ∠𝐶𝐵𝐷 form a linear pair and have the same 

measure. That is, statement (i) is true. 

End of Proof 

 

The above theorem tells us that there is something special about angles with measure 90. We 

give them a special name, and we define some related terms at the same time. 

 

Definition 46 acute angle, right angle, obtuse angle 

An acute angle is an angle with measure less than 90. 

A right angle is an angle with measure 90. 

An obtuse angle is an angle with measure greater than 90. 

In drawings, right angles are indicated by little boxes at the vertex. 

 
With the definition of right angle comes some the following related definitions of perpendicular 

lines, segments, and rays. 

 

Definition 47 perpendicular lines 

Two lines are said to be perpendicular if there exist two rays that lie in the lines and whose 

union is a right angle. The symbol 𝐿 ⊥ 𝑀 is used to denote that lines 𝐿 and 𝑀 are 

perpendicular.  

 

Note that the previous definition is very terse: it does not say much about the lines and rays. 

Even so, we can infer more than was said. Here are two observations. 

 The two rays cannot be collinear, because collinear rays do not form an angle. Therefore, 

one ray must lie in one line, and the other ray must lie in the other line, and the two lines 

cannot be the same line. 

 The rays must share an endpoint in order to form an angle. This tells us that the two lines 

must intersect. 

 

It will be useful to have a definition of perpendicular segments and perpendicular rays. We 

should consider perpendicular drawn objects in order to get an idea of how the definition should 

be worded for the corresponding abstract objects. You can certainly visualize perpendicular 

lines, so I do not need to draw a picture. And if I ask you to visualize perpendicular segments, or 

perpendicular rays, you will probably think of a drawing where two segments or two rays 

intersect at right angles. But it is very useful to define perpendicularity for segments and rays in a 

way that it does not require them to intersect. Here is the definition. 

 

Definition 48 perpendicular lines, segments, rays 

Suppose that Object 1 is a line or a segment or a ray and that Object 2 is a line or a segment 

or a ray. Object 1 is said to be perpendicular to Object 2 if the line that contains Object 1 is 

right angle not a right angle 
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perpendicular to the line that contains Object 2 by the definition of perpendicular lines in the 

previous definition. The symbol 𝐿 ⊥ 𝑀 is used to denote that objects 𝐿 and 𝑀 are 

perpendicular. 

 

Here are some pictures of perpendicular objects 

 
The definition just presented essentially expanded our definition of perpendicular to include 

more cases. The following theorem reminds us that at any intersection of perpendicular lines, 

four perpendicular angles are formed. 

 

Theorem 45 If two intersecting lines form a right angle, then they actually form four. 

 

Proof 

(1) Suppose two intersecting lines form a right angle. That is, line 𝐴𝐵 ⃡     and line 𝐴𝐶 ⃡     have the 

property that 𝑚(∠𝐵𝐴𝐶) = 90. 

(2) There exists a point 𝐷 such that 𝐷 ∗ 𝐴 ∗ 𝐵 and a point 𝐸 such that 𝐸 ∗ 𝐴 ∗ 𝐶. (Justify.) 

 

Fill in the remaining steps. 

 

End of Proof 

 

In the previous section, we studied Theorem 40 about the existence and uniqueness of angle 

bisectors. For such a simple-sounding theorem, the proof was surprisingly difficult, and used 

<N8> The Angle Construction Axiom. We will now study another simple sounding yet very 

important theorem whose proof also uses Axiom <N8>. This time, the proof will not be so hard. 

 

Theorem 46 existence and uniqueness of a line that is perpendicular to a given line through a 

given point that lies on the given line 

For any given line, and any given point that lies on the given line, there is exactly one 

line that passes through the given point and is perpendicular to the given line. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 46 

Proof 

(1) Suppose that 𝐿 is a line and 𝑃 is a point that lies on 𝐿. (Make a drawing.) 

Part 1: Show that a line exists that passes through 𝑷 and is perpendicular to 𝑳. 

perpendicular 

segments 

segment 

perpendicular to ray 

perpendicular 

segments 
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(2) There exists a second point on 𝐿. (Justify.) Call the second point 𝑄. (Make a new 

drawing.) 

(3) There exists a point that is not on 𝐿. (Justify.) Call it 𝑅. (Make a new drawing.) 

(4) Point 𝑅 lies in one of the half-planes created by line 𝐿. (Justify.) Let 𝐻𝑅 be that half-plane. 

(5) There exists a ray 𝑃𝑆      such that 𝑆 ∈ 𝐻𝑅 and 𝑚(∠𝑄𝑃𝑆) = 90. (Justify.) 

(6) Let 𝑀 be line 𝑃𝑆 ⃡   . Observe that 𝑀 passes through 𝑃 and 𝑀 ⊥ 𝐿. 

Part 2: Show that the line is unique. 

(7) Suppose that some line 𝑁 passes through 𝑃 and that 𝑁 ⊥ 𝐿. (Make a new drawing.) 

(8) There exist points 𝑇 and 𝑈 on line 𝑁 such that 𝑇 ∗ 𝑃 ∗ 𝑈. (Justify.) 

(9) Points 𝑇 and 𝑈 lie on opposite sides of line 𝐿, so exactly one of them lies in half-plane 𝐻𝑅. 

Without loss of generality (WLOG), we may assume that it is point 𝑇 that lies in half-plane 

𝐻𝑅. (If the assumption is not true, we can simply interchange the names of points 𝑇 and 𝑈 

so that the assumption is true.) (Make a new drawing.) 

(10) Note that ray 𝑃𝑇       has the property that point 𝑇 lies in half-plane 𝐻𝑅 and 𝑚(∠𝑄𝑃𝑇) = 90. 

(11) Ray 𝑃𝑇       must be the same as ray 𝑃𝑆     . (Justify.) So point 𝑇 must lie on ray 𝑃𝑆      and hence 

also on line 𝑀. Therefore, line 𝑁 is the same as line 𝑀. 

End of Proof 

 

Notice that Theorem 46 is about the existence and uniqueness of a line perpendicular to a line 

through a given point that lies on a given line. 

 
Theorem 46 

 

The proof made use of earlier theorems that relied on axioms <N2> through <N8>. 

 

Consider the different situation where there is a given line and a given point that does not lie on 

the given line. Notice that Theorem 46 does not apply to this situation. It is natural to wonder if 

there exists a unique line that passes through the given point and is perpendicular to the given 

line. This question is illustrated by the drawing below. 

 
It turns out that there does exist a unique line that passes through the given point and is 

perpendicular to the given line, but the proof requires theorems that follow from axiom <N10>. 

We will not be studying that axiom until the next chapter. So we will have to wait until the next 

chapter for the theorem about the existence and uniqueness of a line perpendicular to a given line 

through a given point that does not lie on the line. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 6.8 on page 153. 

??? 
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6.7. Angle Congruence 
In Definition 29, segment congruence, found on page104, we defined congruent segments to be 

segments that have the same length. In Section 6.5 (A digression about terminology), I pointed 

out that we did not really need to use the term congruent segments: we could just as easily refer 

to segments of equal length. The reason for using the term congruent segments was that it kept 

the language of this book more in line with the language of other books. We will define 

congruent angles in an analogous way. 

 

Definition 49 angle congruence 

Two angles are said to be congruent if they have the same measure. The symbol ≅ is used to 

indicate this. For example ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹 means 𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐷𝐸𝐹).  

 

I have postponed making this definition until now, at the end of this chapter about angle 

measure, because I wanted you to see that we really do not have to use the term congruent angles 

in this book. Throughout this chapter, it has not been an inconvenience to refer to angles of equal 

measure. But as with segment congruence, one should not feel compelled to avoid the 

terminology of angle congruence. It is too widely-used to be avoided, and there are settings 

where it must be used. An example of a setting would be Hilbert’s Axioms for Euclidean 

Geometry, where there is no angle measurement axiom, and angle congruence is a primitive, 

undefined term. 

 

The four theorems below would be necessary if we were using an axiom system where angle 

congruence is a primitive, undefined term. They are not necessary when using axiom systems 

such as ours, axiom systems that have an angle measurement axiom. But some books that use 

axiom systems like ours include these theorems, anyway. I include them here, and will assign 

their proofs to you as exercises, so that you will be familiar with them. 

 

Theorem 47 Angle congruence is an equivalence relation. 

 

Theorem 48 Congruent Angle Construction Theorem 

Let 𝐴𝐵       be a ray on the edge of a half-plane 𝐻. For any angle ∠𝐶𝐷𝐸, there is exactly one 

ray 𝐴𝑃       with point 𝑃 in 𝐻 such that ∠𝑃𝐴𝐵 ≅ ∠𝐶𝐷𝐸. 

 

Theorem 49 Congruent Angle Addition Theorem 

If point 𝐷 lies in the interior of ∠𝐴𝐵𝐶 and point 𝐷′ lies in the interior of ∠𝐴′𝐵′𝐶′, and 

∠𝐴𝐵𝐷 ≅ ∠𝐴′𝐵′𝐷′ and ∠𝐷𝐵𝐶 ≅ ∠𝐷′𝐵′𝐶′, then ∠𝐴𝐵𝐶 ≅ ∠𝐴′𝐵′𝐶′. 
 

Theorem 50 Congruent Angle Subtraction Theorem 

If point 𝐷 lies in the interior of ∠𝐴𝐵𝐶 and point 𝐷′ lies in the interior of ∠𝐴′𝐵′𝐶′, and 

∠𝐴𝐵𝐷 ≅ ∠𝐴′𝐵′𝐷′ and ∠𝐴𝐵𝐶 ≅ ∠𝐴′𝐵′𝐶′, then ∠𝐷𝐵𝐶 ≅ ∠𝐷′𝐵′𝐶′. 
 

. 
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6.8. Exercises for Chapter 6 
Exercises for Section 6.1 The Angle Measurement Axiom 

 

[1] Are there straight angles in our Neutral Geometry? Explain. 

[2] Can an angle have measure 180 in our Neutral Geometry? Explain? 

[3] Can an angle have measure 0 in our Neutral Geometry? Explain. 

 

[4] In our Neutral Geometry, if 𝑚(∠𝐴𝐵𝐶) = 1.37, does that mean 1.37 degrees, or 1.37 

gradians, or 1.37 radians? Explain. 

 

[5] In our Neutral Geometry, why do angle measurements not get labeled as degrees, gradians, or 

radians? Explain. 

 

[6] Here is a statement and justification from a proof written by Waldo. What’s wrong with it? 

(17) Angle ∠𝐷𝐸𝐹 has measure 𝑚(∠𝐷𝐸𝐹) = 90. (By Angle Measurement Axiom <N7>) 

 

Exercises for Section 6.3 The Angle Measure Addition Axiom 

 

[7] (advanced) Draw diagrams to illustrate and justify the steps in the proof of Theorem 39 

(about points in the interior of angles) found on page 141. 

 

[8] Draw diagrams to illustrate and justify the steps in the proof of Theorem 40 (Every angle has 

a unique bisector.), found on page 143. 

 

Exercises for Section 6.4 The Linear Pair Theorem 

 

[9] (advanced) Draw diagrams to illustrate and justify the steps in the proof of Theorem 41 

(Linear Pair Theorem.) found on page 144. 

 

[10] Here is an idea for a short proof of Theorem 41 (Linear Pair Theorem.). It much shorter than 

the proof on page 144. 

Idea for a Proof of the Linear Pair Theorem 

(1) Suppose that two angles form a linear pair. 

(2) The angles can be labeled ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 

where 𝐴 ∗ 𝐵 ∗ 𝐶. 

(3) Consider the angles of triangles Δ𝐴𝐵𝐷 and 

Δ𝐷𝐵𝐶 and Δ𝐴𝐷𝐶 as shown in the diagram at 

right. The six letters 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 stand for the 

measures of the six angles shown. 
 

(4) 𝑢 + 𝑣 + 𝑧 = 180 (because the measures of the three angles of any triangle add up to 180). 

(5) 𝑤 + 𝑥 + 𝑦 = 180 (for the same reason). 

(6) Therefore, 𝑢 + 𝑣 + 𝑤 + 𝑥 + 𝑦 + 𝑧 = 360. 

(7) But 𝑢 + 𝑣 + 𝑤 + 𝑥 = 180 (because the measures of the three angles of triangle Δ𝐴𝐷𝐶 add 

up to 180). 

(8) Therefore, 𝑦 + 𝑧 = 180. 

End of Proof 

𝐵 𝐶 

𝐷 

𝐴 

𝑢 

𝑣 𝑤 

𝑥 𝑦 𝑧 
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Is this a valid proof? Can it be used as the proof of our Theorem 41? Explain. 

 

[11] Theorem 41 (Linear Pair Theorem.), found on page 144, states that if two angles form a 

linear pair, then the sum of the measures of their angles is 180. An attempt at a proof is shown 

below. For statements (2), (3), (4), either justify the statement or explain why the statement is 

invalid. 

 

Proof 

(1) Suppose that two angles form a linear pair. 

 

(2)The angles can be labeled ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 with 𝐴 ∗
𝐵 ∗ 𝐶. 

Justify or explain why the statement is invalid: _______ 

_____________________________________________ 

_____________________________________________ 
 

 

(3) 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 𝑚(∠𝐴𝐵𝐶) 

Justify or explain why the statement is invalid: _______ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 
 

 

(4) 𝑚(∠𝐴𝐵𝐶) = 180 

Justify or explain why the statement is invalid: _______ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________  
 

(5) Therefore, 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 180 (by 

statements (3) and (4) and transitivity). 

 
End of Proof 

 

[12] (advanced) Prove Theorem 42 (Converse of the Linear Pair Theorem), found on page 146. 

Hint: The goal is to show that 𝐴 ∗ 𝐵 ∗ 𝐶. Show that there exists a point 𝐸 such that 𝐴 ∗ 𝐵 ∗ 𝐸. 

Show that 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐸) = 180. Then find a way to show that rays 𝐵𝐶       and 𝐵𝐸       must 

be the same ray. Use that to reach a conclusion. 

 

[13] Fill in the missing steps and justifications for the proof of Theorem 43 (Vertical Pair 

Theorem), on page 146. Write up the complete proof with numbered steps. Make drawings. 

 

Exercises for Section 6.6 Right Angles and Perpendicular Lines 

 

𝐵 𝐶 

𝐷 

𝐴 

𝐵 𝐶 

𝐷 

𝐴 

180 

𝐵 𝐶 𝐴 

𝑥 + 𝑦 = 180 

𝐵 𝐶 

𝑦 

𝐷 

𝑥 

𝐴 
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[14] Fill in the missing steps and justifications for the proof of Theorem 44 (about angles with 

measure 90), found on page 148. Write up the complete proof with numbered step and drawings. 

 

[15] In the figure at right, 

Points 𝐴, 𝐵, 𝐶 are collinear. 

Ray 𝐵𝐸       bisects angle ∠𝐴𝐵𝐷. 

Ray 𝐵𝐹       bisects angle ∠𝐷𝐵𝐶. 

Prove that angle ∠𝐸𝐵𝐹 is a right angle.  
Hint: Let 𝑥 = 𝑚(∠𝐴𝐵𝐸) = 𝑚(∠𝐸𝐵𝐷) and let 𝑦 = 𝑚(∠𝐷𝐵𝐹) = 𝑚(∠𝐹𝐵𝐶). 

 

[16] Fill in the missing steps and justifications for the proof of Theorem 45 (If two intersecting 

lines form a right angle, then they actually form four.), found on page 150. Write up the 

complete proof with numbered steps. Make drawings to illustrate. 

 

[17] Draw diagrams to illustrate and justify the steps in the proof of Theorem 46 (existence and 

uniqueness of a line that is perpendicular to a given line through a given point that lies on the 

given line), found on page 150. 

 

Exercises for Section 6.7 Angle Congruence 

 

[18] Prove Theorem 47 (Angle congruence is an equivalence relation.), found on page 152. 

 

[19] Prove Theorem 48 (Congruent Angle Construction Theorem), found on page 152. Hints: 

 Think about proof structure. All the given information should go in the first step. 

 Use the angle measurement axiom to state that there is a number 𝑟 = 𝑚(∠𝐶𝐷𝐸). 

 Then use the angle construction axiom. 

 Then use the definition of congruence. 

 

[20] Prove Theorem 49 (Congruent Angle Addition Theorem), found on page 152. Hints: 

 Think about proof structure. All the given information should go in the first step. 

 Use the angle measurement axiom to state that there are numbers that are measures of the 

angles involved. (Give the numbers letter names.) 

 Use the definition of congruence to tell you about some equalities among the numbers 

that you have introduced 

 Then use the angle measure addition axiom to find out more about the numbers. 

 Then use the definition of congruence again. 

 

 

  

𝐵 𝐶 

𝐷 

𝐴 

𝐸 𝐹 

𝑥 
𝑥 

𝑦 𝑦 
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7.Neutral Geometry V: The Axiom of 

Triangle Congruence 
In this chapter we will be introduced to the notion of triangle congruence and to the last axiom of 

Neutral Geometry. Before starting that project, it is a good idea to review the meaning of 

equality of sets. 

 

Definition 50 symbol for equality of two sets 

Words: 𝑆 𝑒𝑞𝑢𝑎𝑙𝑠 𝑇. 

Symbol: 𝑆 = 𝑇. 

Usage: 𝑆 and 𝑇 are sets. 

Meaning: 𝑆 and 𝑇 are the same set. That is, every element of set 𝑆 is also an element of set 

𝑇, and vice-versa. 

 

It is worthwhile to consider a few examples. Refer to the drawing below. 

 
(1) The statement “Δ𝐴𝐵𝐶 = Δ𝐴𝐵𝐶” is true because the two sets are clearly the same. 

 

(2) The statement “Δ𝐴𝐵𝐶 = Δ𝐴𝐶𝐵” is true. To see why, observe that 

Δ𝐴𝐵𝐶 = 𝐴𝐵̅̅ ̅̅ ∪ 𝐵𝐶̅̅ ̅̅ ∪ 𝐶𝐴̅̅ ̅̅ = 𝐵𝐴̅̅ ̅̅ ∪ 𝐶𝐵̅̅ ̅̅ ∪ 𝐴𝐶̅̅ ̅̅ = 𝐴𝐶̅̅ ̅̅ ∪ 𝐶𝐵̅̅ ̅̅ ∪ 𝐵𝐴̅̅ ̅̅ = Δ𝐴𝐶𝐵 

(3) The statement “Δ𝐴𝐵𝐶 = Δ𝐷𝐸𝐹” is false because the sets are not the same. Point 𝐷 is in set 

Δ𝐷𝐸𝐹 but it is not in set Δ𝐴𝐵𝐶. 

 

In this section, we will learn about triangle congruence. We will learn that triangles Δ𝐴𝐵𝐶 and 

Δ𝐷𝐸𝐹 in the drawing above are congruent, and we will learn that the symbol Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹  is 

appropriate. But that is not the same thing as saying that the triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are 

equal. We have seen that they are not equal. 

7.1. The Concept of Triangle Congruence 

7.1.1. Correspondences between parts of triangles 

The term correspondence is used in almost any discussion of triangle congruence, and in almost 

any theorem about triangle congruence, so we start our presentation of the concept of triangle 

congruence by defining the term. 

 

Definition 51 function, domain, codomain, image, machine diagram, correspondence 

Symbol: 𝑓: 𝐴 → 𝐵  

Spoken: “𝑓 is a function that maps 𝐴 to 𝐵.” 

Usage: 𝐴 and 𝐵 are sets. Set 𝐴 is called the domain and set 𝐵 is called the codomain. 

Meaning: 𝑓 is a machine that takes an element of set 𝐴 as input and produces an element of 

set 𝐵 as output. 

𝐷 𝐸 

𝐹 

30 

60 

90 

𝐴 𝐵 

𝐶 

√3 

2 
1 

30 

60 

90 

√3 

2 
1 
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More notation: If an element 𝑎 ∈ 𝐴 is used as the input to the function , then the symbol 

𝑓(𝑎) is used to denote the corresponding output. The output 𝑓(𝑎) is called the 

image of 𝑎 under the map 𝑓. 

Machine Diagram: 

   
Additional notation:  If 𝑓 is both one-to-one and onto (that is, if 𝑓 is a bijection), then the 

symbol 𝑓: 𝐴 ↔ 𝐵 will be used. In this case, 𝑓 is called a correspondence between 

the sets 𝐴 and 𝐵. 

 

Correspondences play a key role in the concepts of triangle similarity and congruence, and they 

will also play a key role in the concepts of polygon similarity and congruence, so we should do a 

few examples to get more familiar with them.  

 

Examples 

 

(1) Let 𝑓: ℝ → ℝ be the cubing function, 𝑓(𝑥) = 𝑥3. Then 𝑓 is one-to-one and onto, so we could 

say that 𝑓 is a correspondence, and we would write 𝑓: ℝ ↔ ℝ. 

 

(2) Let 𝑆1 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} and 𝑆2 = {𝐿, 𝑀, 𝑁, 𝑂, 𝑃}. Define a function 𝑓: 𝑆1 → 𝑆2 by this 

picture: 

 
Then we would say that 𝑓 is a correspondence, and we would write 𝑓: 𝑆1 ↔ 𝑆2. It would be 

appropriate to replace all of the arrows in the diagram with double arrows, ↔. 

 

(3) For the same example as above, we could display the correspondence more concisely: 

 

𝐴 ↔ 𝑁 
𝐵 ↔ 𝑃 
𝐶 ↔ 𝐿 
𝐷 ↔ 𝑀 
𝐸 ↔ 𝑂 

 

This takes up much less space, and is faster to write, than the picture. However, notice that this 

way of displaying the correspondence still uses a lot of space. 

 

input output 

𝑎 
𝑓 

Domain: 

the set 𝐴 

Codomain: 

the set 𝐵 

𝑓(𝑎) 

𝐴 
𝐵 
𝐶 
𝐷 
𝐸 

𝑓 

𝑆1 

𝐿 
𝑀 
𝑁 
𝑂 
𝑃 

𝑆2 



7.1: The Concept of Triangle Congruence 159 

(4) There is an even more concise way to display the correspondence from the above example. 

To understand the notation, though, we should first recall some conventions about brackets and 

parentheses. When displaying sets, curly brackets are used. In sets, order is not important. For 

example, 𝑆1 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} = {𝐶, 𝐴, 𝐸, 𝐷, 𝐵}. When displaying an ordered list, parentheses are 

used. So whereas the {𝐴, 𝐵} and {𝐵, 𝐴} are the same set, (𝐴, 𝐵) and (𝐵, 𝐴) are different ordered 

pairs. With that notation in mind, we will use the symbol below to denote the function 𝑓 

described in the  previous examples. 

 

(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) ↔ (𝑁, 𝑃, 𝐿, 𝑀, 𝑂) 
 

The parentheses indicate that the order of the elements is important, and the double arrow 

symbol indicates that there is a correspondence between the lists. Notice that this way of 

displaying the function is not as clear as the one in the previous example, but it takes up much 

less space. 

 

Definition 52 Correspondence between vertices of two triangles 

Words: “𝑓  is a correspondence between the vertices of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹.” 

Meaning: 𝑓 is a one-to-one, onto function with domain {𝐴, 𝐵, 𝐶} and codomain {𝐷, 𝐸, 𝐹}. 
 

Examples of correspondences between the vertices of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

(1) (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) 

(2) (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐹, 𝐸) 

(3) (𝐵, 𝐴, 𝐶) ↔ (𝐷, 𝐸, 𝐹) 

(4) (𝐵, 𝐶, 𝐴) ↔ (𝐷, 𝐹, 𝐸) 

 

Notice that the third and fourth examples are actually the same. Each 

could be illustrated by the figure shown at right. 

 
 

If a correspondence between the vertices of two triangles has been given, then there is an 

automatic correspondence between any other geometric items that are defined purely in terms of 

those vertices. For example, suppose that we are given the correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) 

between the vertices of Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. There is a correspondence between the sides of 

triangle Δ𝐴𝐵𝐶 and the sides of Δ𝐷𝐸𝐹, and a correspondence between the angles of triangle 

Δ𝐴𝐵𝐶 and the angles of Δ𝐷𝐸𝐹, since those items are defined only in terms of the vertices. For 

clarity, we can display all correspondences in a vertical list. 

 

𝐴 ↔ 𝐷 
𝐵 ↔ 𝐸 
𝐶 ↔ 𝐹 

given correspondence between vertices of Δ𝐴𝐵𝐶 and vertices of Δ𝐷𝐸𝐹. 

𝐴𝐵̅̅ ̅̅ ↔ 𝐷𝐸̅̅ ̅̅  
𝐵𝐶̅̅ ̅̅ ↔ 𝐸𝐹̅̅ ̅̅  
𝐶𝐴̅̅ ̅̅ ↔ 𝐹𝐷̅̅ ̅̅  

∠𝐴𝐵𝐶 ↔ ∠𝐷𝐸𝐹 
∠𝐵𝐶𝐴 ↔ ∠𝐸𝐹𝐷 
∠𝐶𝐴𝐵 ↔ ∠𝐹𝐷𝐸 

automatic correspondence between parts of Δ𝐴𝐵𝐶 and parts of Δ𝐷𝐸𝐹. 

 

𝐴 
𝐵 
𝐶 

𝑓 
𝐷 
𝐸 
𝐹 
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Based on the ideas of this discussion, we make the following definition. 

 

Definition 53 corresponding parts of two triangles 

Words: Corresponding parts of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

Usage: A correspondence between the vertices of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 has been given. 

Meaning: As discussed above, if a correspondence between the vertices of triangles Δ𝐴𝐵𝐶 

and Δ𝐷𝐸𝐹 has been given, then there is an automatic correspondence between the 

sides of triangle Δ𝐴𝐵𝐶 and and the sides of triangle Δ𝐷𝐸𝐹, and also between the 

angles of triangle Δ𝐴𝐵𝐶 and the angles of Δ𝐷𝐸𝐹, For example, if the correspondence 

between vertices were (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹), then corresponding parts would be pairs 

such as the pair of sides 𝐴𝐵̅̅ ̅̅ ↔ 𝐷𝐸̅̅ ̅̅  and the pair of angles ∠𝐴𝐵𝐶 ↔ ∠𝐷𝐸𝐹. 

7.1.2. Definition of Triangle Congruence 

Now that we have a clear understanding of what is meant by the phrase “corresponding parts” of 

two triangles, we can make a concise definition of triangle congruence. 

 

Definition 54 triangle congruence 

To say that two triangles are congruent means that there exists a correspondence between the 

vertices of the two triangles such that corresponding parts of the two triangles are congruent. 

If a correspondence between vertices of two triangles has the property that corresponding 

parts are congruent, then the correspondence is called a congruence. That is, the expression a 

congruence refers to a particular correspondence of vertices that has the special property that 

corresponding parts of the triangles are congruent. 

 

Remark: Many students remember the sentence “Corresponding parts of congruent triangles are 

congruent” from their high school geometry course. The acronym is, of course, “CPCTC”. We 

see now that in this book, “CPCTC” is really a summary of the definition of triangle congruence. 

That is, to say that two triangles are congruent is the same as saying that corresponding parts of 

those two triangles are congruent. This is worth restating: In this book, CPCTC is not an axiom 

and it is not a theorem; it is merely an acronym for the definition of triangle congruence. 

 

An important fact about triangle congruence is stated in the following theorem. You will be 

asked to prove the theorem in the exercises. 

 

Theorem 51 triangle congruence is an equivalence relation 

 

It is important to discuss notation at this point. It is no accident that Definition 54 above does not 

include a symbol. There is no commonly-used symbol whose meaning matches the definition of 

triangle congruence. This may surprise you, because you have all seen the symbol ≅ put between 

triangles. But that symbol means something different, and the difference is subtle. Here is the 

definition. 

 

Definition 55 symbol for a congruence of two triangles 

Symbol: Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. 

Meaning: The correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) of vertices is a congruence. 
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You should be a little confused. There is more subtlety in the notation than you might have 

realized. It is worthwhile to consider a few examples. Refer to the drawing below. 

 
Easy examples involving Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

 The statement “Δ𝐴𝐵𝐶 is congruent to Δ𝐷𝐸𝐹” is true. Proof: The correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) is a congruence. 

 The statement “Δ𝐴𝐵𝐶 is congruent to Δ𝐷𝐹𝐸” is true. Proof: The correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) is a congruence. This is the same correspondence from the previous 

example. Since there exists a correspondence that is a congruence, we say that the 

triangles are congruent. 

 The statement “Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹” is true, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐷, 𝐸, 𝐹) is a congruence. 

 The statement “Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐹𝐸” is false, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐷, 𝐹, 𝐸) is not a congruence. Observe that 𝑚(∠𝐴𝐵𝐶) = 30 while the corresponding 

angle has measure 𝑚(∠𝐷𝐹𝐸) = 60. 

 

More subtle examples involving Δ𝐴𝐵𝐶 and Δ𝐴𝐵𝐶. 

 The statement “Δ𝐴𝐵𝐶 is congruent to Δ𝐴𝐵𝐶” is true. Proof: The correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐴, 𝐵, 𝐶) is a congruence. 

 The statement “Δ𝐴𝐵𝐶 is congruent to Δ𝐴𝐶𝐵” is true. Proof: The correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐴, 𝐵, 𝐶) is a congruence. This is the same correspondence from the previous 

example. Since there exists a correspondence that is a congruence, we say that the 

triangles are congruent. 

 The statement “Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝐶” is true, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐴, 𝐵, 𝐶) is a congruence. 

 The statement “Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐶𝐵” is false, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐴, 𝐶, 𝐵) is not a congruence. Observe that 𝑚(∠𝐴𝐵𝐶) = 30 while the corresponding 

angle has measure 𝑚(∠𝐴𝐶𝐵) = 60. 

 

Examples involving Δ𝐴𝐵𝐶 and Δ𝐺𝐻𝐼. 

 The statement “Δ𝐴𝐵𝐶 is congruent to Δ𝐺𝐻𝐼” is false. There is no way to define a 

correspondence of vertices such that all corresponding parts are congruent. 

 The statement “Δ𝐴𝐵𝐶 ≅ Δ𝐺𝐻𝐼” is false, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐺, 𝐻, 𝐼) is not a congruence. Observe that 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝐶̅̅ ̅̅ ) = 1 while the corresponding side 

has  𝑙𝑒𝑛𝑔𝑡ℎ(𝐻𝐼̅̅̅̅ ) = 2. 
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7.1.3. The Axiom of Triangle Congruence 

When comparing drawn triangles, one of the things that we can do is slide one drawn triangle on 

top of another and seeing if they fit. In our drawings, we know that if enough parts of one 

drawing fit on top of the corresponding parts of another drawing, then all of the other parts will 

fit, as well. 

 

This can be said more precisely. To determine whether or not two drawn triangles fit on top of 

each other, one would officially have to verify that every pair of corresponding drawn line 

segments fit on top of each other and also that every pair of corresponding drawn angles fit on 

top of each other. That is total of six fits that must be checked. But we know that with drawings, 

one does not really need to check all six fits. Certain combinations of three fits are enough. Here 

are four examples of sets of three fits that will guarantee that two drawn triangles will fit 

perfectly on top of each other: 

 

(1) If two sides and the included angle of the first drawn triangle fit on top of the corresponding 

parts of the second drawn triangle, then all the remaining corresponding parts always fit, as well. 

 

(2) If two angles and the included side of the first drawn triangle fit on top of the corresponding 

parts of the second drawn triangle, then all the remaining corresponding parts always fit, as well.  

 

(3) If all three sides of the first drawn triangle fit on top of the corresponding parts of the second 

drawn triangle, then all the remaining corresponding parts always fit, as well.  

 

(4) If two angles and some non-included side of the first drawn triangle fit on top of the 

corresponding parts of the second drawn triangle, then all the remaining corresponding parts 

always fit, as well.  

 

We would like our abstract line segment congruence and angle congruence and triangle 

congruence to have this same sort of behavior. But if we want them to have that behavior, we 

must specify it in the Neutral Geometry axioms. One might think that it would be necessary to 

include four axioms, to guarantee that the four kinds of behavior that we observe in drawn 

triangles will also be observed in abstract triangles. But the amazing thing is that we don’t need 

to include four axioms. We can include just one axiom, about just one kind of behavior that we 

want abstract triangles to have, and then prove theorems that show that triangles will also have 

the other three kinds of desired behavior. 

 

Here is the axiom that will be included, along with the three theorems that will be presented and 

proven in the remainder of this chapter. 

 

Axiom <N10> (SAS Axiom): If there is a one-to-one correspondence between the vertices of 

two triangles, and two sides and the included angle of the first triangle are congruent to the 

corresponding parts of the second triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

The ASA Congruence Theorem: In Neutral Geometry, if there is a one-to-one correspondence 

between the vertices of two triangles, and two angles and the included side of one triangle 

are congruent to the corresponding parts of the other triangle, then all the remaining 
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corresponding parts are congruent as well, so the correspondence is a congruence and the 

triangles are congruent. 

 

The SSS Congruence Theorem: In Neutral Geometry, if there is a one-to-one correspondence 

between the vertices of two triangles, and the three sides of one triangle are congruent to 

the corresponding parts of the other triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

The AAS Congruence Theorem: In Neutral Geometry, if there is a one-to-one correspondence 

between the vertices of two triangles, and two angles and a non-included side of one 

triangle are congruent to the corresponding parts of the other triangle, then all the 

remaining corresponding parts are congruent as well, so the correspondence is a 

congruence and the triangles are congruent. 

 

Note that the statements of the three congruence theorems have been mentioned here just as an 

introduction to the coming material. The three theorems have not yet been proven and they do 

not yet have theorem numbers, so we may not yet use any of them in proofs. Soon, but not yet. 

7.1.4. Digression about the names of theorems 

A digression about the names of theorems. So far in this book, I have tagged each theorem with 

some sort of description that I made up. I will continue that practice in the coming chapters. But 

from now on, many of our theorems will have names that are widely used, and I will present 

those names as well. Many of the names follow an informal convention for naming theorems: 

They are often named for the situation described in their hypotheses. 

 

For example, suppose two theorems are stated as follows. 

 

 Theorem 1: If the dog is blue, then the car is red. 

 Theorem 2: If the car is red, then the bear is hungry. 

 

Following the naming convention, Theorem 1 would be called “The Blue Dog Theorem”, and 

Theorem 2 would be called “The Red Car Theorem”. 

 

It is important to realize that “The Red Car Theorem” could never be used to prove that a car is 

red! The Red Car Theorem tells us something about the situation in which we already know that 

the car is red. (The theorem tells us that in that situation, the bear is hungry.) If we do not know 

that the car is red, and we want to prove that the car is red, then we will need a theorem that has 

the statement “the car is red” as part of the conclusion. We see that the Blue Dog Theorem would 

work. So one strategy for proving that the car is red would be to first prove somehow that the 

dog is blue, and then use the Blue Dog Theorem to prove that the car is red. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 7.8 on page 189. 

7.2. Theorems about Congruences in Triangles 
In Section 7.1.3, we made note of four familiar behaviors of drawn triangles that we expect to 

also be manifest in the abstract triangles of our axiomatic geometry. In that section, we discussed 
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that only one of those behaviors needed to be specified in the list of axioms (Axiom <N10>, the 

SAS Congruence Axiom); the remaining three behaviors could then be proven as theorems. In 

this section, we will prove theorems about two of those three behaviors. We will prove the ASA 

Congruence Theorem and the SSS Congruence Theorem. (The fourth behavior will be proven in 

the next chapter, in the AAS Congruence Theorem.) Along the way, we will also prove a few 

other theorems about triangle behavior, theorems that will be needed for the proofs of the ASA 

and SSS Congruence Theorems and that will also be useful throughout the remainder of the book. 

 

We start with a definition of some terminology pertaining to triangles. 

 

Definition 56 scalene, isosceles, equilateral, equiangular triangles 

A scalene triangle is one in which no two sides are congruent. 

An isosceles triangle is one in which at least two sides are congruent. 

An equilateral triangle is one in which all three sides are congruent. 

An equiangular triangle is one in which all three angles are congruent. 

 

Our first theorem is commonly called the Isosceles Triangle Congruence Theorem. Notice that 

the name of this theorem fits the naming convention. That is, the name of the theorem mentions 

isosceles triangle, and it is in the hypothesis of the theorem that isosceles triangle shows up, not 

in the conclusion. I prefer to refer to it as “the CS  CA theorem for triangles” because that 

name encapsulates what the theorem actually says.  

 

Theorem 52 the CS  CA theorem for triangles (the Isosceles Triangle Theorem) 

In Neutral geometry, if two sides of a triangle are congruent, then the angles opposite those 

sides are also congruent. That is, in a triangle, if CS then CA. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 52 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 has 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅ . 

(2) Using the correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐴, 𝐶, 𝐵) between the vertices of Δ𝐴𝐵𝐶 and 

Δ𝐴𝐶𝐵, we have the following pairs of corresponding parts 

𝑝𝑎𝑟𝑡𝑠 𝑜𝑓 Δ𝐴𝐵𝐶 ↔ 𝑝𝑎𝑟𝑡𝑠 𝑜𝑓 Δ𝐴𝐶𝐵 
𝐴𝐵̅̅ ̅̅ ↔ 𝐴𝐶̅̅ ̅̅  

∠𝐶𝐴𝐵 ↔ ∠𝐵𝐴𝐶 
𝐴𝐶̅̅ ̅̅ ↔ 𝐴𝐵̅̅ ̅̅  

Observe that the corresponding parts in each of these three pairs are congruent. 

(3) The correspondence is a congruence.  (In symbols, we would write Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐶𝐵.) (by 

Axiom <N10>, the SAS congruence axiom) That is, all other pairs of corresponding parts 

are also congruent. 

(4) Therefore, ∠𝐴𝐵𝐶 ≅ ∠𝐴𝐶𝐵. 

End of proof 
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The following  corollary is not difficult to prove. You will prove it in a homework exercise. 

 

Theorem 53 (Corollary) In Neutral Geometry, if a triangle is equilateral then it is equiangular. 

 

Recall that Theorem 40 states that every angle has a unique bisector. In order to prove it in the 

previous chapter, we had to first prove Theorem 39. Together, the proofs of those two theorems 

amounted to a rather difficult proof of the existence and uniqueness of angle bisectors. I 

promised that there would be an easier proof that used triangle congruence. With Neutral Axiom 

<N10> (SAS Congruence) and Theorem 52 (CS  CA) now available as tools to prove 

theorems, an easier proof of the existence and uniqueness of angle bisectors is possible. You will 

be asked to justify the steps of an easier proof in the exercises. 

 

Now we come to our first proof of one of the triangle behaviors mentioned in Section 7.1.3. I 

have supplied a drawing for each step. You will be asked to justify the steps in a class drill. 

 

Theorem 54 the ASA Congruence Theorem for Neutral Geometry 

In Neutral Geometry, if there is a one-to-one correspondence between the vertices of two 

triangles, and two angles and the included side of one triangle are congruent to the 

corresponding parts of the other triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 54 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 

are given such that ∠𝐴𝐵𝐶 ≅
∠𝐷𝐸𝐹 and 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅  and 

∠𝐵𝐶𝐴 ≅ ∠𝐸𝐹𝐷.  

(2) There exists a point 𝐺 on ray 𝐸𝐷       

such that 𝐸𝐺̅̅ ̅̅ ≅ 𝐵𝐴̅̅ ̅̅ . (Justify.) 

(We suspect that 𝐺 is the same 

point as 𝐷, but we have not yet 

proven that, so we should not 

draw it that way.)  

(3) Δ𝐺𝐸𝐹 ≅ Δ𝐴𝐵𝐶. (Justify.) 

 

(4) ∠𝐸𝐹𝐺 ≅ ∠𝐵𝐶𝐴. (Justify.) 

 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐺 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐺 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐺 



166   Chapter 7: Neutral Geometry V: The Axiom of Triangle Congruence 

(5) ∠𝐸𝐹𝐺 ≅ ∠𝐸𝐹𝐷. (Justify.) 

 

(6) Points 𝐷 and 𝐺 are on the same 

side of line 𝐸𝐹 ⃡    . (Justify.) 

 

(7) Ray 𝐹𝐷       must be the same ray as 

𝐹𝐺      . (Justify.) 

 

(8) Line 𝐷𝐹 ⃡     can only intersect line 

𝐷𝐸 ⃡     at a single point. (Justify.)  

 

(9) Points 𝐷, 𝐺 must be the same 

point. 

 

 

(10) Δ𝐷𝐸𝐹 ≅ Δ𝐴𝐵𝐶. (Justify.) 

 

End of proof 
 

. 

7.2.1. Remarks About Drawings 

Notice the way in which the drawings are presented in the proof above. Each step is 

accompanied by a drawing. But more than that, notice that each drawing is drawn in a way to 

focus attention on the objects that were mentioned in that step of the proof. For instance, step (2) 

mentions two congruent segments. In the drawing for that step, those segments are darker, with 

little marks on them to indicate that they are congruent. Other parts of the drawing are dotted, 

which de-emphasizes them. 

 

Also recall the picture that accompanied the statement of Theorem 54. Observe that the picture is 

made up of two drawings. The drawing on the left (consisting of a pair of triangles with certain 

congruent parts indicated) illustrates the hypothesis, while the drawing on the right (consisting of 

two triangles with all corresponding parts congruent.) illustrates the conclusion. 
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Making drawings this way is clearly a lot of work, a lot more work than simply making a single 

drawing that includes all the objects mentioned in the theorem. But realize that the purpose of the 

drawings above was not to illustrate the objects mentioned in the theorem, but rather to illustrate 

the statement of the theorem or the steps of the proof. To illustrate the statement of a theorem, it 

really is helpful to have two drawings: one that illustrates the given information (or the 

hypothesis) and another one that illustrates the claim (or the conclusion). To illustrate the steps 

of a proof, it really is helpful to have a new drawing for each step. 

 

Sometimes you will be asked to provide a drawing that illustrates the statement of a theorem, and 

sometimes you will be asked to provide drawings that illustrate certain steps (or all of the steps) 

in the proof of a theorem. When I ask you to illustrate the statement of a theorem, I want you to 

make a picture that includes two drawings, one that illustrates the given information (or the 

hypothesis) and another one that illustrates the claim (or the conclusion). When I ask you to 

provide drawings that illustrate certain steps (or all of the steps), I really do mean for you to 

make lots of drawings, and to try to draw each in a way that emphasizes the information stated in 

the corresponding step. This can be tedious for you, but you will learn a lot. 

7.2.2. Return to our discussion of Theorems about Triangles 

 

Look back at the proof of Theorem 52 (the CS  CA Theorem for Triangles). That proof used 

the SAS axiom and a trick involving a correspondence between the vertices of a single triangle. A 

similar trick can be used to prove the following theorem. This theorem is called the CA  CS 

Theorem; its proof will use the same sort of trick involving a correspondence between the 

vertices of a single triangle, but the proof will cite the ASA Congruence Theorem, instead of the 

SAS axiom. You will write the proof for a homework exercise. 

 

Theorem 55 the CA  CS theorem for triangles in Neutral Geometry 

In Neutral geometry, if two angles of a triangle are congruent, then the sides opposite those 

angles are also congruent. That is, in a triangle, if CA then CS. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 55 

 

Here is an immediate corollary that is not difficult to prove. You will be asked to supply a proof 

in a homework exercise. 

 

Theorem 56 (Corollary) In Neutral Geometry, if a triangle is equiangular then it is equilateral. 

 

Consider what we know about congruent sides and congruent angles in triangles. 

 

 From Theorem 52, we know that CS  CA. 

 From Theorem 55, we know that CA  CS. 
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Combining, we have the following immediate corollary: 

 

Theorem 57 (Corollary) The CACS theorem for triangles in Neutral Geometry. 

In any triangle in Neutral Geometry, congruent angles are always opposite congruent sides. 

That is, CA  CS. 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 57 

 

So far in this section, the proofs that we have seen have been pretty easy. We end the section 

with a theorem about another of the triangle behaviors mentioned in Section 7.1.3. The proof of 

this theorem is very long and is not easy. You will study it in a homework exercise. 

 

Theorem 58 the SSS congruence theorem for Neutral Geometry 

In Neutral Geometry, if there is a one-to-one correspondence between the vertices of two 

triangles, and the three sides of one triangle are congruent to the corresponding parts of the 

other triangle, then all the remaining corresponding parts are congruent as well, so the 

correspondence is a congruence and the triangles are congruent. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 

 
Theorem 58 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are given such that 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ , and 𝐶𝐴̅̅ ̅̅ ≅ 𝐹𝐷̅̅ ̅̅ . 

 

Introduce the triangle 𝚫𝑨𝑩𝑷. 

(2) Line 𝐴𝐵 ⃡     creates two half planes. Let 𝐻𝐶 be the half plane containing 𝐶, and let 𝐻2 be the 

other one. 

(3) There exists a ray 𝐴𝐺       such that point 𝐺 is in half-plane 𝐻2 and such that ∠𝐵𝐴𝐺 ≅ ∠𝐸𝐷𝐹. 

(Justify.) 

(4) There exists a point 𝑃 on ray 𝐴𝐺       such that 𝐴𝑃̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Justify.) 

(5) Δ𝐴𝐵𝑃 ≅ Δ𝐷𝐸𝐹. (Justify.) Notice that this tells us that in addition to the congruences 

𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅  and ∠𝐵𝐴𝐺 ≅ ∠𝐸𝐷𝐹 and 𝐴𝑃̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅  that we already knew about from 

statements (1), (3), (4), we now also have the congruences 𝐵𝑃̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅  and ∠𝐴𝐵𝑃 ≅ ∠𝐷𝐸𝐹 

and ∠𝐵𝑃𝐴 ≅ ∠𝐸𝐹𝐷. 

 

Introduce the point 𝑸 and five possibilities for it. 

(6) Line 𝐴𝐵 ⃡     must intersect segment 𝐶𝑃̅̅̅̅  at a point 𝑄 between 𝐶 and 𝑃. (Justify.) 

(7) There are five possibilities for where point 𝑄 can be on line 𝐴𝐵 ⃡    . 
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(i) 𝑄 = 𝐴. 

(ii) 𝑄 = 𝐵. 

(iii) 𝐴 ∗ 𝑄 ∗ 𝐵. 

(iv) 𝑄 ∗ 𝐴 ∗ 𝐵. 

(v) 𝐴 ∗ 𝐵 ∗ 𝑄. 

 

These possibilities are illustrated in the drawings below. 

 
 

Case (i) 𝑸 = 𝑨. 

(8) Suppose 𝑄 = 𝐴. 

(9) Then ∠𝐵𝐶𝑃 ≅ ∠𝐵𝑃𝐶. (Justify.) 

(10) Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝑃. (Justify.) 

(11) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (Justify.)  

 
 

Case (ii) 𝑸 = 𝑩. 

(12) – (15) This case works just like Case (i), with the roles of 𝐴 and 

𝐵 interchanged. You will write the details of the steps, and the 

justifications, in a homework exercise. 

 
 

 

Case (iii) 𝑨 ∗ 𝑸 ∗ 𝑩. 

(16) Suppose 𝐴 ∗ 𝑄 ∗ 𝐵. 

(17) ∠𝐴𝐶𝑃 ≅ ∠𝐴𝑃𝐶. (Justify.) 

(18) ∠𝐵𝐶𝑃 ≅ ∠𝐵𝑃𝐶. (Justify.)  

 
Establish that point 𝑸 is in the interiors of two angles, then use congruent angle addition 

(19) Point 𝑄 is in the interior of ∠𝐴𝐶𝐵. (Justify.) 

(20) Point 𝑄 is in the interior of ∠𝐴𝑃𝐵. (Justify.) 

(21) ∠𝐴𝐶𝐵 ≅ ∠𝐴𝑃𝐵. (Justify.) 

(22) Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝑃. (Justify.) 

(23) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (Justify.)  

𝑄 = 𝐴 𝐵 

𝐶 

𝑃 

𝑄 = 𝐵 𝐴 

𝐶 

𝑃 

𝐴 

𝐶 

𝑃 

𝐵 𝑄 

𝑄 = 𝐴 𝐵 

𝐶 

𝑃 

(i) 𝑄 = 𝐴 

𝑄 = 𝐵 𝐴 

𝐶 

𝑃 

(ii) 𝑄 = 𝐵 

𝐴 

𝐶 

𝑃 

(iii) 𝐴 ∗ 𝑄 ∗ 𝐵 

𝐵 𝑄 𝐴 

𝐶 

𝑃 

(iv) 𝑄 ∗ 𝐴 ∗ 𝐵 

𝐵 𝑄 𝐴 

𝐶 

𝑃 

(v) 𝐴 ∗ 𝐵 ∗ 𝑄 

𝐵 𝑄 
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Case (iv) 𝑸 ∗ 𝑨 ∗ 𝑩. 

(24) Suppose 𝑄 ∗ 𝐴 ∗ 𝐵. 

(25) ∠𝐴𝐶𝑃 ≅ ∠𝐴𝑃𝐶. (Justify.) 

(26) ∠𝐵𝐶𝑃 ≅ ∠𝐵𝑃𝐶. (Justify.)  

 
Establish that point 𝑨 is in the interiors of two angles, then use congruent angle subtraction 

(27) Point 𝐴 is in the interior of ∠𝐵𝐶𝑄. (Justify.) 

(28) Point 𝐴 is in the interior of ∠𝐵𝑃𝑄. (Justify.) 

(29) ∠𝐴𝐶𝐵 ≅ ∠𝐴𝑃𝐵. (Justify.) 

(30) Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝑃. (Justify.) 

(31) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (Justify.)  

Case (v) 𝑨 ∗ 𝑩 ∗ 𝑸. 

(32) – (39) This case works just like Case (iv), with the roles of 𝐴 and 

𝐵 interchanged.  

 

 
Conclusion of cases. 

(40) We see that Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹 in every case. 

End of proof 

 

The proof just finished is the longest in the book so far. The good news is that it is one of the 

longest in the entire book. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 7.8 on page 189. 

7.3. Theorems about Bigger and Smaller Parts of 

Triangles 
The triangle theorems that we studied in the previous section dealt with congruences—

congruence of segments, or of angles, or of triangles. We now turn our attention to theorems 

involving segments or angles that are not congruent. The first of these theorems, called the 

Neutral Exterior Angle Theorem, has a difficult proof. We will need some terminology. 

 

Definition 57 exterior angle, remote interior angle 

An exterior angle of a triangle is an angle that forms a linear pair with one of the angles of 

the triangle. Each of the two other angles of the triangle is called a remote interior angle for 

that exterior angle. For example, a triangle Δ𝐴𝐵𝐶 has six exterior angles. One of these is 

∠𝐶𝐵𝐷, where 𝐷 is a point such that 𝐴 ∗ 𝐵 ∗ 𝐷. For the exterior angle ∠𝐶𝐵𝐷, the two remote 

interior angles are ∠𝐴𝐶𝐵 and ∠𝐶𝐴𝐵. 

 

Here is the Neutral Exterior Angle Theorem. You will justify the proof in a class drill 

 

Theorem 59 Neutral Exterior Angle Theorem 

𝐴 

𝐶 

𝑃 

𝐵 𝑄 
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𝐶 
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𝐵 𝑄 
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In Neutral Geometry, the measure of any exterior angle is greater than the measure of either 

of its remote interior angles. 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 59 

Proof 

(1) Suppose that a triangle and an exterior 

angle are given. 
 

Part I: Show that the measure of the given exterior angle is larger than the measure of the 

remote interior angle that the exterior point does not lie on. 

(2) Label the points so that the triangle is Δ𝐴𝐵𝐶 

and the exterior angle is ∠𝐶𝐵𝐷. The two 

remote interior angles are ∠𝐵𝐴𝐶 and 

∠𝐵𝐶𝐴. Observe that point 𝐷 lies on side 

𝐴𝐵       of ∠𝐵𝐴𝐶  

but point 𝐷 does not lie on either of the sides of angle ∠𝐵𝐶𝐴. Our goal in Part I of the 

proof will be to show that 𝑚(∠𝐶𝐵𝐷) > 𝑚(∠𝐵𝐶𝐴). 

(3) There exists a point 𝐸 that is the midpoint of side 𝐵𝐶̅̅ ̅̅ .  (Justify.) (Make a drawing.) 

(4) 𝐸𝐵̅̅ ̅̅ ≅ 𝐸𝐶̅̅ ̅̅ . (Justify.) (Update your drawing.) 

(5) There exists a point 𝐹 such that 𝐴 ∗ 𝐸 ∗ 𝐹.  (Justify.) (Make a new drawing.) 

(6) There exists a point 𝐺 on ray 𝐸𝐹       such that 𝐸𝐺̅̅ ̅̅ ≅ 𝐸𝐴̅̅ ̅̅ .  (Justify.) (Update your drawing.) 

(7) ∠𝐴𝐸𝐶 ≅ ∠𝐺𝐸𝐵. (Justify.) (Make a new drawing.) 

(8) Δ𝐴𝐸𝐶 ≅ Δ𝐺𝐸𝐵. (Justify.) (Make a new drawing.) 

 

Make observations about angles 

(9) ∠𝐴𝐶𝐸 ≅ ∠𝐺𝐵𝐸. (Justify.) (Make a new drawing.) 

Prove that Point G is in the interior of ∠𝑪𝑩𝑫 

(10) Points 𝐸 and 𝐺 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) (Make a new drawing.) 

(11) Points 𝐸 and 𝐶 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) (Make a new drawing.) 

(12) Therefore, points 𝐶 and 𝐺 are on the same side of line 𝐵𝐷 ⃡    . (Justify.) (Make a new 

drawing.) 

(13) Points 𝐴 and 𝐺 are on opposite sides of line 𝐵𝐶 ⃡    . (Justify.) (Make a new drawing.) 

(14) Points 𝐴 and 𝐷 are on opposite sides of line 𝐵𝐶 ⃡    . (Justify.) (Make a new drawing.) 

(15) Therefore, points 𝐺 and 𝐷 are on the same side of line 𝐵𝐶 ⃡    . (Justify.) (Make a new 

drawing.) 

(16) Conclude that point 𝐺 is in the interior of ∠𝐶𝐵𝐷. (Justify.) (Make a new drawing.) 

Make some more observations about angles 

(17) 𝑚(∠𝐶𝐵𝐷) > 𝑚(∠𝐶𝐵𝐺). (Justify.) 

(18) 𝑚(∠𝐶𝐵𝐷) > 𝑚(∠𝐵𝐶𝐴). (Justify.) 

 

Part II: Show that the measure of the given exterior angle is also larger than the measure 

of the remote interior angle that the exterior point does lie on. 

𝐶 

𝐷 𝐴 𝐵 

big 

small and 
big small 
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(19) There exists a point 𝐻 such that 𝐶 ∗ 𝐵 ∗ 𝐻. (Justify.) (Make a new drawing.) Observe 

that ∠𝐴𝐵𝐻 is an exterior angle for Δ𝐴𝐵𝐶 and also observe that the point 𝐻 does not lie 

on the remote interior angle ∠𝐵𝐴𝐶. 

(20) 𝑚(∠𝐴𝐵𝐻) > 𝑚(∠𝐵𝐴𝐶) (by statements identical to statements (2) through (12), but 

with points 𝐴, 𝐶, 𝐷 replaced in all statements with points 𝐶, 𝐴, 𝐻.) 

(21) 𝑚(∠𝐴𝐵𝐻) = 𝑚(𝐶𝐵𝐷). (Justify.) (Make a new drawing.) 

(22) 𝑚(∠𝐶𝐵𝐷) > 𝑚(∠𝐵𝐴𝐶). (Justify.) 

End of proof 

 

The following corollary is a very simple application of the exterior angle theorem. You will be 

asked to prove it in a homework exercise. 

 

Theorem 60 (Corollary) If a triangle has a right angle, then the other two angles are acute. 

 

In the previous section, we studied the CS  CA theorem and the CA  CS theorem, both 

having to do with congruent sides and congruent angles in a triangle. (These were combined into 

the CACS theorem.) The following three theorems are analogous, but have to do with sides and 

angles that are not the same size. You will justify the steps in the proof of the first of the three in 

a homework exercise. 

 

Theorem 61 the BS  BA theorem for triangles in Neutral Geometry 

In Neutral Geometry, if one side of a triangle is longer than another side, then the measure of 

the angle opposite the longer side is greater than the measure of the angle opposite the shorter 

side. That is, in a triangle, if BS then BA. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 61 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 has 𝐴𝐵 > 𝐴𝐶. (Make a drawing.) 

(2) There exists a point 𝐷 on ray 𝐴𝐵       such that 𝐴𝐷̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(3) 𝐴 ∗ 𝐷 ∗ 𝐵. (Justify.) 

(4) Point 𝐷 is in the interior of ∠𝐴𝐶𝐵. (Justify.) (Make a new drawing.) 

(5) 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐶𝐷). (Justify.) (Make a new drawing.) 

(6) 𝑚(∠𝐴𝐶𝐷) = 𝑚(∠𝐴𝐷𝐶). (Justify.) (Make a new drawing.) 

(7) 𝑚(∠𝐴𝐷𝐶) > 𝑚(∠𝐴𝐵𝐶). (Justify.) (Make a new drawing.) 

(8) 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐵𝐶). (Justify.) (Make a new drawing.) 

End of proof 

 

The next theorem has a fun proof in which we are able to avoid making a complicated drawing 

by being clever about applying earlier theorems. I have supplied justifications for all steps. 

 

Theorem 62 the BA  BS theorem for triangles in Neutral Geometry 

big small 

big small 
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In Neutral geometry, if the measure of one angle is greater than the measure of another angle, 

then the side opposite the larger angle is longer than the side opposite the smaller angle. That 

is, in a triangle, if BA then BS. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 62 

Proof (Method: Prove the contrapositive statement ~BS  ~BA.) 

(1) Suppose that in Δ𝐴𝐵𝐶, the inequality 𝐴𝐵 > 𝐴𝐶 is false. 

(2) There are two possibilities: either (i) 𝐴𝐵 = 𝐴𝐶 or (ii) 𝐴𝐶 > 𝐴𝐵. 

 

Case (i) 𝑨𝑩 = 𝑨𝑪 

(3) Suppose that 𝐴𝐵 = 𝐴𝐶. (assumption) (Make a drawing.) 

(4) Then 𝑚(∠𝐴𝐶𝐵) = 𝑚(∠𝐴𝐵𝐶). (by CSCA theorem applied to Δ𝐴𝐵𝐶) So in this case, 

the inequality 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐵𝐶) is false. 

 

Case (ii) 𝑨𝑪 > 𝐴𝐵 

(5) Suppose that 𝐴𝐶 > 𝐴𝐵. (assumption) (Make a new drawing.) 

(6) Then 𝑚(∠𝐴𝐵𝐶) > 𝑚(∠𝐴𝐶𝐵). (by BSBA theorem applied to Δ𝐴𝐵𝐶) So in this case, 

the inequality 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐵𝐶) is also false.  

 

Conclusion of cases 

(7) We see that in both cases, the inequality 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐵𝐶) is also false. 

End of proof 
 

Consider what we know about bigger sides and bigger angles in triangles. 

 

 From Theorem 61, we know that BS  BA. 

 From Theorem 62, we know that BA  BS. 

 

Combining, we have the following immediate corollary: 

 

Theorem 63 (Corollary) The BABS theorem for triangles in Neutral Geometry. 

In any triangle in Neutral Geometry, bigger angles are always opposite bigger sides. That is, 

BA  BS. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 63 

 

So far in this section, we studied theorems that compare the sizes of angles or segments. Our 

final theorem of the section is the Triangle Inequality for Neutral Geometry. It involves the sum 

of the lengths of segments. You will justify the steps of the proof in a homework exercise. 

 

big small 

big small 

big small 

big small 
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Theorem 64 The Triangle Inequality for Neutral Geometry 

In Neutral Geometry, the length of any side of any triangle is less than the sum of the lengths 

of the other two sides. 

That is, for all non-collinear points 𝐴, 𝐵, 𝐶, the inequality 𝐴𝐶 < 𝐴𝐵 + 𝐵𝐶 is true. 

Proof 

(1) Suppose that a triangle is given, and a side has been chosen on that triangle. (The goal is 

to show that the length of the chosen side is less than the sum of the lengths of the other 

two sides.) (Make a drawing.) 

(2) Label the triangle Δ𝐴𝐵𝐶 with 𝐴𝐶̅̅ ̅̅  the chosen side. (Now the goal is to show that 𝐴𝐶 <
𝐴𝐵 + 𝐵𝐶.) (Update your drawing.) 

(3) There exists a point 𝐷 such that 𝐴 ∗ 𝐵 ∗ 𝐷. (Justify.) (Make a new drawing.) 

(4) There exists a point 𝐸 on ray 𝐵𝐷        such that 𝐵𝐸̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(5) 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐵 + 𝐵𝐸 = 𝐴𝐸. (Justify.)  

(6) Point 𝐵 is in the interior of angle ∠𝐴𝐶𝐸. (Justify.) (Make a new drawing.) 

(7) 𝑚(∠𝐵𝐸𝐶) = 𝑚(∠𝐵𝐶𝐸). (Justify.) (Make a new drawing.) 

(8) 𝑚(∠𝐵𝐶𝐸) < 𝑚(∠𝐴𝐶𝐸). (Justify.) (Make a new drawing.) 

(9) 𝑚(∠𝐵𝐸𝐶) < 𝑚(∠𝐴𝐶𝐸). (Justify.) (Make a new drawing.) 

(10) 𝑚(∠𝐴𝐸𝐶) < 𝑚(∠𝐴𝐶𝐸). (Justify.) (Make a new drawing.) 

(11) 𝐴𝐶 < 𝐴𝐸. (Justify.) (Make a new drawing.) 

(12) 𝐴𝐶 < 𝐴𝐵 + 𝐵𝐶. (Justify.)  

End of proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 7.8 on page 189. 

7.4. Advanced Topic: Properties of the Distance 

Function 
In this section, we will examine properties of the Distance Function. Because the distance 

function is the subject of our investigation, we will not hide it in the notation. That is, we will 

write 𝑑(𝐴, 𝐶) instead of 𝐴𝐶, for example. With that more explicit notation, the “triangle 

inequality” just proven in Theorem 64 reads as follows.  

 

For all non-collinear points 𝐴, 𝐵, 𝐶, the inequality 𝑑(𝐴, 𝐶) < 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) is true. 

 

There are two important subtleties in this statement. 

 Points 𝐴, 𝐵, 𝐶 must be noncollinear (because they are vertices of a triangle). 

 The inequality is strict. That is, the symbol is < rather than ≤. 

 

It is worthwhile to consider what can be said about the three distances if we relax the restriction 

on the three points. That is, if we allow the letters 𝑃, 𝑄, 𝑅 to stand for points that are not 

necessarily collinear and not even necessarily distinct, then what can be said about the three 

distances 𝑑(𝑃, 𝑅) and 𝑑(𝑃, 𝑄) and 𝑑(𝑄, 𝑅)?  

 

The answer to that question is the following statement. 

 

For all points 𝑃, 𝑄, 𝑅, the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 
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The two important subtleties in this statement are 

 The symbols 𝑃, 𝑄, 𝑅 represent any three points, not necessarily collinear or even distinct. 

 The inequality is inclusive. That is, the symbol is ≤ rather than <. 

 

This new statement is commonly called the triangle inequality. That name is bad for two 

reasons: 

 The three letters 𝑃, 𝑄, 𝑅 do not necessarily represent the vertices of a triangle 

 We have already seen a different statement called the triangle inequality, in Theorem 64. 

 

We will distinguish our new statement from our previous statement by calling the new one the 

Distance Function Triangle Inequality. Its restatement and proof follow. The bad news about the 

proof is that there are seven cases to consider. The good news is that in each case, previous 

results tell us that the claim is true. So the proof gives us a nice opportunity to review previous 

results and to see them put together to prove something new without any new work. 

 

Theorem 65 The Distance Function Triangle Inequality for Neutral Geometry 

The function 𝑑 satisfies the Distance Function Triangle Inequality. 

That is, for all points 𝑃, 𝑄, 𝑅, the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Proof 

(1) Let 𝑃, 𝑄, 𝑅 be any three points, not necessarily collinear or even distinct. 

(2) There are seven possibilities: 

(i) All three letters refer to the same point. That is, 𝑃 = 𝑄 = 𝑅. 

(ii) 𝑃 = 𝑄 but 𝑅 is distinct. 

(iii) 𝑄 = 𝑅 but 𝑃 is distinct. 

(iv) 𝑅 = 𝑃 but 𝑄 is distinct. 

(v) The three points are distinct and collinear and 𝑃 ∗ 𝑄 ∗ 𝑅 is true. 

(vi) The three points are distinct and collinear and 𝑃 ∗ 𝑄 ∗ 𝑅 is not true. 

(vii) The three points are non-collinear.  

 

Case (i) 

(3) If 𝑃 = 𝑄 = 𝑅, then 𝑑(𝑃, 𝑅) = 0 and 𝑑(𝑃, 𝑄) = 0 and 𝑑(𝑄, 𝑅) = 0. Substituting these 

values into the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅), it becomes 0 ≤ 0 + 0. This 

inequality is true. So the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true in this case. 

 

Case (ii) 

(4) If 𝑃 = 𝑄 but 𝑅 is distinct, then 𝑑(𝑃, 𝑄) = 0 and 𝑑(𝑄, 𝑅) = 𝑑(𝑃, 𝑅). Substituting these 

into the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅), it becomes 𝑑(𝑃, 𝑅) ≤ 0 + 𝑑(𝑃, 𝑅). 

This inequality is true. So the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true in this case. 

 

Case (iii) 

(5) If 𝑄 = 𝑅 but 𝑃 is distinct, then 𝑑(𝑄, 𝑅) = 0 and 𝑑(𝑃, 𝑄) = 𝑑(𝑃, 𝑅). Substituting these 

into the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅), it becomes 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑅) + 0. 

This inequality is true. So the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true in this case. 

 

Case (iv) 
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(6) If 𝑅 = 𝑃 but 𝑄 is distinct, then 𝑑(𝑃, 𝑅) = 0 and 𝑑(𝑃, 𝑄) = 𝑑(𝑄, 𝑅). Substituting these 

into the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅), it becomes 0 ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑃, 𝑄). 

This inequality is true. So the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true in this case. 

 

Case (v) 

(7) If the three points are distinct and collinear and 𝑃 ∗ 𝑄 ∗ 𝑅 is true, then Theorem 16 in 

Section 4.1.2 tells us that the equation 𝑑(𝑃, 𝑅) = 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. So the 

inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is also true. 

 

Case (vi) 

(8) If the three points are distinct and collinear and 𝑃 ∗ 𝑄 ∗ 𝑅 is not true, then Theorem 17 in 

Section 4.1.3 tells us that the strict inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. So the 

weaker inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is also true. 

 

Case (vii) 

(9) If the three points are noncollinear, then Theorem 64 from the previous section tells us 

that the strict inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. So the weaker inequality 

𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is also true.  

 

Conclusion of cases 

(10) We see that in every case, the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

End of proof 

 

Since Theorem 64 and Theorem 65 are so similar, it is worth putting them next to each other and 

discussing the contexts in which each is useful. 

 

Theorem 64 (The Triangle Inequality) says 

 

For all non-collinear points 𝐴, 𝐵, 𝐶, the inequality 𝑑(𝐴, 𝐶) < 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) is true. 

 

Theorem 65 (The Distance Function Triangle Inequality) says 

 

For all points 𝑃, 𝑄, 𝑅, the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Theorem 64 (The Triangle Inequality) will be used in settings where one is dealing with a 

triangle. That is, if is known that three points are non-collinear, then it makes sense to make use 

of the full strength of the strict inequality. In this book, we will always be using Theorem 64, and 

we will use it to make statements about triangles. 

 

Theorem 65 (The Distance Function Triangle Inequality) is relevant to discussions about 

properties of distance functions. I will explain. 

 

In higher mathematics, the expression distance function is used in a very precise way. Given a 

set 𝑆, the expression “a distance function on 𝑆” means a function 𝑑: 𝑆 × 𝑆 → ℝ that has the 

following three properties 

 



7.4: Advanced Topic: Properties of the Distance Function 177 

(1) 𝑑 is positive definite: For all elements 𝑃 and 𝑄 of set 𝑆, 𝑑(𝑃, 𝑄) ≥ 0, and 𝑑(𝑃, 𝑄) = 0 if 

and only if 𝑃 = 𝑄. That is, if and only if 𝑃 and 𝑄 are actually the same element of set 𝑆. 

(2) 𝑑 is symmetric: For all elements 𝑃 and 𝑄 of set 𝑆, 𝑑(𝑃, 𝑄) = 𝑑(𝑄, 𝑃). 

(3) 𝑑 satisfies the distance function triangle inequality: For all elements 𝑃, 𝑄, 𝑅 of set 𝑆, the 

inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Here we should observe an important subtlety and imprecision in our axiom system. Notice that 

axiom <N4> reads 

 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the Distance 

Function on the Set of Points. 

 

That axiom calls the function 𝑑 the Distance Function on the Set of Points, but the axiom does 

not actually say that 𝑑 has the properties normally associated with the term distance function. 

Later on, it is proven in theorems that the function 𝑑 does have those properties.  

 

 Theorem 8 proves that the function 𝑑 is Positive Definite. 

 Theorem 9 proves that the function 𝑑 is Symmetric. 

 Theorem 65 proves that 𝑑 satisfies the Distance Function Triangle Inequality. 

 

So it is imprecise writing for axiom <N4> (The Distance Axiom) to call the function 𝑑 the 

Distance Function on the Set of Points before it has been proven that 𝑑 does in fact have the 

properties of a distance function. Perhaps a more precise, more correct presentation would be as 

follows 

 

 Axiom <N4> would say that a function 𝑑: 𝒫 × 𝒫 → ℝ exists, but it would not call 𝑑 the 

distance function on the set of points. 

 Theorem 8 proves that the function 𝑑 is Positive Definite. 

 Theorem 9 proves that the function 𝑑 is Symmetric. 

 Theorem 65 proves that 𝑑 satisfies the Distance Function Triangle Inequality. 

 Then an observation would be made that the function 𝑑 is qualified to be called a 

Distance Function for the Set of Points. 

 

But it is common in math books for functions to be introduced and given names that seem to 

imply that the function has certain properties before it has been proven that the function has 

those properties. This can be confusing. It is also tricky, because the writer must be careful to not 

assume any property of the function before the property has been proven. For example, in this 

book, the function 𝑑: 𝒫 × 𝒫 → ℝ is introduced in Axiom <N4> and is called the Distance 

Function on the Set of Points. This name seems to imply that the function 𝑑 is symmetric, but in 

fact the symmetry property is not guaranteed by the axiom. And this book does not assume that 

the function 𝑑 is symmetric. The symmetry property is proven in Theorem 9. After that point in 

the book, the fact can be used that 𝑑 is symmetric. But when the symmetry property is used later 

in the book, it is always justified by Theorem 9. It is not justified by the fact that axiom <N4> 

happens to call 𝑑 the distance function function on the set of points. 
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That is the end of our discussion of properties of the Distance Function. We will resume using 

the abbreviated notation for the distance between two points. For example, we will write 𝐴𝐶 

instead of 𝑑(𝐴, 𝐶). 

7.5. More About Perpendicular Lines 
In the previous chapter, we defined the concept of perpendicular and studied a number of 

theorems involving the concept. The only axioms that were used in that study were the Axioms 

of Incidence and Distance <N1> through <N5>, the Axiom of Separation <N6>, and the Axioms 

of Angle Measurement <N7> through <N9>. The chapter made no use of the Axiom of Triangle 

Congruence <N10>. In the current chapter, we are using axiom <N10>. That axiom does not 

mention perpendicular lines, but it turns out that the axiom does indirectly give us new 

information about the behavior of perpendicular lines. In this section, we will study 

perpendicular lines, making use axiom <N10> and the theorems that follow from it. 

7.5.1. The Perpendicular from a Point to a Line 

In Section 6.6, we were able to to prove Theorem 46 about the existence and uniqueness of a line 

that is perpendicular to a given line and that passes through a given point that lies on the given 

line. 

 
Theorem 46 

 

The proof makes use of earlier theorems, and those theorems rely only on axioms <N2> - <N8>. 

 

In Section 6.6, we also considered the different situation where there is a given line and a given 

point that does not lie on the given line. It was pointed out that Theorem 46 does not apply to 

this situation. It was natural to wonder if there exists a unique line that passes through the given 

point and is perpendicular to the given line. This question is illustrated by the drawing below. 

 
It turns out that there does exist a unique line that passes through the given point and is 

perpendicular to the given line, but the proof requires theorems that follow from axiom <N10>. 

 

Now that we have introduced that axiom and studied some theorems that follow from it, we are 

ready to prove the existence and uniqueness of the perpendicular from a point to a line. Part 1 of 

the proof –the proof of existence—will use theorems of angle congruence and triangle 

congruence. Part 2 of the proof—the proof of uniqueness—will use Theorem 60, a theorem 

whose proof depended on the Exterior Angle Theorem for Neutral Geometry. 

 

Theorem 66 existence and uniqueness of a line that is perpendicular to a given line through a 

given point that does not lie on the given line 

For any given line and any given point that does not lie on the given line, there is exactly 

one line that passes through the given point and is perpendicular to the given line. 

??? 
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Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 66 

Proof 

(1) Suppose that 𝐿 is a line and 𝑃 is a point that does 

not lie on 𝐿. 

 
Part 1: Show that a line 𝑴 exists that passes through 𝑷 and is perpendicular to 𝑳. 

(2) There exist distinct points 𝑄, 𝑅, 𝑆 on 𝐿. (Justify.) 

(3) There are two possibilities for angle ∠𝑃𝑅𝑄.  

(i) Angle ∠𝑃𝑅𝑄 is a right angle.  

(ii) Angle ∠𝑃𝑅𝑄 is not a right angle.  

Case (i) Angle ∠𝑃𝑅𝑄 is a right angle.  

(4) Suppose that angle ∠𝑃𝑅𝑄 is a right angle. In this 

case, line 𝑃𝑄 ⃡     is perpendicular to line 𝐿. We can 

let 𝑀 be line 𝑃𝑅 ⃡    . 

 

Case (ii): Angle ∠𝑃𝑅𝑄 is not a right angle. 
 

(5) Suppose that angle ∠𝑃𝑅𝑄 is a not right angle. 

Without loss of generality, we may assume that 

angle ∠𝑃𝑅𝑄 is acute. (If ∠𝑃𝑅𝑄 is not a right 

angle and is not acute, then it will be obtuse. But 

in that case, the angle ∠𝑃𝑅𝑆 will be acute. In 

that case, we can interchange the names of 

points 𝑄 and 𝑆 so that the angle ∠𝑃𝑅𝑄 will be 

acute.)Let 𝑥 = 𝑚(∠𝑃𝑅𝑄), so that 0 < 𝑥 < 90. 

 

(6) Line 𝑅𝑃 ⃡     creates two half planes. Let 𝐻𝑄 be the 

half plane containing 𝑄. Let 𝑟 = 2𝑥. Note that 

0 < 𝑟 < 180. 

(7) There exists a ray 𝑅𝑇       such that point 𝑇 is in half-

plane 𝐻𝑄 and 𝑚(∠𝑃𝑅𝑇) = 𝑟 = 2𝑥. (Justify.) 

(8) There exists a point 𝑈 on ray 𝑅𝑇       such that 𝑅𝑈̅̅ ̅̅ ≅
𝑅𝑃̅̅ ̅̅ . (Justify.) 

 
(9) Point 𝑄 is in the interior of angle ∠𝑃𝑅𝑈. (By Theorem 39 (II)  (I) applied to points 𝑄 

and 𝑈 on the same side of line 𝑅𝑃 ⃡    ) 

(10) Ray 𝑅𝑄       intersects segment 𝑃𝑈̅̅ ̅̅ . (Justify.) Let 𝑉 be the point of intersection. 
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(11) ∠𝑉𝑅𝑈 ≅ ∠𝑉𝑅𝑃. (by (5,6,7) and angle addition 

axiom) 

(12) Δ𝑉𝑅𝑈 ≅ Δ𝑉𝑅𝑃. (Justify.) 

(13) ∠𝑅𝑉𝑈 ≅ ∠𝑅𝑉𝑃. (Justify.) 

(14) Angles ∠𝑅𝑉𝑈 and ∠𝑅𝑉𝑃 form a linear pair. 

(Justify.) 

 
(15) 𝑚(∠𝑅𝑉𝑃) = 90. (Justify.) So line 𝑃𝑈 ⃡     is perpendicular to line 𝐿. We can let 𝑀 be line 

𝑃𝑈 ⃡    .  

 

Conclusion of cases. 

(16) We see that in every case, there exists a line 𝑀 that passes through 𝑃 and is perpendicular 

to line 𝐿. 

End of proof Part 1. 

 

Proof Part 2: Show that no other lines that pass through 𝑷 are 

perpendicular to 𝑳. 

(17) Suppose that a line 𝑁 passes through 𝑃 and intersects line 𝐿 at a 

point 𝑊 distinct from 𝑉. 

(18) Angle ∠𝑃𝑊𝑉 is acute. (by Theorem 60 applied to triangle 

Δ𝑃𝑉𝑊 with right angle ∠𝑃𝑉𝑊.) So line 𝑁 is not perpendicular to 

𝐿. 

End of Proof 
  

Now that we have proven the existence and uniqueness of the line perpendicular to a given line 

through a given point not on the given line, we can refer to “the perpendicular from a point to a 

line”. The following theorem is about the perpendicular from a point to line. The theorem has a 

very easy proof. You will justify the proof steps in a homework exercise. 

 

Theorem 67 The shortest segment connecting a point to a line is the perpendicular. 

Proof 

(1) Suppose that 𝐿 is a line and 𝑃 is a point not on 𝐿, and that 𝑄, 𝑅 are two points on 𝐿 such 

that line 𝑃𝑄 ⃡     is perpendicular to 𝐿. 

(2) ∠𝑃𝑅𝑄 is an acute angle. (Justify.) 

(3) 𝑃𝑄 < 𝑃𝑅. (Justify.)  

End of proof 

7.5.2. Altitudes in Neutral Geometry 

The previoius section was about perpendicular lines. In this section, we will study study right 

triangles and triangle altitude lines, both of which involve perpendicular lines. Here is our first 

definition: 

 

Definition 58 right triangle, and hypotenuse and legs of a right triangle 

A right triangle is one in which one of the angles is a right angle. Recall that Theorem 60 

states that if a triangle has one right angle, then the other two angles are acute, so there can 
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only be one right angle in a right triangle. In a right triangle, the side opposite the right angle 

is called the hypotenuse of the triangle. Each of the other two sides is called a leg of the 

triangle. 

 

Our first theorem of the section has such an easy proof that the theorem could really be 

considered a corollary. You will prove the theorem in an exercise 

 

Theorem 68 In any right triangle in Neutral Geometry, the hypotenuse is the longest side. 

 

Our second theorem of the section will involve the concept of an altitude line, the foot of an 

altitude, and an altitude segment of a triangle. Here are definitions. 

 

Definition 59 altitude line, foot of an altitude line, altitude segment 

An altitude line of a triangle is a line that passes through a vertex of the triangle and is 

perpendicular to the opposite side. (Note that the altitude line does not necessarily have to 

intersect the opposite side to be perpendicular to it. Also note that Theorem 66 in the 

previous subsection tells us that there is exactly one altitude line for each vertex.) The point 

of intersection of the altitude line and the line determined by the opposite side is called the 

foot of the altitude line. An altitude segment has one endpoint at the vertex and the other 

endpoint at the foot of the altitude line drawn from that vertex. For example, in triangle 

Δ𝐴𝐵𝐶, an altitude line from vertex 𝐴 is a line 𝐿 that passes through 𝐴 and is perpendicular to 

line 𝐵𝐶 ⃡    . The foot of altitude line 𝐿 is the point 𝐷 that is the intersection of line 𝐿 and line 𝐵𝐶 ⃡    . 

The altitude segment from vertex 𝐴 is the segment 𝐴𝐷̅̅ ̅̅ . Point 𝐷 can also be called the foot of 

the altitude segment 𝐴𝐷̅̅ ̅̅ . 

 

It is worth noting that an altitude segment does not always 

stay inside the triangle. Consider, for example, the two 

drawings at right. In the first drawing, altitude segment 𝐶𝐷̅̅ ̅̅  is 

inside the triangle. In the second drawing it is not.  
 

 

As with so many simple observations about behavior of objects in drawings, it can be very 

tedious to articulate and prove abstract statements about the corresponding behavior in Neutral 

Geometry. The following theorem makes a very limited claim, and yet the proof is fairly tricky. 

 

Theorem 69 (Lemma) In any triangle in Neutral Geometry, the altitude to a longest side 

intersects the longest side at a point between the endpoints. 

Given: Neutral Geometry triangle Δ𝐴𝐵𝐶, with point 𝐷 the foot of the altitude line 

drawn from vertex 𝐶 to line 𝐴𝐵 ⃡    . 

Claim: If 𝐴𝐵̅̅ ̅̅  is a longest side (that is, if 𝐴𝐵 ≥ 𝐶𝐵 and 𝐴𝐵 ≥ 𝐶𝐴), then 𝐴 ∗ 𝐷 ∗ 𝐵. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(Prove the contrapositive) 

(1) Suppose that in Neutral Geometry triangle Δ𝐴𝐵𝐶 is given, and that point 𝐷 is the foot of 

the altitude line drawn from vertex 𝐶 to line 𝐴𝐵 ⃡    , and that 𝐴 ∗ 𝐷 ∗ 𝐵 is not true. 

(2) Then there are four possibilities for where point 𝐷 can be on line 𝐴𝐵 ⃡    . 

(i) 𝐷 = 𝐴. 

𝐴 

𝐶 

𝐵 𝐷 𝐴 

𝐶 

𝐵 𝐷 
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(ii) 𝐷 = 𝐵. 

(iii) 𝐷 ∗ 𝐴 ∗ 𝐵. 

(iv) 𝐴 ∗ 𝐵 ∗ 𝐷. 

Case (i) 𝑫 = 𝑨. 

(3) Suppose 𝐷 = 𝐴. (Make a drawing.) Then ∠𝐶𝐴𝐵 is a right angle, and so Δ𝐴𝐵𝐶 is a right 

triangle with hypotenuse 𝐵𝐶̅̅ ̅̅ . 

(4) 𝐵𝐶 > 𝐴𝐵 (Justify.) 

(5) We see that in this case, side 𝐴𝐵̅̅ ̅̅  is not a longest side. 

Case (ii) 𝑫 = 𝑩. 

(6) – (8) Suppose 𝐷 = 𝐵. (Make a new drawing. Fill in the proof steps to show that in 

this case, side 𝑨𝑩̅̅ ̅̅  is not a longest side.)  

Case (iii) 𝑫 ∗ 𝑨 ∗ 𝑩. 

(9) Suppose 𝐷 ∗ 𝐴 ∗ 𝐵. (Make a new drawing.) Then Δ𝐷𝐵𝐶 is a right triangle with 

hypotenuse 𝐵𝐶̅̅ ̅̅ . 

(10) 𝐵𝐶 > 𝐷𝐵 (Justify.) 

(11) 𝐷𝐵 > 𝐴𝐵 (Justify.) 

(12) 𝐵𝐶 > 𝐴𝐵 (Justify.) 

(13) We see that in this case, side 𝐴𝐵̅̅ ̅̅  is not a longest side. 

Case (iv) 𝑨 ∗ 𝑩 ∗ 𝑫. 

(14) – (18) Suppose 𝐴 ∗ 𝐵 ∗ 𝐷. (Make a new drawing. Fill in the proof steps to show that 

in this case, side 𝑨𝑩̅̅ ̅̅  is not a longest side.) 

Conclusion of Cases 

(19) We see that in every case, side 𝐴𝐵̅̅ ̅̅  is not a longest side. 

End of proof 

 

As was mentioned before the theorem, the claim of the theorem is fairly limited. By that, I mean 

that the theorem does not address many of the configurations of altitudes in triangles that can 

occur. To get an idea of what sorts of configurations the theorem does not address, notice that the 

theorem statement involves a conditional statement: 

 

Claim: If 𝐴𝐵̅̅ ̅̅  is the longest side (that is, if 𝐴𝐵 > 𝐵𝐶 and 𝐴𝐵 > 𝐵𝐶), then 𝐴 ∗ 𝐷 ∗ 𝐵. 

 

The theorem says nothing about what may happen if 𝐴𝐵̅̅ ̅̅  is not the longest side. Indeed, if 𝐴𝐵̅̅ ̅̅  is 

not the longest side, a variety of things can happen. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 7.8 on page 189. 

7.6. A Final Look at Triangle Congruence in Neutral 

Geometry 
In Section 7.1.3, we discussed four behaviors of drawn triangles that we hoped would be 

behaviors of abstract triangles in Neutral Geometry as well. The first behavior that we described 

for drawings was guaranteed to also be manifest in Neutral Geometry triangles because Neutral 

Axiom <N10> (the SAS Congruence Axiom) guaranteed it. The second and third behaviors that 

we described for drawings were found to be manifest in Neutral Geometry as well, but it was not 

because they were guaranteed explicitly by axioms. Rather, we proved in Theorem 54 (the ASA 
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Congruence Theorem) and Theorem 58 (the SSS Congruence Theorem) that those behaviors 

would be manifest in Neutral Geometry. Here, we return to the fourth behavior of drawn 

triangles from that discussion in Section 7.1.3. We will prove that the fourth behavior will also 

be manifest in Neutral Geometry triangles. The theorem is the AAS Congruence Theorem; you 

will justify its proof in a class drill 

 

Theorem 70 the Angle-Angle-Side (AAS) Congruence Theorem for Neutral Geometry 

In Neutral Geometry, if there is a correspondence between parts of two right triangles such 

that two angles and a non-included side of one triangle are congruent to the corresponding 

parts of the other triangle, then all the remaining corresponding parts are congruent as well, 

so the correspondence is a congruence and the triangles are congruent. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 70 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that in Neutral Geometry, triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have ∠𝐴 ≅ ∠𝐷 and  ∠𝐵 ≅
∠𝐸 and 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

(2) There exists a point 𝐺 on ray 𝐵𝐴       such that 𝐵𝐺̅̅ ̅̅ ≅ 𝐸𝐷̅̅ ̅̅ . (Justify.) 

(3) Δ𝐺𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (Justify.) 

(4) ∠𝐶𝐺𝐵 ≅ ∠𝐹𝐷𝐸. (Justify.) 

(5) ∠𝐶𝐺𝐵 ≅ ∠𝐶𝐴𝐵. (Justify.) 

(6) There are three possibilities for where point 𝐺 can be on ray 𝐵𝐴      . 
(i) 𝐴 ∗ 𝐺 ∗ 𝐵. 

(ii) 𝐺 ∗ 𝐴 ∗ 𝐵. 

(iii) 𝐺 = 𝐴. 

Case (i) 𝑨 ∗ 𝑮 ∗ 𝑩. 

(7) Suppose 𝐴 ∗ 𝐺 ∗ 𝐵. (Make a drawing.) Then ∠𝐶𝐺𝐵 is an exterior angle for Δ𝐶𝐺𝐴, and 

∠𝐶𝐴𝐵 is one of its remote interior angles. 

(8) 𝑚(∠𝐶𝐺𝐵) > 𝑚(∠𝐶𝐴𝐵) (Justify.) 

(9) We have reached a contradiction. (Explain the contradiction.) Therefore, the 

assumption in step (7) was wrong. 

Case (ii) 𝑮 ∗ 𝑨 ∗ 𝑩. 

(10) – (12) Suppose 𝐺 ∗ 𝐴 ∗ 𝐵. (Make a new drawing. Fill in the proof steps to show that 

we reach a contradiction.) 

Conclusion of Cases 

(13) Since Cases (i) and (ii) lead to contradictions, we conclude that only Case (iii) is 

possible. That is, it must be that 𝐺 = 𝐴. Therefore, Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. 

End of proof 

 

Only one more congruence theorem left for Neutral Geometry! This last one is the Hypotenuse 

Leg Congruence Theorem for Neutral Geometry. Its proof uses the Angle-Angle-Side 

Congruence Theorem just proven. 

 

Theorem 71 the Hypotenuse Leg Congruence Theorem for Neutral Geometry 
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In Neutral Geometry, if there is a one-to-one correspondence between the vertices of any two 

right triangles, and the hypotenuse and a side of one triangle are congruent to the 

corresponding parts of the other triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 71 

Proof 

(1) Suppose that in Neutral Geometry, right triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have right angles at 

∠𝐴 and ∠𝐷, and congruent hypotenuses 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ , and a congruent leg 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅ , (Make 

a drawing.) 

(2) There exists a point 𝐺 such that 𝐶 ∗ 𝐴 ∗ 𝐺 and 𝐴𝐺̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Justify. It will take two 

statements.) (Make a new drawing.) 

(3) Δ𝐴𝐵𝐺 ≅ Δ𝐷𝐸𝐹. (Justify.) (Make a new drawing.) 

(4) 𝐵𝐺̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(5) 𝐵𝐺̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(6) ∠𝐶𝐺𝐵 ≅ ∠𝐺𝐶𝐵. (Justify.) (Make a new drawing.) 

(7) Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝐺. (by Theorem 70, the AAS Congruence Theorem for Neutral Geometry)  

(8) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (Justify.) 

End of proof 
 

We have one leftover theorem that deals with lengths of sides and measures of angles in triangles 

of Neutral Geometry. Consider the following situation: Suppose that Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have two 

pairs of corresponding sides that are congruent, 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . If the included angles 

are congruent, ∠𝐵𝐴𝐶 ≅ ∠𝐸𝐷𝐹, then Neutral Axiom <N10> (the SAS axiom) tells us that 

Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. Therefore, the third sides of the triangles are also congruent. That is, 𝐵𝐶̅̅ ̅̅ ≅
𝐸𝐹̅̅ ̅̅ .This is illustrated in the drawing below.  

 
(Note, it is the SAS Axiom, not the CACS theorem, that gives us the information about the 

congruent third sides. The CACS theorem (Theorem 55) cannot be used in this situation 

because the congruent angles are in different triangles!!) 

 

What if the included angles are not congruent? That is, suppose 𝑚(∠𝐵𝐴𝐶) > 𝑚(∠𝐸𝐷𝐹). What 

can be said about the triangles in that case? We know what the answer would be in the same 

situation involving drawings: side 𝐵𝐶̅̅ ̅̅  of drawn triangle Δ𝐴𝐵𝐶 would be longer than side 𝐸𝐹̅̅ ̅̅  of 

drawn triangle Δ𝐷𝐸𝐹. This is illustrated in the drawing below. 
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Well, it turns out that abstract triangles in Neutral Geometry will exhibit this same behavior. The 

Hinge Theorem proves it. 

 

Theorem 72 the Hinge Theorem for Neutral Geometry 

In Neutral Geometry, if triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅  and 

𝑚(∠𝐴) > 𝑚(∠𝐷), then 𝐵𝐶 > 𝐸𝐹. 

 

Remark: The statement of the theorem can be illustrated by the picture below. 

 
Theorem 72 

 

The proof of the Hinge Theorem is very long and involves a few cases. Studying the proof would 

not add significantly to our understanding, so I have not included a proof of the theorem in this 

book. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 7.8 on page 189. 

7.7. Parallel lines in Neutral Geometry 
In this final section of the chapter, we will study an extremely important theorem called the 

Alternate Interior Angle Theorem for Neutral Geometry. In order to understand the wording of 

the Alternate Interior Angle Theorem, we need some definitions. 

 

Definition 60 transversal 

Words: Line 𝑇 is transversal to lines 𝐿 and 𝑀. 

Meaning: Line 𝑇 intersects 𝐿 and 𝑀 in distinct points. 

 

Note that if line 𝑇 is transversal to lines 𝐿 and 𝑀, then 𝐿 and 𝑀 must be distinct lines. (The 

reason is that if 𝐿 and 𝑀 were the same line, then line 𝑇 would not be able to intersect the lines 

in distinct points.) But lines 𝐿 and 𝑀 are not required to be parallel.  

 

Definition 61 alternate interior angles, corresponding angles, interior angles on the same side 

of the transversal 

Usage: Lines 𝐿, 𝑀, and transversal 𝑇 are given. 

Labeled Points: 
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Let 𝐵 be the intersection of lines 𝑇 and 𝐿, and let 𝐸 be the intersection of lines 𝑇 and 𝑀. (By 

definition of transversal, 𝐵 and 𝐸 are not the same point.) By Theorem 15, there exist points 

𝐴 and 𝐶 on line 𝐿 such that 𝐴 ∗ 𝐵 ∗ 𝐶, points 𝐷 

and 𝐹 on line 𝑀 such that 𝐷 ∗ 𝐸 ∗ 𝐹, and points 

𝐺 and 𝐻 on line 𝑇 such that 𝐺 ∗ 𝐵 ∗ 𝐸 and 𝐵 ∗
𝐸 ∗ 𝐻. Without loss of generality, we may 

assume that points 𝐷 and 𝐹 are labeled such 

that it is point 𝐷 that is on the same side of line 

𝑇 as point 𝐴. (See the figure at right.) 

Meaning: 

Special names are given to the following eight pairs of angles: 

 The pair {∠𝐴𝐵𝐸, ∠𝐹𝐸𝐵} is a pair of alternate interior angles. 

 The pair {∠𝐶𝐵𝐸, ∠𝐷𝐸𝐵} is a pair of alternate interior angles. 

 The pair {∠𝐴𝐵𝐺, ∠𝐷𝐸𝐺} is a pair of corresponding angles. 

 The pair {∠𝐴𝐵𝐻, ∠𝐷𝐸𝐻} is a pair of corresponding angles. 

 The pair {∠𝐶𝐵𝐺, ∠𝐹𝐸𝐺} is a pair of corresponding angles. 

 The pair {∠𝐶𝐵𝐻, ∠𝐹𝐸𝐻} is a pair of corresponding angles. 

 The pair {∠𝐴𝐵𝐸, ∠𝐷𝐸𝐵} is a pair of interior angles on the same side of the transversal. 

 The pair {∠𝐶𝐵𝐸, ∠𝐹𝐸𝐵} is a pair of interior angles on the same side of the transversal. 

 

We will be interested in the situation where it is known that a pair of alternate interior angles is 

congruent. Which pair? Well, it turns out that if one pair of alternate interior angles is congruent, 

then the other pair is, as well. And each pair of corresponding angles is congruent. And each pair 

of interior angles on the same side of the transversal has measures that add up to 180. This is not 

difficult to show, and is articulated in the following theorem. You will prove the theorem in a 

homework exercise. 

 

Theorem 73 Equivalent statements about angles formed by two lines and a transversal in 

Neutral Geometry 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇, with points 𝐴, ⋯ , 𝐻 labeled as 

in Definition 61, above. 

Claim: The following statements are equivalent: 

(1) The first pair of alternate interior angles is congruent. That is, ∠𝐴𝐵𝐸 ≅ ∠𝐹𝐸𝐵. 

(2) The second pair of alternate interior angles is congruent. That is, ∠𝐶𝐵𝐸 ≅ ∠𝐷𝐸𝐵. 

(3) The first pair of corresponding angles is congruent. That is, ∠𝐴𝐵𝐺 ≅ ∠𝐷𝐸𝐺. 

(4) The second pair of corresponding angles is congruent. That is, ∠𝐴𝐵𝐻 ≅ ∠𝐷𝐸𝐻. 

(5) The third pair of corresponding angles is congruent. That is, ∠𝐶𝐵𝐺 ≅ ∠𝐹𝐸𝐺. 

(6) The fourth pair of corresponding angles is congruent. That is, ∠𝐶𝐵𝐻 ≅ ∠𝐹𝐸𝐻. 

(7) The first pair of interior angles on the same side of the transversal has measures that add 

up to 180. That is, 𝑚(∠𝐴𝐵𝐸) + 𝑚(∠𝐷𝐸𝐵) = 180. 

(8) The second pair of interior angles on the same side of the transversal has measures that 

add up to 180. That is, 𝑚(∠𝐶𝐵𝐸) + 𝑚(∠𝐹𝐸𝐵) = 180. 

 

A Remark about Proving an Equivalence Theorem 

 

There are many strategies possible for proving the theorem above. For example, here are three. 

𝐴 𝐵 𝐶 
𝐹 𝐸 𝐷 
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Strategy 1 is very simple conceptually, but notice that it involves fourteen proofs. Strategy 2 is 

also very simple conceptually, and it involves only eight proofs. But it might turn out that some 

of the proofs are difficult. (Maybe it is very hard to prove that (5)  (6).) It might turn out to be 

easiest to build a proof using a strategy that is kind of a mixture of Strategy 1 and Strategy 2. 

One such proof is shown above as Strategy 3. You will prove the theorem in an exercise, and the 

choice of strategy will be up to you. 

A Remark about “Using” an Equivalence Theorem 

 

It is very important to keep in mind that Theorem 73 does not say that any of the eight statements 

are true. It only says that they are either all true or they are all false. This means that in any 

situation where one wants to use  Theorem 73 as a justification for a step in a proof, it can only 

come after a prior step in which one of the statements (1) - (8) has already been proven true or 

false by some other means. That sounds vague, so I will give an example. 

 

Consider the following fragment of the proof of the Wedgie Theorem. Its steps are lettered, 

rather than numbered. 

Proof of the Wedgie Theorem 

(*) some statements here 

(q) ∠𝐴𝐵𝐻 ≅ ∠𝐷𝐸𝐻 

(r) ∠𝐶𝐵𝐸 ≅ ∠𝐷𝐸𝐵 

(*) some more statements here 

End of proof 
 

Observe that statements (q) and (r) in the proof of the Wedgie Theorem are just statements (4) 

and (2) in the list from Theorem 73. Assume that none of the statements (1) - (8) from Theorem 

73 have shown up anywhere in the earlier steps (a) - (p) of the proof of the Wedgie Theorem. 

The question is, how can we justify statements (q) and (r) in the proof of the Wedgie Theorem? 

 

Realize that Theorem 73 cannot be used to justify statement (q) of the proof of the Wedgie 

Theorem. The reason is that Theorem 73 can only be be used after one of the statements (1) - (8) 

of Theorem 73 has already been proven true or false by some other means. But we know that 

none of those statements (1) - (8) have shown up anywhere in the earlier steps (a) - (p) of the 

proof of the Wedgie Theorem. Maybe we can justify statement (q) by using the Raspberry 

Theorem, I don’t know. But we cannot use Theorem 73. 

 

On the other hand, Theorem 73 can be used to justify statement (r) of the proof of the Wedgie 

Theorem. But when we do use Theorem 73 to justify statement (r), we should be very clear about 
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what part of  Theorem 73 we are using. We should not write the justification as “by Theorem 73 

(2)”. That would be misleading, because Theorem 73 does not tell us that (2) is true. Rather, 

Theorem 73 tells us only that if one of the other statements on the list is known to be true, then 

(2) is true as well. In our case, we are using the part of  Theorem 73 that says that if (4) is known 

to be true, then (2) is true as well. That is, we are using Theorem 73 (4)  (2).  

 

In summary, the justifications for the steps in the fragment of the proof of the Wedgie Theorem 

could look like the following: 

Proof of the Wedgie Theorem, with 

justifications 

(*) some statements here 

(q) ∠𝐴𝐵𝐻 ≅ ∠𝐷𝐸𝐻 (by Raspberry Theorem) 

(r) ∠𝐶𝐵𝐸 ≅ ∠𝐷𝐸𝐵 (by Theorem 73 (4)  

(2)) 

(*) some more statements here 

End of proof  

 

End of Remark about “Using” an Equivalence Theorem 

Since all eight of the statements above are equivalent, it makes sense to have a name for the 

situation in which the statements are true. 

 

Definition 62 special angle property for two lines and a transversal 

Words: Lines 𝐿 and 𝑀 and transversal 𝑇 have the special angle property. 

Meaning: The eight statements listed in Theorem 73 are true. That is, each pair of alternate 

interior angles is congruent. And each pair of corresponding angles is congruent. And each 

pair of interior angles on the same side of the transversal has measures that add up to 180. 

 

Observe that if it is known that any one of the eight statements is true, then it is known that all 

eight statements are true, and so lines 𝐿 and 𝑀 and transversal 𝑇 have the special angle property. 

On the other hand, if it is known that any one of the eight statements is not true, then lines 𝐿 and 

𝑀 and transversal 𝑇 do not have the special angle property. And of course in this case, it is 

known that all eight statements are not true. 

 

With the notation presented above, we are prepared to understand the statement of the Alternate 

Interior Angle Theorem for Neutral Geometry. I have included the statement of the 

contrapositive because I find that for this theorem, the proof of the contrapositive is the clearest 

proof. 

 

Theorem 74 The Alternate Interior Angle Theorem for Neutral Geometry 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If a pair of alternate interior angles is congruent, then lines 𝐿 and 𝑀 are parallel. 

Contrapositive: If 𝐿 and 𝑀 are not parallel, then a pair of alternate interior angles are not 

congruent. 

Proof (Indirect proof by method of contraposition) 

(1) Suppose that in Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 are given, and that 𝐿 

and 𝑀 are not parallel. (make a drawing) Let 𝐴 be the point of intersection of lines 𝐿 

and 𝑀, let 𝐵 be the point of intersection of lines 𝐿 and 𝑇, and let 𝐶 be the point of 

intersection of lines 𝑀 and 𝑇. (update drawing) 
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(2) There exists a point 𝐷 such that 𝐴 ∗ 𝐵 ∗ 𝐷. (Justify.) (Make a new drawing) 

(3) Observe that ∠𝐶𝐵𝐷 is an exterior angle for Δ𝐴𝐵𝐶, and ∠𝐵𝐶𝐴 is one of its remote interior 

angles. (Make a new drawing) 

(4) 𝑚(∠𝐶𝐵𝐷) > 𝑚(∠𝐵𝐶𝐴). (Justify.) (Make a new drawing) 

(5) Observe ∠𝐶𝐵𝐷 and ∠𝐵𝐶𝐴 are alternate interior angles and they are not congruent. That 

is, lines 𝐿, 𝑀, 𝑇 do not have the special angle property. 

End of Proof 

 

In some geometry books, you will find three more theorems that are really corollaries of the 

Alternate Interior Angle Theorem. Here they are. 

 

Three Corollaries of the Alternate Interior Angle Theorem found in some books. 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Corollary (1): If a pair of corresponding angles is congruent, then lines 𝐿 and 𝑀 are parallel. 

Corollary (2): If the sum of the measures of a pair of interior angles on the same side of the 

transversal is 180, then lines 𝐿 and 𝑀 are parallel. 

Corollary (3): If 𝐿 and 𝑀 are both perpendicular to 𝑇, then lines 𝐿 and 𝑀 are parallel. 

I think it is simpler to present a single corollary that uses the terminology of the special angle 

property. 

 

Theorem 75 Corollary of The Alternate Interior Angle Theorem for Neutral Geometry 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If any of the statements of Theorem 73 are true (that is, if lines 𝐿, 𝑀, 𝑇 have the 

special angle property), then 𝐿 and 𝑀 are parallel. 

Contrapositive: If 𝐿 and 𝑀 are not parallel, then all of the statements of Theorem 73 are 

false (that is, lines 𝐿, 𝑀, 𝑇 do not have the special angle property). 

 

Recall that in Section 2.1.5, we discussed the following recurring questions about parallel lines: 

(1) Do parallel lines exist? 

(2) Given a line 𝐿 and a point 𝑃 that does not lie on 𝐿, how many lines exist that pass 

through 𝑃 and are parallel to 𝐿? 

 

The Alternate Interior Angle Theorem can be used to prove the following theorem that answers 

question (2) for Neutral Geometry. 

 

Theorem 76 Existence of a parallel through a point 𝑃 not on a line 𝐿 in Neutral Geometry. 

In Neutral Geometry, for any line 𝐿 and any point 𝑃 not on 𝐿, there exists at least one line 𝑀 

that passes through 𝑃 and is parallel to 𝐿. 

 

You will prove Theorem 76 in a homework exercise. 

 

The Alternate Interior Angle Theorem enabled us to prove Theorem 76. That fact alone is 

enough to qualify the Alternate Interior Angle Theorem as a major theorem. But we will find that 

the theorem is used frequently throughout the rest of this book. 

7.8. Exercises for Chapter 7 
Exercises for Section 7.1 The Concept of Triangle Congruence (Section starts on page 157) 
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[1] Prove Theorem 51 (triangle congruence is an equivalence relation) (found on page 160) 

 

[2] (a) What theorem or definition tells us that every triangle is congruent to itself? Explain. 

(b) Given any non-collinear points 𝐴, 𝐵, 𝐶, the two symbols Δ𝐴𝐵𝐶 and Δ𝐴𝐶𝐵 represent the same 

triangle. Why? 

(c) Consider the triangle shown at right. Why is the symbol 

Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐶𝐵 not true in this case? Does that mean that you 

have to change your answer to (a) or (b), or is there some 

other explanation? Explain. 
 

[3] What does “CPCTC” mean? Is it an axiom or a theorem, and if so, which one is it? If it is not 

an axiom or a theorem, then what is it? Is it even true? Explain. 

 

[4] Here are three theorem statements: 

 
 If the car is rusty then the apples are ripe. 

 If the apples are ripe then the cow is brown. 

 If the cow is brown then the car is rusty. 

(A) Here are the names for the theorems, but that the names have been shuffled. Write the 

correct theorem statement next to each theorem name: 

 

 The Brown Cow Theorem: _________________________________________________ 

 

 The Rusty Car Theorem: ___________________________________________________ 

 

 The Ripe Apple Theorem: __________________________________________________ 

 

(B) Here is statement (17) from a long and difficult proof. The earlier steps have been done 

correctly, but the author forgot to write the justification for statement (17). Write it in. 

 

(17) Therefore, the car is rusty. (justification: __________________________________) 

 

Exercises for Section 7.2 Theorems about Congruences in Triangles (Starts on page 163) 

[5] Write the statement of the theorem that is illustrated by the 

drawing at right. 

 
 

[6] Prove Theorem 53 ((Corollary) In Neutral Geometry, if a triangle is equilateral then it is 

equiangular.) (found on page 165) 

 

[7] Justify the steps in the proof of Theorem 54 (the ASA Congruence Theorem for Neutral 

Geometry) (found on page 165). 

 

[8] In the previous chapter, we discussed Theorem 40 (Every angle has a unique bisector.) 

(found on page 143). In order to prove it in the previous chapter, we had to first prove Theorem 

39 (about points in the interior of angles) (found on page 141). Together, the proofs of those two 

theorems amounted to a rather difficult proof of the existence and uniqueness of angle bisectors. 
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I promised that there would be an easier proof that used triangle congruence. With Neutral 

Axiom <N10> (SAS Congruence) and Theorem 52 (CS  CA) now available as tools to prove 

theorems, an easier proof of the existence and uniqueness of angle bisectors is possible. Justify 

the steps in the following proof. You may use any of the ten Neutral Axioms, and you may use 

any theorem up through (and including) Theorem 52 (CS  CA). (Of course, you may not use 

Theorem 40, because that is what we are trying to prove. Re-proving earlier theorems using later 

theorems is actually a rather tricky business, because one must be sure to not cite any theorems 

whose proofs depended on the earlier theorem. But in this case, we are okay: None of the 

theorems between Theorem 40 and Theorem 52 depended on Theorem 40. So we can use any of 

them.) 

 

Easier Proof of the Existence and Uniqueness of an Angle Bisector. 

(1) Suppose that angle ∠𝐴𝐵𝐶 is given. (Make a drawing.) 

 

Part 1: Show that a bisector exists 

(2) There exists a point 𝐷 on ray 𝐵𝐶       such that 𝐵𝐷̅̅ ̅̅ ≅ 𝐵𝐴̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(3) ∠𝐵𝐴𝐷 ≅ ∠𝐵𝐷𝐴. (Justify.) (Make a new drawing.) 

(4) There exists exactly one point 𝑀 that is the midpoint of segment 𝐴𝐷̅̅ ̅̅ . (Justify.) (Make a 

new drawing.) 

(5) Δ𝐵𝐴𝑀 ≅ Δ𝐵𝐷𝑀. (Justify.) (Make a new drawing.) 

(6) ∠𝐴𝐵𝑀 ≅ ∠𝐷𝐵𝑀. (Justify.) (Make a new drawing.) 

(7) Point 𝑀 is in the interior of ∠𝐴𝐵𝐷. (Justify.) (Make a new drawing.) 

(8) Ray 𝐵𝑀        is a bisector of angle ∠𝐴𝐵𝐷. (Justify.) (Make a new drawing.) 

 

Part 2: Show that the bisector is unique. 

(9) Suppose that ray 𝐵𝑁        is a bisector of angle ∠𝐴𝐵𝐷. (Make a new drawing.) 

(10) ∠𝐴𝐵𝑁 ≅ ∠𝐷𝐵𝑁 and point 𝑁 is in the interior of angle ∠𝐴𝐵𝐷. (Justify.) (Make a new 

drawing.) 

(11) Ray 𝐵𝑁        intersects side 𝐴𝐷̅̅ ̅̅  at a point 𝑃 between 𝐴 and 𝐷. (Justify.) (Make a new 

drawing.) 

(12) Δ𝐴𝐵𝑃 ≅ Δ𝐷𝐵𝑃. (Justify.) (Make a new drawing.) 

(13) 𝐴𝑃̅̅ ̅̅ ≅ 𝐵𝑃̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(14) Point 𝑃 is a midpoint of segment 𝐴𝐷̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(15) Point 𝑃 must be the same point as point 𝑀. (Justify.) (Make a new drawing.) 

(16) Ray 𝐵𝑁        must be the same ray as ray 𝐵𝑀       . (Justify.) (Make a new drawing.) 

End of proof 

 

[9] Prove Theorem 55 (the CA  CS theorem for triangles in Neutral Geometry) (found on page 

167) 

Hint: Look back at the proof of Theorem 52 (the CS  CA theorem for triangles (the 

Isosceles Triangle Theorem), found on page 164). That proof used the SAS axiom and a trick 

involving a correspondence between the vertices of a single triangle. Here is the structure of 

that proof: 

Summary of Proof of Theorem 52 

Step (1) Given information about congruent sides 

Step (2) Introduce a correspondence between the vertices of Δ𝐴𝐵𝐶 and Δ𝐴𝐶𝐵. 
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Step (3) State that the correspondence is actually a congruence (justified by the 

SAS Congruence Axiom <N10>) 

Step (4) Conclude that the opposite angles are also congruent. 

End of proof 

A similar trick can be used to prove Theorem 55, the CA  CS theorem for triangles. This 

time, the proof will use the trick involving a correspondence between the vertices of a single 

triangle, but the proof will cite the ASA Congruence Theorem, instead of the SAS axiom. 

Structure that you should use for your proof of Theorem 55 

Step (1) Given information about congruent angles 

Step (2) Introduce a correspondence between the vertices of Δ𝐴𝐵𝐶 and Δ𝐴𝐶𝐵. 

Step (3) State that the correspondence is actually a congruence (justified by the 

ASA Congruence Theorem) 

Step (4) Conclude that the opposite sides are also congruent. 

End of proof 

 

[10] Prove Theorem 56 ((Corollary) In Neutral Geometry, if a triangle is equiangular then it is 

equilateral.) (found on page 167) 

 

[11] (Advanced) Justify the given steps and fill in the missing steps in the proof of Theorem 58 

(the SSS congruence theorem for Neutral Geometry) (found on page 168) 

 

Exercises for Section 7.3 Theorems about Bigger and Smaller Parts of Triangles (p. 170) 

 

[12] Justify the steps in the proof of Theorem 59 (Neutral Exterior Angle Theorem) (found on 

page 170)  

 

[13] Prove Theorem 60 ((Corollary) If a triangle has a right angle, then the other two angles are 

acute.) (found on page 172) 

 

[14] Justify the steps in the proof of Theorem 61 (the BS  BA theorem for triangles in Neutral 

Geometry) (found on page 172) 

 

[15] Justify the steps in the proof of Theorem 64 (The Triangle Inequality for Neutral Geometry) 

(found on page 174) 

 

Exercises for Section 7.5 More About Perpendicular Lines (Section starts on page 178) 

 

[16] Justify the steps in the proof of Theorem 66 (existence and uniqueness of a line that is 

perpendicular to a given line through a given point that does not lie on the given line) (found on 

page 178) 

 

[17] Justify the steps in the proof of Theorem 67 (The shortest segment connecting a point to a 

line is the perpendicular.) (found on page 180) 

 

[18] Prove Theorem 68 (In any right triangle in Neutral Geometry, the hypotenuse is the longest 

side.) (found on page 181) Here are some hints:  

 Use the following proof structure: Given any Δ𝐴𝐵𝐶 with right angle at 𝐴, show that 

hypotenuse 𝐵𝐶̅̅ ̅̅  is longer than leg 𝐴𝐵̅̅ ̅̅  and also longer than leg 𝐴𝐶̅̅ ̅̅ . 
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 Somewhere in your proof, use Theorem 60 and Theorem 62. 

 

[19] (Advanced) Justify the steps in the proof of Theorem 69 ((Lemma) In any triangle in 

Neutral Geometry, the altitude to a longest side intersects the longest side at a point between the 

endpoints.) (found on page 181) Make drawings where indicated, and fill in the missing details 

where indicated. 

 

Exercises for Section 7.6 A Final Look at Triangle Congruence in Neutral Geometry 

(Section starts on page 182) 

 

[20] (Advanced) Justify the steps in the proof of Theorem 70 (the Angle-Angle-Side (AAS) 

Congruence Theorem for Neutral Geometry) (found on page 183) Make drawings where 

indicated, and fill in the missing details where indicated. 

 

[21] Here is avery short proof of The Angle-Angle-Side Congruence Theorem from the internet. 

Proof found on the internet for the AAS Congruence Theorem. 

(1) Suppose that in triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have ∠𝐴 ≅ ∠𝐷 and  ∠𝐵 ≅ ∠𝐸 and 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ . 

(2) We can do the following computations: 

𝑚(∠𝐶) = 180 − (𝑚(∠𝐴) + 𝑚(∠𝐵))  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑑𝑑 𝑢𝑝 𝑡𝑜 180) 

= 180 − (𝑚(∠𝐷) + 𝑚(∠𝐸))  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 ∠𝐴 ≅ ∠𝐷 𝑎𝑛𝑑 ∠𝐵 ≅ ∠𝐸) 

= 𝑚(∠𝐹) (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑑𝑑 𝑢𝑝 𝑡𝑜 180) 

Therefore, we know that ∠𝐶 ≅ ∠𝐹. 

(3) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (by steps (1) and (2) and the ASA congruence theorem.) 

End of Proof 

Why can’t we use this proof to prove our Theorem 70 (the Angle-Angle-Side (AAS) Congruence 

Theorem for Neutral Geometry) (found on page 183)? 

 

[22] Justify the steps in the proof of Theorem 71 (the Hypotenuse Leg Congruence Theorem for 

Neutral Geometry) (found on page 183) Make drawings where indicated, and fill in the missing 

details where indicated. 

 

[23] Here is a very simple proof of The Hypotenuse-Leg Congruence Theorem from the internet. 

 

Proof found on the internet for the Hypotenuse-Leg Congruence Theorem. 

(1) Suppose that right triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have right angles at ∠𝐴 and ∠𝐷, and 

congruent hypotenuses 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅ , and a congruent leg 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅ , 

(2) We can do the following computations: 

(𝐴𝐶)2 = (𝐵𝐶)2 − (𝐴𝐵)2   (𝑃𝑦𝑡ℎ𝑎𝑔𝑜𝑟𝑒𝑎𝑛 𝑇ℎ𝑒𝑜𝑟𝑒𝑚) 
= (𝐸𝐹)2 − (𝐷𝐸)2   (𝑠𝑖𝑛𝑐𝑒 𝐵𝐶̅̅ ̅̅ ≅ 𝐸𝐹̅̅ ̅̅  𝑎𝑛𝑑 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅ ) 
= (𝐷𝐹)2                    (𝑃𝑦𝑡ℎ𝑎𝑔𝑜𝑟𝑒𝑎𝑛 𝑇ℎ𝑒𝑜𝑟𝑒𝑚) 

Therefore, we know that 𝐴𝐶̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . 

(3) Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. (by steps (1) and (2) and the SSS congruence theorem.) 

End of Proof 

 

Why can’t we use this proof to prove our Theorem 71 (the Hypotenuse Leg Congruence 

Theorem for Neutral Geometry) (found on page 183)? 
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[24] (Advanced) The statement of Theorem 72, the Hinge Theorem for Neutral Geometry, is 

found on page 185. Find a proof of the theorem on the internet or in another book. Rewrite the 

proof in the style of our proofs. That is, produce a numbered list of statements, with each 

statement justified by a prior statement, or a prior theorem (from this book!) or a Neutral 

Geometry Axiom. 

 

Exercises for Section 7.7 Parallel lines in Neutral Geometry (Section starts on page 185) 

 

[25] Prove Theorem 73 (Equivalent statements about angles formed by two lines and a 

transversal in Neutral Geometry) (found on page 186). Include drawings with your proof. 

 

[26] Consider the following fragment of the proof of the Bobcat Theorem. Its steps are lettered, 

rather than numbered. 

Proof of the Bobcat Theorem 

(*) some statements here 

(x) 𝑚(∠𝐴𝐵𝐸) + 𝑚(∠𝐷𝐸𝐵) = 180 

(y) ∠𝐴𝐵𝐺 ≅ ∠𝐷𝐸𝐺 

(*) some more statements here 

End of proof 
 

Assume that none of the statements (1) - (8) from Theorem 73 have shown up anywhere in the 

earlier steps (a) - (w) of the proof of the Bobcat Theorem. Here are two questions: 

(i) Why can’t Theorem 73 be used to justify step (x)? Explain. 

(ii) Write a justification for step (y).  

 

[27] Justify the steps in the proof of Theorem 74 (The Alternate Interior Angle Theorem for 

Neutral Geometry) (found on page 188). Make drawings where indicated. 

 

[28] Prove Theorem 76 (Existence of a parallel through a point 𝑃 not on a line 𝐿 in Neutral 

Geometry.) (found on page 189). 

Hints:  

 Be sure to use the correct proof structure. The given information must go into step (1).  

 Show that there exists a line 𝑇 that passes through 𝑃 and is perpendicular to 𝐿. 

 Show that there exists a line 𝑀 that passes through 𝑃 and is perpendicular to 𝑇. 

 Show that lines 𝐿 and 𝑀 are parallel. 

 

[29] In Section 2.1.5, we discussed the following recurring questions about parallel lines: 

 

(1) Do parallel lines exist? 

(2) Given a line 𝐿 and a point 𝑃 that does not lie on 𝐿, how many lines exist that pass 

through 𝑃 and are parallel to 𝐿? 

 

In Section 7.7, it was mentioned that in Neutral Geometry, Theorem 76 (Existence of a parallel 

through a point 𝑃 not on a line 𝐿 in Neutral Geometry.) (found on page 189) gives us the answer 

to question (2): There is at least one line. It seems that in Neutral Geometry, the answer to 

question (1) ought to be “yes”. But can you prove that parallel lines exist in Neutral Geometry? 

That is, can you prove that there exist lines 𝐽 and 𝐾 that are parallel? Try it. 
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8. Neutral Geometry VI: Circles 
This will be our final chapter on Neutral Geometry. In previous chapters, we discussed the 

behavior of lines, angles, and triangles in Neutral Geometry. Note that a line is a primitive, 

undefined object, but angles and triangles are defined objects. Even so, all three objects are at 

least mentioned in the axioms for Neutral Geometry. In this chapter, we will define circles and 

study their behavior. Here is the definition: 

 

Definition 63 circle, center, radius, radial segment, interior, exterior 

Symbol: 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) 

Spoken: the circle centered at 𝑃 with radius 𝑟 

Usage: 𝑃 is a point and 𝑟 is a positive real number. 

Meaning: The following set of points: 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 = 𝑟} 

Additional Terminology: 

 The point 𝑃 is called the center of the circle. 

 The number  𝑟 is called the radius of the circle. 

 The interior is the set 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 < 𝑟}.  

 The exterior is the set 𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 > 𝑟}. 

 Two circles are said to be congruent if they have the same radius. 

 Two circles are said to be concentric if they have the same center. 

 

Observe that the Neutral Geometry axioms do not even mention circles. So everything that we 

know about the behavior of circles will have to be proven in theorems. 

8.1. Theorems about Lines Intersecting Circles 
Our first investigations of circles will involve their interactions with objects that we already 

know about: lines, angles, triangles. We start with a simple but important theorem about the 

number of possible intersections of a line and a circle. 

 

Theorem 77 In Neutral Geometry, the Number of Possible Intersection Points for a Line and a 

Circle is 0, 1, 2. 

 

The proof is left as an exercise for readers interested in advanced topics and for graduate 

students. 

 

We have special names for lines that intersect a circle at exactly one point and lines that intersect 

a circle at exactly two points. 

 

Definition 64 Tangent Line and Secant Line for a Circle 

A tangent line for a circle is a line that intersects the circle at exactly one point. 

A secant line for a circle is a line that intersects the circle at exactly two points. 

 

The remaining theorems in this section give us more details about the interactions of tangent 

lines, secant lines, and circles. The first one is an equivalence theorem. The proof structure is 

interesting because it uses the contrapositive. You will justify the proof in an exercise 
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Theorem 78 In Neutral Geometry, tangent lines are perpendicular to the radial segment. 

Given: A segment 𝐴𝐵̅̅ ̅̅  and a line 𝐿 passing through point 𝐵. 

Claim: The following statements are equivalent. 

(i) Line 𝐿 is perpendicular to segment 𝐴𝐵̅̅ ̅̅ . 

(ii) Line 𝐿 is tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) at point 𝐵. That is, 𝐿 only intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) 

at point 𝐵. 

 

Proof that (i)  (ii) 

(1) Suppose that (i) is true. That is, suppose that line 𝐿 is perpendicular to segment 𝐴𝐵̅̅ ̅̅ . 

(Make a drawing.) 

(2) Let 𝐶 be any point on line 𝐿 except 𝐵. (Make a new drawing.) 

(3) Observe that points 𝐴, 𝐵, 𝐶 form a triangle with right angle at 𝐵. Segment 𝐴𝐶̅̅ ̅̅  is the 

hypotenuse of this triangle. So 𝐴𝐶 > 𝐴𝐵. Therefore 𝐶 is in the exterior of 

𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵). (Make a new drawing.) 

(4) Conclude that line 𝐿 intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) at point 𝐵, but does not intersect the circle 

at any other point. That is, line 𝐿 is tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) at point 𝐵. So (ii) is true. 

 

Proof that ~(i)  ~(ii) (Notice that this is the contrapositive of (ii)  (i).) 

(5) Suppose that (i) is false. That is, suppose that line 𝐿 is not perpendicular to segment 𝐴𝐵̅̅ ̅̅ . 

(6) There are two possibilities: 

(a) Line 𝐿 is the same line as line 𝐴𝐵 ⃡    . 

(b) Line 𝐿 is not the same line as line 𝐴𝐵 ⃡    . 

Case (a) 

(7) Suppose that line 𝐿 is the same line as line 𝐴𝐵 ⃡    . (Make a new  drawing.) 

(8) There exists a point 𝐶 such that 𝐶 ∗ 𝐴 ∗ 𝐵 and such that 𝐴𝐶̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . (Justify) (Make a 

new drawing.) 

(9) Points 𝐵 and 𝐶 are both on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵). (Justify.) (Make a new Drawing.) 

(10) Conclude that line 𝐿 intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) at more than one point. That is, line 𝐿 is 

not tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵). So, Statement (ii) is false in this case. 

Case (b) 

(11) Suppose that line 𝐿 passes through point 𝐵 and is not perpendicular to line 𝐴𝐵 ⃡     and is not 

the same line as line 𝐴𝐵 ⃡    . (Make a new drawing.) 

(12) There exists a line 𝑀 that passes through point 𝐴 and is perpendicular to 𝐿. Let 𝐶 be the 

point of intersection of lines 𝐿 and 𝑀. (Make a new drawing.) 

(13) There exists a point 𝐷 such that 𝐵 ∗ 𝐶 ∗ 𝐷 and 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐵̅̅ ̅̅ . (Make a new drawing.) 

(Justify.) 

(14) Observe that Δ𝐴𝐶𝐷 ≅ Δ𝐴𝐶𝐵. (Justify.) 

(15) Therefore, 𝐴𝐷̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . (Justify.) So point 𝐷 also lies on the circle. (Make a new 

drawing.) 

(16) Conclude that 𝐿 intersects the circle at more than one point. That is, line 𝐿 is not tangent 

to the circle. So Statement (ii) is false in this case as well. 

Conclusion of Cases 

(17) Conclude that statement (ii) is false in either case. 

End of Proof 

 

The following corollary is not difficult to prove. You will prove it in an exercise. 
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Theorem 79 (Corollary of Theorem 78) For any line tangent to a circle in Neutral Geometry, 

all points on the line except for the point of tangency lie in the circle’s exterior. 

 

We are so used to the simple behavior of lines and circles in drawings that it is a bit of a shock 

(and a nuisance) to realize that we have to prove that the same simple behavior occurs in 

axiomatic geometry. It is even more annoying to find that the proofs are sometimes hard. The 

following theorem is not terribly hard to prove, but there are a lot of details. You will justify it in 

a homework exercise. 

 

Theorem 80 about points on a Secant line lying in the interior or exterior in Neutral Geometry 

Given: 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟) and a secant line 𝐿 passing through points 𝐵 and 𝐶 on the circle 

Claim:  

(i) If 𝐵 ∗ 𝐷 ∗ 𝐶, then 𝐷 is in the interior of the circle. 

(ii) If 𝐷 ∗ 𝐵 ∗ 𝐶 or 𝐵 ∗ 𝐶 ∗ 𝐷, then 𝐷 is in the exterior of the circle. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) In Neutral Geometry, suppose that 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟) and a secant line 𝐿 passing through points 

𝐵 and 𝐶 on the circle are given. 

(2) Observe that 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅ , so Δ𝐴𝐵𝐶 is isosceles. 

(3) Therefore, ∠𝐴𝐵𝐶 ≅ ∠𝐴𝐶𝐵. (Justify.) 

Part 1: prove that (i) is true. 

(4) Suppose that 𝐵 ∗ 𝐷 ∗ 𝐶. 

(5) Observe that ∠𝐴𝐷𝐵 is an exterior angle for triangle Δ𝐴𝐷𝐶, and angle ∠𝐴𝐶𝐵 is one of its 

remote interior angles. 

(6) Therefore, 𝑚(∠𝐴𝐷𝐵) > 𝑚(∠𝐴𝐶𝐵). (Justify.) 

(7) So 𝑚(∠𝐴𝐷𝐵) > 𝑚(∠𝐴𝐵𝐶). (Justify.) 

(8) Therefore, 𝐴𝐵 > 𝐴𝐷. (Justify.) 

(9) So 𝐴𝐷 < 𝑟. Conclude that 𝐷 is in the interior of the circle. 

Part 2: prove that (ii) is true. 

(10) Suppose that 𝐷 ∗ 𝐵 ∗ 𝐶. 

(11) Observe that ∠𝐴𝐵𝐶 is an exterior angle for triangle Δ𝐴𝐷𝐵, and angle ∠𝐴𝐷𝐶 is one of its 

remote interior angles. 

(12) Therefore, 𝑚(∠𝐴𝐵𝐶) > 𝑚(∠𝐴𝐷𝐵). (Justify.) 

(13) So 𝑚(∠𝐴𝐶𝐵) > 𝑚(∠𝐴𝐷𝐵). (Justify.) 

(14) Therefore, 𝐴𝐷 > 𝐴𝐶. (Justify.) 

(15) So 𝐴𝐷 > 𝑟. Conclude that 𝐷 is in the exterior of the circle. 

(16) – (21) Six steps analogous to steps (10) – (15) would prove that if 𝐵 ∗ 𝐶 ∗ 𝐷 then 𝐷 is 

also in the exterior of the circle. 

End of Proof 

 

Now that we have determined which points on secant lines lie in the interior of a circle and 

which ones lie in the exterior, we can state the definition of a chord of a circle and then state an 

immediate corollary about the points of a chord lying in the interior of the circle. 

 

Definition 65 chord, diameter segment, diameter, radial segment 

 A chord of a circle is a line segment whose endpoints both lie on the circle. 

 A diameter segment for a circle is a chord that passes through the center of the circle. 
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 The diameter of a circle is the number 𝑑 = 2𝑟. That is, the diameter is the number that is 

the length of a diameter segment. 

 A radial segment for a circle is a segment that has one endpoint at the center of the circle 

and the other endpoint on the circle. (So that the radius is the number that is the length of 

a radial segment.) 

 

Theorem 81 (Corollary of Theorem 80) about points on a chord or radial segment that lie in 

the interior in Neutral Geometry 

In Neutral Geometry, all points of a segment except the endpoints lie in the interior of the 

circle. Furthermore, one endpoint of a radial segment lies on the circle; all the other points of 

a radial segment lie in the interior of the circle. 

 

As mentioned above, it is a little frustrating to have to prove that abstract circles have behavior 

that seems so simple and obvious in drawn circles. The next two theorems have statements that 

are obvious. You will justify the steps in the proof of the first theorem in a homework exercise. 

 

Theorem 82 In Neutral Geometry, if a line passes through a point in the interior of a circle, 

then it also passes through a point in the exterior. 

 

Proof (for readers interested in advanced topics and for graduate students) 

(1) Suppose that a line 𝐿 passes through a point 𝐵 in the interior of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟). 

(2) There exists a point 𝐶 on line 𝐿 such that 𝐵𝐶 = 3𝑟. 

(3) 𝐵𝐶 ≤ 𝐵𝐴 + 𝐴𝐶 (Justify.) 

(4) 𝐵𝐶 − 𝐵𝐴 ≤ 𝐴𝐶 (arithmetic) 

(5) 𝑟 > 𝐵𝐴 (Justify.) 

(6) – 𝑟 < −𝐵𝐴 (arithmetic) 

(7) 2𝑟 = 3𝑟 − 𝑟 < 3𝑟 − 𝐵𝐴 = 𝐵𝐶 − 𝐵𝐴 (arithmetic) 

(8) 2𝑟 ≤ 𝐴𝐶 (Justify.) 

(9) Therefore, point 𝐶 is in the exterior. 

End of Proof 

 

Theorem 83 In Neutral Geometry, if a line passes through a point in the interior of a circle and 

also through a point in the exterior, then it intersects the circle at a point between 

those two points. 

 

As simple Theorem 83 sounds, it is difficult to prove. One proof involves defining a new 

function involving a coordinate function 𝑓 for the line and also the distance function 𝑑. We will 

accept the theorem without proof in this book. The following corollary is an example of how the 

theorem is used. 

 

Theorem 84 (Corollary) In Neutral Geometry, if a line passes through a point in the interior of 

a circle, then the line must be a secant line. That is, the line must intersect the 

circle exactly twice. 

Proof 

Suppose a line passes through a point in the interior of a circle. By Theorem 82, we know 

that the line must also pass through a point in the exterior. By Theorem 83, we know that the 

line must intersect the circle. By Theorem 79, we know that the line cannot be a tangent line 
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because it passes through an interior point. Therefore, the line must be a secant line, and 

intersect the circle exactly twice. 

End of Proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 8.6 on page 205. 

8.2. A Digression: Two Theorems About Triangles 
Now that we have defined chords, our goal is to prove some basic theorems about their behavior. 

But before doing that, we should first study two theorems about triangles. The reason is that we 

will find that the techniques used in the proofs of the theorems about chords will be the same 

techniques that are used in the proofs of these theorems about triangles. These two theorems 

about triangles could have been stated earlier in the book. I postponed introducing them until 

now because I did not want the earlier chapters to be overfull and also because I thought it would 

be nice to present the theorems here, where we can see them put to immediate use. 

 

The first theorem has to do with angle bisectors, altitudes, and medians in isosceles triangles in 

Neutral Geometry. Altitudes were introduced in Definition 59. We need a definition of medians. 

 

Definition 66 median segment and median line of a triangle 

A median line for a triangle is a line that passes through a vertex and the midpoint of the 

opposite side. A median segment for triangle is a segment that has its endpoints at those points. 

 

In general, for a given vertex of a scalene triangle in Neutral Geometry, the angle bisector, 

altitude, and median drawn from that vertex will be three different rays. The following theorem 

tells us that in the special case of the top vertex of an isosceles triangle, those three special rays 

are in fact the same ray. You will justify the steps and supply some missing steps in the proof in 

a homework exercise. 

 

Theorem 85 about special rays in isosceles triangles in Neutral Geometry 

Given: Neutral Geometry, triangle Δ𝐴𝐵𝐶 with 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅  and ray 𝐴𝐷       such that 𝐵 ∗ 𝐷 ∗ 𝐶. 

Claim: The following three statements are equivalent. 

(i) Ray 𝐴𝐷       is the bisector of angle ∠𝐵𝐴𝐶. 

(ii) Ray 𝐴𝐷       is perpendicular to side 𝐵𝐶̅̅ ̅̅ . 

(iii) Ray 𝐴𝐷       bisects side 𝐵𝐶̅̅ ̅̅ . That is, point 𝐷 is the midpoint of side 𝐵𝐶̅̅ ̅̅ . 

Proof that (i)  (ii) 

(1) Suppose that (i) is true. That is, suppose that ray 𝐴𝐷       is the bisector of angle ∠𝐵𝐴𝐶. 

(Make a drawing.) 

(2) Δ𝐴𝐷𝐵 ≅ Δ𝐴𝐷𝐶. (Justify.) 

(3) Therefore, ∠𝐴𝐷𝐵 ≅ ∠𝐴𝐷𝐶. (Justify.) 

(4) So 𝑚(∠𝐴𝐷𝐵) = 90. (Justify.) 

(5) Therefore, ray 𝐴𝐷       is perpendicular to side 𝐵𝐶̅̅ ̅̅ . That is, statement (ii) is true. 

Proof that (ii)  (iii) 

(6) Suppose that (ii) is true. That is, suppose that ray 𝐴𝐷       is perpendicular to side 𝐵𝐶̅̅ ̅̅ . (Make 

a drawing.) 

(7) Δ𝐴𝐷𝐵 ≅ Δ𝐴𝐷𝐶. (Justify.) 
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(8) Therefore, 𝐷𝐵̅̅ ̅̅ ≅ 𝐷𝐶̅̅ ̅̅ . (Justify.) 

(9) So point 𝐷 is the midpoint of side 𝐵𝐶̅̅ ̅̅ . That is, statement (iii) is true. 

Proof that (iii)  (i) 

(*) You supply the missing steps. 

End of Proof 

 

The next theorem has a rather quirky-sounding statement. It turns out to be an exteremely useful 

theorem. The proof, which is left as an exercise, will involve techniques similar to the techniques 

used in the proof of Theorem 85. 

 

Theorem 86 about points equidistant from the endpoints of a line segment in Neutral Geometry 

In Neutral Geometry, the following two statements are equivalent 

(i) A point is equidistant from the endpoints of a line segment. 

(ii) The point lies on the perpendicular bisector of the segment. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 8.6 on page 205. 

8.3. Theorems About Chords 
With Theorem 85 at our disposal, we now go back to our job of proving theorems about chords. 

Our first two theorems have simple proofs that pretty much use only Theorem 85. 

 

Theorem 87 In Neutral Geometry, any perpendicular from the center of a circle to a chord 

bisects the chord 

Proof 

(1) In Neutral Geometry, in 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟), suppose that line 𝐿 passes through the center and is 

perpendicular to chord 𝐵𝐶̅̅ ̅̅ . Let 𝐷 be the point of intersection. (Make a drawing.) 

(2) Observe observe that Δ𝐴𝐵𝐶 has 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅ . (Make a new drawing.) 

(3) By Theorem 85, we know that point 𝐷 is the midpoint of side 𝐵𝐶̅̅ ̅̅ . (Make a new 

drawing.) 

End of Proof 

 

Theorem 88 In Neutral Geometry, the segment joining the center to the midpoint of a chord is 

perpendicular to the chord. 

 

The proof of Theorem 88 is left to the reader. (The proof is very much like the proof of the 

previous theorem.) 

 

Our third theorem about chords is really just a corollary of Theorem 86. 

 

Theorem 89 (Corollary of Theorem 86) In Neutral Geometry,  the perpendicular bisector of a 

chord passes through the center of the circle. 

 

The above three theorems about chords had short proofs involving Theorem 85 or Theorem 86. 

Our fourth theorem about chords has a longer proof. You will justify some of the steps and make 

drawings for it in a homework exercise. 
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Theorem 90 about chords equidistant from the centers of circles in Neutral Geometry 

Given: Neutral Geometry, chord 𝐵𝐶̅̅ ̅̅  in 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟) and chord 𝑄𝑅̅̅ ̅̅  in 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) with the 

same radius 𝑟. 

Claim: The following two statements are equivalent: 

(i) The distance from chord 𝐵𝐶̅̅ ̅̅  to center 𝐴 is the same as the distance from 

chord 𝑄𝑅̅̅ ̅̅  to center 𝑃. 

(ii) The chords have the same length. That is, 𝐵𝐶̅̅ ̅̅ ≅ 𝑄𝑅̅̅ ̅̅ . 

Proof that (i)  (ii) 

(1) Suppose that (i) is true. That is, the distance from chord 𝐵𝐶̅̅ ̅̅  to center 𝐴 is the same as the 

distance from chord 𝑄𝑅̅̅ ̅̅  to center 𝑃. (Make a drawing.) 

(2) Let line 𝐿 be the line that passes through point 𝐴 and is perpendicular to chord 𝐵𝐶̅̅ ̅̅  in 

𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟). Let 𝐷 be the point of intersection. And let line 𝑀 be the line that passes 

through point 𝑃 and is perpendicular to chord 𝑄𝑅̅̅ ̅̅  in 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟). Let 𝑆 be the point of 

intersection. (Make a new drawing.) 

(3) 𝐴𝐷̅̅ ̅̅ ≅ 𝑃𝑆̅̅̅̅ . (by statements (1), (2)) (Make a new drawing.) 

(4) Observe that triangles Δ𝐴𝐵𝐷 and Δ𝑃𝑄𝑆 have right angles at 𝐷 and 𝑆, and congruent 

hypotenuses 𝐴𝐵̅̅ ̅̅ ≅ 𝑃𝑄̅̅ ̅̅  (because the circles have the same radius 𝑟) and congruent legs 

𝐴𝐷̅̅ ̅̅ ≅ 𝑃𝑆̅̅̅̅ . (by (3)) 

(5) Therefore, Δ𝐴𝐵𝐷 ≅ Δ𝑃𝑄𝑆. (Justify.) 

(6) So 𝐵𝐷̅̅ ̅̅ ≅ 𝑄𝑆̅̅̅̅ . (by (5) and the definition of triangle congruence) (Make a new drawing.) 

(7) We know that point 𝐷 is the midpoint of chord 𝐵𝐶̅̅ ̅̅  and that point 𝑆 is the midpoint of 

chord 𝑄𝑅̅̅ ̅̅ . (Justify.) 

(8) So 𝐵𝐶̅̅ ̅̅ ≅ 𝑄𝑅̅̅ ̅̅ . (by (6), (7) and arithmetic) That is, statement (ii) is true. (New drawing.) 

Proof that (ii)  (i) 

(9) Suppose that (ii) is true. That is, suppose that 𝐵𝐶̅̅ ̅̅ ≅ 𝑄𝑅̅̅ ̅̅ . (Make a new drawing.) 

(10) Let 𝐷 be the midpoint of side 𝐵𝐶̅̅ ̅̅ , and let 𝑆 be the midpoint of side 𝑄𝑅̅̅ ̅̅ . (New drawing.) 

(11) Then 𝐵𝐷̅̅ ̅̅ ≅ 𝑄𝑆̅̅̅̅ . (by (9), (10)) 

(12) Observe that triangle Δ𝐴𝐵𝐶 has 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅ . (Make a new drawing.) 

(13) Therefore, segment 𝐴𝐷̅̅ ̅̅  is perpendicular to side 𝐵𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(14) For the same reason, we know that segment 𝑃𝑆̅̅̅̅  is perpendicular to side 𝑄𝑅̅̅ ̅̅ . 

(15) Observe that triangles Δ𝐴𝐵𝐷 and Δ𝑃𝑄𝑆 have right angles at 𝐷 and 𝑆, and congruent 

hypotenuses 𝐴𝐵̅̅ ̅̅ ≅ 𝑃𝑄̅̅ ̅̅  (because the circles have the same radius 𝑟) and congruent legs 

𝐵𝐷̅̅ ̅̅ ≅ 𝑄𝑆̅̅̅̅ . (by (11)) (Make a new drawing.) 

(16) Therefore, Δ𝐴𝐵𝐷 ≅ Δ𝑃𝑄𝑆. (Justify.) 

(17) So 𝐴𝐷̅̅ ̅̅ ≅ 𝑃𝑆̅̅̅̅ . (by (16) and the definition of triangle congruence) That is, statement (i) is 

true. (Make a new drawing.) 

End of proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 8.6 on page 205. 

8.4. A Digression: Two Theorems About Angle Bisectors 
We will wrap up our study of circles in Neutral Geometry by looking more at lines tangent to 

circles and also looking at what are called tangent circles. Before doing that, it is useful to again 

digress to present theorems about angles and triangles, theorems that could have been presented 

earlier in the book. 
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The first theorem we will discuss refers to the distance from a point to a line. Recall that we 

proved in Theorem 66 that for any line, and any point not on the line, there is exactly one line 

that passes through the point and is perpendicular to the original line. And we proved in Theorem 

67 that the shortest segment connecting a point to a line is the perpendicular. So when one 

speakes of the distance from a point to a line, one is referring to the length of the segment that 

has one endpoint on the given point and the other endpoint on the line and that is perpendicular 

to the line. 

 

Theorem 91 about points on the bisector of an angle in Neutral Geometry 

Given: Neutral Geometry, angle ∠𝐵𝐴𝐶, and point 𝐷 in the interior of the angle 

Claim: The following statements are equivalent 

(i) 𝐷 lies on the bisector of angle ∠𝐵𝐴𝐶.  

(ii) 𝐷 is equidistant from the sides of angle ∠𝐵𝐴𝐶. 

Proof 

(1) In Neutral Geometry, suppose that point 𝐷 lies in the interior of angle ∠𝐵𝐴𝐶. (Make a 

drawing.) 

Proof that (i)  (ii) 

(2) Suppose that (i) is true. That is, suppose that 𝐷 lies on the bisector of angle ∠𝐵𝐴𝐶. 

(Make a new drawing.) 

(3) Let point 𝐸 be the foot of the perpendicular from 𝐷 to line 𝐴𝐵 ⃡    , and let point 𝐹 be the foot 

of the perpendicular from 𝐷 to line 𝐴𝐶 ⃡    . (Make a new drawing.) 

(4) Then Δ𝐷𝐴𝐸 ≅ Δ𝐷𝐴𝐹. (Justify.) (Make a new drawing.) 

(5) So 𝐷𝐸̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(6) Conclude that 𝐷 is equidistant from the sides of angle ∠𝐵𝐴𝐶. That is, (ii) is true. 

Proof that (ii)  (i) 

(7) Suppose that (ii) is true. That is, suppose that 𝐷 is equidistant from the sides of angle 

∠𝐵𝐴𝐶. (Make a new drawing.) 

(8) Let point 𝐸 be the foot of the perpendicular from 𝐷 to line 𝐴𝐵 ⃡    , and let point 𝐹 be the foot 

of the perpendicular from 𝐷 to line 𝐴𝐶 ⃡    . (Make a new drawing.) 

(9) Then 𝐷𝐸̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(10) Then Δ𝐷𝐴𝐸 ≅ Δ𝐷𝐴𝐹. (Justify.) (Make a new drawing.) 

(11) So ∠𝐷𝐴𝐸 ≅ ∠𝐷𝐴𝐹. (Justify.) (Make a new drawing.) 

(12) Conclude that 𝐷 lies on the bisector of angle ∠𝐵𝐴𝐶. That is, (i) is true. 

End of Proof 

 

Our next theorem about angle bisectors is of a type called a concurrence theorem. Remember 

that a collection of lines is called concurrent if there exists a point that all the lines pass through. 

In this book, we will discuss three concurrence theorems about special lines related to triangles. 

This first concurrence theorem is about angle bisectors. You will justify the steps in the proof in 

an exercise. 

 

Theorem 92 in Neutral Geometry, the three angle bisectors of any triangle are concurrent at a 

point that is equidistant from the three sides of the triangle. 

Proof 

(1) In Neutral Geometry, suppose that triangle Δ𝐴𝐵𝐶 is given. (Make a drawing.) 

Show that the bisectors of ∠𝑨 and ∠𝑩 intersect. 
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(2) There exists a ray 𝐴𝐷       that bisects ∠𝐶𝐴𝐵. (Justify.) (Make a new drawing.) 

(3) Point 𝐷 lies in the interior of angle ∠𝐶𝐴𝐵. (Justify.) (Make a new drawing.) 

(4) Ray 𝐴𝐷       intersects side 𝐵𝐶̅̅ ̅̅  at a point that we can call 𝐸. (Justify.) (Make a new 

drawing.) 

(5) There exists a ray 𝐵𝐹       that bisects ∠𝐴𝐵𝐸. (Justify.) (Make a new drawing.) 

(6) Point 𝐹 lies in the interior of angle ∠𝐴𝐵𝐸. (Justify.) (Make a new drawing.) 

(7) Ray 𝐵𝐹       intersects segment 𝐴𝐸̅̅ ̅̅  at a point that we can call 𝐺. (Justify.) (Make a new 

drawing.) We have shown that the bisectors of ∠𝐴 and ∠𝐵 intersect at 𝐺. 

Consider distances from the point of intersection to the sides of the triangle 

(8) The distance from 𝐺 to line 𝐴𝐶 ⃡     equals the distance from 𝐺 to line 𝐴𝐵 ⃡    . (Justify.) (Make a 

new drawing.) 

(9) The distance from 𝐺 to line 𝐵𝐴 ⃡     equals the distance from 𝐺 to line 𝐵𝐶 ⃡    . (Justify.) (Make a 

new drawing.) 

(10) So the distance from 𝐺 to line 𝐶𝐴 ⃡     equals the distance from 𝐺 to line 𝐶𝐵 ⃡    . (Justify.) 

(Make a new drawing.) 

(11) Therefore, point 𝐺 lies on the bisector of ∠𝐵𝐶𝐴. (Justify.) (Make a new drawing.) 

(12) We have shown that the bisectors of all three angles ∠𝐴 and ∠𝐵 and ∠𝐶 intersect at 𝐺 

and that 𝐺 is equidistant from the three sides of the triangle. 

End of Proof 
 

The point where the three angle bisectors meet is called the incenter of the triangle. This name 

might sound strange, but the reason for it will become clearer in the next section. 

 

Definition 67 incenter of a triangle 

The incenter of a triangle in Neutral Geometry is defined to be the point where the three 

angle bisectors meet. (Such a point is guaranteed to exist by Theorem 92.) 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 8.6 on page 205. 

8.5. Theorems About Tangent Lines and Inscribed 

Circles 
Our first theorem about tangent lines drawn to circles has a very short proof. You will be asked 

to prove the theorem in an exercise. 

 

Theorem 93 about tangent lines drawn from an exterior point to a circle in Neutral Geometry 

Given: Neutral Geometry, 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟), point 𝐴 in the exterior of the circle, and lines 𝐴𝐵 ⃡     

and 𝐴𝐶 ⃡     tangent to the circle at points 𝐵 and 𝐶. 

Claim: 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅  and ∠𝑃𝐴𝐵 ≅ ∠𝑃𝐴𝐶. 

 

The next theorem proves that if three points lie on a circle, then they do not lie on any other 

circle. The proof mainly uses one idea, a theorem from earlier in the chapter. In a homework 

exercise, you will be asked to identify that theorem and to make drawings. 
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Theorem 94 In Neutral Geometry, if three points lie on a circle, then they do not lie on any 

other circle. 

Proof 

(1) In Neutral Geometry, suppose that three distinct points 𝐴, 𝐵, 𝐶 lie on 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟1) and on 

𝐶𝑖𝑟𝑐𝑙𝑒(𝑄, 𝑟2). (We will show that 𝑃 = 𝑄 and 𝑟1 = 𝑟2.) 

Show that 𝑷 lies at the intersection of two lines 𝑳 and 𝑴. 

(2) Observe that point 𝑃 is equidistant from point 𝐴 and 𝐵. (Make a drawing.) 

(3) Therefore, point 𝑃 lies on the line that is the perpendicular bisector of segment 𝐴𝐵̅̅ ̅̅ . 

(Which theorem justifies that statement?) Call this line 𝐿. (Make a new drawing.) 

(4) Observe that point 𝑃 is equidistant from point 𝐵 and 𝐶. (Make a new drawing.) 

(5) Therefore, point 𝑃 lies on the line that is the perpendicular bisector of segment 𝐵𝐶̅̅ ̅̅ . 

(Which theorem justifies that statement?) Call this line 𝑀. (Make a new drawing.) 

(6) So point 𝑃 lies on both lines 𝐿 and 𝑀. (Make a new drawing.) 

Show that 𝑸 also lies at the intersection of 𝑳 and 𝑴. 

(7) Observe that point 𝑄 is equidistant from point 𝐴 and 𝐵 and that 𝑄 is also equidistant from 

point 𝐵 and 𝐶. Therefore, steps identical to steps (2) – (5) would show that point 𝑄 lies 

on both lines 𝐿 and 𝑀. 

Conclusion 

(8) We know that lines 𝐿 and 𝑀 are not the same line. (because that would require that points 

𝐴 and 𝐶 be the same point) So the lines can only intersect in one point. Therefore, 𝑃 

and 𝑄 must be the same point. That is, 𝑃 = 𝑄. 

(9) That means that 𝑟2 = 𝑄𝐴 = 𝑃𝐴 = 𝑟1. 

(10) Conclude that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝑄, 𝑟2) are in fact the same circle. 

End of proof 

 

So far, we have studied situations involving one or two tangent lines on a given circle. We now 

turn our attention to circles inscribed in polygon. Here, there are many tangent lines on a given 

circle. 

 

Definition 68 inscribed circle 

An inscribed circle for a polygon is a circle that has the property that each of the sides of the 

polygon is tangent to the circle. 

 

For a given polygon, it is not always possible to inscribe a circle in the polygon. But it turns out 

that it is always possible to inscribe a circle in a triangle. Here’s the theorem. You will justify it 

in the exercises. 

 

Theorem 95 in Neutral Geometry, every triangle has exactly one inscribed circle. 

Proof 

(1) In Neutral Geometry, suppose that triangle Δ𝐴𝐵𝐶 is given. (Make a drawing.) 

Show that an inscribed circle exists. 

(2) The three angle bisectors are concurrent at a point 𝑃 that is equidistant from the three 

sides of the triangle. (Justify.) (Make a new drawing.) 

(3) Let 𝐷 be the point on side 𝐴𝐵̅̅ ̅̅  such that 𝑃𝐷̅̅ ̅̅  is perpendicular to side 𝐴𝐵̅̅ ̅̅ , Let 𝐸 be the 

point on side 𝐵𝐶̅̅ ̅̅  such that 𝑃𝐸̅̅ ̅̅  is perpendicular to side 𝐵𝐶̅̅ ̅̅ , and let 𝐹 be the point on 

side 𝐶𝐴̅̅ ̅̅  such that 𝑃𝐹̅̅ ̅̅  is perpendicular to side 𝐶𝐴̅̅ ̅̅ . (Make a new drawing.) 

(4) Then 𝑃𝐷̅̅ ̅̅ ≅ 𝑃𝐸̅̅ ̅̅ ≅ 𝑃𝐹̅̅ ̅̅ . (by (2) and (3)) 
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(5) Let 𝑟 = 𝑃𝐷 = 𝑃𝐸 = 𝑃𝐹. 

(6) Observe that all three points 𝐷, 𝐸, 𝐹 lie on 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟). (by (5)) (Make a new drawing.) 

(7) Note that side 𝐴𝐵̅̅ ̅̅  is tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) at 𝐷. (Justify.) Similarly, side 𝐵𝐶̅̅ ̅̅  is tangent 

to 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) at 𝐸, and side 𝐶𝐴̅̅ ̅̅  is tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) at 𝐹. 

(8) Conclude that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) is inscribed in Δ𝐴𝐵𝐶.  

Show that there cannot be any other inscribed circles. 

(9) Suppose that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑄, 𝑟2) is inscribed in Δ𝐴𝐵𝐶. (Make a new drawing.) (We will show 

that 𝑄 = 𝑃 and 𝑟2 = 𝑟.) Let 𝐺, 𝐻, 𝐽 be the points where 𝐶𝑖𝑟𝑐𝑙𝑒(𝑄, 𝑟2) intersects sides 

𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐴̅̅ ̅̅ , respectively. 

(10) Radial segments 𝑄𝐺̅̅ ̅̅ , 𝑄𝐻̅̅ ̅̅ , 𝑄𝐽̅̅ ̅ must be perpendicular to sides 𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐴̅̅ ̅̅ , respectively. 

(Justify.) (Make a new drawing.) 

(11) Conclude that point 𝑄 is equidistant from the three sides of Δ𝐴𝐵𝐶. (Make a new 

drawing.) 

(12) Therefore, point 𝑄 must lie on all three of the angle bisectors of Δ𝐴𝐵𝐶. (Justify.) 

(13) Conclude that point 𝑄 must be point 𝑃. 

(14) Conclude that points 𝐺, 𝐻, 𝐽 must be the same as points 𝐷, 𝐸, 𝐹, respectively. (Justify.) 

(15) Therefore, 𝑟2 = 𝑄𝐺 = 𝑃𝐷 = 𝑟. 

(16) We have shown that 𝑄 = 𝑃 and 𝑟2 = 𝑟. In other words, 𝐶𝑖𝑟𝑐𝑙𝑒(𝑄, 𝑟2) is just 

𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟). 

End of Proof 

 

We see that the inscribed circle has its center at the point where the three angle bisectors meet. 

This point was given the name incenter back in Definition 67. Now we see why the name 

incenter is used: the incenter is the center of the inscribed circle. 

 

In the exercises, you will explore tangent circles. Here is the definition. 

 

Definition 69 tangent circles 

Two circles are said to be tangent to each other if they intersect in exactly one point. 

 

The facts that you learn about tangent circles mostly follow from things that we have already 

learned about lines tangent to circles. But there is one fact about circles that we have not 

discussed and that you will need to use. Here it is: 

 

Theorem 96 In Neutral Geometry, if one circle passes through a point that is in the interior of 

another circle and also passes through a point that is in the exterior of the other 

circle, then the two circles intersect at exactly two points. 

 

As simple as it sounds, this theorem is difficult to prove. We will accept the theorem without 

proof in this book. (Notice that this happened before, with the similar Theorem 83 about a line 

passing through a point in the interior of a circle and also passing through a point in the exterior 

of the circle.) (In some books, the statement of Theorem 96 is actually an axiom.) 

8.6. Exercises for Chapter 8 
Exercises for Section 8.1 Theorems about Lines Intersecting Circles (Starts on page 195) 
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[1] (Advanced) Prove Theorem 77 (In Neutral Geometry, the Number of Possible Intersection 

Points for a Line and a Circle is 0, 1, 2.) (found on page 195). 

 

[2] Justify the steps in the proof of Theorem 78 (In Neutral Geometry, tangent lines are 

perpendicular to the radial segment.) (found on page 196). Make drawings where indicated. 

 

[3] Prove Theorem 79: ((Corollary of Theorem 78) For any line tangent to a circle in Neutral 

Geometry, all points on the line except for the point of tangency lie in the circle’s exterior.) 

(found on page 197). 

 

[4] (Advanced) Justify the steps in the proof of Theorem 80 (about points on a Secant line lying 

in the interior or exterior in Neutral Geometry) (found on page 197). Make drawings to illustrate 

the proof, and fill in the missing steps (16) – (21). 

 

[5] (Advanced) Justify the steps in the proof of Theorem 82 (In Neutral Geometry, if a line 

passes through a point in the interior of a circle, then it also passes through a point in the 

exterior.) (found on page 198) Make a drawing to illustrate the proof. 

 

Exercises for Section 8.2 A Digression: Two Theorems About Triangles (Starts on p. 199) 

 

[6] Justify the steps and supply the missing steps in the proof of Theorem 85 (about special rays 

in isosceles triangles in Neutral Geometry) (found on page 199). Make a drawing for each step of 

the proof. 

 

[7] Prove Theorem 86 (about points equidistant from the endpoints of a line segment in Neutral 

Geometry) (found on page 200). Make drawings to illustrate. your proof. 

 

Exercises for Section 8.3 Theorems About Chords (Section starts on page 200) 

 

[8] Make drawings to illustrate the proof of Theorem 87 (In Neutral Geometry, any 

perpendicular from the center of a circle to a chord bisects the chord) (found on page 200). 

 

[9] Prove Theorem 88 (In Neutral Geometry, the segment joining the center to the midpoint of a 

chord is perpendicular to the chord.) (found on page 200). Make drawings to illustrate your 

proof. 

 

[10] Make drawings to illustrate the proof of Theorem 89 ((Corollary of Theorem 86) In Neutral 

Geometry,  the perpendicular bisector of a chord passes through the center of the circle.) (found 

on page 200). Find the theorem needed to justify step (5) in the proof. 

 

[11] Justify the steps in the proof of Theorem 90 (about chords equidistant from the centers of 

circles in Neutral Geometry) (found on page 201). Make drawings where illustrated. 

 

Exercises for Section 8.4 A Digression: Two Theorems About Angle Bisectors (p. 201) 

 

[12] Justify the steps in the proof of Theorem 91 (about points on the bisector of an angle in 

Neutral Geometry) (found on page 202). Make drawings to illustrate the two sections of the 

proof. 
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[13] Justify the steps in the proof of Theorem 92 (in Neutral Geometry, the three angle bisectors 

of any triangle are concurrent at a point that is equidistant from the three sides of the triangle.) 

(found on page 202). Make drawings to illustrate the proof. 

 

Exercises for Section 8.5 Theorems About Tangent Lines and Inscribed Circles (p. 203) 

 

[14] Prove Theorem 93 (about tangent lines drawn from an exterior point to a circle in Neutral 

Geometry) (found on page 203). Make drawings to illustrate your proof. Hint: Show first that 

Δ𝐴𝑃𝐵 ≅ Δ𝐴𝑃𝐶. 

 

[15] Make drawings to illustrate the proof of Theorem 94 (In Neutral Geometry, if three points 

lie on a circle, then they do not lie on any other circle.) (found on page 204). One theorem can be 

used to justify statements (3), (5), (9), and (11) in the proof. What is that theorem?  

 

[16] Justify the steps in the proof of Theorem 95 (in Neutral Geometry, 

every triangle has exactly one inscribed circle.) (found on page 

204).Make drawings to illustrate the proof. 

 

[17] Two concentric circles are centered at point 𝐴. Outer circle chords 

𝐷𝐸̅̅ ̅̅  and 𝐹𝐺̅̅ ̅̅  are tangent to the inner circle at points 𝐵 and 𝐶. Prove 𝐷𝐸̅̅ ̅̅ ≅
𝐹𝐺̅̅ ̅̅ .  

  

[18] Two circles are centered at points 𝐴 and 𝐷. The 

left circle has radius 𝑟1 = 𝐴𝐵. The right circle has 

radius 𝑟2 = 𝐷𝐸.  Lines 𝐵𝐸 ⃡     and 𝐶𝐹 ⃡    are tangent to the 

circles at points 𝐵, 𝐶, 𝐸, 𝐹, and the lines intersect at 𝐺. 

Prove that points 𝐴, 𝐺, 𝐷 are collinear. 

 
 

[19] 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝑟2) are tangent at 𝐶. Center 𝐵 is in the exterior of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1). 

 

(a) Prove that points 𝐴, 𝐵, 𝐶 are collinear. Hint: Do an indirect proof, 

using the method of contradiction. Assume that 𝐶 is not on 𝐴𝐵 ⃡    . 

Consider triangle Δ𝐴𝐵𝐶. It has sides of length 𝐶𝐴 = 𝑟1 and 𝐶𝐵 =

𝑟2. Show that there exists a point 𝐷 on the other side of line 𝐴𝐵 ⃡     

such that Δ𝐴𝐵𝐶 ≅ Δ𝐴𝐵𝐷. (There will be a few steps involved.) 

Show that point 𝐷 lies on both circles. Explain the contradiction.  
 

 

(b) Prove that the two circles have a common tangent line at point 𝐶. 

 

𝐴 

𝐵 

𝐶 

𝐸 

𝐷 

𝐹 𝐺 

𝐴 

𝐶 

𝐸 

𝐷 

𝐹 

𝐺 

𝐵 

𝐴 𝐵 𝐶 
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[20] 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝑟2) are tangent at 𝐶. Center 𝐵 is in 

the interior of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1), and radius 𝑟1 > 𝑟2.  

(a) Prove that the two circles have a common tangent line at point 𝐶. 

Hint: See the hint for [19](a). It will work here, too. 

(b) Prove that the two circles have a common tangent line at point 𝐶. 

 

 
  

[21] 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝑟2) are tangent at point 𝐸. Lines 

𝐶𝐷 ⃡    , 𝐶𝐸 ⃡   , 𝐶𝐹 ⃡    are tangent to the circles at points 𝐷, 𝐸, 𝐹. 

 

Prove that 𝐶𝐷 = 𝐶𝐸 = 𝐶𝐹. 

 
 

. 

𝐴 𝐵 𝐶 

𝐴 𝐵 𝐸 

𝐷 

𝐹 
𝐶 
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9.Euclidean Geometry I: Triangles 

9.1. Introduction 
In this section, we add an eleventh axiom to the axiom system for Neutral Geometry. The 

resulting longer axiom list is called the Axiom System for Euclidean Geometry. 

 

Definition 70 The Axiom System for Euclidean Geometry 

Primitive Objects: point, line 

Primitive Relation: the point lies on the line 

Axioms of Incidence and Distance 

<N1> There exist two distinct points. (at least two) 

<N2> For every pair of distinct points, there exists exactly one line that both points 

lie on. 

<N3> For every line, there exists a point that does not lie on the line. (at least one) 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

<N5> (The Ruler Axiom) Every line has a coordinate function. 

Axiom of Separation 

<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets 

called half-planes, denoted 𝐻1 and 𝐻2, with the following three properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

Axioms of Angle measurement 

<N7> (Angle Measurement Axiom) There exists a function 𝑚: 𝒜 → (0,180), called 

the Angle Measurement Function. 

<N8> (Angle Construction Axiom) Let 𝐴𝐵       be a ray on the edge of the half-plane 𝐻. 

For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃       with point 

𝑃 in 𝐻 such that 𝑚(∠𝑃𝐴𝐵) = 𝑟. 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of ∠𝐵𝐴𝐶, then 

𝑚(∠𝐵𝐴𝐶) = 𝑚(∠𝐵𝐴𝐷) + 𝑚(∠𝐷𝐴𝐶). 

Axiom of Triangle Congruence 

<N10> (SAS Axiom) If there is a one-to-one correspondence between the vertices of 

two triangles, and two sides and the included angle of the first triangle are 

congruent to the corresponding parts of the second triangle, then all the 

remaining corresponding parts are congruent as well, so the correspondence is a 

congruence and the triangles are congruent. 

Euclidean Parallel Axiom 

<EPA> (EPA Axiom) For any line 𝐿 and any point 𝑃 not on 𝐿, there is not more than 

one line 𝑀 that passes through 𝑃 and is parallel to 𝐿. 

 

We now officially begin our study of Euclidean Geometry. However, it is important to note that 

because the ten Neutral Geometry Axioms are included on the list of axioms for Euclidean 

Geometry, every theorem of Neutral Geometry will also be a theorem of Euclidean Geometry. In 
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this book that means that the statements of Theorems 1 through Theorem 96 are all true in 

Euclidean Geometry. 

 

The wording of the eleventh postulate, the so-called Euclidean Parallel Postulate, is rather 

peculiar, and almost sounds like a mistake. But the wording is very carefully chosen to remind us 

of the “recurring question” in Geometry, first introduced in Section 2.1.5: 

 

The recurring question in Geometry: For any line 𝐿 and any point 𝑃 not on 𝐿, how many 

lines exist that pass through 𝑃 and are parallel to 𝐿? 

 

The Euclidean Parallel Axiom is worded the way it is to make it clear that the axiom does not 

guarantee us any lines that pass through 𝑃 and are parallel to 𝐿. All the axiom says is that there 

cannot be more than one such line. But remember that in Neutral Geometry, we proved a 

theorem (Theorem 76) that says there is at least one such line. That theorem and the new 

Euclidean Parallel Axiom together give us a definitive answer to the recurring question in the 

case of Euclidean Geometry. Here is the answer, stated as a corollary. You will justify it in a 

homework exercise.  

 

Theorem 97 (Corollary) In Euclidean Geometry, the answer to the recurring question is exactly 

one line. 

In Euclidean Geometry, for any line 𝐿 and any point 𝑃 not on 𝐿, there exists exactly one line 

𝑀 that passes through 𝑃 and is parallel to 𝐿. 

Proof 

(1) In Euclidean Geometry, suppose that line 𝐿 and a point 𝑃 not on 𝐿 are given. 

(2) There exists at least one line that passes through 𝑃 and is parallel to 𝐿. (Justify.) 

(3) There is not more than one line. (Justify.) 

(4) Therefore, there is exactly one line. 

End of Proof. 

 

There are some other immediate corollaries of the Euclidean Parallel Axiom. Here are two. You 

will justify them in homework exercises. 

 

Theorem 98 (corollary) In Euclidean Geometry, if a line intersects one of two parallel lines, 

then it also intersects the other. 

In Euclidean Geometry, if 𝐿 and 𝑀 are parallel lines, and line 𝑇 intersects 𝑀, then 𝑇 also 

intersects 𝐿. 

Proof 

(1) In Euclidean Geometry, suppose that line 𝐿 and 𝑀 are parallel lines, and line 𝑇 intersects 

𝑀. (Make a drawing.) 

(2) Let 𝑃 be the point of intersection of line 𝑇 and 𝑀. 

(3) We see that line 𝑀 passes through 𝑃 and is parallel to line 𝐿. 

(4) There cannot be a second line that passes through 𝑃 and is parallel to line 𝐿. (Justify.) 

(5) Therefore, line 𝑇 cannot be parallel to line 𝐿. That is, line 𝑇 must intersect line 𝐿. (Make 

a new drawing.) 

End of Proof. 
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Theorem 99 (corollary) In Euclidean Geometry, if two distinct lines are both parallel to a third 

line, then the two lines are parallel to each other. That is, if distinct lines 𝑀 and 𝑁 

are both parallel to line 𝐿, then 𝑀 and 𝑁 are parallel to each other. 

Proof (indirect proof by contradiction) 

(1) In Euclidean Geometry, suppose distinct lines 𝑀 and 𝑁 are both parallel to line 𝐿. 

(2) Assume that 𝑀 and 𝑁 are not parallel to each other. (Justify.) 

(3) Then 𝑀 and 𝑁 intersect at exactly one point. (Justify.) Let 𝑃 be their point of 

intersection. (Make a drawing.) 

(4) We see that lines 𝑀 and 𝑁 both pass through 𝑃 and are parallel to line 𝐿. 

(5) Statement (4) contradicts something. (What does it contradict? There is more than one 

possible answer.) So our assumption in step (2) was wrong. lines 𝑀 and 𝑁 must be parallel 

to each other. 

End of Proof. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 

9.2. Parallel Lines and Alternate Interior Angles in 

Euclidean Geometry 
 

Recall that in Section 7.7, we discussed parallel lines in Neutral Geometry. We considered the 

situation of two lines 𝐿 and 𝑀 and a transversal 𝑇. Theorem 74 stated that in Neutral Geometry, 

if a pair of alternate interior angles is congruent, then 𝐿 and 𝑀 are parallel. The converse of the 

statement of that theorem is not a theorem of Neutral Geometry. But it is a theorem of Euclidean 

Geometry. Here is the theorem and its proof. 

 

Theorem 100 Converse of the Alternate Interior Angle Theorem for Euclidean Geometry 

Given: Euclidean Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If 𝐿 and 𝑀 are parallel, then a pair of alternate interior angles is congruent.  

Proof: (Method: Prove the contrapositive statement: If a pair of alternate interior angles is 

not congruent, then 𝑳 and 𝑴 are not parallel.) 

(1) In Euclidean Geometry, suppose that lines 𝐿 and 𝑀 and a transversal 𝑇 are given. Label 

points as in Definition 61. That is, let 𝐵 be the intersection of lines 𝑇 and 𝐿, and let 𝐸 be 

the intersection of lines 𝑇 and 𝑀. (By 

definition of transversal, 𝐵 and 𝐸 are not the 

same point.) By Theorem 15, there exist 

points 𝐴 and 𝐶 on line 𝐿 such that 𝐴 ∗ 𝐵 ∗
𝐶, points 𝐷 and 𝐹 on line 𝑀 such that 𝐷 ∗
𝐸 ∗ 𝐹, and points 𝐺 and 𝐻 on line 𝑇 such 

that 𝐺 ∗ 𝐵 ∗ 𝐸 and 𝐵 ∗ 𝐸 ∗ 𝐻. Without loss 

of generality, we may assume that points 𝐷 

and 𝐹 are labeled such that it is point 𝐷 that is on the same side of line 𝑇 as point 𝐴. (See 

the figure at right above.) And suppose that a pair of alternate interior angles is not 

congruent. In particular, assume that ∠𝐹𝐸𝐵 ≇ ∠𝐴𝐵𝐸. 

Define a new line for which alternate interior angles are congruent. 

(2) Transversal 𝑇 creates two half-planes. Let 𝐻𝐹 be the half-plane containing 𝐹. 

𝐴 𝐵 𝐶 
𝐹 𝐸 𝐷 

𝐻 

𝐺 
𝐿 

𝑀 

𝑇 
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(3) By the Congruent Angle Construction Theorem (Theorem 48), we know that there is 

exactly one ray 𝐸𝐽      with point 𝐽 in 𝐻𝐹 such that ∠𝐽𝐸𝐵 ≅ ∠𝐴𝐵𝐸. 

(4) Consider line 𝐿 and line 𝐸𝐽 ⃡   and transversal 𝑇. Observe that because of the way that line 

𝐸𝐽 ⃡  , was defined, this collection of lines has congruent alternate interior angles. 

(5) So line 𝐸𝐽 ⃡   is parallel to line 𝐿. (by Theorem 74, the Alternate Interior Angle Theorem) 

(6) Observe that line 𝐸𝐽 ⃡   passes through point 𝐸. That is, both line 𝑀 and line 𝐸𝐽 ⃡   pass through 

point 𝐸. 

Conclude 

(7) By <EPA>, the Euclidean Parallel Axiom, there can be at most one line that passes 

through point 𝐸 and is parallel to line 𝐿. Therefore, line 𝑀 cannot be parallel to 𝐿. 

End of Proof 

 

Here are two immediate corollaries. You will prove the second one in a homework exercise. 

 

Theorem 101 (corollary) Converse of Theorem 75. 

Given: Euclidean Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If 𝐿 and 𝑀 are parallel, then all of the statements of Theorem 73 are true (that is, 

lines 𝐿, 𝑀, 𝑇 have the special angle property). 

 

Theorem 102 (corollary) In Euclidean Geometry, if a line is perpendicular to one of two parallel 

lines, then it is also perpendicular to the other. That is, if lines 𝐿 and 𝑀 are 

parallel, and line 𝑇 is perpendicular to 𝑀, then 𝑇 is also perpendicular to 𝐿. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 

9.3. Angles of Triangles in Euclidean Geometry 
You probably came into this course with rusty geometry skills. But one of the things that you 

probably did remember was that the angle sum for any triangle is 180. So it may have been 

puzzling for you that we never got to use that fact in the first eight chapters of this book. The 

reason that you never got to use the fact is that in Neutral Geometry, it is simply not true that the 

angle sum for any triangle is 180. Now that we are at last studying Euclidean Geometry, we can 

finally prove the fact about angle sums and start using it. Here is a proof. You will justify it in a 

class drill. 

 

Theorem 103 In Euclidean Geometry, the angle sum for any triangle is 180. 

Proof: 

(1) In Euclidean Geometry, suppose that triangle Δ𝐴𝐵𝐶 is given.  

(2) Let 𝐿 be line 𝐴𝐵 ⃡    . 

(3) There exists a line 𝑀 that passes through 𝐶 and is parallel to 𝐿. (Justify.) (make a 

drawing) 

(4) There exist points 𝐷, 𝐸 on line 𝑀 such that 𝐷 ∗ 𝐶 ∗ 𝐸. Points 𝐷 and 𝐸 can be labeled so 

that it is point 𝐷 that is on the same side of line 𝐵𝐶 ⃡     as point 𝐴. 

(5) 𝑚(∠𝐷𝐶𝐴) + 𝑚(∠𝐴𝐶𝐵) = 𝑚(∠𝐷𝐶𝐵). (Justify.) 

(6) 𝑚(∠𝐷𝐶𝐵) + 𝑚(∠𝐵𝐶𝐸) = 180. (Justify.) 

(7) 𝑚(∠𝐷𝐶𝐴) + 𝑚(∠𝐴𝐶𝐵) + 𝑚(∠𝐵𝐶𝐸) = 180. (Justify.) 
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(8) 𝑚(∠𝐷𝐶𝐴) = 𝑚(∠𝐶𝐴𝐵). (Justify.) 

(9) 𝑚(∠𝐵𝐶𝐸) = 𝑚(∠𝐶𝐵𝐴). (Justify.) 

(10) 𝑚(∠𝐶𝐴𝐵) + 𝑚(∠𝐴𝐶𝐵) + 𝑚(∠𝐶𝐵𝐴) = 180. (Justify.) 

End of Proof 

 

There are two straightforward corollaries of Theorem 103. The first has to do with exterior 

angles. Recall the statement of the Neutral Exterior Angle Theorem, presented in Section 7.3: 

 

Theorem 59: Neutral Exterior Angle Theorem 

In Neutral Geometry, the measure of any exterior angle is greater than the measure of either 

of its remote interior angles. 

 

You may have a vague memory of something called the Exterior Angle Theorem from your high 

school geometry class, and you might remember that its statement did not resememble the 

statement above. The reason is that in high school, you learned a statement about exterior angles 

that is true in Euclidean Geometry, but that is not true in Neutral Geometry. here is the statement, 

presented as a theorem of Euclidean Geometry: 

 

Theorem 104 (corollary) Euclidean Exterior Angle Theorem. 

In Euclidean Geometry, the measure of any exterior angle is equal to the sum of the measure 

of its remote interior angles 

Proof: 

(1) In Euclidean Geometry, suppose that a triangle and an exterior angle for it are given. 

(2) Label the vertices of the triangle 𝐴, 𝐵, 𝐶 such that the given exterior angle is ∠𝐶𝐵𝐷, with 

𝐴 ∗ 𝐵 ∗ 𝐷. 

is given. (make a drawing) 

(3) 𝑚(∠𝐴𝐵𝐶) + 𝑚(∠𝐶𝐵𝐷) = 180. (Justify.) 

(4) 𝑚(∠𝐴𝐵𝐶) + 𝑚(∠𝐵𝐶𝐴) + 𝑚(∠𝐶𝐴𝐵) = 180. (Justify.) 

(5) 𝑚(∠𝐶𝐵𝐷) = 𝑚(∠𝐵𝐶𝐴) + 𝑚(∠𝐶𝐴𝐵). (Justify.) 

End of Proof 
 

You will justify the above proof in a homework exercise. 

 

It is important to keep in mind that we now have two theorems about Exterior Angles. 

 Theorem 59 is called the Neutral Exterior Angle Theorem; it is a valid theorem in 

Neutral Geometry and also in Euclidean Geometry. 

 Theorem 104 is called the Euclidean Exterior Angle Theorem; it is a valid theorem in 

Euclidean Geometry but not in Neutral Geometry. 

Because there are two theorems about Exterior Angles, it is imperative that you use the full name 

of the theorems when referring to them. In particular, it is not acceptable to justify a step in a 

proof by citing “the Exterior Angle Theorem”. You must indicate which one. 

 

The second corollary of Theorem 103 that we will study deals with angle sum of convex 

quadrilaterals. You will prove it in a homework exercise. 

 

Theorem 105 (corollary) In Euclidean Geometry, the angle sum of any convex quadrilateral is 

360. 
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Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 

9.4. In Euclidean Geometry, every triangle can be 

circumscribed 
In Section 8.4 we proved Theorem 92 (in Neutral Geometry, the three angle bisectors of any 

triangle are concurrent at a point that is equidistant from the three sides of the triangle.) (found 

on page 202). The point of concurrence is called the incenter of the triangle. Using that 

concurrence theorem, we were able in Section 8.5 to prove Theorem 95 (in Neutral Geometry, 

every triangle has exactly one inscribed circle.) (found on page 204). We saw that the inscribed 

circle has its center at the incenter of the triangle. That’s why the name incenter is used for that 

point. All that stuff remains valid in Euclidean Geometry, of course. 

 

Now we will study a different concurrence statement, this one about the perpendicular bisectors 

of the sides of a triangle. We will prove that in Euclidean Geometry, the three perpendicular 

bisectors are concurrent. And we will be able to use that concurrence theorem to help us prove 

the existence of another special circle related to the triangle. But the things that we prove here 

are only valid in Euclidean Geometry. They are not valid statements in Neutral Geometry. 

 

Here is the concurrence theorem. You will justify it in a class drill. 

 

Theorem 106 In Euclidean Geometry, the perpendicular bisectors of the three sides of any 

triangle are concurrent at a point that is equidistant from the vertices of the 

triangle. (This point will be called the circumcenter.) 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 is given in Euclidean Geometry. 

(2) There exists a line 𝐿 that is the perpendicular bisector of side 𝐴𝐵̅̅ ̅̅ . (Justify.) Let 𝐷 be the 

point of intersection of line 𝐿 and side 𝐴𝐵̅̅ ̅̅ . 

(3) There exists a line 𝑀 that is the perpendicular bisector of side 𝐵𝐶̅̅ ̅̅ . (Justify.) Let 𝐸 be the 

point of intersection of line 𝑀 and side 𝐵𝐶̅̅ ̅̅ . 

(4) There exists a line 𝑁 that is the perpendicular bisector of side 𝐶𝐴̅̅ ̅̅ . (Justify.) Let 𝐹 be the 

point of intersection of line 𝑁 and side 𝐶𝐴̅̅ ̅̅ . 

(5) We must show that there exists a point that all three lines 𝐿, 𝑀, 𝑁 pass through.) 

Show that lines 𝑳 and 𝑴 intersect. (indirect proof) 

(6) Assume that lines 𝐿 and 𝑀 do not intersect. (Justify.) Then lines 𝐿 and 𝑀 are parallel. 

(7) Observe that line 𝐵𝐶 ⃡     is perpendicular to line 𝑀. 

(8) Therefore, line 𝐵𝐶 ⃡     is also perpendicular to line 𝐿. (Justify.) 

(9) Observe that line 𝐴𝐵 ⃡     is perpendicular to line 𝐿. 

(10) Line 𝐴𝐵 ⃡     is not the same line as line 𝐵𝐶 ⃡    . (Justify.) 

(11) So there are two lines, 𝐴𝐵 ⃡     and 𝐵𝐶 ⃡    , that pass through point 𝐵 and are perpendicular to 

line 𝐿. 

(12) Statement (11) contradicts something. (What does it contradict?) Therefore, our 

assumption in step (6) was wrong. Lines 𝐿 and 𝑀 must intersect. Let 𝐺 be their point of 

intersection. 
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Prove that point 𝑮 is equidistant from the vertices of the triangle and is on all three 

perpendicular bisectors. 

(13) Observe that 𝐺 is on line 𝐿, which is the perpendicular bisector of side 𝐴𝐵̅̅ ̅̅ . 

(14) 𝐺𝐴 = 𝐺𝐵. (Justify.) 

(15) Observe that 𝐺 is on line 𝑀, which is the perpendicular bisector of side 𝐵𝐶̅̅ ̅̅ . 

(16) 𝐺𝐵 = 𝐺𝐶. (Justify.) 

(17) 𝐺𝐴 = 𝐺𝐶. (Justify.) 

(18) 𝐺 is on line 𝑁, which is the perpendicular bisector of side 𝐶𝐴̅̅ ̅̅ . (Justify.) 

End of proof 

 

The point where the perpendicular bisectors of the three sides intersect is called the circumcenter 

of the triangle. 

 

Definition 71 circumcenter of a triangle 

The circumcenter of a triangle in Euclidean Geometry is defined to be the point where the 

perpendicular bisectors of the three sides intersect. (Such a point is guaranteed to exist by 

Theorem 106) 

 

The name circumcenter might sound strange, but the reason for the terminology will become 

clearer after we present the following definition and theorem. 

 

Definition 72 a circle circumscribes a triangle 

We say that a circle circumscribes a triangle if the circle passes through all three vertices of 

the triangle. 

 

Theorem 107 (corollary) In Euclidean Geometry, every triangle can be circumscribed. 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 is given in Euclidean Geometry. 

(2) There exists a point 𝐺 such that 𝐺𝐴 = 𝐺𝐵 = 𝐺𝐶. (by Theorem 106) 

(3) Define the real number 𝑟 =  𝐺𝐴 = 𝐺𝐵 = 𝐺𝐶. Observe that 𝐶𝑖𝑟𝑐𝑙𝑒(𝐺, 𝑟) passes through 

all three vertices 𝐴, 𝐵, 𝐶. 

End of proof 

 

We see that the circle that circumscribes a triangle has its center at the point where the 

perpendicular bisectors meet. This point was given the name circumcenter in Definition 71. Now 

we see why the name circumcenter is used: the circumcenter is the center of the circle that 

circumscribes the circle. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 

9.5. Parallelograms in Euclidean Geometry 
In this section, we turn our attention to parallelograms. Here is the definition. 

 

Definition 73 parallelogram 

A parallelogram is a quadrilateral with the property that both pairs of opposite sides are 

parallel. 
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Notice that there is nothing in the definition of parallelogram that assumes Euclidean Geometry. 

Indeed, parallelograms do exist in Neutral Geometry. But there are not general properties that are 

true for all parallelograms in Neutral Geometry. However, because of the additional restrictions 

placed on parallel lines in Euclidean Geometry, it turns out that that there are general properties 

that can be identified for parallelograms in Neutral Geometry. The following theorem tells us 

that there are a bunch of statements about convex quadrilaterals in Euclidean geometry that all 

turn out to be equivalent to saying that the convex quadrilateral is a parallelogram.  

 

Theorem 108 equivalent statements about convex quadrilaterals in Euclidean Geometry 

In Euclidean Geometry, given any convex quadrilateral, the following statements are 

equivalent (TFAE) 

(i) Both pairs of opposite sides are parallel. That is, the quadrilateral is a parallelogram. 

(ii) Both pairs of opposite sides are congruent. 

(iii) One pair of opposite sides is both congruent and parallel. 

(iv) Each pair of opposite angles is congruent. 

(v) Either diagonal creates two congruent triangles. 

(vi) The diagonals bisect each other. 

 

The proof is left as an exercise 

 

The theorem just presented is an equivalence theorem. The last time we encountered an 

equivalence theorem with so many statements was back in Section 7.7, when we studied 

Theorem 73 (Equivalent statements about angles formed by two lines and a transversal in 

Neutral Geometry) (found on page 186). Following that theorem were two remarks: 

 

 A Remark about Proving an Equivalence Theorem 

 A Remark about “Using” an Equivalence Theorem 

 

It would be useful for the reader to take a moment to review those remarks. 

 

There is an immediate corollary that you will be asked to prove in a homework exercise. Note 

that the theorem statement does not mention parallelograms. But you should use them in your 

proof. 

 

Theorem 109 (corollary) In Euclidean Geometry, parallel lines are everywhere equidistant. 

In Euclidean Geometry, if lines 𝐾 and 𝐿 are parallel, and line 𝑀 is a transversal that is 

perpendicular to lines 𝐾 and 𝐿 at points 𝐴 and 𝐵, and line 𝑁 is a transversal that is 

perpendicular to lines 𝐾 and 𝐿 at points 𝐶 and 𝐷, then 𝐴𝐵 = 𝐶𝐷. 

 

Parallel lines can be used in the proof of the concurrence of special lines associated to triangles. 

In the next section, we will prove that for any triangle in Euclidean Geometry, the three altitude 

lines are concurrent. In the final section of the chapter, we will prove that for any triangle in 

Euclidean Geometry, the three medians are concurrent. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 
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9.6. The triangle midsegment theorem and altitude 

concurrence 
In this section, we will prove that for any triangle in Euclidean Geometry, the three altitude lines 

are concurrent. The theorem can be proven directly, with a rather hard proof. But I find it more 

interesting to first introduce midsegments and medial triangles and prove some properties of 

those. Then, the proof of altitude concurrence will turn out to be an easy corollary. Here is the 

definition of midsegment. 

 

Definition 74 midsegment of a triangle 

A midsegment of a triangle is a line segment that has endpoints at the midpoints of two of the 

sides of the triangle. 

 

As far as I can remember, triangle midsegments only appear in the statement of one theorem, and 

it is a very simple-sounding theorem. But it turns out to be a very useful theorem. Here it is: 

 

Theorem 110 The Euclidean Geometry Triangle Midsegment Theorem 

In Euclidean Geometry, if the endpoints of a line segment are the midpoints of two sides of a 

triangle, then the line segment is parallel to the third side and is half as long as the third side. 

That is, a midsegment of a triangle is parallel to the third side and half as long. 

Proof 

(1) In Euclidean Geometry, suppose that the endpoints of a line segment are the midpoints of 

two sides of a triangle. Label the triangle Δ𝐴𝐵𝐶 so that the line segment is 𝐷𝐸̅̅ ̅̅ , with 

endpoints 𝐷 and 𝐸 being the midpoints of sides 𝐴𝐵̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ . (Make a drawing.) 

(2) There exists a point 𝐹 such that 𝐷 ∗ 𝐸 ∗ 𝐹 and 𝐸𝐹̅̅ ̅̅ ≅ 𝐸𝐷̅̅ ̅̅ . (Justify.) (Make a new 

drawing.) 

(3) Δ𝐶𝐸𝐹 ≅ Δ𝐴𝐸𝐷. (Justify.) (Make a new drawing.) 

(4) ∠𝐹𝐶𝐸 ≅ ∠𝐷𝐴𝐸 and 𝐶𝐹̅̅̅̅ ≅ 𝐴𝐷̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(5) 𝐶𝐹̅̅̅̅ ≅ 𝐵𝐷̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(6) Line 𝐶𝐹 ⃡    is parallel to line 𝐴𝐷 ⃡    . (Justify.) (Make a new drawing.) 

(7) Quadrilateral □𝐵𝐶𝐹𝐷 is a parallelogram. (Justify.) 

(8) Segment 𝐷𝐹̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅  and line 𝐷𝐹 ⃡     is parallel to line 𝐵𝐶 ⃡    . (Justify.) (Make a new drawing.) 

(9) Midsegment 𝐷𝐸̅̅ ̅̅  is parallel to side 𝐵𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(10) 𝐷𝐸 =
1

2
𝐷𝐹. (Justify.) 

(11) 𝐷𝐸 =
1

2
𝐵𝐶. (Justify.) 

End of proof 

 

Now for the definition of medial triangles.  

 

Definition 75 medial triangle 

Words: Triangle #1 is the medial triangle of triangle #2. 

Meaning: The vertices of triangle #1 are the midpoints of the sides of triangle #2. 

Additional Terminology: We will refer to triangle #2 as the outer triangle. 
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The Euclidean GeometryTriangle Midsegment Theorem that we just proved will enable us to 

easily prove some properties of Medial Triangles in Euclidean Geometry. Here is a theorem 

stating the properties. 

 

Theorem 111 Properties of Medial Triangles in Euclidean Geometry 

(1) The sides of the medial triangle are parallel to sides of outer triangle and are half as long. 

(2) The altitude lines of the medial triangle are the perpendicular bisectors of the sides of the 

outer triangle. 

(3) The altitude lines of the medial triangle are concurrent. 

 

Proof 

Let triangle Δ𝐷𝐸𝐹 be the medial triangle of outer triangle 

Δ𝐴𝐵𝐶, labeled so that vertices 𝐷, 𝐸, 𝐹 are the midpoints of 

the sides opposite vertices 𝐴, 𝐵, 𝐶. 

 

 
Proof of (1) 

Observe that each side of medial triangle Δ𝐷𝐸𝐹 is a midsegment of outer triangle Δ𝐴𝐵𝐶.  

Therefore, the sides of triangle Δ𝐷𝐸𝐹 will be parallel to the sides of outer triangle Δ𝐴𝐵𝐶 and 

half as long. (Justify.) 

Proof of (2) 

Consider the altitude line 𝐿 that passes through vertex 𝐹 of medial triangle Δ𝐷𝐸𝐹. This line 

is perpendicular to line 𝐷𝐸 ⃡    . But line 𝐷𝐸 ⃡     is parallel to line 𝐴𝐵 ⃡    . 

Therefore, line 𝐿 is also perpendicular to line 𝐴𝐵 ⃡    . (Justify.) Since line 𝐿 passes through point 

𝐹 that is the midpoint of segment 𝐴𝐵̅̅ ̅̅ , we see that line 𝐿 is the perpendicular bisector of side 

𝐴𝐵̅̅ ̅̅ . Similar reasoning applies to the other two altitudes of medial triangle Δ𝐷𝐸𝐹. 

Proof of (3) 

The perpendicular bisectors of the three sides of outer triangle Δ𝐴𝐵𝐶 are concurrent.(Justify) 

But those three perpendicular bisectors are the altitude lines of medial triangle Δ𝐷𝐸𝐹. 

Therefore, the altitude lines of medial triangle Δ𝐷𝐸𝐹 are concurrent. 

End of proof 

 

Remember that our goal for this section was to prove that for any given triangle, the three 

altitude lines are concurrent. So far, we have only proved that the three altitude lines of a medial 

triangle are concurrent. This next theorem is the final piece that we need to complete the puzzle. 

 

Theorem 112 In Euclidean Geometry any given triangle is a medial triangle for some other. 

Proof 

(1) Suppose that triangle Δ𝐷𝐸𝐹 is given in Neutral Geometry. 

Introduce lines 𝑳, 𝑴, 𝑵. 

(2) Let line 𝐿 be the unique line that passes through vertex 𝐷 and is parallel to line 𝐸𝐹 ⃡    . 

(3) Let line 𝑀 be the unique line that passes through vertex 𝐸 and is parallel to line 𝐹𝐷 ⃡    . 

(4) Let line 𝑁 be the unique line that passes through vertex 𝐹 and is parallel to line 𝐷𝐸 ⃡    . 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐿 
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Introduce triangle 𝚫𝑨𝑩𝑪. 

(5) Lines 𝐿 and 𝑀 intersect at a point that we 

can call 𝐶. (If lines 𝐿 and 𝑀 did not 

intersect, then they would be parallel, and 

Theorem 99 tell that that lines 𝐸𝐹 ⃡     and 𝐹𝐷 ⃡     

would be parallel as well. But we know 

that lines 𝐸𝐹 ⃡     and 𝐹𝐷 ⃡     are not parallel 

because they intersect at point 𝐹.) 

(6) Similarly, lines 𝑀 and 𝑁 intersect at a point 

that we can call 𝐴, and lines 𝑁 and 𝐿 

intersect at a point that we can call 𝐵. 
 

(7) Clearly, points 𝐴, 𝐵, 𝐶 are non-collinear. (If they were collinear, then all three lines 

𝐿, 𝑀, 𝑁 would be the same line. That would mean that the three lines 𝐷𝐸 ⃡    , 𝐸𝐹 ⃡    , 𝐹𝐷 ⃡     are 

parallel. But they are not.) So there is a triangle Δ𝐴𝐵𝐶. 

Use parallelograms to prove that points 𝑫, 𝑬, 𝑭 are midpoints. 

(8) Observe that Quadrilateral □𝐸𝐹𝐷𝐶 is a parallogram. 

(9) Therefore, 𝐸𝐹̅̅ ̅̅ ≅ 𝐷𝐶̅̅ ̅̅ . (by Theorem 108) 

(10) And observe that Quadrilateral □𝐸𝐹𝐵𝐷 is a parallogram. 

(11) Therefore, 𝐸𝐹̅̅ ̅̅ ≅ 𝐵𝐷̅̅ ̅̅ . (by Theorem 108) 

(12) Therefore, point 𝐷 is the midpoint of side 𝐵𝐶̅̅ ̅̅ . 

(13) Similarly, point 𝐸 is the midpoint of side 𝐶𝐴̅̅ ̅̅  and point 𝐹 is the midpoint of side 𝐴𝐵̅̅ ̅̅ . 

Conclusion 

(14) Triangle Δ𝐷𝐸𝐹 is the medial triangle for triangle Δ𝐴𝐵𝐶. 

End of Proof 

 

We are now able to easily prove that the altitude lines of any triangle in Euclidean Geometry are 

concurrent. We will call the point of concurrence the orthocenter. 

 

Theorem 113  (Corollary) In Euclidean Geometry, the altitude lines of any triangle are 

concurrent.  

Proof 

(1) Suppose that a triangle is given in Euclidean Geometry. 

(2) That triangle is a medial triangle. (Justify.) 

(3) Therefore the three altitude lines are concurrent. (Justify.) 

End of proof 

 

Definition 76 Orthocenter of a triangle in Euclidean Geometry 

The orthocenter of a triangle in Euclidean Geometry is a point where the three altitude lines 

intersect. (The existence of such a point is guaranteed by Theorem 113.) 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 9.8 on page 222. 

𝐴 𝐵 

𝐶 

𝐷 𝐸 

𝐹 

𝐿 

𝑀 

𝑁 
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9.7. Advanced Topic: Equally-spaced parallel lines and 

median concurrence 
Recall that the median of a triangle was introduced in Definition 66. Our goal is a theorem 

stating that in Euclidean Geometry, the three medians of any triangle are concurrent. Our proof 

will involve equally-spaced lines. Recall that Theorem 109 tells us that in Euclidean Geometry, 

parallel lines are everywhere equidistant. That theorem is referring to a single pair of parallel 

lines. The term equally-spaced lines refers to a collection of lines. 

 

Definition 77 Equally-Spaced Parallel Lines in Euclidean Geometry 

Words: lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 are equally-spaced parallel lines. 

Meaning: The lines are parallel and 𝐿1𝐿2 = 𝐿2𝐿3 = ⋯ = 𝐿𝑛−1𝐿𝑛. 

 

Equally-spaced lines will be important to us because they cut congruent segments in transversals. 

The following theorem makes this precise. 

 

Theorem 114 about 𝑛 distinct parallel lines intersecting a transversal in Euclidean Geometry 

Given: in Euclidean Geometry, parallel lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 intersecting a transversal 𝑇 at 

points 𝑃1, 𝑃2, ⋯ , 𝑃𝑛 such that 𝑃1 ∗ 𝑃2 ∗ ⋯ ∗ 𝑃𝑛. 

Claim: The following are equivalent 

(i) Lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 are equally spaced parallel lines. 

(ii) The lines cut congruent segments in transversal 𝑇. That is, 𝑃1𝑃2
̅̅ ̅̅ ̅̅ ≅ 𝑃2𝑃3

̅̅ ̅̅ ̅̅ ≅ ⋯ ≅ 𝑃𝑛−1𝑃𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

A picture is shown at right. In a homework 

exercise, you will use this picture as an 

illustration for a proof of Theorem 114 in 

the case of five lines 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5. The 

general statement involving 𝑛 lines  

𝐿1, 𝐿2, ⋯ , 𝐿𝑛 is proven using induction. We 

won’t do that more general proof in this 

course. 

 

The following easy corollary requires no 

proof. 

 
Theorem 115 (Corollary) about 𝑛 distinct parallel lines cutting congruent segments in 

transversals in Euclidean Geometry 

If a collection of 𝑛 parallel lines cuts congruent segments in one transversal, then the n 

parallel lines must be equally spaced and so they will also cut congruent segments in any 

transversal. 

 

We are now ready to prove the concurrence of medians of triangles in Euclidean Geometry.  

 

Theorem 116 about concurrence of medians of triangles in Euclidean Geometry 

In Euclidean Geometry, the medians of any triangle are concurrent at a point that can be 

called the centroid. Furthermore, the distance from the centroid to any vertex is 2/3 the 

length of the median drawn from that vertex. 

𝑇 
𝐿5 

𝐿4 

𝐿3 

𝐿2 
𝑃2 

𝑃3 

𝑃4 

𝑃5 

𝑄2 

𝑄3 

𝑄4 

𝐿1 
𝑃1 

𝑄1 
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Proof 

 Let 𝐷, 𝐸, 𝐹 be the midpoints of side 𝐵𝐶̅̅ ̅̅ , 𝐶𝐴̅̅ ̅̅ , 𝐴𝐵̅̅ ̅̅ . 

 

Part 1: Prove that medians 𝑨𝑫̅̅ ̅̅  and 𝑩𝑬̅̅ ̅̅  intersect at a point 𝑷 in the interior of 𝚫𝑨𝑩𝑪. 

 You do this. 

 

Part 2: Prove that 𝑨𝑷 =
𝟐

𝟑
𝑨𝑫. 

 Let 𝐸2 be the midpoint of 𝐴𝐸̅̅ ̅̅ , and let 𝐸4 be the midpoint of 𝐶𝐸̅̅ ̅̅ . 

 It is convenient to use the alternate names 𝐴 = 𝐸1 and 𝐶 = 𝐸5 so that we can observe that 

the five points 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5 are equally spaced on line 𝐴𝐶 ⃡    . 

 Let 𝐿 be median line 𝐵𝐸 ⃡    . 

 Let 𝐿1, 𝐿2, 𝐿4, 𝐿5 be the unique lines that pass through points 𝐸1, 𝐸2, 𝐸4, 𝐸5 and are 

parallel to 𝐿. (justify) 

 It is convenient to use the alternate name 𝐿 = 𝐿3 so that we can observe that the five lines 

𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5 cut congruent segments in line 𝐴𝐶 ⃡    . 

 Therefore, the three lines 𝐿3, 𝐿4, 𝐿5 also cut congruent segments in line 𝐵𝐶 ⃡    . (justify) This 

tells us that line 𝐿4 must pass through midpoint 𝐷 of segment 𝐵𝐶̅̅ ̅̅ . 

 And, the five lines 𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5 also cut congruent segments in line 𝐴𝐷 ⃡    . (justify) That 

is, if 𝐷1, 𝐷2, 𝐷3, 𝐷4 = 𝐷 are the points of intersection of lines 𝐿1, 𝐿2, 𝐿3, 𝐿4 and line 𝐴𝐷 ⃡    , 

then 𝐷1𝐷2
̅̅ ̅̅ ̅̅ ̅ ≅ 𝐷2𝐷3

̅̅ ̅̅ ̅̅ ̅ ≅ 𝐷3𝐷4
̅̅ ̅̅ ̅̅ ̅. 

 Conclude that 𝐴𝑃 =
2

3
𝐴𝐷. 

 

Part 3: Prove that 𝑩𝑷 =
𝟐

𝟑
𝑩𝑬. 

 Repeat the process of Part 2, but this time use five points 𝐷1 = 𝐵, 𝐷2, 𝐷3 = 𝐷, 𝐷4, 𝐷5 = 𝐶 

that are equally spaced on line 𝐵𝐶 ⃡    .  

 Let 𝐿1, 𝐿2, 𝐿4, 𝐿5 be the unique lines that pass through points 𝐷1, 𝐷2, 𝐷4, 𝐷5 and are 

parallel to median line 𝐴𝐷 ⃡    = 𝐿 = 𝐿3. 

𝐵 𝐴 = 𝐸1 = 𝐷1 

𝐿1 

𝐿2 

𝐿 = 𝐿3 

𝐿5 

𝐿4 

𝐸2 

𝐸 = 𝐸3 

𝐸4 

𝐷 = 𝐷4 

𝑃 = 𝐷3 

𝐷2 

𝐶 = 𝐸5 
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 Let 𝐸1 = 𝐵, 𝐸2, 𝐸3, 𝐸4 = 𝐸 are the points of intersection of lines 𝐿1, 𝐿2, 𝐿3, 𝐿4 and line 

𝐵𝐸 ⃡    . 

 Show that 𝐸1𝐸2
̅̅ ̅̅ ̅̅ ≅ 𝐸2𝐸3

̅̅ ̅̅ ̅̅ ≅ 𝐸3𝐸4
̅̅ ̅̅ ̅̅ . 

 Conclude that 𝐵𝑃 =
2

3
𝐵𝐸. 

 

Part 4: Prove that medians 𝑩𝑬̅̅ ̅̅  and 𝑪𝑭̅̅ ̅̅  intersect at a point 𝑸 in the interior of 𝚫𝑨𝑩𝑪. 

 You do this. 

 

Part 5: Prove that 𝑪𝑸 =
𝟐

𝟑
𝑪𝑭. 

 You do this. 

 

Part 6: Prove that 𝑩𝑸 =
𝟐

𝟑
𝑩𝑬. 

 You do this. 

 

Conclusion 

 Conclude that points 𝑃 and 𝑄 must be the same point. 

 

End of proof 

 

The term centroid was introduced in the above theorem. Here is the official defintion. 

 

Definition 78 Centroid of a triangle in Euclidean Geometry 

The centroid of a triangle in Euclidean Geometry is the point where the three medians 

intersect. (Such a point is guaranteed to exist by Theorem 116.) 

 

It turns out that also in Neutral Geometry, not just in Euclidean Geometry, the three medians of 

any triangle are concurrent. So any triangle in Neutral Geometry has a centroid. You might 

wonder why we did not prove that more general fact back when we were studying Neutral 

Geometry. The proof that we just did is a Euclidean proof: it uses concepts of equally-spaced 

lines and unique parallels, things that only happen in Euclidean Geometry. There is another proof 

that works only in Hyperbolic geometry.. So taken together, those constitute a proof of median 

concurrence in Neutral Geometry. I know of no proof of median concurrence in Neutral 

Geometry that does not use two cases, one for the Euclidean case and one for the Hyperbolic 

case. So I know of no proof that would have been appropriate for our earlier chapters on Neutral 

Geometry. 

9.8. Exercises for Chapter 9 
 

Exercises for Section 9.1 Introduction (Section starts on page 209) 

 

[1] Justify the steps in the proof of Theorem 97 ((Corollary) In Euclidean Geometry, the answer 

to the recurring question is exactly one line.) (found on page 210). 

 

[2] Justify the steps in the proof of Theorem 98 ((corollary) In Euclidean Geometry, if a line 

intersects one of two parallel lines, then it also intersects the other.) (found on page 210). 
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[3] Justify the steps in the proof of Theorem 99 ((corollary) In Euclidean Geometry, if two 

distinct lines are both parallel to a third line, then the two lines are parallel to each other.) (found 

on page 211). 

 

Exercises for Section 9.2 Parallel Lines and Alternate Interior Angles in Euclidean 

Geometry (Section starts on page 211) 

 

[4] Prove Theorem 102 ((corollary) In Euclidean Geometry, if a line is perpendicular to one of 

two parallel lines, then it is also perpendicular to the other. That is, if lines 𝐿 and 𝑀 are parallel, 

and line 𝑇 is perpendicular to 𝑀, then 𝑇 is also perpendicular to 𝐿.) (found on page 212). (Hint: 

Remember the proof structure: The given information goes in step (1). Then show that 𝑇 

intersects 𝐿. Then show that 𝑇 is perpendicular to 𝐿. Justify all steps. 

 

Exercises for Section 9.3 Angles of Triangles in Euclidean Geometry (Starts on page 212) 

 

[5] Justify the steps in the proof of Theorem 103 (In Euclidean Geometry, the angle sum for any 

triangle is 180.) (found on page 212). 

 

[6] Justify the steps in the proof of Theorem 104 ((corollary) Euclidean Exterior Angle 

Theorem.) (found on page 213). 

 

[7] Prove Theorem 105 ((corollary) In Euclidean Geometry, the angle sum of any convex 

quadrilateral is 360.) (found on page 213). Hint: The convex quadrilateral has four angles. Draw 

a diagonal to create two triangles, thus six angles. Use what you know about triangle angle sums 

to determine the sum of the measures of the six angles. You would like to be able to say that that 

sum will be the same as the sum of the four angles of the quadrilateral, but that will require angle 

addition. Before using angle addition, you will have to show that certain requirements are met.  

 

Exercises for Section 9.4 In Euclidean Geometry, every triangle can be circumscribed 

(Section starts on page 214) 

 

[8] Justify the steps in the proof of Theorem 106 (In Euclidean Geometry, the perpendicular 

bisectors of the three sides of any triangle are concurrent at a point that is equidistant from the 

vertices of the triangle. (This point will be called the circumcenter.)) (found on page 214). 

 

Exercises for Section 9.5 Parallelograms in Euclidean Geometry (Starts on page 215) 

 

[9] Prove Theorem 108 (equivalent statements about convex quadrilaterals in Euclidean 

Geometry) (found on page 216). 

Hint: Be sure to re-read the “Remark about Proving an Equivalence Theorem” that followed the 

presentation of Theorem 73 (Equivalent statements about angles formed by two lines and a 

transversal in Neutral Geometry) on page 186 of Section 7.7. 

 

[10] Prove Theorem 109 ((corollary) In Euclidean Geometry, parallel lines are everywhere 

equidistant.) (found on page 216). 
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Exercises for Section 9.6 The triangle midsegment theorem and altitude concurrence 

(Section starts on page 217) 

 

[11] Justify the steps in the proof of Theorem 110 (The Euclidean Geometry Triangle 

Midsegment Theorem) (found on page 217). 

 

[12] Prove that given any convex quadrilateral 𝐴𝐵𝐶𝐷, if the midpoints 𝐸, 𝐹, 𝐺, 𝐻 of the four 

sides are joined to form a new quadrilateral 𝐸𝐹𝐺𝐻, then 𝐸𝐹𝐺𝐻 is a parallelogram. 

 

[13] Justify the steps in the proof of Theorem 111 (Properties of Medial Triangles in Euclidean 

Geometry) (found on page 218). 

 

[14] Justify the steps in the proof of Theorem 113 ( (Corollary) In Euclidean Geometry, the 

altitude lines of any triangle are concurrent. ) (found on page 219). 

 

Exercises for Section 9.7 (Advanced Topic: Equally-spaced parallel lines and median 

concurrence) (Section starts on page 220) 

 

[15] (Advanced) Prove Theorem 114 (about 𝑛 distinct parallel lines intersecting a transversal in 

Euclidean Geometry) (found on page 220). 

 

[16] (Advanced) Justify the steps and supply the missing steps in Theorem 116 (about 

concurrence of medians of triangles in Euclidean Geometry) (found on page 220). 
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10. Euclidean Geometry II: Similarity 
Triangle Congruence was introduced in Definition 54 of Chapter 7. That definition did not tell us 

anything about the behavior of triangle congruence. It was the axiom systems for Neutral 

Geometry (Definition 17) and Euclidean Geometry (Definition 70) that gave us information 

about how triangle congruence behaved. Those axiom systems included an axiom about triangle 

congruence (The Side-Angle-Side Axiom, <N10>). In Chapter 7, we studied theorems that 

involved triangle congruence. The theorems in Chapter 7 were theorems of Neutral Geometry. 

That means that those theorems are true in both Neutral Geometry and Euclidean Geometry. The 

theorems in Chapters 9 were theorems of Euclidean Geometry: their proofs also depended on the 

Euclidean Parallel Axiom, <EPA>. Keep in mind that without Axiom <N10>, we would not 

know anything about the behavior of triangle congruence and therefore we would not be able to 

prove many of the theorems of Chapters 7 through 9. 

 

In this chapter, we will define the concept of similarity in Euclidean Geometry and we will use 

that concept to prove some theorems, including the famous Pythagorean Theorem. There are no 

axioms that mention similarity. All that we will know about similarity will be a consequence of 

the eleven axioms that we already have discussed: Axioms <N1> through <N10> and <EPA>. 

Any theorems that we later prove using the concept of similarity would be true statements in 

Euclidean Geometry even if we did not introduce the concept of similarity. It is reasonable to 

wonder why we bother introducing similarity if it does not make anything true that would not be 

true without introducing similarity. The reason is that the concept of similarity allows us to 

shorten proofs. That is, it may take 10 or 20 pages of this text to develop the ideas of similarity, 

but then the proof of the Pythagorean Theorem is only about 10 lines long. And a bunch of other 

theorems are also made short. If we did not develop the ideas of similarity, then the proof of the 

Pythagorean Theorem and many other theorems would each need to be 10 or 20 pages long. 

Because the concept of similarity can shorten so many proofs, it is worth developing. 

 

Our first theorems about similarity will be proven using properties of parallel lines. In particular, 

we will use something called parallel projection. The most basic properties of parallel 

projection have simple proofs. So we will start this chapter with a section on parallel projection 

and then get to similarity in the section after that. 

10.1. Parallel Projections 
In most of this book, we have studied the objects of geometry. We have had theorems about 

points, lines, angles, triangles, circles, and quadrilaterals. Parallel projection is interesting 

because it is easiest to explain parallel projection using drawings of points and lines, and yet it is 

useful to define parallel projection using the terminology of functions. Here is the definition. 

 

Definition 79 Parallel Projection in Euclidean Geometry 

Symbol: 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 

Usage: 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀. 

Meaning: 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 is a function whose domain is the set of points on line 𝐿 and whose 

codomain is the set of points on line 𝑀. In function notation, this would be denoted by 

the symbol 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀. Given an input point 𝑃 on line 𝐿, the output point on line 
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𝑀 is denoted 𝑃′. That is, 𝑃′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝑃). The output point 𝑃′ is determined in the 

following way: 

Case 1: If 𝑃 happens to lie at the intersection of lines 𝐿 and 𝑇, then 𝑃′ is defined to be 

the point at the intersection of lines 𝑀 and 𝑇. 

Case 2: If 𝑃 lies on 𝐿 but not on 𝑇, then there exists exactly one line 𝑁 that passes 

through 𝑃 and is parallel to line 𝑇. (Such a line 𝑁 is guaranteed by Theorem 97). 

The output point 𝑃′ is defined to be the point at the intersection of lines 𝑀 and 𝑁. 

Drawing: 

 
 

Our first three theorems about parallel projection have fairly straightforward proofs. We will 

prove all three theorems. 

 

Theorem 117 Parallel Projection in Euclidean Geometry is one-to-one and onto. 

 

A digression to discuss one-to-one and onto. 

Before proving this theorem, it is useful to digress and review what it means to say that a 

function is one-to-one and onto, and to discuss strategies for proving that a function has those 

properties. 

 

To say that a function 𝑓: 𝐴 → 𝐵 is one-to-one means that different inputs always result in 

different outputs. That is, ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑖𝑓 𝑥1 ≠ 𝑥2 𝑡ℎ𝑒𝑛  𝑓(𝑥1) ≠ 𝑓(𝑥2). The contrapositive of 

this statement has the same meaning. It says ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑖𝑓 𝑓(𝑥1) = 𝑓(𝑥2) 𝑡ℎ𝑒𝑛 𝑥1 = 𝑥2. That 

is, if the two outputs are the same, then the two inputs must have been the same. 

 

To say that a function 𝑓: 𝐴 → 𝐵 is onto means that for any chosen element of the codomain, there 

exists some element of the domain that can be used as input and will produce the chosen element 

of the codomain as output. That is, ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑓(𝑥) = 𝑦. 

 

It can be difficult to prove that a function is one-to-one or onto. Remember that if a function 

𝑓: 𝐴 → 𝐵 is one-to-one and onto, then it has an inverse function, denoted 𝑓−1: 𝐵 → 𝐴. An inverse 

function is a function that satisfies both of the following inverse relations: 

 

∀𝑥 ∈ 𝐴, 𝑓−1(𝑓(𝑥)) = 𝑥 

∀𝑦 ∈ 𝐵, 𝑓(𝑓−1(𝑦)) = 𝑦 

For example, the function 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥3 has an inverse function 𝑓−1: ℝ → ℝ 

defined by 𝑓−1(𝑥) = 𝑥
1

3. To verify that this is indeed the inverse function, we have to check to 

see if the inverse relations are satisfied. 

𝐿 

𝑀 

𝑇 

𝑃 

𝑃′ 

Case 1: 𝑃 lies on both 𝐿 and 𝑇. 

𝐿 

𝑀 

𝑇 

𝑃′ 

𝑃 

Case 2: 𝑃 lies on 𝐿 but not on 𝑇. 

𝑁 
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𝑓−1(𝑓(𝑥)) = ((𝑥)3)
1
3 = 𝑥 

𝑓(𝑓−1(𝑥)) = ((𝑥)
1
3)

3

= 𝑥 

 

Since both inverse relations are satisfied, we have confirmed that 𝑓−1(𝑥) = 𝑥
1

3 is indeed the 

inverse function for 𝑓(𝑥) = 𝑥3. 

 

Now also remember that if it is known that a function 𝑓 has an inverse function, then 𝑓 must be 

both one-to-one and onto. That is, given some 𝑓: 𝐴 → 𝐵, if one can somehow find a function 

𝑔: 𝐵 → 𝐴 that satisfies the two equations 

 

∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥 

∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 

 

then 𝑔 is the inverse function for 𝑓 and one would automatically know that 𝑓 must be both one-

to-one and onto. 

 

End of the digression 

 

In light of what was discussed in the digression about one-to-one and onto, we see that one 

strategy for proving that the projection 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀 is one-to-one and onto would be to 

somehow find a function 𝑔: 𝑀 → 𝐿 that qualifies as an inverse function. That is the strategy that 

we will take. 

 

Proof of Theorem 117. 

Given the parallel projection 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀, consider the projection 𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇: 𝑀 → 𝐿. 

This is a function that takes as input a point on line 𝑀 and produces as output a point on 

line 𝐿. For any point 𝑃 on line 𝐿, find the value of 𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇 (𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝑃)). 

 
Referring to the sample diagram above, we see that  

 

𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇 (𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝑃)) = 𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇(𝑃′) = 𝑃′′ 

 

But notice that the output point 𝑃′′ is the same as the input point 𝑃. That is, 

 

𝐿 

𝑀 

𝑇 

𝑃′ 

𝑃 

𝑁 

𝐿 

𝑀 

𝑇 

𝑃′ 

𝑃′′ 

𝑁 
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𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇 (𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝑃)) = 𝑃 

 

A similar drawing would show that for any point 𝑄 on line 𝑀, 

 

𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 (𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇(𝑄)) = 𝑄 

 

Therefore the projection 𝑃𝑟𝑜𝑗𝑀,𝐿,𝑇: 𝑀 → 𝐿 is qualified to be called the inverse function 

for the projection 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀. Since the projection 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀 has an inverse 

function, we conclude that it is both one-to-one and onto. 

End of proof 

 

Our second basic theorem about parallel projection can be proven using concepts from Chapter 

3. Recall that betweenness of points was introduced in Definition 24. The following theorem 

articulates what happens when three points with a particular betweenness relationship are used as 

input to a Parallel Projection function. The theorem says that the resulting three output points 

have the same betweenness relationship.  

 

Theorem 118 Parallel Projection in Euclidean Geometry preserves betweenness. 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶 are points on 𝐿 with 𝐴 ∗ 𝐵 ∗ 𝐶, 

then 𝐴′ ∗ 𝐵′ ∗ 𝐶′. 
 

Proof (for readers interested in advanced topics and for graduate students) 

The proof is left to an exercise. 

 

Our third basic theorem about parallel projection is proved using facts about parallelograms—

facts that we studied in Section 9.5. In a homework exercise, you will be asked to make a 

drawing to illustrate the proof. 

 

Theorem 119 Parallel Projection in Euclidean Geometry preserves congruence of segments. 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶, 𝐷 are points on 𝐿 with 𝐴𝐵̅̅ ̅̅ ≅

𝐶𝐷̅̅ ̅̅ , then 𝐴′𝐵′̅̅ ̅̅ ̅̅ ≅ 𝐶′𝐷′̅̅ ̅̅ ̅̅ . 

 

Proof 

(1) Suppose that 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶, 𝐷 are points on 

𝐿 with 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅ . (Make a drawing.) 

Part 1 Introduce lines and points. 

(2) Let 𝑁1, 𝑁2, 𝑁3, 𝑁4 be lines that pass through 𝐴, 𝐵, 𝐶, 𝐷 and are parallel to line 𝑇. (One of 

these lines could actually be line 𝑇.) (Update your drawing.) 

(3) Let 𝐴′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝐴), and similarly for 𝐵′, 𝐶′, 𝐷′. Then the four points 𝐴′, 𝐵′, 𝐶′, 𝐷′ are 

located at the intersections of lines 𝑁1, 𝑁2, 𝑁3, 𝑁4 and line 𝑀. (Update your drawing.) 

(4) Let 𝐾1 be the line that passes through point 𝐴 and is parallel to line 𝑀. (Update your 

drawing.) 

(5) Let 𝐾2 be the line that passes through point 𝐶 and is parallel to line 𝑀. (Update your 

drawing.) 

(6) Let 𝐸 be the point at the intersection of lines 𝐾1 and 𝑁2. (Update your drawing.) 

(7) Let 𝐹 be the point at the intersection of lines 𝐾2 and 𝑁4. (Update your drawing.) 
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Part 2: Show that two triangles are congruent. 

(8) Observe that ∠𝐴𝐵𝐸 ≅ ∠𝐶𝐷𝐹 (by Theorem 100 applied to parallel lines 𝐾1, 𝐾2 and 

transversal 𝐿). 

(9) Observe that ∠𝐵𝐴𝐸 ≅ ∠𝐷𝐶𝐹. (Justify.) 

(10) Therefore, that Δ𝐴𝐵𝐸 ≅ Δ𝐶𝐷𝐹. (Justify.) 

Part 3: Prove that the segments are congruent. 

(11) 𝐴𝐸̅̅ ̅̅ ≅ 𝐶𝐹̅̅̅̅  (by statement (10) and the definition of triangle congruence, Definition 54) 

(12) Observe that 𝑄𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝐴𝐸𝐵′𝐴′) is a parallelogram. 

(13) Therefore, 𝐴𝐸̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅ . (Justify.) 

(14) Observe that 𝑄𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝐶𝐹𝐷′𝐶′) is a parallelogram. 

(15) Therefore, 𝐶𝐹̅̅̅̅ ≅ 𝐶′𝐷′̅̅ ̅̅ ̅̅ . (Justify.) 

(16) Conclude that 𝐴′𝐵′̅̅ ̅̅ ̅̅ ≅ 𝐶′𝐷′̅̅ ̅̅ ̅̅  (by statements (13), (11), (15), and transitivity). 

End of Proof 

 

Our fourth theorem about parallel projection can be proved using concepts that are at the level of 

this book, but it would take a day of lecture time and a couple of additional sections of text to 

fully present. All that would be okay, but the proof is of a style that would not appear again in 

the course. For that reason, the proof is left as an advanced exercise. 

 

Theorem 120 Parallel Projection in Euclidean Geometry preserves ratios of lengths of segments. 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶, 𝐷 are points on 𝐿 with 𝐶 ≠ 𝐷, 

then 
𝐴′𝐵′

𝐶′𝐷′
=

𝐴𝐵

𝐶𝐷
. 

 

Proof (for readers interested in advanced topics and for graduate students) 

The proof is left to an exercise. 

 

The following corollary is the key fact about parallel projection that we will use when we study 

similarity. In a homework exercise, you will be asked to make a drawing to illustrate the proof. 

 

Theorem 121 (corollary) about lines that are parallel to the base of a triangle in Euclidean 

Geometry. 

In Euclidean Geometry, if line 𝑇 is parallel to side 𝐵𝐶̅̅ ̅̅  of triangle Δ𝐴𝐵𝐶 and intersects rays 

𝐴𝐵       and 𝐴𝐶       at points 𝐷 and 𝐸, respectively, then 
𝐴𝐷

𝐴𝐵
=

𝐴𝐸

𝐴𝐶
. 

 

Proof 

(1) Suppose that in Euclidean Geometry, line 𝑇 is parallel to side 𝐵𝐶̅̅ ̅̅  of triangle Δ𝐴𝐵𝐶 and 

intersects rays 𝐴𝐵       and 𝐴𝐶       at points 𝐷 and 𝐸. (Make a drawing.) 

(2) Let 𝐿 be line 𝐴𝐵 ⃡     and let 𝑀 be line 𝐴𝐶 ⃡    . (Update your drawing.) 

(3) Let 𝑁 be the line that passes through point 𝐴 and is parallel to side 𝐵𝐶̅̅ ̅̅ . (Make a new 

drawing.) 

(4) Consider the parallel projection 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 from line 𝐿 to line 𝑀 in the direction of line 𝑇. 

By Theorem 120, we know that 
𝐴′𝐷′

𝐴′𝐵′
=

𝐴𝐷

𝐴𝐵
. 

(5) But 𝐴′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝐴) = 𝐴 and 𝐵′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝐵) = 𝐶 and 𝐷′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝐷) = 𝐸. 

(6) Substituting letters from (5) into the equation from (4), we obtain 
𝐴𝐷

𝐴𝐵
=

𝐴𝐸

𝐴𝐶
. 

End of Proof 
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Our last theorem of the section does not seem to be about parallel projection or parallel lines at 

all. In fact, it is not. But the proof makes a nice use of the corollary just presented, and also 

includes some nice review of facts from earlier in the book. You will justify the proof steps in a 

homework exercise. 

 

Theorem 122 The Angle Bisector Theorem. 

In Euclidean Geometry, the bisector of an angle in a triangle splits the opposite side into two 

segments whose lengths have the same ratio as the two other sides. That is, in Δ𝐴𝐵𝐶, if 𝐷 is 

the point on side 𝐴𝐶̅̅ ̅̅  such that ray 𝐵𝐷        bisects angle ∠𝐴𝐵𝐶, then 
𝐷𝐴

𝐷𝐶
=

𝐵𝐴

𝐵𝐶
. 

 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 is given in Euclidean Geometry, and that 𝐷 is the point on side 𝐴𝐶̅̅ ̅̅  

such that ray 𝐵𝐷        bisects angle ∠𝐴𝐵𝐶. (Make a drawing.) 

(2) There exists a line 𝐿 that passes through point 𝐶 and is parallel to line 𝐵𝐷 ⃡    . (Justify.) 

(Make a new drawing.) 

(3) Line 𝐴𝐵 ⃡     intersects line 𝐵𝐷 ⃡    , and 𝐵𝐷 ⃡     is parallel to 𝐿, so therefore line 𝐴𝐵 ⃡     must also 

intersect line 𝐿 at a point that we can call 𝐸. (Justify) (Make a new drawing.) 

Identify congruent angles and use them to identify congruent segments 

(4) ∠𝐴𝐵𝐷 ≅ ∠𝐵𝐸𝐶. (Justify.) (Make a new drawing.) 

(5) ∠𝐶𝐵𝐷 ≅ ∠𝐵𝐶𝐸. (Justify.) (Make a new drawing.) 

(6) But ∠𝐴𝐵𝐷 ≅ ∠𝐶𝐵𝐷. (Make a new drawing.) 

(7) So, ∠𝐵𝐶𝐸 ≅ ∠𝐵𝐸𝐶. (Make a new drawing.) 

(8) Therefore, 𝐵𝐸̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

Use Parallel Projection. 

(9) 
𝐷𝐴

𝐷𝐶
=

𝐵𝐴

𝐵𝐸
 (Justify.) 

(10) Therefore, 
𝐷𝐴

𝐷𝐶
=

𝐵𝐴

𝐵𝐶
 (by (8) and (9)). 

End of proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 10.4 on page 239. 

10.2. Similarity 
We now turn to the main topic for this chapter: similarity. Before proceeding, it would be very 

useful for you to read the beginning paragraph of Chapter 7 and then all of Section 7.1.1 and 

Section 7.1.2, in which the definition of congruence for triangles is developed. The definition of 

similarity for triangles has the same style. 

 

Definition 80 triangle similarity 

To say that two triangles are similar means that there exists a correspondence between the 

vertices of the two triangles and the correspondence has these two properties: 

 Each pair of corresponding angles is congruent. 

 The ratios of the lengths of each pair of corresponding sides is the same. 
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If a correspondence between vertices of two triangles has the two properties, then the 

correspondence is called a similarity. That is, the expression a similarity refers to a particular 

correspondence of vertices that has the two properties. 

 

The following statement has a straightforward proof. You will be asked to supply the proof in a 

homework exercise. 

 

Theorem 123 triangle similarity is an equivalence relation 

 

It is important to discuss notation at this point. It is no accident that Definition 80 above does not 

include a symbol. There is no commonly-used symbol whose meaning matches the definition of 

triangle similarity. This may surprise you, because you have all seen the symbol ~ put between 

triangles. But that symbol means something different, and the difference is subtle. Here is the 

definition. 

 

Definition 81 symbol for a similarity of two triangles 

Symbol: Δ𝐴𝐵𝐶~Δ𝐷𝐸𝐹. 

Meaning: The correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) of vertices is a similarity. 

 

There may be more subtlety in the notation than you realize. It is worthwhile to consider a few 

examples. Refer to the drawing below. 

 
Easy examples involving Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

 The statement “Δ𝐴𝐵𝐶 is similar to Δ𝐷𝐸𝐹” is true. Proof: Consider the correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹). Observe that ∠𝐴 ≅ ∠𝐷 and ∠𝐵 ≅ ∠𝐸 and ∠𝐶 ≅ ∠𝐹 and 
𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ )

𝑙𝑒𝑛𝑔𝑡ℎ(𝐷𝐸̅̅ ̅̅ )
=

𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝐶̅̅ ̅̅ )

𝑙𝑒𝑛𝑔𝑡ℎ(𝐸𝐹̅̅ ̅̅ )
=

𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝐴̅̅ ̅̅ )

𝑙𝑒𝑛𝑔𝑡ℎ(𝐹𝐷̅̅ ̅̅ )
=

1

2
. Therefore, the correspondence (𝐴, 𝐵, 𝐶) ↔

(𝐷, 𝐸, 𝐹) is a similarity. Since there exists a correspondence that is a similarity, we say 

that the triangles are similar. 

 The statement “Δ𝐴𝐵𝐶 is similar to Δ𝐷𝐹𝐸” is true. Proof: The correspondence 
(𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) is a similarity. This is the same correspondence from the previous 

example. Since there exists a correspondence that is a similarity, we say that the triangles 

are similar. 

 The statement “Δ𝐴𝐵𝐶~Δ𝐷𝐸𝐹” is true, because the correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) 

is a similarity. 

 The statement “Δ𝐴𝐵𝐶~Δ𝐷𝐹𝐸” is false, because the correspondence (𝐴, 𝐵, 𝐶) ↔
(𝐷, 𝐹, 𝐸) is not a similarity. Observe that 𝑚(∠𝐴𝐵𝐶) = 30 while the corresponding angle 

has measure 𝑚(∠𝐷𝐹𝐸) = 60. 

 

𝐴 𝐵 

𝐶 

√3 

2 

1 

𝐷 𝐸 

𝐹 

30 

60 
90 

√3

2
 

1

2
 

1 

30 

60 

90 
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We will study four triangle similarity theorems. Before doing that, it is important to digress and 

review the concept of a triangle congruence theorem.  

 

A digression about triangle congruence theorems 

 

In Section 7.1.2, we saw that the definition of triangle congruence (Definition 54) is that each of 

the three pairs of corresponding angles is a congruent pair and each of the three pairs of sides is a 

congruent pair. If all we knew about triangle congruence was the definition, then we would have 

to verify all six congruences in order to be able to say that a given pair of triangles is congruent. 

In other words, the concept of triangle congruence would just be a fancy name for the situation 

where we know that all six pairs of corresponding parts are congruent pairs. That would not be 

terribly useful. But the Side-Angle-Side (SAS) Congruence Axiom <N10> (found in the Axioms 

for Neutral Geometry in Definition 17 and in the Axioms for Euclidean Geometry in Definition 

70) tells us that a certain combination of three congruences is enough to know that two triangles 

are congruent. More specifically, the axiom states that  

 

<N10> (SAS Axiom) If there is a one-to-one correspondence between the vertices of two 

triangles, and two sides and the included angle of the first triangle are congruent to the 

corresponding parts of the second triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

The statement above cannot be proven. It is an axiom, a statement that we assume is true. It 

allows us to parlay some known information about two triangles (the fact that two sides and an 

included angle of one triangle are congruent to the corresponding parts of the other) into some 

other information (the fact that the other three pairs of corresponding parts are congruent pairs, 

as well, so that the triangles are congruent). With this axiom, the concept of triangle congruence 

becomes useful. 

 

Later in Chapter 7, we proved four triangle congruence theorems: 

 

Theorem 54: the ASA Congruence Theorem for Neutral Geometry 

 

Theorem 58: the SSS congruence theorem for Neutral Geometry 

 

Theorem 70: the Angle-Angle-Side (AAS) Congruence Theorem for Neutral Geometry  

 

Theorem 71: the Hypotenuse Leg Congruence Theorem for Neutral Geometry 

 

Each triangle congruence theorem allows us to parlay some known information about two 

triangles (the fact that three parts of one triangle are congruent to the corresponding parts of the 

other) into some other information (the fact that the other three pairs of corresponding parts are 

congruent pairs, as well, so that the triangles are congruent). 

 

We will find that there is analogous situation with similarity and similarity theorems. 

 

End of digression about triangle congruence theorems 

 

So far, all have seen of triangle similarity is the definition: 
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To say that two triangles are similar means that there exists a correspondence between 

the vertices of two triangles and the correspondence has these two properties: 

 Each pair of corresponding angles is congruent. 

 The ratios of the lengths of each pair of corresponding sides is the same. 

 

If all we knew about triangle similarity was the definition, then we would have to verify all three 

angle congruences and check all three ratios of lengths in order to be able to say that a given pair 

of triangles is similar. In other words, the concept of triangle similarity would just be a fancy 

name for the situation where we know that each pair of corresponding angles is congruent and 

the ratios of the lengths of each pair of corresponding sides is the same. That would not be 

terribly useful. 

 

But it turns out that four triangle similarity theorems can be proven. Each similarity theorem 

allows us to parlay some known information about two triangles (the fact that some angles of one 

triangle are congruent to the corresponding angles of the other triangle, or that the ratio of the 

lengths of some pair of corresponding sides is equal to the ratio of the lengths of some other pair 

of corresponding sides) into some other information (the fact that every pair of corresponding 

angles is congruent and the ratios of the lengths of every pair of corresponding sides is the same, 

so that the triangles are similar). With these theorems, the concept of triangle similarity becomes 

useful. 

 

We will now discuss the four triangle similarity theorems. We start with the Angle-Angle-Angle 

Similarity Theorem. In a homework exercise, you will be asked to supply a drawing. 

 

Theorem 124 The Angle-Angle-Angle (AAA) Similarity Theorem for Euclidean Geometry 

If there is a one-to-one correspondence between the vertices of two triangles, and each pair of 

corresponding angles is a congruent pair, then the ratios of the lengths of each pair of 

corresponding sides is the same, so the correspondence is a similarity and the triangles are 

similar. 

 

Proof 

(1) Suppose that in Euclidean Geometry, triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are given and that the 

correspondence of vertices (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) has the property that ∠𝐴 ≅ ∠𝐷 and 

∠𝐵 ≅ ∠𝐸 and ∠𝐶 ≅ ∠𝐹. (Make a drawing.) 

Part 1: Build a copy of 𝚫𝑫𝑬𝑭 using vertex 𝑨. 

(2) There exists a point 𝐸′ on ray 𝐴𝐵       such that 𝐴𝐸′̅̅ ̅̅ ̅ ≅ 𝐷𝐸̅̅ ̅̅  and there exists a point 𝐹′ on ray 

𝐴𝐶       such that 𝐴𝐹′̅̅ ̅̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Make a new drawing.) 

(3) Δ𝐴𝐸′𝐹′ ≅ Δ𝐷𝐸𝐹 (by (1), (2), and the SAS Congruence Axiom, <N10>) (We have built a 

copy of Δ𝐷𝐸𝐹 using vertex 𝐴.) 

(4) ∠𝐴𝐸′𝐹′ ≅ ∠𝐷𝐸𝐹 (by (3)) 

(5) ∠𝐴𝐸′𝐹′ ≅ ∠𝐴𝐵𝐶 (by (4) and (1)) 

(6) Line 𝐸′𝐹′ ⃡       is parallel to line 𝐵𝐶 ⃡     (by (5) and Theorem 74) 

(7) 
𝐴𝐸′

𝐴𝐵
=

𝐴𝐹′

𝐴𝐶
 (by (6) and Theorem 121) 

(8) 𝐴𝐸′̅̅ ̅̅ ̅ ≅ 𝐷𝐸̅̅ ̅̅  and 𝐴𝐹′̅̅ ̅̅̅ ≅ 𝐷𝐹̅̅ ̅̅  (by (2)) 

(9) 
𝐷𝐸

𝐴𝐵
=

𝐷𝐹

𝐴𝐶
 (by (7) and (8)) 
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Part 2: Build a copy of 𝚫𝑬𝑭𝑫 using vertex 𝑩. 

(10)-(15) Make the following substitutions in statements (2) through (9): 

𝐴 → 𝐵 
𝐵 → 𝐶 
𝐶 → 𝐴 
𝐷 → 𝐸 
𝐸 → 𝐹 
𝐹 → 𝐷 

The result will be the following statement (15) 
𝐸𝐹

𝐵𝐶
=

𝐸𝐷

𝐵𝐴
. 

Conclusion 

(16) By (9), (15), and transitivity, we have 
𝐷𝐸

𝐴𝐵
=

𝐸𝐹

𝐵𝐶
=

𝐹𝐷

𝐶𝐴
. That is, the ratios of the lengths of 

each pair of corresponding sides is the same, so the correspondence is a similarity and 

the triangles are similar. 

End of proof 

 

The following corollary has a very simple proof. You will be asked to supply the proof in the 

exercises. 

 

Theorem 125 (Corollary) The Angle-Angle (AA) Similarity Theorem for Euclidean Geometry 

If there is a one-to-one correspondence between the vertices of two triangles, and two pairs 

of corresponding angles are congruent pairs, then the third pair of corresponding angles is 

also a congruent pair, and the ratios of the lengths of each pair of corresponding sides is the 

same, so the correspondence is a similarity and the triangles are similar. 

 

And the corollary has a simple corollary of its own: 

 

Theorem 126 (corollary) In Euclidean Geometry, the altitude to the hypotenuse of a right 

triangle creates two smaller triangles that are each similar to the larger triangle. 

 

You will be asked to supply the proof in the exercises. 

 

Our next theorem, the Side-Side-Side Similarity Theorem, is a bit harder to prove than the 

Angle-Angle-Angle Similarity Theorem. But the general approach is still the same in that a 

triangle Δ𝐴𝐸′𝐹′ is constructed and then is related to triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. The proof will 

use the Angle-Angle Similarity Theorem. In a homework exercise, you will be asked to justify 

the steps of the proof. 

 

Theorem 127 The Side-Side-Side (SSS) Similarity Theorem for Euclidean Geometry 

If there is a one-to-one correspondence between the vertices of two triangles, and the ratios 

of lengths of all three pairs of corresponding sides is the same, then all three pairs of 

corresponding angles are congruent pairs, so the correspondence is a similarity and the 

triangles are similar. 

Proof 

(1) Suppose that in Euclidean Geometry, triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are given and that the 

correspondence of vertices (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) has the property that 
𝐷𝐸

𝐴𝐵
=

𝐸𝐹

𝐵𝐶
=

𝐹𝐷

𝐶𝐴
. 

(Make a drawing.) 
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Part 1: Consider ratios of lengths of sides of 𝚫𝑨𝑩𝑪 and 𝚫𝑫𝑬𝑭. 

(2) The first part of the string of equalities says that 
𝐷𝐸

𝐴𝐵
=

𝐸𝐹

𝐵𝐶
. 

(3) Therefore, 𝐸𝐹 = (
𝐷𝐸

𝐴𝐵
) 𝐵𝐶. 

(4) The second part of the string of equalities says that 
𝐸𝐹

𝐵𝐶
=

𝐹𝐷

𝐶𝐴
. 

(5) Therefore, 𝐹𝐷 = (
𝐸𝐹

𝐵𝐶
) 𝐶𝐴. 

Part 2: Build a triangle that is similar to 𝚫𝑨𝑩𝑪. 

(6) There exists a point 𝐸′ on ray 𝐴𝐵       such that 𝐴𝐸′̅̅ ̅̅ ̅ ≅ 𝐷𝐸̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(7) There exists a line 𝐿 that passes through point 𝐸′ and is parallel to line 𝐵𝐶 ⃡    . (Justify.) 

(Make a new drawing.) 

(8) Line 𝐴𝐶 ⃡     intersects line 𝐵𝐶 ⃡    , so line 𝐴𝐶 ⃡     must also intersect line 𝐿 at a point that we can call 

𝐹′. (Justify.) (Make a new drawing.) 

(9) ∠𝐴𝐸′𝐹′ ≅ ∠𝐴𝐵𝐶. (Justify.) (Make a new drawing.) 

(10) Δ𝐴𝐸′𝐹′~Δ𝐴𝐵𝐶 (Justify.) (Make a new drawing.) 

Part 3: Consider ratios of lengths of sides of 𝚫𝑨𝑩𝑪 and 𝚫𝑨′𝑬′𝑭′. 

(11) We know that 
𝐴𝐸′

𝐴𝐵
=

𝐸′𝐹′

𝐵𝐶
=

𝐹′𝐴

𝐶𝐴
. (Justify.)  

(12) The first equality in this string of two equalities says 
𝐴𝐸′

𝐴𝐵
=

𝐸′𝐹′

𝐵𝐶
. 

(13) Therefore, 𝐸′𝐹′ = (
𝐴𝐸′

𝐴𝐵
) 𝐵𝐶 = (

𝐷𝐸

𝐴𝐵
) 𝐵𝐶. (Cross-multiplied then used statement (6)) 

(14) Conclude that 𝐸′𝐹′̅̅ ̅̅ ̅ ≅ 𝐸𝐹̅̅ ̅̅  (by (3) and (13)). 

(15) The second equality in the string of two equalities in step (11) says 
𝐸′𝐹′

𝐵𝐶
=

𝐹′𝐴

𝐶𝐴
. 

(16) Therefore, 𝐹′𝐴 = (
𝐸′𝐹′

𝐵𝐶
) 𝐶𝐴 = (

𝐸𝐹

𝐵𝐶
) 𝐶𝐴. (Cross-multiplied then used statement (14)) 

(17) Conclude that 𝐹′𝐴̅̅ ̅̅̅ ≅ 𝐹𝐷̅̅ ̅̅  (by (5) and (16)). 

Conclusion. 

(18) Therefore, Δ𝐴𝐸′𝐹′ ≅ Δ𝐷𝐸𝐹 (Justify.)  

(19) So ∠𝐴 ≅ ∠𝐷 and ∠𝐹′𝐸′𝐴 ≅ ∠𝐹𝐸𝐷 (Justify.)  

(20) But ∠𝐴𝐸′𝐹′ ≅ ∠𝐴𝐵𝐶. (Justify.) So ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹. 

(21) Conclude that Δ𝐴𝐵𝐶~Δ𝐷𝐸𝐹. (Justify.) 

End of proof 

 

Our final similarity theorem is the Side-Angle-Side (SAS) Similarity Theorem. The general 

approach of the proof again involves the construction of a triangle Δ𝐴𝐸′𝐹′ and then the 

relationship of this triangle to triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. Interestingly, the proof will use the 

SAS Congruence Axiom and the AA Similarity Theorem. The justification of the steps in the 

proof is left as an advanced exercises. 

 

Theorem 128 The Side-Angle-Side (SAS) Similarity Theorem for Euclidean Geometry 

If there is a one-to-one correspondence between the vertices of two triangles, and the ratios 

of lengths of two pairs of corresponding sides is the same and the corresponding included 

angles are congruent, then the other two pairs of corresponding angles are also congruent 

pairs and the ratios of the lengths of all three pairs of corresponding sides is the same, so the 

correspondence is a similarity and the triangles are similar. 

 

Proof (for readers interested in advanced topics and for graduate students) 
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 (1) Suppose that in Euclidean Geometry, triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are given and that the 

correspondence of vertices (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) has the property that ∠𝐴 ≅ ∠𝐷 and 
𝐷𝐸

𝐴𝐵
=

𝐷𝐹

𝐴𝐶
. (Make a drawing.) 

Introduce line 𝑳 and point 𝑭′. 

(2) There exists a point 𝐸′ on ray 𝐴𝐵       such that 𝐴𝐸′̅̅ ̅̅ ̅ ≅ 𝐷𝐸̅̅ ̅̅ . (Justify.) (Make a new drawing.) 

(3) There exists a line 𝐿 that passes through point 𝐸′ and is parallel to line 𝐵𝐶 ⃡    . (Justify.) 

(Make a new drawing.) 

(4) Line 𝐴𝐶 ⃡     intersects line 𝐵𝐶 ⃡    , so line 𝐴𝐶 ⃡     must also intersect line 𝐿 at a point that we can call 

𝐹′. (Justify.) (Make a new drawing.) 

Use AA Similarity to show that 𝚫𝑨𝑬′𝑭′~𝚫𝑨𝑩𝑪. 

(5) ∠𝐴𝐸′𝐹′ ≅ ∠𝐴𝐵𝐶. (Justify.) (Make a new drawing.) 

(6) Δ𝐴𝐸′𝐹′~Δ𝐴𝐵𝐶. (Justify.) (Make a new drawing.) 

Use Parallel Projection and the SAS Congruence Axiom to show that 𝚫𝑨𝑬′𝑭′ ≅ 𝚫𝑫𝑬𝑭. 

(7) 
𝐴𝐹′

𝐴𝐶
=

𝐴𝐸′

𝐴𝐵
. (Justify.)  

(8) 𝐴𝐹′ =
𝐴𝐸′⋅𝐴𝐶

𝐴𝐵
. (Justify.)  

(9) 𝐴𝐹′ = (
𝐴𝐶

𝐴𝐵
) 𝐷𝐸. (Justify.)  

(10) But 𝐷𝐹 = (
𝐴𝐶

𝐴𝐵
) 𝐷𝐸. (Justify.) 

(11) Therfore, 𝐴𝐹′̅̅ ̅̅̅ ≅ 𝐷𝐹̅̅ ̅̅ . (Justify.)  

(12) So Δ𝐴𝐸′𝐹′ ≅ Δ𝐷𝐸𝐹. (Justify.)  

Use AA Similarity to show that 𝚫𝑨𝑩𝑪~𝚫𝑫𝑬𝑭. 

(13) ∠𝐴𝐸′𝐹′ ≅ ∠𝐷𝐸𝐹. (Justify.)  

(14) But also ∠𝐴𝐸′𝐹′ ≅ ∠𝐴𝐵𝐶. (Justify.) 

(15) Therefore, ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹. (Justify.) 

(16) So Δ𝐴𝐵𝐶~Δ𝐷𝐸𝐹. (Justify.)  

End of Proof 

 

The four so-called similarity theorems that we studied above all have the same sort of statement. 

Each has as its hypothesis some known information about two triangles (the fact that some 

angles of one triangle are congruent to the corresponding angles of the other triangle, or that the 

ratio of the lengths of some pair of corresponding sides is equal to the ratio of the lengths of 

some other pair of corresponding sides) and has as its conclusion the statement that the two 

triangles are similar. 

 

Our final theorem of the section is about similarity but is of a very different style. The first 

theorem shows that in similar triangles, it is not just the pairs of corresponding sides whose ratios 

are the same. There are many line segments associated with triangles, and most of these will 

have the same ratio behavior as the sides in similar triangles. The following theorem mentions 

three kinds of line segments: altitudes, angle bisectors, and medians. 

 

Theorem 129 About the ratios of lengths of certain line segments associated to similar triangles 

in Euclidean Geometry. 

In Euclidean Geometry, if Δ~Δ′, then  
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑖𝑑𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑖𝑑𝑒′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎𝑛

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎𝑛′
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You will be asked to supply the proof in a homework exercise. 

 

So far, we have seen a bunch of theorems about similarity, but we have not seen any examples of 

the use of similarity. You will work on couple in the exercises. But our most important 

application of similarity comes in the coming sections, when we use similarity to prove the 

Pythagorean Theorem and also prove a theorem about the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 10.4 on page 239. 

10.3. Applications of Similarity 
In this section, we will study two very important applications of similarity. Most people 

remember both. The first that we will study is The Pythagorean Theorem. 

 

Theorem 130 The Pythagorean Theorem of Euclidean Geometry 

In Euclidean Geometry, the sum of the squares of the length of the two sides of any right 

triangle equals the square of the length of the hypotenuse. That is, in Euclidean Geometry, 

given triangle Δ𝐴𝐵𝐶 with 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 and 𝑐 = 𝐴𝐵, if angle ∠𝐶 is a right angle, then 

𝑎2 + 𝑏2 = 𝑐2. 

There are hundreds of proofs of the Pythagorean Theorem. The most beautiful proofs make use 

of simple pictures involving triangles and squares, and discuss the sums of various areas. But in 

this book, we have not yet discussed area. However, we have discussed similarity. Here is a 

proof that uses the concept of similarity. 

 

Proof 

(1) In Euclidean Geometry, suppose that triangle Δ𝐴𝐵𝐶 has a right angle at 𝐶 and that 𝑎 =
𝐵𝐶 and 𝑏 = 𝐶𝐴 and 𝑐 = 𝐴𝐵. (Make a drawing.) 

(2) Let 𝐷 be the foot of the altitude drawn from vertex 𝐶. That is, 𝐷 is the point on side 𝐴𝐵̅̅ ̅̅  

such that segment 𝐶𝐷̅̅ ̅̅  is perpendicular to side 𝐴𝐵̅̅ ̅̅ . Let 𝑥 = 𝐴𝐷 and 𝑦 = 𝐵𝐷. (Make a 

new drawing.) 

(3) Δ𝐴𝐷𝐶~Δ𝐴𝐶𝐵. (Justify) (Make a new drawing.) 

(4) 
𝑥

𝑏
=

𝑏

𝑐
. (Justify) 

(5) 𝑐𝑥 = 𝑏2. (Justify) 

(6) Δ𝐵𝐷𝐶~Δ𝐵𝐶𝐴. (Justify) (Make a new drawing.) 

(7) 
𝑦

𝑎
=

𝑎

𝑐
. (Justify) 

(8) 𝑐𝑦 = 𝑎2. (Justify) 

(9) 𝑎2 + 𝑏2 = 𝑐𝑥 + 𝑐𝑦. (Justify) 

(10) 𝑎2 + 𝑏2 = 𝑐(𝑥 + 𝑦). (arithmetic) 

(11) 𝑎2 + 𝑏2 = 𝑐2. (Justify) 

End 

 

Recall that statement of the form 𝐼𝑓 𝑃 𝑡ℎ𝑒𝑛 𝑄 is called a conditional statement. The converse 

statement is 𝐼𝑓 𝑄 𝑡ℎ𝑒𝑛 𝑃. Remember also that the converse statement does not mean the same 

thing as the original statement and so in general, the fact that a conditional statement is true does 

not mean that its converse is true. For example, the conditional statement 𝐼𝑓 𝑥 = −3 𝑡ℎ𝑒𝑛 𝑥2 =
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9 is true, but the converse statement 𝐼𝑓 𝑥2 = 9 𝑡ℎ𝑒𝑛 𝑥 = −3 is false. But in the case of the 

Pythagorean Theorem for Euclidean Geometry, the converse statement is also a theorem. You 

will justify the proof steps in a homework exercise. 

 

Theorem 131 The Converse of the Pythagorean Theorem of Euclidean Geometry 

In Euclidean Geometry, if the sum of the squares of the length of two sides of a triangle 

equals the square of the length of the third side, then the angle opposite the third side is a 

right angle. That is, in Euclidean Geometry, given triangle Δ𝐴𝐵𝐶 with 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 

and 𝑐 = 𝐴𝐵, if 𝑎2 + 𝑏2 = 𝑐2, then angle ∠𝐶 is a right angle. 

 

Proof 

(1) In Euclidean Geometry, suppose that triangle Δ𝐴𝐵𝐶 is given and that  𝑎 = 𝐵𝐶 and 𝑏 =
𝐶𝐴 and 𝑐 = 𝐴𝐵 and that 𝑎2 + 𝑏2 = 𝑐2. (Make a drawing.) 

(2) There exist three points 𝐷, 𝐸, 𝐹 such that ∠𝐸𝐹𝐷 is a right angle and such that 𝐸𝐹̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅  

and 𝐹𝐷̅̅ ̅̅ ≅ 𝐶𝐴̅̅ ̅̅ . (Justify. If you do this properly, citing axioms and theorems, it will 

take quite a few steps.) (Make a new drawing.) 

(3) Observe that 𝐸𝐹 = 𝐵𝐶 = 𝑎 and 𝐹𝐷 = 𝐶𝐴 = 𝑏. Therefore, (𝐷𝐸)2 = 𝑎2 + 𝑏2. (by the 

Pythagorean Theorem Theorem 130 applied to triangle Δ𝐷𝐸𝐹.) 

(4) Thus (𝐷𝐸)2 = 𝑐2 (by (3), (1), and transitivity), so 𝐷𝐸̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ .. 

(5) Therefore, Δ𝐷𝐸𝐹 ≅ Δ𝐴𝐵𝐶 (Justify.) 

(6) Therefore, ∠𝐸𝐹𝐷 ≅ ∠𝐵𝐶𝐴. That is, ∠𝐵𝐶𝐴 must be a right angle (by (5) and Definition 

54 of triangle congruence). 

End 

 

The proof of the Pythagorean Theorem used the AA Similarity Theorem. The second important 

application the AA Similarity theorem that we will study has to do with the product of 𝑏𝑎𝑠𝑒 ⋅
ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle. We should be clear about the terminology. 

 

Definition 82 base times height 

For each side of a triangle, there is an opposite vertex, and there is an altitude segment drawn 

from that opposite vertex. The expression "𝑏𝑎𝑠𝑒 𝑡𝑖𝑚𝑒𝑠 ℎ𝑒𝑖𝑔ℎ𝑡" or "𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡" refers to 

the product of the length of a side of a triangle and the length of the corresponding altitude 

segment drawn to that side. The expression can be abbreviated 𝑏 ⋅ ℎ. 

 

An obvious question is, does it matter which side of the triangle is chosen to be the base? The 

answer is no. That is, the value of the product 𝑏 ⋅ ℎ does not depend on which side of the triangle 

is chosen to be the base.  

 

Theorem 132 In Euclidean Geometry, the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle does not 

depend on which side of the triangle is chosen as the base. 

 

The proof is a straightforward application of the AA Similarity Theorem (Theorem 125), but it is 

rather tedious to follow. You will be asked to justify the steps in a homework exercise.  

 

Proof 

(1) Suppose that a triangle is given in Euclidean Geometry. There are two possibilities: either 

the triangle is a right triangle, or it is not. 
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Case 1: Right triangle 

(2) If the triangle is a right triangle, label the vertices 𝐴, 𝐵, 𝐶 so that the right-angle is at 𝐶. 

Let 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 and 𝑐 = 𝐴𝐵. (Make a drawing.) 

 

Observe that when side 𝐵𝐶̅̅ ̅̅  is chosen as the base, then the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 is 𝑎 ⋅ 𝑏, 

and when side 𝐶𝐴̅̅ ̅̅  is chosen as the base, then the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 is 𝑏 ⋅ 𝑎. 

These two products are equal. But we need to see what happens when side 𝐴𝐵̅̅ ̅̅  is 

chosen as the base. 

 

(3) Let 𝐹 be the point on side 𝐴𝐵̅̅ ̅̅  such that segment 𝐶𝐹̅̅̅̅  is perpendicular to side 𝐴𝐵̅̅ ̅̅ , and let 

𝑧 = 𝐶𝐹. (Make a new drawing.) 

(4) Δ𝐴𝐵𝐶~Δ𝐴𝐶𝐹. (Justify.) (Make a new drawing.) 

(5) 
𝑎

𝑧
=

𝑐

𝑏
. (Justify) 

(6) Then 𝑎 ⋅ 𝑏 = 𝑐 ⋅ 𝑧. (Justify.) 

Conclusion of Case 1 

(7) We see that the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 does not depend on the choice of base in this 

case. 

Case 2: Not a right triangle 

(8) If the triangle is not a right triangle, label the vertices 𝐴, 𝐵, 𝐶. (Make a new drawing.) 

Let 𝐷 be the point on side 𝐵𝐶̅̅ ̅̅  such that segment 𝐴𝐷̅̅ ̅̅  is perpendicular to side 𝐵𝐶̅̅ ̅̅ , and let 𝑥 =
𝐴𝐷. (Update your drawing.) 

Let 𝐸 be the point on side 𝐶𝐴̅̅ ̅̅  such that segment 𝐵𝐸̅̅ ̅̅  is perpendicular to side 𝐶𝐴̅̅ ̅̅ , and let 𝑦 =
𝐵𝐸. (Update your drawing.) 

Let 𝐹 be the point on side 𝐴𝐵̅̅ ̅̅  such that segment 𝐶𝐹̅̅̅̅  is perpendicular to side 𝐴𝐵̅̅ ̅̅ , and let 𝑧 =
𝐶𝐹. (Update your drawing.) 

(9) Δ𝐴𝐶𝐷~Δ𝐵𝐶𝐸. (Justify.) (Make a new drawing.) 

(10) 
𝑏

𝑎
=

𝑥

𝑦
. (Justify) 

(11) Then 𝑎 ⋅ 𝑥 = 𝑏 ⋅ 𝑦. (Justify.) 

(12) Δ𝐵𝐴𝐸~Δ𝐶𝐴𝐹. (Justify.) (Make a new drawing.) 

(13) 
𝑐

𝑏
=

𝑦

𝑧
. (Justify) 

(14) Then 𝑏 ⋅ 𝑦 = 𝑐 ⋅ 𝑧. (Justify.) 

Conclusion of Case 2 

(15) We see that the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 does not depend on the choice of base in this 

case, either. 

Conclusion 

(16) The product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 does not depend on the choice of base in either case. 

End of proof 

 

Theorem 132 will play an extremely important role in the next chapter, when we introduce the 

concept of Area. 

10.4. Exercises for Chapter 10 
Exercises for Section 10.1 (Parallel Projections) (Section starts on page 225) 
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[1] (Advanced) Prove Theorem 118 (Parallel Projection in Euclidean Geometry preserves 

betweenness.) (found on page 228). 

 

[2] (Advanced) Prove Theorem 118 (Parallel Projection in Euclidean Geometry preserves 

betweenness.) (found on page 228). 

 

[3] Justify the steps and make drawings to illustrate the proof of Theorem 119 (Parallel 

Projection in Euclidean Geometry preserves congruence of segments.) (found on page 228). 

 

[4] (Advanced) Prove Theorem 120 (Parallel Projection in Euclidean Geometry preserves ratios 

of lengths of segments.) (found on page 229). 

 

[5] Make a drawing to illustrate the proof of Theorem 121 ((corollary) about lines that are 

parallel to the base of a triangle in Euclidean Geometry.) (found on page 229). 

 

[6] Justify the steps in the proof of Theorem 122 (The Angle Bisector Theorem.) (found on page 

230). 

 

Exercises for Section 10.2 (Similarity) (Section starts on page230) 

 

[7] Prove Theorem 123 (triangle similarity is an equivalence relation) (found on page 231). 

 

[8] Make a drawing to illustrate the proof of Theorem 124 (The Angle-Angle-Angle (AAA) 

Similarity Theorem for Euclidean Geometry) (found on page 233). 

 

[9] Prove Theorem 125 ((Corollary) The Angle-Angle (AA) Similarity Theorem for Euclidean 

Geometry) (found on page 234). 

 

[10] Prove Theorem 126 ((corollary) In Euclidean Geometry, the altitude to the hypotenuse of a 

right triangle creates two smaller triangles that are each similar to the larger triangle.) (found on 

page 234). 

 

[11] Justify the steps in the proof of Theorem 127 (The Side-Side-Side (SSS) Similarity Theorem 

for Euclidean Geometry) (found on page 234). 

 

[12] (Advanced.) Justify the steps in the proof of Theorem 128 (The Side-Angle-Side (SAS) 

Similarity Theorem for Euclidean Geometry) (found on page 235). 

 

[13] There is an ASA Congruence Theorem (Theorem 54). Why isn’t there an ASA Similarity 

Theorem? Explain. 

 

[14] Prove Theorem 129 (About the ratios of lengths of certain line segments associated to 

similar triangles in Euclidean Geometry.) (found on page 236). 

Hint: Do the proof in three parts, as follows. 

Part I: Suppose that a pair of similar triangles is given in Euclidean Geometry and that a pair of 

corresponding altitudes is chosen. Label the vertices of the triangles 𝐴, 𝐵, 𝐶 and 𝐸, 𝐹, 𝐺 so that 

the chosen altitudes are segments 𝐴𝐷̅̅ ̅̅  and 𝐸𝐻̅̅ ̅̅ . Consider triangles Δ𝐴𝐵𝐷 and Δ𝐸𝐹𝐻. Show that  
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𝐴𝐵

𝐸𝐹
=

𝐴𝐷

𝐸𝐻
 

Part II: Suppose that a pair of similar triangles is given in Euclidean Geometry and that a pair of 

corresponding angle bisectors is chosen. Label the vertices of the triangles 𝐴, 𝐵, 𝐶 and 𝐸, 𝐹, 𝐺 so 

that the chosen angle bisectors are segments 𝐴𝐷̅̅ ̅̅  and 𝐸𝐻̅̅ ̅̅ . Consider triangles Δ𝐴𝐵𝐷 and Δ𝐸𝐹𝐻. 

Show that  
𝐴𝐵

𝐸𝐹
=

𝐴𝐷

𝐸𝐻
 

Part III: Suppose that a pair of similar triangles is given in Euclidean Geometry and that a pair of 

corresponding medians is chosen. Label the vertices of the triangles 𝐴, 𝐵, 𝐶 and 𝐸, 𝐹, 𝐺 so that 

the chosen medians are segments 𝐴𝐷̅̅ ̅̅  and 𝐸𝐻̅̅ ̅̅ . Consider triangles Δ𝐴𝐵𝐷 and Δ𝐸𝐹𝐻. Show that  
𝐴𝐵

𝐸𝐹
=

𝐴𝐷

𝐸𝐻
 

[15] In the figure at right, is it possible to determine 𝑥? Is it 

possible to determine 𝑦? Explain. 

 
 

[16] In all three figures, 𝐴𝐵 = 5, 𝐴𝐶 = 4, 𝐵𝐸 = 7, 𝐶𝐷 = 𝑥, 𝐷𝐸 = 𝑦, and ∠𝐴𝐶𝐵 ≅ ∠𝐴𝐸𝐷 

 
(A) In Figure 1, identify two similar triangles and explain how you know that they are similar. 

Draw them with matching orientations. 

 

(B) Find the value of 𝑥 for Figure 1. Observe that this will be the value of 𝑥 for all three figures. 

 

(C) Figure 2 is a special case of Figure 1, the special case in which ∠𝐵𝐴𝐶 is a right angle. Find 𝑦 

by using the Pythagorean Theorem and the known value of 𝑥 from part (B). 

 

(D) Figure 3 is a different special case of Figure 1, the special case in which ∠𝐴𝐶𝐵 is a right 

angle. Find 𝑦 by using the Pythagorean Theorem and the known value of 𝑥 from part (B). 

 

Your answers to [16](C) and (D) should differ. This proves that it is not possible to find the 

value of 𝑦 for Figure 1 using only the information shown in Figure 1. More information is 

needed, such as the additional information given in Figure 2 or Figure 3. 
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[17] Refer to the drawing at right. Find 𝑦 in terms of 𝑥. 

 

Hint: Start by identifying two similar triangles. Be sure 

to explain how you know that they are similar, and be 

sure to draw the triangles side-by-side with the same 

orientation and with all known parts labeled. 

 

 
Exercises for Section 10.3 (Applications of Similarity) (Section starts on page 237) 

[18] Justify the steps in the proof of Theorem 130 (The Pythagorean Theorem of Euclidean 

Geometry) (found on page 237). 

 

[19] The Hypotenuse Leg Theorem (Theorem 71) is a theorem of Neutral Geometry. That means 

that it can be proven using only the Neutral Geometry Axioms (Definition 17) and is therefore 

true in both Neutral Geometry and Euclidean Geometry. The proof of the theorem using only the 

Neutral Axioms is fairly difficult. (See the proof of Theorem 71, found on page 183.) The 

theorem can be proved much more easily using the Pythagorean Theorem. Such a proof would 

prove that the theorem is true in Euclidean Geometry, but it would not prove that the theorem is 

true in Neutral Geometry. Prove the Hypotenuse-Leg Theorem using the Pythagorean Theorem.  

 

[20] Justify the steps in the proof of Theorem 131 (The Converse of the Pythagorean Theorem of 

Euclidean Geometry) (found on page 238). 

 

[21] Justify the steps in the proof of Theorem 132 (In Euclidean Geometry, the product of 𝑏𝑎𝑠𝑒 ⋅
ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle does not depend on which side of the triangle is chosen as the base.) 

 

[22] You studied a proof of Theorem 132 in the previous exercise. Here is an invalid proof of 

that theorem. What is wrong with it? Explain. 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 is given in Euclidean Geometry, and that segments 𝐴𝐷̅̅ ̅̅  and 

𝐵𝐸̅̅ ̅̅  and 𝐶𝐹̅̅̅̅  are altitudes. 

(2) Let 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 and 𝑐 = 𝐴𝐵 and 𝑥 = 𝐶𝐹 and 𝑦 = 𝐴𝐷 and 𝑧 = 𝐵𝐸. 

(3) Then 𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶) =
𝑎⋅𝑥

2
 and 𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶) =

𝑏⋅𝑦

2
 and 𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶) =

𝑐⋅𝑧

2
. 

(4) Therefore, 
𝑎⋅𝑥

2
=

𝑏⋅𝑦

2
=

𝑐⋅𝑧

2
, so 𝑎 ⋅ 𝑥 = 𝑏 ⋅ 𝑦 = 𝑐 ⋅ 𝑧. 

End of Proof 

[23] Prove that in Euclidean Geometry, if 𝑃 is a 

point in the interior of 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝐴𝐵𝐶𝐷) and 

𝑎, 𝑏, 𝑐, 𝑑 are the lengths of segments 

𝐴𝑃̅̅ ̅̅ , 𝐵𝑃̅̅ ̅̅ , 𝐶𝑃̅̅ ̅̅ , 𝐷𝑃̅̅ ̅̅ , then 𝑎2 + 𝑐2 = 𝑏2 + 𝑑2. 

Hint: Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be the distances from 𝑃 

to lines 𝐴𝐵 ⃡    , 𝐵𝐶 ⃡    , 𝐶𝐷 ⃡    , 𝐷𝐴 ⃡    . Express 𝑎2, 𝑏2, 𝑐2, 𝑑2 

in terms of 𝑥1, 𝑥2, 𝑥3, 𝑥4. Then build the 

expressions 𝑎2 + 𝑐2 and 𝑏2 + 𝑑2 and compare 

them.  
. 
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11. Euclidean Geometry III: Area 
So far in this book, there has been no development of a concept of area. Our eleven axioms of 

Euclidean Geometry (Definition 70, found on page 209) do not mention area, and it has not been 

the subject of any theorem or definition. We would like to have a notion of area for our abstract 

geometry that mimics our notion of area for drawings. But before we can do that, we need to 

more precisely articulate what we are trying to mimic. 

 

What do we know about computing area in drawings? To compute the area of certain simple 

shapes, we measure certain lengths and substitute those numbers into formulas, depending on the 

shapes. The list of shapes for which we have area formulas is a very short list. To compute the 

area of a more complicated shape, we subdivide the shape into simple shapes and then add up the 

area of the simple shapes. We assume that different subdivisions of a shape will give the same 

area. 

 

To mimic this in our abstract geometry, we will need the following 

 

(1) a short list of simple regions whose areas we know how to compute by formulas 

(2) a description of more general regions and the procedure for subdividing them 

(3) a definition of the area of a region as the sum of the areas of simple regions, and a 

verification that different subdivisions of a region will give the same area 

 

Previously in this book, we have studied the concepts of measuring distance and measuring 

angles. In both cases, we were trying to mimic the use of certain tools in drawings—rulers and 

protractors—and we found that the terminology of functions could make our writing precise. We 

will use the terminology of functions in our formulation of the concept of area. 

11.1. Triangular Regions, Polygons, and Polygonal 

Regions 
We start with item (1), the short list of simple regions whose areas we know how to compute by 

formulas. It is indeed a very short list: triangular regions. 

 

Recall that a triangle is defined to be the union of three line segments determined by three non-

collinear points (Definition 28, found on page 104). The interior of a triangle is defined in terms 

of the intersection of three half-planes (Definition 38 found on page 123). We will use these in 

our definition of a triangular region. 

 

Definition 83 triangular region, interior of a triangular region, boundary of a triangular region 

Symbol: ▲𝐴𝐵𝐶 

Spoken: triangular region 𝐴, 𝐵, 𝐶 

Usage: 𝐴, 𝐵, 𝐶 are non-collinear points 

Meaning: the union of triangle Δ𝐴𝐵𝐶 and the interior of triangle Δ𝐴𝐵𝐶. In symbols, we 

would write ▲𝐴𝐵𝐶 = Δ𝐴𝐵𝐶 ∪ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶). 

Additional Terminology: the interior of a triangular region is defined to be the interior of 

the associated triangle. That is, 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(▲𝐴𝐵𝐶) = 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶). The boundary of 
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a triangular region is defined to be the associated triangle, itself. That is, 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(▲𝐴𝐵𝐶) = Δ𝐴𝐵𝐶. 

 

We are going to define the area of a triangular region to be 
1

2
𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡, or 

𝑏ℎ

2
 for short. But 

we should be more thorough. First, we should confirm that the value that we get for the area will 

not depend on the choice of base. Recall that Theorem 132 (found on page 238)states that the 

product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle does not depend on choice of base. Secondly, we should 

use the terminology of functions to make our definition of area more precise. We apply the 

formula 
𝑏ℎ

2
 to a triangular region and we get a positive real number as a result. So the process of 

applying the formula can be described as a function whose domain is the set of all triangular 

regions and whose codomain is the set of non-negative real numbers. Here is a symbol that we 

can use for the set of all triangular regions. 

 

Definition 84 the set of all triangular regions is denoted by ℛ
▴

. 

 

We will use that symbol in the definition of area for triangular regions. 

 

Definition 85 the area function for triangular regions 

symbol: 𝐴𝑟𝑒𝑎
▴

 

spoken: the area function for triangular regions 

meaning: the function 𝐴𝑟𝑒𝑎
▴
: ℛ
▴

→ ℝ+ defined by 𝐴𝑟𝑒𝑎
▴
(▲𝐴𝐵𝐶) =

𝑏ℎ

2
, where 𝑏 is the 

length of any side of Δ𝐴𝐵𝐶 and ℎ is the length of the corresponding altitude segment. 

(Theorem 132 guarantees that the resulting value does not depend on the choice of base.) 

 

We now move on to item (2) on the list at the start of this chapter: a description of more general 

regions and the procedure for subdividing them. We will see how triangular regions can be 

assembled to create what will be called polygonal regions. The areas of the triangular regions 

will be used to find the areas of the polygonal regions. 

 

Quadrilaterals were introduced in Definition 39 (found on page 129). The definition of Polygons 

will be analogous. 

 

Definition 86 polygon 

words: polygon 𝑃1, 𝑃2, … , 𝑃𝑛 

symbol: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) 

usage: 𝑃1, 𝑃2, … , 𝑃𝑛 are distinct points, with no three in a row being collinear, and such that the 

segments 𝑃1𝑃2
̅̅ ̅̅ ̅̅ , 𝑃2𝑃3

̅̅ ̅̅ ̅̅ , … , 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  intersect only at their endpoints. 

meaning: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) is defined to be the following set: 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) = 𝑃1𝑃2
̅̅ ̅̅ ̅̅ ∪ 𝑃2𝑃3

̅̅ ̅̅ ̅̅ ∪ … ∪ 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  

additional terminology: Points 𝑃1, 𝑃2, … , 𝑃𝑛 are each called a vertex of the polygon. Pairs of 

vertices of the form {𝑃𝑘, 𝑃𝑘+1} and the pair {𝑃𝑛, 𝑃1} are called adjacent vertices. The 

𝑛 segments 𝑃1𝑃2
̅̅ ̅̅ ̅̅ , 𝑃2𝑃3

̅̅ ̅̅ ̅̅ , … , 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  whose endpoints are adjacent vertices are each 

called a side of the polygon. Segments whose endpoints are non-adjacent vertices 

are each called a diagonal of the polygon. 
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We are interested in defining something called a polygonal region. We would hope that it could 

be done the same way that we defined a triangular region. That is, define the interior of a 

polygon, and then define a polygonal region to be the union of a polygon and its interior. 

 

But defining the interior of a polygon is tricky. In some cases, the interior could be defined in the 

same way that we defined the interior of a triangle. 

 

For example, consider the quadrilateral 𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐷] 
shown at right. 

 
 

 

 

Let 𝐻1 be the half-plane bordered by line 𝐴𝐵 ⃡     and containing 

point 𝐶. (The half-plane stops at the dotted line but extends 

forever in the other directions.) 

 
 

 

Let 𝐻2 be the half-plane bordered by line 𝐵𝐶 ⃡     and containing 

point 𝐷. 

 
 

 

Let 𝐻3 be the half-plane bordered by line 𝐶𝐷 ⃡     and containing 

point 𝐴. 

 
 

 

Let 𝐻4 be the half-plane bordered by line 𝐷𝐴 ⃡     and containing 

point 𝐵. 

 

 
 

Let set 𝑆 be the intersection 𝑆 = 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∩ 𝐻4. Then 𝑆 

is the shaded region shown at right. 
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For the quadrilateral 𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐷], we could define the interior to be the intersection of 

the four half-planes, as shown.  

But sometimes the intersection of half-planes does not turn out to be the set that we would think 

of as the “inside” of a polygon. 

 

For example, consider the quadrilateral 𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐸] 
shown at right. 

 
 

 

 

Let 𝐻1 be the half-plane bordered by line 𝐴𝐵 ⃡     and containing 

point 𝐶. (The half-plane stops at the dotted line but extends 

forever in the other directions.) 

 
 

 

Let 𝐻2 be the half-plane bordered by line 𝐵𝐶 ⃡     and containing 

point 𝐸. 

 
 

 

Let 𝐻3 be the half-plane bordered by line 𝐶𝐸 ⃡    and containing 

point 𝐴. 

 
 

 

Let 𝐻4 be the half-plane bordered by line 𝐸𝐴 ⃡     and containing 

point 𝐵. 

  
 

Let set 𝑆 be the intersection 𝑆 = 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∩ 𝐻4. Then 𝑆 

is the shaded region shown at right. 

 
 

We see that the set 𝑆 is not the whole region “inside” 𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐸]. 
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The problem is that 𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐸] is not convex. We have seen a definition of convex 

quadrilateral (Definition 40, found on page 132), but we have not seen a definition of convex 

polygon. Here is a definition. 

 

Definition 87 convex polygon 

A convex polygon is one in which all the vertices that are not the endpoints of a given side lie 

in the same half-plane determined by that side. A polygon that does not have this property is 

called non-convex. 

 

In the two examples above, we see that 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐷] is convex because the following four statements are all true: 

Vertices 𝐶, 𝐷 lie in the same half-plane 𝐻1 determined by line 𝐴𝐵 ⃡    . 

Vertices 𝐷, 𝐴 lie in the same half-plane 𝐻2 determined by line 𝐵𝐶 ⃡    . 

Vertices 𝐴, 𝐵 lie in the same half-plane 𝐻3 determined by line 𝐶𝐷 ⃡    . 

Vertices 𝐵, 𝐶 lie in the same half-plane 𝐻4 determined by line 𝐷𝐴 ⃡    . 
 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛[𝐴, 𝐵, 𝐶, 𝐸] is non-convex because: 

Vertices 𝐴, 𝐵 do not both lie in the same half-plane 𝐻3 determined by line 𝐶𝐸 ⃡   . 

Vertices 𝐵, 𝐶 do not both lie in the same half-plane 𝐻4 determined by line 𝐸𝐴 ⃡    . 

 

It is the existence of non-convex polygons that makes it difficult to state a simple definition of 

the interior of a polygon. So we will not try to state a simple defintion of the interior of a 

polygon. Instead, we will skip to the concept of a polygonal region. 

 

Definition 88 complex, polygonal region, separated, connected polygonal regions 

A complex is a finite set of triangular regions whose interiors do not intersect. That is, a set of 

the form 𝐶 = {▲
1
, ▲

2
, … , ▲

𝑘
} where each ▲

𝑖
 is a triangular region and such that if 𝑖 ≠ 𝑗, 

then the intersection 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(▲
𝑖
) ∩ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 (▲

𝑗
) is the empty set. 

 

A polygonal region is a set of points that can be described as the union of the triangular 

regions in a complex. That is a set of the form 

𝑅 = ▲
1

∪ ▲
2

∪ … ∪ ▲
𝑘

= ⋃ ▲
𝑖

𝑘

𝑖=1

 

We say that a polygonal region can be separated if it can be written as the union of two 

disjoint polygonal regions. A connected polygonal region is one that cannot be separated into 

two disjoint polygonal regions. We will often use notation like 𝑅𝑒𝑔𝑖𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) to denote 

a connected polygonal region. In that symbol, the letters 𝑃1, 𝑃2, … , 𝑃𝑛 are vertices of the 

region (I won’t give a precise definition of vertex. You get the idea.) 

 

For example, in the figure shown below, the set {▲𝐴𝐵𝐶,▲𝐵𝐷𝐸} is a complex, but the set 

{▲𝐴𝐵𝐶,▲𝐵𝐷𝐹} is not a complex, because the interiors of ▲𝐴𝐵𝐶 and ▲𝐵𝐷𝐹 intersect. 
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The set 𝑆 = ▲𝐴𝐵𝐶 ∪ ▲𝐵𝐷𝐸 is a polygonal region because it is possible to write 𝑆 as the union of 

the triangular regions in a complex. The symbol 𝑅𝑒𝑔𝑖𝑜𝑛(𝐴𝐸𝐷𝐵𝐶) could be used to denote 

polygonal region 𝑆. 

 

Of course it is also possible to write 𝑆 as the union of triangular regions that overlap. For 

example, we can write 𝑆 = ▲𝐴𝐵𝐶 ∪ ▲𝐵𝐷𝐹.  This does not disqualify 𝑆 from being called a 

polygonal region. The fact that a complex exists for set 𝑆 qualifies 𝑆 to be called a polygonal 

region.  

 

Also note that the set the set 

 

{▲𝐴𝐵𝐶,▲𝐵𝐷𝐸,▲𝐺𝐻𝐼} 

 

is a complex. Therefore, the set 

 

𝑇 = ▲𝐴𝐵𝐶 ∪ ▲𝐵𝐷𝐸 ∪ ▲𝐺𝐻𝐼 

 

is a polygonal region. It is a polygonal region that can be separated. Here is a separation: 

 

𝑇 = 𝑆 ∪ ▲𝐺𝐻𝐼 

 

So 𝑇 is a polygonal region but it is not a connected polygonal region. Clearly, a symbol like 

𝑅𝑒𝑔𝑖𝑜𝑛(𝐴𝐸𝐷𝐵𝐶𝐺𝐻𝐼) would be a terrible choice to describe polygonal region 𝑇. That’s why the 

definition above states that we will only use that sort of notation only for connected polygonal 

regions. For example, we could write 𝑇 = 𝑅𝑒𝑔𝑖𝑜𝑛(𝐴𝐸𝐷𝐵𝐶) ∪ ▲𝐺𝐻𝐼. 

 

So far, it seems like every “filled-in” shape is a polygonal region. But this is not true. In the 

picture above, the set consisting of the union of 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) and its interior is not a polygonal 

region. 

 

It is not very hard to come up with a definition for the interior of a polygonal region. But it helps 

if we first define open disks. 

 

Definition 89 open disk, closed disk 

symbol: 𝑑𝑖𝑠𝑘(𝑃, 𝑟) 

spoken: the open disk centered at point 𝑃 with radius 𝑟. 

meaning: the set 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). That is, the set {𝑄: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝑄) < 𝑟}. 

another symbol: 𝑑𝑖𝑠𝑘(𝑃, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

spoken: the closed disk centered at point 𝑃 with radius 𝑟. 

𝐵 

𝐴 

𝐶 

𝐷 

𝐹 

𝐸 

𝐺 

𝐻 

𝐼 

𝑃 𝑟 
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meaning: the set 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) ∪ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). That is, {𝑄: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝑄) ≤ 𝑟}. 

pictures: 

  
 the open disk 

𝑑𝑖𝑠𝑘(𝑃, 𝑟) 

the closed disk 

𝑑𝑖𝑠𝑘(𝑃, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 

Now we can easily define the interior of a polygonal region. 

 

Definition 90 interior of a polygonal region, boundary of a polygonal region 

words: the interior of polygonal region 𝑅 

meaning: the set of all points 𝑃 in 𝑅 with the property that there exists some open disk 

centered at point 𝑃 that is entirely contained in 𝑅 

meaning in symbols: {𝑃 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∃𝑟 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑖𝑠𝑘(𝑃, 𝑟) ⊂ 𝑅} 

additional terminology: the boundary of polygonal region 𝑅 

meaning: the set of all points 𝑄 in 𝑅 with the property that no open disk centered at point 𝑄 

is entirely contained in 𝑅. This implies that every open disk centered at point 𝑄 

contains some points that are not elements of the region 𝑅. 

meaning in symbols: {𝑄 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑟 > 0, 𝑑𝑖𝑠𝑘(𝑃, 𝑟) ⊄ 𝑅} 

picture: 

 
 𝑃 is an interior point; 𝑄 is a boundary point 

 

Now that we have a definition of the interior of a polygonal region, we should discuss what 

happens when we take the union of two polygonal regions, because the interiors play a role in the 

answer. Consider the drawing below. 

 
Here are some small polygonal regions: 

The set 𝑅1 = ▲
1

∪ ▲
2
 is a polygonal region with complex 𝐶1 = {▲

1
, ▲

2
}. 

The set 𝑅2 = ▲
3

∪ ▲
4
 is a polygonal region with complex 𝐶2 = {▲

3
, ▲

4
}. 

The set 𝑅3 = ▲
5

∪ ▲
6
 is a polygonal region with complex 𝐶3 = {▲

5
, ▲

6
}. 

 

 

We can combine them into larger regions by forming their set unions: 

 

The set 𝑅1 ∪ 𝑅2 is a polygonal region with complex 𝐶 = 𝐶1 ∪ 𝐶2 = {▲
1
, ▲

2
, ▲

3
, ▲

4
}. 

The set 𝑅2 ∪ 𝑅3 is a polygonal region but the set {▲
3
, ▲

4
, ▲

5
, ▲

6
} is not its complex. 

𝑃 𝑟 𝑃 𝑟 

𝑄 

𝑃 

𝑅 

▲
1

 

▲
2

 

▲
6

 ▲
4

 
▲

5
 ▲

3
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From this example, we would infer that the union of two polygonal regions is a new polygonal 

region. If the interiors of the two polygonal regions do not intersect, then a complex for the new 

polygonal region can be obtained by taking the union of complexes for the two regions. But if 

the interiors of the two polygonal regions do intersect, then the union of their complexes might 

not be a complex for the new region. This issue will come up when we consider the area of the 

union of two polynomial regions. 

 

Finally we are ready to move on to item (3) on the list at the start of the chapter: a definition of 

the area of a region as the sum of the areas of simple regions, and a verification that different 

subdivisions of a region will give the same area. 

11.2. The Area of a Polygonal Region 
With the terminology that we have developed, it is fairly easy to state a definition for the area of 

a polygonal region. We want to say that the area of a polygonal region 𝑅 is defined to be the sum 

of the areas of the triangular regions in a complex for 𝑅.  

 

But there is a potential problem, because for any polygonal 

region there are many complexes. Recall 𝑆 =
𝑅𝑒𝑔𝑖𝑜𝑛(𝐴𝐸𝐷𝐵𝐶) in our earlier example. With some dotted 

lines added as shown, we can see a few obvious complexes for 

𝑆.  
𝐶1 = {▲𝐴𝐵𝐶,▲𝐵𝐷𝐸} 

𝐶2 = {▲𝐴𝐵𝐹,▲𝐵𝐶𝐹,▲𝐶𝐴𝐹,▲𝐵𝐷𝐸} 

𝐶3 = {▲𝐴𝐸,▲𝐷𝐵𝐹,▲𝐵𝐶𝐹,▲𝐶𝐴𝐹} 
 

Are we sure that the sum of the areas of the triangular regions in complex 𝐶1 will be the same as 

the sum of the areas of the triangular regions in complex 𝐶2? It would not be hard to show that in 

this diagram, the sum of the areas would be the same for complexes 𝐶1, 𝐶2, 𝐶3. But there are lots 

of other complexes for region 𝑆. And there are lots of other poygonal regions. We need a general 

theorem that will settle the question once and for all. A general theorem is possible, and can be 

proven with a proof at the level of this course. We will accept the theorem without proof. 

 

Theorem 133 (accepted without proof) Given any polygonal region, any two complexes for that 

region have the same area sum. 

If 𝑅 is a polygonal region and 𝐶1 and 𝐶2 are two complexes for 𝑅, then the sum of the areas 

of the triangular regions of complex 𝐶1 equals the sum of the areas of the triangular regions 

of complex 𝐶2. 

 

We are going to define the area of a polygonal region 𝑅 to be the sum of the areas of the 

triangular regions of any complex 𝐶 for 𝑅. When we compute the area, we get a positive real 

number as a result. The process of finding the area can be described as a function whose domain 

is the set of all polygonal regions and whose codomain is the set of non-negative real numbers. 

Here is a symbol that we can use for the set of all polygonal regions. 

 

Definition 91 the set of all polygonal regions is denoted by ℛ. 

𝐵 

𝐴 

𝐶 

𝐷 

𝐹 

𝐸 
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We will use that symbol in the definition of area for polygonal regions. 

 

Definition 92 the area function for polygonal regions 

symbol: 𝐴𝑟𝑒𝑎 
spoken: the area function for polygonal regions 

meaning: the function 𝐴𝑟𝑒𝑎: ℛ → ℝ+ defined by 

𝐴𝑟𝑒𝑎(𝑅) = 𝐴𝑟𝑒𝑎
▴
(▲

1
) + 𝐴𝑟𝑒𝑎

▴
(▲

2
) + ⋯ + 𝐴𝑟𝑒𝑎

▴
(▲

3
) = ∑ 𝐴𝑟𝑒𝑎

▴
(▲

𝑖
)

𝑘

𝑖=1

 

where 𝐶 = {▲
1
, ▲

2
, … , ▲

𝑘
} is a complex for region 𝑅. (Theorem 133 guarantees that the 

resulting value does not depend on the choice of complex 𝐶.) 

 

Now that we have a definition for the area of a polygonal region, we can restate some of the 

discussion from Sections 11.1 and 11.2 in a theorem. 

 

Theorem 134 Properties of the Area Function for Polygonal Regions 

Congruence: If 𝑅1 and 𝑅2 are triangular regions bounded by congruent triangles, 

then 𝐴𝑟𝑒𝑎(𝑅1) = 𝐴𝑟𝑒𝑎(𝑅2). 

Additivity: If 𝑅1 and 𝑅2 are polygonal regions whose interiors do not intersect, 

then 𝐴𝑟𝑒𝑎(𝑅1 ∪ 𝑅2) = 𝐴𝑟𝑒𝑎(𝑅1) + 𝐴𝑟𝑒𝑎(𝑅2). 

 

In the next sections, we will discuss the area of Similar polygons. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 11.6 on page 258. 

11.3. Using Area to Prove the Pythagorean Theorem 
Here is a brief summary of key facts in our theory of area. 

 The area of a triangle is 𝐴 =
𝑏ℎ

2
, and it does not matter which side is chosen as the base. 

(from Definition 85 on page 244) 

 The area of a polygonal region is obtained by subdividing the region into non-

overlapping triangles and adding up the areas of those triangles. It does not matter which 

subdivision into non-overlapping triangles is used. (from Definition 92 on page 251) 

 The Area Function for Polygonal Regions has the Congruence Property and the 

Additivity Property. (from Theorem 134, above) 

 

In the exercises for Section 11.2 (exercise found in Section 11.6 on page 258), you used those 

key facts to produce area formulas for a number of familiar shapes, including 

 

 The area of a rectangle with length 𝑎 and width 𝑏 is 𝐴 = 𝑎𝑏.  

 

It turns out that the four bulleted facts above can be used to re-prove the Pythagorean Theorem. 

Here is one such proof: 
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Proof of the Pythagorean Theorem Using Area 

 

Given a right triangle with legs of length a and b. 

 
 

Introduce a square with sides of length a + b, with points 

on the sides of the square that divide each side of the 

square into segments of length a and b, as shown 

 

When the four points are joined, four right triangles are 

created.  

 

The four triangles are congruent, and each is congruent to 

the original, given triangle. 

 

(Question for the reader: How do we know that the 

four triangles are congruent?) 

 

Therefore, the inner quadrilateral has sides of length c. 

 

The quadrilateral on the inside has four sides of equal 

length, so it is certainly a rhombus.  But in fact, the inner 

quadrilateral is also a square. 

 

(Question for the reader: How do we know that the 

inner quadrilateral is actually a square?) 

 
 

a 

b 

a b 

a 

a 

a 

b 

b 

b 

a b 

a 

a 

a 

b 

b 

b 

a b 

a 

a 

a 

b 

b 

b 

c 

c 

c 

c 

a b 

a 

a 

a 

b 

b 

b 

c 

c 

c 

c 
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Now consider the following area calculations involving our final figure: 

 The area of the large square is (𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑎2 + 2𝑎𝑏 + 𝑏2. 

 The area of each triangle is 
𝑎𝑏

2
. 

 The area of the inner square is 𝑐2. 

 So the sum of the areas of the four triangles and the inner square is 

4 (
𝑎𝑏

2
) + 𝑐2 = 2𝑎𝑏 + 𝑐2 

 By additivity, the area of the large square must equal the sum of the areas of the four 

triangles and the inner square. That is,  𝑎2 + 2𝑎𝑏 + 𝑏2 = 2𝑎𝑏 + 𝑐2 

 Subtracting 2𝑎𝑏 from both sides leaves us with the equation  𝑎2 + 𝑏2 = 𝑐2. That is, 

the Pythagorean Theorem holds for the given right triangle. 

 

End of Proof 

 

This proof involving area seems to be conceptually much easier than our earlier proof of the 

Pythagorean Theorem, a proof that used only similarity. (Theorem 130 found in Section 10.3 

Applications of Similarity on page 237) But keep in mind that many important details underly 

the simple proof involving area. For starters, the proof used the four bulleted facts at the start of 

this subsection. Those facts are highlights of more than fifteen pages of development in the 

current Chapter 11. And that development was possible only after the proof of the important 

theorem that says that for any triangle, the value of the quantity  
𝑏ℎ

2
 does not depend on which 

side is chosen as the base, proven in Chapter 10. (Theorem 132, on page 238 of Section 10.3) 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 11.6 on page 258. 

11.4. Areas of Similar Polygons 
In Theorem 129 (About the ratios of lengths of certain line segments associated to similar 

triangles in Euclidean Geometry.) (found on page 236), we saw that for similar triangles, the 

ratio of the lengths of any pair of corresponding altitudes was the same as the ratio of the lengths 

of any pair of corresponding sides. That fact allows us to easily prove a very interesting result 

about the ratio of the areas of similar triangles 

 

Theorem 135 about the ratio of the areas of similar triangles 

The ratio of the areas of similar triangles is equal to the square of the ratio of the lengths of 

any pair of corresponding sides. 

 

Proof 

𝐴𝑟𝑒𝑎

𝐴𝑟𝑒𝑎′
=

1
2 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡

1
2 𝑏𝑎𝑠𝑒′ ⋅ ℎ𝑒𝑖𝑔ℎ𝑡′

 

=
𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡

𝑏𝑎𝑠𝑒′ ⋅ ℎ𝑒𝑖𝑔ℎ𝑡′
 

= (
𝑏𝑎𝑠𝑒

𝑏𝑎𝑠𝑒′
) ⋅ (

ℎ𝑒𝑖𝑔ℎ𝑡

ℎ𝑒𝑖𝑔ℎ𝑡′
) 
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= (
𝑏𝑎𝑠𝑒

𝑏𝑎𝑠𝑒′
) ⋅ (

𝑏𝑎𝑠𝑒

𝑏𝑎𝑠𝑒′
) 

= (
𝑏𝑎𝑠𝑒

𝑏𝑎𝑠𝑒′
)

2

 

End of proof 

 

It is reasonable to wonder if this fact generalizes to similar polygons. That is, is the ratio of the 

areas of a pair of similar polygons is equal to the square of the ratio of the lengths of any pair of 

corresponding sides? We will spend the rest of this section addressing that question. First, we 

should define similar polygons. You will notice that the definition reads a lot like our earlier 

Definition 80 of triangle similarity. 

 

Definition 93 polygon similarity 

To say that two polygons are similar means that there exists a correspondence between the 

vertices of the two polygons and the correspondence has these two properties: 

 Each pair of corresponding angles is congruent. 

 The ratios of the lengths of each pair of corresponding sides is the same. 

If a correspondence between vertices of two polygons has the two properties, then the 

correspondence is called a similarity. That is, the expression a similarity refers to a particular 

correspondence of vertices that has the two properties. 

 

The following statement has a straightforward proof. You will be asked to supply the proof in a 

homework exercise. 

 

Theorem 136 polygon similarity is an equivalence relation 

 

As with triangle similarity, there is subtlety in the notation used for similar polygons. 

 

Definition 94 symbol for a similarity of two polygons 

Symbol: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛)~𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛′). 

Meaning: The correspondence (𝑃1𝑃2 … 𝑃𝑛) ↔ (𝑃1′𝑃2′ … 𝑃𝑛′) of vertices is a similarity. 

 

Now on to our question: is the ratio of the areas of a pair of similar polygons is equal to the 

square of the ratio of the lengths of any pair of corresponding sides? 

 

We will start by attempting to answer the question for similar convex polygons. We will start 

with convex 3-gons, then consider convex 4-gons, convex 5-gons, etc. It will be helpful to first 

note the following algebraic fact about ratios: 

𝐼𝑓
𝑎1

𝑏1
=

𝑎2

𝑏2
= ⋯ =

𝑎𝑘

𝑏𝑘
= 𝑟 𝑡ℎ𝑒𝑛 

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘

𝑏1 + 𝑏2 + ⋯ + 𝑏𝑘
= 𝑟 

 

For convex 3-gons 

Question: Is the ratio of the areas of a pair of similar convex 3-gons equal to the square of 

the ratio of the lengths of any pair of corresponding sides? 

Answer: Yes, of course. A 3-gon is just a triangle, and every triangle is convex. Theorem 

135 tells us that the ratio of the areas of a pair of similar triangles is equal to the square of 

the ratio of the lengths of any pair of corresponding sides. 
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For convex 4-gons 

Question: Is the ratio of the areas of a pair of similar convex 4-gons equal to the square of 

the ratio of the lengths of any pair of corresponding sides? 

Answer: Yes. Suppose that 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′) are convex and that 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷)~𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′). Suppose that the ratio of lengths of 

corresponding sides is 
𝐴𝐵

𝐴′𝐵′
= 𝑟. Observe that Δ𝐴𝐵𝐶~Δ𝐴′𝐵′𝐶′ (by the SAS Similarity 

Theorem 128), so that 
𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)

𝐴𝑟𝑒𝑎(Δ𝐴′𝐵′𝐶′)
= (

𝐴𝐵

𝐴′𝐵′
)

2

= 𝑟2 (by Theorem 135 about the ratio of 

the areas of similar triangles). Also observe that Δ𝐵𝐶𝐷~Δ𝐵′𝐶′𝐷′, so that 
𝐴𝑟𝑒𝑎(Δ𝐵𝐶𝐷)

𝐴𝑟𝑒𝑎(Δ𝐵′𝐶′𝐷′)
=

(
𝐵𝐶

𝐵′𝐶′
)

2

= (
𝐴𝐵

𝐴′𝐵′
)

2

= 𝑟2. Therefore, using the algebraic fact about ratios, we have 

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)+𝐴𝑟𝑒𝑎(Δ𝐵𝐶𝐷)

𝐴𝑟𝑒𝑎(Δ𝐴′𝐵′𝐶′)+𝐴𝑟𝑒𝑎(Δ𝐵′𝐶′𝐷′)
= 𝑟2.  Therefore, 

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷))

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′))
= 𝑟2. 

 

For convex 5-gons 

Question: Is the ratio of the areas of a pair of similar convex 5-gons equal to the square of 

the ratio of the lengths of any pair of corresponding sides? 

Answer: Yes. Suppose that 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷𝐸) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′𝐸′) are convex and 

that 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷𝐸)~𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′𝐸′). Suppose that the ratio of lengths of 

corresponding sides is 
𝐴𝐵

𝐴′𝐵′
= 𝑟. Observe that Δ𝐷𝐸𝐴~Δ𝐷′𝐸′𝐴′ (by SAS Similarity), so that 

𝐴𝑟𝑒𝑎(Δ𝐷𝐸𝐴)

𝐴𝑟𝑒𝑎(Δ𝐷′𝐸′𝐴′)
= (

𝐷𝐸

𝐷′𝐸′
)

2

= 𝑟2 (by Theorem 135). 

 

The segments 𝐷𝐴̅̅ ̅̅  and 𝐷′𝐴′̅̅ ̅̅ ̅̅  partitioned each of the original 5-gons into a triangle and a 

quadrilateral. The fact that those two triangles are similar tells us that ∠𝐷𝐴𝐸 ≅ ∠𝐷′𝐴′𝐸′ 

and ∠𝐸𝐴𝐷 ≅ 𝐸′𝐴′𝐷′ and that 
𝐷𝐴

𝐷′𝐴′
= 𝑟. The fact about the congruent pairs of 

corresponding angles can be used to show that ∠𝐷𝐴𝐵 ≅ ∠𝐷′𝐴′𝐵′ and ∠𝐴𝐷𝐶 ≅ ∠𝐴′𝐷′𝐶′. 
In other words, the quadrilaterals 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′) are similar! 

Therefore, 
𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷))

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′))
= 𝑟2 because of the fact that we proved earlier about 

the ratio of the areas of convex quadrilaterals. Therefore, using the algebraic fact about 

ratios, we have 
𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)+𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷))

𝐴𝑟𝑒𝑎(Δ𝐴′𝐵′𝐶′)+𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′))
= 𝑟2.  In other words, we have shown 

that 
𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷𝐸))

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′𝐸′))
= 𝑟2. 

 

For convex n-gons 

Question: Is the ratio of the areas of a pair of similar convex n-gons equal to the square of 

the ratio of the lengths of any pair of corresponding sides? 

Answer: Yes, but the proof structure is more sophisticated than the ones that we have seen 

so far in this book. Here is the general idea. 

 

Suppose that 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛′) are convex and that 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛)~𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛′). Suppose that the ratio of lengths of 

corresponding sides is 
𝐴𝐵

𝐴′𝐵′
= 𝑟. Observe that Δ𝑃𝑛−1𝑃𝑛𝑃1~Δ𝑃𝑛−1′𝑃𝑛′𝑃1′ (by SAS 
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Similarity), so that 
𝐴𝑟𝑒𝑎(Δ𝑃𝑛−1𝑃𝑛𝑃1)

𝐴𝑟𝑒𝑎(Δ𝑃𝑛−1′𝑃𝑛′𝑃1′)
= (

𝑃𝑛−1𝑃𝑛

𝑃𝑛−1′𝑃𝑛′
)

2

= 𝑟2 (by Theorem 135). 

 

The segments 𝑃𝑛−1′𝑃𝑛′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑃𝑛−1′𝑃𝑛′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  partitioned each of the original n-gons into a triangle 

and an n-1-gon. The fact that those two triangles are similar can be used to show 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛−1) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛−1′) are similar. If we just knew that 

the equation 
𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2…𝑃𝑛−1))

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′…𝑃𝑛−1′))
= 𝑟2 was true, then the algebraic fact about ratios 

would tell us that 
𝐴𝑟𝑒𝑎(Δ𝑃𝑛−1𝑃𝑛𝑃1)+𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2…𝑃𝑛−1))

𝐴𝑟𝑒𝑎(Δ𝑃𝑛−1′𝑃𝑛′𝑃1′)+𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′…𝑃𝑛−1′))
= 𝑟2.  In other words, we 

would know that 
𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2…𝑃𝑛))

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′…𝑃𝑛′))
= 𝑟2. 

We can make this work with the method of Proof by Induction. That method will not be 

presented in this book, so we will not do the proof for convex n-gons in detail. 

 

Having considered the question about the ratio of the areas of convex n-gons, an obvious 

question is: what if we drop the requirement that the n-gons be convex?  

 

For general n-gons 

Question: Is the ratio of the areas of a pair of similar n-gons (not necessarily convex) equal 

to the square of the ratio of the lengths of any pair of corresponding sides? 

Answer: Yes, but the proof is beyond the level of this course. 

 

We summarize the above discussion in the following theorem. 

 

Theorem 137 about the ratio of the areas of similar n-gons 

The ratio of the areas of a pair of similar n-gons (not necessarily convex) is equal to the 

square of the ratio of the lengths of any pair of corresponding sides. 

 

In other words, if you double the lengths of the sides of a triangle, then you quadruple the area of 

the triangle. If you double the lengths of the sides of an n-gon, then you quadruple its area. 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 11.6 on page 258. 

11.5. Area in High School Geometry Books 
Now that we have finished our study of the theory of area in our Euclidean Geometry, it would 

be worthwhile to summarize what we have done and then compare our theory to the theory of 

area typically found in high school geometry books. 

 

First, note that none of our eleven axioms says anything about area. Our whole theory was 

developed in definitions and theorems. 

 

One of the two theorems that made our whole theory of area possible was in the previous 

chapter:  Theorem 132 (In Euclidean Geometry, the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle does 

not depend on which side of the triangle is chosen as the base.) (found on page 238) That 

theorem is what enabled us to introduce the area function for triangular regions in Definition 85 

(found in Section 11.1 on page 244). 
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Then we introduced the notion of a polygonal region and a complex (in Definition 88 on page 

247 of Section 11.1). 

 

A second theorem that made our whole theory of area possible was Theorem 133 ((accepted 

without proof) Given any polygonal region, any two complexes for that region have the same 

area sum.) (found in Section 11.2 on page 250) Although we officially accepted that theorem 

without proof, we studied most of the elements of the proof in a sequence of homework exercises 

for this chapter. That theorem is what enabled us to introduce the area function for polygonal 

regions (in Definition 92 on page 251 of Section 11.2). That is, the area of a polygonal region is 

obtained by subdividing the region into non-overlapping triangles and adding up the areas of 

those triangles. It does not matter which subdivision into non-overlapping triangles is used. 

 

Finally, we proved that our area function has certain properties in Theorem 134 (Properties of the 

Area Function for Polygonal Regions) (found on page 251 of Section 11.2) 

 

In summary, our theory of area is written in the precise mathematical language of functions, and 

it is developed without any additional axioms. 

 

By contrast, high school books typically include axioms that simply declare that something 

called area exists. Here are the SMSG axioms having to do with area. 

 

SMSG Postulate 17: To every polygonal region there corresponds a unique positive real 

number called its area.  

SMSG Postulate 18: If two triangles are congruent, then the triangular regions have the 

same area.  

SMSG Postulate 19: Suppose that the region 𝑅 is the union of two regions 𝑅1 and 𝑅2. If  𝑅1 

and 𝑅2 intersect at most in a finite number of segments and points, then the area of 𝑅 is 

the sum of the areas of 𝑅1 and 𝑅2. 

SMSG Postulate 20: The area of a rectangle is the product of the length of its base and the 

length of its altitude. 

 

Notice that the SMSG Postulates do not use the terminology of functions. Furthermore, the 

SMSG postulates simply declare that the area has certain properties, the same properties that we 

were able to prove in theorems. 

 

It is worth noting an important consequence of the SMSG approach to area. Recall our 

discussion of the Proof of the Pythagorean Theorem Using Area, at the end of Section 11.3. 

(That section starts on page 251.) We observed that in our book, there is the following sequence 

of developments. 

 

(1) The concept of Similarity is developed in Chapter 10. 

(2) The Pythagorean Theorem is proven with a moderately-difficult proof involving 

similarity. (Theorem 130 found in Section 10.3 Applications of Similarity on page 237) 

(3) The theory of Area is developed in Chapter 11. 

(4) The Pythagorean Theorem is re-proven with a very simple proof using Area (in Chapter 

11). 
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We discussed the fact that although the proof of the Pythagorean Theorem using area looked 

very simple, it did involve a lot of underlying theory. So the proof involving Similarity was 

simpler overall, even though it looked more difficult than the proof involving area. 

 

But in a book that uses the SMSG Postulates, one is simply given the theory of Area in the 

axioms; no development of Area theory is required. If that is the approach, then the smartest way 

to prove the Pythagorean Theorem would be to just use area, taking advantage of the SMSG 

axioms about area. In such a book, the area-based proof really would be concepually simpler 

than a proof that used similarity. 

11.6. Exercises for Chapter 11 
Exercises for Section 11.2 (The Area of a Polygonal Region) (Section starts on page 250.) 

 

In our definition of the area of a polygonal region, the only regions whose areas are computed by 

a formula are the triangular regions. The area of any other kind of polygonal region is obtained 

by first identifying a complex for the region, and then finding the area of the triangles in the 

complex. But if we stick to this plan for computing area, we will quickly see some familiar 

formulas emerge for the area of certain kinds of polygonal regions. Our first exercises explore 

this. 

 

[1] Find the formula for the area of each shape by identifying a complex and then finding the 

sum of the triangular regions in the complex using the formula for the area of a triangular region, 

𝐴𝑟𝑒𝑎
▴
(▲𝐴𝐵𝐶) =

𝑏ℎ

2
 

Provide large drawings showing your triangulations clearly. 

(a) Rectangle 

 

(b) Parallelogram 

 

(c) Trapezoid 

 
 

Theorem 133 (found on page 250) states that given any polygonal region, any two complexes for 

that region have the same area sum. We accepted this theorem without proof, but we should have 

some sense of how the proof of the theorem would work. The next few exercises show how some 

pieces of the proof would work. 

𝑎 
𝑏 

𝑏 

ℎ 

𝑏1 

ℎ 

𝑏2 
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[2] Show that for any triangle Δ𝐴𝐵𝐶, if 

𝑃1, 𝑃2, … , 𝑃𝑘 are points on side 𝐵𝐶̅̅ ̅̅ , then the 

complex of 𝑘 + 1 triangles {▲𝐵𝑃1𝐴, ▲

𝑃1𝑃2𝐴, … , ▲𝑃𝑘𝐶𝐴} has an area sum that is equal to 

the area of the complex {▲𝐴𝐵𝐶}. 

 

[3] Show that for any trapezoid 𝐴𝐵𝐶𝐷, if a 

complex of triangles is formed by connecting 

points on the upper and lower bases, then the 

complex has an area sum that is equal to the area 

given by the formula that you found in problem [3]. 

 

[4] Triangle Δ𝐴𝐵𝐶 is split by a segment 𝐷𝐸̅̅ ̅̅  

parallel to side 𝐵𝐶̅̅ ̅̅ . Show that the following two 

numbers are the same: 

(1) The area of complex {▲𝐴𝐵𝐶}. 

(2) The area of complex 

{▲𝐴𝐷𝐸, ▲𝐷𝐵𝐸, ▲𝐵𝐶𝐸}. 

 
 

Exercises for Section 11.3 (Using Area to Prove the Pythagorean Theorem) (page 251) 

 

[5] In the Proof of the Pythagorean Theorem Using Area, which starts on page 251 in Section 

11.3, there are two questions for the reader. Answer those questions. 

[6] Use the diagram at right as the inspiration for a proof of the 

Pythagorean Theorem using area. 

Hint: Use as your model the proof that starts on page 251 in Section 

11.3. That is, provide a sequence of drawings and the same amount of 

explanation. (But don’t leave any unanswered questions for the 

reader!) 

 
[7] Come up with another proof of the Pythagorean Theorem using area, not like the two 

presented in this chapter.  

Hint: You can start by doing a web search for “proof of the pythagorean theorem”, and in the 

search results, choose “images”. This should get you a large collection of images that you can 

use for inspiration, and will also get you some fully-explained proofs. But you will need to write 

a proof in your own words, in full detail, using a sequence of drawings, not just one drawing. 

 

Exercises for Section 11.4 (Areas of Similar Polygons) (Section starts on page 253.) 

 

[8] Justify the steps in the proof of Theorem 135 (about the ratio of the areas of similar triangles) 

(found on page 253). 

𝑃1 

𝐴 

ℎ 

𝐵 𝐶 𝑃2 𝑃𝑘 … 

𝐴 

ℎ 

𝐵 

𝐶 𝐷 

ℎ1 

𝐴 

𝐵 𝐶 

ℎ2 

𝐷 𝐸 

𝑏1 

𝑏2 
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[9] Prove Theorem 136 (polygon similarity is an equivalence relation) (found on page 254). 

 

[10] Prove the algebraic fact about ratios cited in Section 11.4:  

𝐼𝑓
𝑎1

𝑏1
=

𝑎2

𝑏2
= ⋯ =

𝑎𝑘

𝑏𝑘
= 𝑟 𝑡ℎ𝑒𝑛 

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘

𝑏1 + 𝑏2 + ⋯ + 𝑏𝑘
= 𝑟 

Hint: Notice that 𝑎1 = 𝑟𝑏1 and  𝑎2 = 𝑟𝑏2, etc. Use this to rewrite the 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 in the 

numerator. 

 

[11] Make drawings to illustrate the discussion preceeding Theorem 137 (about the ratio of the 

areas of similar n-gons) (found on page 256). That is, draw 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷) and 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′) that are convex and similar, and illustrate the steps in the discussion about 

convex 4-gons. Then draw 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝐷𝐸) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴′𝐵′𝐶′𝐷′𝐸′) that are convex and 

similar, and illustrate the steps in the discussion about convex 5-gons. Then draw 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) and 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛′) that are convex and similar, and illustrate the 

discussion about convex n-gons. 

 

[12] If you want to triple the area of a square, by what factor should you multiply the lengths of 

the sides? 

 

[13] (A) Suppose that a 30-60-90 triangle has a hypotenuse that is 𝑥 units long. How long is the 

short leg of the triangle? (Hint: Theorem 62, found on page 172, tells us that the short leg will be 

opposite the angle of measure 30. Consider first an equilateral triangle whose sides are 𝑥 units 

long. Draw the altitude from one vertex to the opposite side. Theorem 85, found on page 199, 

can be used to say something about the lengths of the segments created on the opposite side.) 

 

(B) Suppose that a 30-60-90 triangle has a hypotenuse that is 𝑥 units long. How long is the long 

leg of the triangle? (Hint: Use the answer to (A) and the Pythagorean Theorem. 

 

(C) Using your answers to (A) and (B), find the area of a 30-60-90 triangle. 

 

(D) Find the area of an equilateral triangle whose sides are 𝑥 units long. 

 

[14] Suppose that Δ𝐴𝐵𝐶 is a right triangle with right angle at 𝐶. Let 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 and 

𝑐 = 𝐴𝐵. The Pythagorean Theorem says that 𝑎2 + 𝑏2 = 𝑐2. This can be interpreted 

geometrically: Suppose that squares are constructed on each side of the triangle. Then those 

squares will have areas 𝑎2 and 𝑏2 and 𝑐2. The Pythagorean Theorem says that the sum of the 

areas of the two smaller squares equals the are of the larger square. 

 

There is a generalization of this idea to other shapes. For instance, instead of constructing 

squares on each side of triangle Δ𝐴𝐵𝐶, construct three triangles that are similar to each other. 

That is, suppose that 𝐷, 𝐸, 𝐹 are three points such that Δ𝐴𝐵𝐷~Δ𝐵𝐶𝐸~Δ𝐶𝐴𝐹. Show that 

𝐴𝑟𝑒𝑎(Δ𝐵𝐶𝐸) + 𝐴𝑟𝑒𝑎(Δ𝐶𝐴𝐹) = 𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐷) 

 

Hint: Divide both sides of the Pythagorean Theorem by 𝑐2 to obtain the new equation 

𝑎2

𝑐2
+

𝑏2

𝑐2
=

𝑐2

𝑐2
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That is, 

(
𝑎

𝑐
)

2

+ (
𝑏

𝑐
)

2

= 1 

Then use Theorem 135, found on page 253, to rewrite this equation in terms of ratios of areas of 

similar triangles. Then rearrange the equation to get the form asked for in the problem statement. 

 

[15] Refer to the drawing at right, which is not drawn to scale. 

 

𝐴𝐵 = 𝑥 

𝐵𝐶 ⃡    ‖𝐷𝐸 ⃡     

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶) = 3𝐴𝑟𝑒𝑎(Δ𝐴𝐷𝐸) 
 

Find 𝐴𝐷 in terms of 𝑥. 

 
. 

[16] Refer to the drawing at right, which is not drawn to scale. 

 

𝐴𝐷 = 𝑥 
𝐷𝐵 = 3 

𝐵𝐶 ⃡    ‖𝐷𝐸 ⃡     

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶) = 16𝐴𝑟𝑒𝑎(Δ𝐴𝐷𝐸) 
 

Find 𝑥. Show your work. 
 

. 

[17] In the figure at right, 

𝐴𝐵 = 𝐴𝐶 = 𝑥 
𝐵𝐶 = 𝐵𝐷 = 1 

 

Let 𝑦 be the value of the ratio of the areas: 

 

𝑦 =
𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)

𝐴𝑟𝑒𝑎(Δ𝐵𝐶𝐷)
 

 

Find 𝑦 in terms of 𝑥. Show all steps that lead to your answer. 

 

 

Hint: Each triangle has two congruent sides. Cite a theorem to identify congruent angles. Then 

identify two similar triangles. (Draw them side-by-side with the same orientation.) 

 

[18] A regular hexagon called ℎ𝑒𝑥1 has sides of length 𝑥. A second hexagon called ℎ𝑒𝑥2 is 

created by joining the midpoints of the sides of ℎ𝑒𝑥1. Let 𝑦 be the value of the ratio of the areas: 

 

𝑦 =
𝐴𝑟𝑒𝑎(ℎ𝑒𝑥1)

𝐴𝑟𝑒𝑎(ℎ𝑒𝑥2)
 

 

Find 𝑦 in terms of 𝑥. Show all steps that lead to your answer. 
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[19] In the figure at right, 

 

𝐴𝐵 ⃡    ∥ 𝐷𝐸 ⃡     

𝐵𝐶 ⃡    ∥ 𝐹𝐺 ⃡     

𝐶𝐴 ⃡    ∥ 𝐻𝐼 ⃡    
 

The goal is to find a relationship between 

𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶) and 𝐴𝑟𝑒𝑎1 and 𝐴𝑟𝑒𝑎2 and 

𝐴𝑟𝑒𝑎3. 

 
(A) Prove that Δ𝐴𝐵𝐶~Δ𝐷𝑃𝐺~Δ𝐼𝐹𝑃~Δ𝑃𝐸𝐻. 

 

Define symbols 

 Let 𝑥1 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑓 Δ𝐷𝑃𝐺 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐷̅̅ ̅̅ ). 

 Let 𝑥2 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑓 Δ𝐼𝐹𝑃 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐼𝐹̅̅ ̅). 

 Let 𝑥3 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑓 Δ𝑃𝐸𝐻 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐸̅̅ ̅̅ ). 

 Let 𝑥 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑜𝑓 Δ𝐴𝐵𝐶 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ). 

 

In the next three questions, you will apply Theorem 135 to get ratios of areas in terms of the 

symbols 𝑥1, 𝑥2, 𝑥3, 𝑥. 

 

(B) Find the ratio 
𝐴𝑟𝑒𝑎(Δ𝐷𝑃𝐺)

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)
. 

(C) Find the ratio 
𝐴𝑟𝑒𝑎(Δ𝐼𝐹𝑃)

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)
. 

(D) Find the ratio 
𝐴𝑟𝑒𝑎(Δ𝑃𝐸𝐻)

𝐴𝑟𝑒𝑎(Δ𝐴𝐵𝐶)
. 

 

The next four questions are the main computation. 

 

(E) Get an equation expressing 𝑥 in terms of 𝑥1, 𝑥2, 𝑥3. 

(F) Divide both sides of this equation by 𝑥.  

(G) Replace these expressions with square roots of the ratios of areas from questions (B),(C),(D).  

(H) Finally, multiply both sides of this equation by √𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶). The result should be an 

equation that expresses a relationship between 𝑎𝑟𝑒𝑎(Δ𝐴𝐵𝐶) and 𝐴𝑟𝑒𝑎1 and 𝐴𝑟𝑒𝑎2 and 𝐴𝑟𝑒𝑎3. 

 

 

 

. 
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12. Euclidean Geometry IV: Circles 
We previously studied circles in Chapter 8, in the context of Neutral Geometry. All of the 

theorems of that chapter are also theorems that are true about circles in Euclidean Geometry. In 

this chapter we will study some results that are strictly Euclidean. That is, their proofs require the 

use of the Euclidean Parallel Axiom <EPA>, and their statements are not true in Neutral 

Geometry. We will study angles that intersect circles. Arcs will be introduced, and we will study 

the relationships between the measures of angles and the arcs that they intercept. 

12.1. Circular Arcs 
In this chapter, we will be interested in angles that intersect circles but only in seven particular 

configurations. Here are the seven types, presented as a single definition. 

 

Definition 95 seven types of angles intersecting circles 

 

Type 1 Angle (Central Angle) 

 

A central angle of a circle is an angle whose rays lie 

on two secant lines that intersect at the center of the 

circle. 

 

In the picture at right, lines 𝐴𝐸 ⃡     and 𝐶𝐹 ⃡    are secant 

lines that intersect at the center point 𝐵 of the circle. 

Angle ∠𝐴𝐵𝐶 is a central angle. So are angles 

∠𝐶𝐵𝐸, ∠𝐸𝐵𝐹, ∠𝐹𝐵𝐴. 
 

Type 2 Angle (Inscribed Angle) 

 

An inscribed angle of a circle is an angle whose rays 

lie on two secant lines that intersect on the circle and 

such that each ray of the angle intersects the circle at 

one other point. In other words, an angle of the form 

∠𝐴𝐵𝐶, where 𝐴, 𝐵, 𝐶 are three points on the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an inscribed 

angle. 
 

Type 3 Angle 

Our third type of an angle intersecting a circle is an 

angle whose rays lie on two secant lines that intersect 

at a point that is inside the circle but is not the center 

of the circle. 

In the picture at right, lines 𝐴𝐸 ⃡     and 𝐶𝐹 ⃡    are secant 

lines that intersect at point 𝐵 in the interior of the 

circle. Angle ∠𝐴𝐵𝐶 is an angle of type three. So are 

angles ∠𝐶𝐵𝐸, ∠𝐸𝐵𝐹, ∠𝐹𝐵𝐴.  
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Type 4 Angle 

 

Our fourth type of an angle intersecting a circle is an 

angle whose rays lie on two secant lines that intersect 

at a point that is outside the circle and such that each 

ray of the angle intersects the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

four. 

 

Type 5 Angle 

 

Our fifth type of an angle intersecting a circle is an 

angle whose rays lie on two tangent lines and such 

that each ray of the angle intersects the circle. 

Because the rays lie in tangent lines, we know that 

each ray intersects the circle exactly once. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

five. 
 

Type 6 Angle 

 

Our sixth type of an angle intersecting a circle is an 

angle whose vertex lies on the circle and such that one 

ray contains a chord of the circle and the other ray lies 

in a line that is tangent to the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

six. 
 

Type 7 Angle 

 

Our seventh type of an angle intersecting a circle is an 

angle whose rays lie on a secant line and tangent line 

that intersect outside the circle and such that each ray 

of the angle intersects the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

seven. 
 

 

Notice that in each of the seven pictures above, there is a portion of the circle that lies in the 

interior of the angle. Those subsets can be described using the terminology of circular arcs. That 

terminology is the subject of the next section. 
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Recall that in Euclidean Geometry, any three non-collinear points 𝐴, 𝐵, 𝐶 lie on exactly one 

circle. (by Theorem 107, found on page 215) We could use the symbol 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) to denote 

the unique circle that passes through those three points. Also recall that the Axiom of Separation 

gives us the notion of the two half-planes determined by a line (Definition 17, found on page 61). 

We can use the symbol 𝐻𝐵 to denote the half-plane determined by line 𝐴𝐶 ⃡     that contains point 𝐵. 

We will use the terminology of half-planes in our definition of circular arcs. 

 

Definition 96 Circular Arc 

Symbol: 𝐴𝐵�̂� 

Spoken: arc 𝐴, 𝐵, 𝐶 

Usage: 𝐴, 𝐵, 𝐶 are non-collinear points. 

Meaning: the set consisting of points 𝐴 and 𝐶 and all points of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) that lie on the 

same side of line 𝐴𝐶 ⃡     as point 𝐵.  

Meaning in Symbols: 𝐴𝐵�̂� = {𝐴 ∪ 𝐶 ∪ (𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) ∩ 𝐻𝐵)} 
Additional terminology: 

 Points 𝐴 and 𝐶 are called the endpoints of arc 𝐴𝐵�̂�. 

 The interior of the arc is the set 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) ∩ 𝐻𝐵. 

 If the center 𝑃 lies on the opposite side of line 𝐴𝐶 ⃡     from point 𝐵, then arc 𝐴𝐵�̂� is 

called a minor arc. 

 If the center 𝑃 of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) lies on the same side of line 𝐴𝐶 ⃡     as point 𝐵,then arc 

𝐴𝐵�̂� is called a major arc. 

 If the center 𝑃 lies on line 𝐴𝐶 ⃡    , then arc 𝐴𝐵�̂� is called a semicircle. 

Picture:  

 
 

Now that we have the terminology of circular arcs, we can resume the discussion that we started 

above about the portion of the circle that lies in the interiors of the seven types of angles. The 

termology of an angle intercepting an arc will be useful. 

 

Definition 97 angle intercepting an arc 

We say that an angle intercepts an arc if each ray of the angle contains at least one endpoint 

of the arc and if the interior of the arc lies in the interior of the angle. 

 

There is a bit of subtlety in the way that this definition is written. It is worthwhile to go examine 

our seven types of angles intersecting circles, and consider the arcs that each type intersects. 
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Type 1 Central angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂�. 

 

Type 2 Inscribed angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂�. 

 

Type 3 angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂�. 

 

Type 4 angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂� and also 

intercepts arc 𝐸𝐺�̂�. Notice that the angle intercepts 

two arcs. This is allowed by the definition. 
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Type 5 angle ∠𝐴𝐵𝐶 intercepts dashed arc 𝐴𝐷�̂� and 

also intercepts dotted arc 𝐴𝐸�̂�. Notice that the angle 

intercepts two arcs and the arcs share both of their 

endpoints.  

 

 

Type 6 angle ∠𝐴𝐵𝐶 intercepts arc 𝐵𝐷�̂�. Notice that 

the angle only intercepts one arc. But both endpoints 

of the arc lie on ray 𝐵𝐶      , and one endpoint of the arc 

lies one ray 𝐵𝐴      . This is allowed by the definition, 

because each ray of the angle contains at least one 

endpoint of the arc. 

 

Type 7 angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂� and also 

intercepts arc 𝐴𝐸�̂�. Notice that the angle intercepts 

two arcs and the arcs share an endpoint. 

 

Question for the reader: Why does angle ∠𝐴𝐵𝐶 not 

intercept arc 𝐸𝐴�̂�? 

 
 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 12.6 on page 281.. 

12.2. Angle Measure of an Arc 
For a given arc on a circle, we would like to have some way of quantifying how far around the 

circle the arc goes. That leads us to the idea of the angle measure of an arc. We want to state a 

definition that uses function notation, so it will help for us to have a symbol for the set of all 

circular arcs. 

 

Definition 98  the symbol for the set of all circular arcs is �̂�.  

 

We will define the angle measure of an arc using a function. 

 

Definition 99 the angle measure of an arc 

Symbol: �̂� 
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Name: the Arc Angle Measurement Function 

Meaning: The function �̂�: �̂� → (0,360), defined in the following way: 

 If 𝐴𝐵�̂� is a minor arc, then �̂�(𝐴𝐵�̂�) = 𝑚(∠𝐴𝑃𝐶), where point 𝑃 is the 

center of the circle. 

 If 𝐴𝐵�̂� is a major arc, then �̂�(𝐴𝐵�̂�) = 360 − 𝑚(∠𝐴𝑃𝐶), where point 𝑃 

is the center of the circle. 

 If 𝐴𝐵�̂� is a semicircle, then �̂�(𝐴𝐵�̂�) = 180. 

Picture:  

 
 

We see that a very small minor arc will have an arc angle measure near zero, while a major arc 

that goes almost all the way around the circle will have an arc angle measure near 360. And we 

see why, in this definition, the measure of an arc is always greater than zero and less than 360. 

 

Our first theorem is an easy corollary of the definition of arc angle measurement. 

 

Theorem 138 If two distinct arcs share both endpoints, then the sum of their arc angle measures 

is 360. That is, if 𝐴𝐵�̂� and 𝐴𝐷�̂� are distinct, then �̂�(𝐴𝐵�̂�) + �̂�(𝐴𝐷�̂�) = 360. 

 

Our second theorem uses only the definition of arc angle measurement and has a very simple 

proof. You will be asked to prove it in a homework exercise. 

 

Theorem 139 Two chords of a circle are congruent if and only if their corresponding arcs have 

the same measure. 

 

Recall the Angle Measure Addition Axiom from the Axioms for Neutral Geometry (Definition 

17, found on page 61) 

 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of ∠𝐵𝐴𝐶, 

then 𝑚(∠𝐵𝐴𝐶) = 𝑚(∠𝐵𝐴𝐷) + 𝑚(∠𝐷𝐴𝐶). 

 

Because of the way that arc angle measure is defined in terms of angle measure, it should be no 

surprise that arc angle measure will behave in an analogous way. Here is the theorem and its 

proof. 

 

Theorem 140 The Arc Measure Addition Theorem 

If 𝐴𝐵�̂� and 𝐶𝐷�̂� are arcs that only intersect at 𝐶, then �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�). 
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The proof is a rather obnoxious one involving five cases. In a homework exercise, you will be 

asked to provide drawings. 

 

Proof (for readers interested in advanced topics and for graduate students) 

Suppose that 𝐴𝐵�̂� and 𝐶𝐷�̂� and 𝐴𝐶�̂� are arcs. 

There are exactly five possibilities: 

(1) 𝐴𝐵�̂� and 𝐶𝐷�̂� and 𝐴𝐶�̂� are minor arcs. 

(2) 𝐴𝐵�̂� and 𝐶𝐷�̂� are minor arcs, but 𝐴𝐶�̂� is a semicircle. 

(3) 𝐴𝐵�̂� and 𝐶𝐷�̂� are minor arcs, but 𝐴𝐶�̂� is a major arc. 

(4) 𝐴𝐵�̂� is a minor arc, but 𝐶𝐷�̂� is a semicircle, and 𝐴𝐶�̂� is a major arc. 

(5): 𝐴𝐵�̂� is a minor arc, but 𝐶𝐷�̂� and 𝐴𝐶�̂� are major arcs. 

We must show that �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�) in every case. 

Case 1: 

Suppose that  𝐴𝐵�̂� and 𝐶𝐷�̂� and 𝐴𝐶�̂� are minor arcs. (Make a drawing) 

Then 

�̂�(𝐴𝐶�̂�) = 𝑚(∠𝐴𝑃𝐸)     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 

= 𝑚(∠𝐴𝑃𝐶) + 𝑚(∠𝐶𝑃𝐸)      (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 
= �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�)     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 

So �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�) in this case. 

 

Case 2: 

Suppose that 𝐴𝐵�̂� and 𝐶𝐷�̂� are minor arcs, but 𝐴𝐶�̂� is a semicircle. (Make a drawing.) 

Then 

�̂�(𝐴𝐶�̂�) = 180     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 

= 𝑚(∠𝐴𝑃𝐶) + 𝑚(∠𝐶𝑃𝐸)      (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 
= �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�)     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦) 

So �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�) in this case. 

 

Case 3: 

Suppose that 𝐴𝐵�̂� and 𝐶𝐷�̂� are minor arcs, but 𝐴𝐶�̂� is a major arc. (Make a drawing.) 

(You provide the steps to prove this case.) 

Case 4: 

Suppose that 𝐴𝐵�̂� is a minor arc, but 𝐶𝐷�̂� is a semicircle, and 𝐴𝐶�̂� is a major arc. (Make a 

drawing.) (You provide the steps to prove this case.) 

 

Case 5: 

Suppose that 𝐴𝐵�̂� is a minor arc, but 𝐶𝐷�̂� and 𝐴𝐶�̂� are major arcs. (Make a drawing.) 

(You provide the steps to prove this case.) 

 

Conclusion: 

We see that �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�) in every case. 

End of Proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 12.6 on page 281. 
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12.3. The Measure of Angles Related to the Measures of 

Arcs that they Intercept 
In Section 12.1, we discussed angles intersecting circles, identifying seven types of angles that 

would be of interest to us. We also defined circular arcs and the notion of an angle intercepting 

an arc. In Section 12.2, we defined the angle measure of an arc. In this section, we will study the 

relationships between the measures of angles that intersect circles and the measures of the arcs 

that they intercept. We will consider all seven types of angles from Section 12.1. 

 

We already know that the angle measure of a central angle (Type 1) is equal to the arc angle 

measure of the arc intercepted by the angle, because that is how the arc angle measure was 

defined. 

 

Next, we will consider inscribed angles (Type 2). Here is a theorem presenting the relationship. 

You will justify the proof steps in a homework exercise. 

 

Theorem 141 the angle measure of an inscribed angle (Type 2) is equal to half the arc angle 

measure of the intercepted arc. 

Type 2 Inscribed angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂�. 

 
 

Proof 

(1) Suppose that an inscribed angle is given. There are three possibilities 

(i) The center of the circle lies on one of the rays of the angle. 

(ii) The center of the circle lies in the interior of the angle. 

(ii) The center of the circle lies in the exterior of the angle. 

Case (i) 

(2) Suppose that the center of the circle lies on one of the rays of the angle. (Make a 

drawing.) 

(3) (Labeling) Label the angle ∠𝐴𝐵𝐶 so that the center 𝑃 lies on ray 𝐵𝐴      . Let 𝐷 be some point 

in the interior of the arc intercepted by ∠𝐴𝐵𝐶, so that the arc can be denoted 𝐴𝐷�̂�. Let 

𝑥 = �̂�(𝐴𝐷�̂�) and let 𝑦 = 𝑚(∠𝐴𝐵𝐶). (Update your drawing.) Our goal is to find 𝑦 in 

terms of 𝑥. 

(4) 𝑚(∠𝐴𝑃𝐶) = 𝑥. (Justify. Update your drawing.) 

(5) 𝑚(∠𝐴𝑃𝐶) = 𝑚(∠𝑃𝐵𝐶) + 𝑚(∠𝑃𝐶𝐵). (Justify) 

(6) ∠𝑃𝐶𝐵 ≅ ∠𝑃𝐵𝐶. (Justify) 

(7) Therefore, 𝑚(∠𝑃𝐶𝐵) = 𝑦. (Update your drawing.) 

(8) 𝑥 = 𝑦 + 𝑦. (Substituted from steps 3 and 7 into step 5.) 

𝐴 

𝐵 

𝐶 
𝐷 
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(9) Therefore, 𝑦 =
𝑥

2
. So in this case, we see that the angle measure of the inscribed angle is 

equal to half the arc angle measure of the intercepted arc. 

Case (ii) 

(10) Suppose that the center of the circle lies in the interior of the angle. (Make a new 

drawing.) 

(11) (Labeling) Label the angle ∠𝐴𝐵𝐶 and the center 𝑃. Let point 𝐸 be at the other end of a 

diameter from point 𝐵. Let 𝐷 be some point in the interior of the arc intercepted by 

∠𝐴𝐵𝐸, so that the arc can be denoted 𝐴𝐷�̂�. Let 𝐹 be some point in the interior of the 

arc intercepted by ∠𝐸𝐵𝐶, so that the arc can be denoted 𝐸𝐹�̂�. (Update your drawing.) 

Our goal is to show that 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐸�̂�)

2
. 

(12) Then 

𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐴𝐵𝐸) + 𝑚(∠𝐸𝐵𝐶)     (𝑱𝒖𝒔𝒕𝒊𝒇𝒚. ) 

=
�̂�(𝐴𝐷�̂�)

2
+

�̂�(𝐸𝐹�̂�)

2
     (𝑱𝒖𝒔𝒕𝒊𝒇𝒚. ) 

=
�̂�(𝐴𝐷�̂�) + �̂�(𝐸𝐹�̂�)

2
 

=
�̂�(𝐴𝐸�̂�) 

2
    (𝑱𝒖𝒔𝒕𝒊𝒇𝒚. ) 

So in this case, we see that the angle measure of the inscribed angle is equal to half the arc 

angle measure of the intercepted arc. 

Case (iii) 

(13) Suppose that the center of the circle lies in the exterior of the angle. (Make a new 

drawing.) 

(14) (Labeling) Label the angle ∠𝐴𝐵𝐶 and the center 𝑃 so that 𝑃 and 𝐶 lie on opposite sides 

of line 𝐴𝐵 ⃡    . Let point 𝐹 be at the other end of a diameter from point 𝐵. Let 𝐸 be some 

point in the interior of the arc intercepted by ∠𝐴𝐵𝐹, so that the arc can be denoted 

𝐴𝐸�̂�. Let 𝐷 be some point in the interior of the arc intercepted by ∠𝐴𝐵𝐶, so that the arc 

can be denoted 𝐴𝐷�̂�. (Update your drawing.) Our goal is to show that 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�)

2
. 

(15) Then 

𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐹𝐵𝐶) − 𝑚(∠𝐹𝐵𝐴)     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦. ) 

=
�̂�(𝐹𝐴�̂�)

2
−

�̂�(𝐹𝐸�̂�)

2
     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦. ) 

=
�̂�(𝐹𝐴�̂�) − �̂�(𝐹𝐸�̂�)

2
 

=
�̂�(𝐴𝐷�̂�) 

2
    (𝐽𝑢𝑠𝑡𝑖𝑓𝑦. ) 

So in this case, we see that the angle measure of the inscribed angle is equal to half the arc 

angle measure of the intercepted arc. 

Conclusion 

(16) We see that in every case, the angle measure of the inscribed angle is equal to half the 

arc angle measure of the intercepted arc. 

End of Proof 

 

There is a very simple corollary that turnes out to be extremely useful: 
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Theorem 142 (Corollary) Any inscribed angle that intercepts a semicircle is a right angle. 

 

The two figures below illustrate Theorem 142 

 
 

Now on to Type 3 angles. You will justify the steps of the proof in a homework exercise. 

 

Theorem 143 the angle measure of an angle of Type 3. 

The angle measure of an angle of Type 3 is equal to the average of the arc angle measures of 

two arcs. One arc is the arc intercepted by the angle, itself. The other arc is the arc 

intercepted by the angle formed by the opposite rays of the original angle. 

In the figure at right, Type 3 angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂�. 

The theorem states that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�) + �̂�(𝐸𝐺�̂�)

2
 

 

 

 
Proof 

(1) Suppose that an angle of Type 3 is given. (Make a drawing.) 

(2) (Labeling) Label the angle ∠𝐴𝐵𝐶. Ray 𝐵𝐴       lies in a secant line. Let 𝐸 be the second point 

of intersection of that secant line and the circle. Ray 𝐵𝐶       lies in a secant line. Let 𝐹 be the 

second point of intersection of that secant line and the circle. Let 𝐷 be some point in the 

interior of the arc intercepted by angle ∠𝐴𝐵𝐶, so that the arc can be denoted 𝐴𝐷�̂�. Let 𝐺 

be some point in the interior of the arc intercepted by angle ∠𝐸𝐵𝐹, so that the arc can be 

denoted 𝐸𝐺�̂�. (Update your drawing.) Our goal is to show that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�) + �̂�(𝐸𝐺�̂�)

2
 

(3) Then 

𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐵𝐸𝐶) + 𝑚(∠𝐵𝐶𝐸)     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦. ) 

=
�̂�(𝐴𝐷�̂�)

2
+

�̂�(𝐸𝐺�̂�)

2
     (𝐽𝑢𝑠𝑡𝑖𝑓𝑦. ) 

=
�̂�(𝐴𝐷�̂�) + �̂�(𝐸𝐺�̂�)

2
 

End of proof 

𝐴 
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𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�)

2
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180

2
= 90 
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Now on to Type 4 angles. You will prove the following theorem in a homework exercise. 

 

Theorem 144 the angle measure of an angle of Type 4. 

The angle measure of an angle of Type 4 is equal to one half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed by subracting 

the smaller arc angle measure from the larger one.) 

 

In the figure at right, Type 4 angle ∠𝐴𝐵𝐶 intercepts 

arc 𝐴𝐷�̂� and also intercepts arc 𝐸𝐺�̂�. Notice that the 

angle intercepts two arcs. This is allowed by the 

definition. The theorem states that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�) − �̂�(𝐸𝐺�̂�)

2
 

 

The proof is left to you as a homework exercise. 

 
 

 

Now on to Type 5 angles. You will justify steps and fill in details of the proof in a homework 

exercise. 

 

Theorem 145 the angle measure of an angle of Type 5. 

The angle measure of an angle of Type 5 can be related to the arc angle measures of the arcs 

that it intersects in three useful ways: 

(i) The angle measure of the angle is equal to 180 minus the arc angle measure of 

the smaller intercepted arc 

(ii) The angle measure of the angle is equal to the arc angle measure of the larger 

intercepted arc minus 180 

(iii) The angle measure of the angle is equal to half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed 

by subracting the smaller arc angle measure from the larger one.) 

Type 5 angle ∠𝐴𝐵𝐶 intercepts dashed arc 𝐴𝐷�̂� and 

also intercepts dotted arc 𝐴𝐸�̂�. Notice that the angle 

intercepts two arcs and the arcs share both of their 

endpoints. The theorem states that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�) − �̂�(𝐴𝐸�̂�)

2
 

 

 

 
Proof 

(1) Suppose that an angle of Type 5 is given. (Make a drawing.) 

(2) (Labeling) The two rays of the angle lie in tangent lines that intersect at a point outside 

the circle. Each ray of the angle intersects the circle. Because the rays lie in tangent lines, 

we know that each ray intersects the circle exactly once. Label the angle ∠𝐴𝐵𝐶 with 

points 𝐴 and 𝐶 being the points of intersection of the angle with the circle. The angle 

𝐴 

𝐵 

𝐶 
𝐷 

𝐸 
𝐺 

𝐹 

𝐴 
𝐵 

𝐶 

𝐷 

𝐸 
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intercepts a major arc and a minor arc. Let 𝐷 be a point in the interior of the major arc, 

and let 𝐸 be a point in the interior of the minor arc. So the major and minor arcs are 

denoted by the symbols 𝐴𝐷�̂� and 𝐴𝐸�̂�. (Update your drawing.) With this labeling, our 

goal is to show that the following three equations are true:  

(i) 𝑚(∠𝐴𝐵𝐶) = 180 − �̂�(𝐴𝐸�̂�). 

(ii) 𝑚(∠𝐴𝐵𝐶) = �̂�(𝐴𝐷�̂�) − 180. 

(iii) 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�)−�̂�(𝐴𝐸�̂�)

2
. 

(3) (Show that equation (i) is true.) Let 𝑃 be the center of the circle and consider 

𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝐴𝐵𝐶𝑃). This is a convex quadrilateral, so its angle sum is 360. (Justify.) 

Observe that ∠𝐵𝐴𝑃 and ∠𝐵𝐶𝑃 are right angles. (Justify.) (Update your drawing.) From 

here, you should be able to complete the steps to show that equation (i) is true. (Show the 

details.) 
(4) (Show that equation (ii) is true.) Determine the relationship between the measure of major 

arc 𝐴𝐷�̂� and minor arc 𝐴𝐸�̂�. Using this relationship and equation (i), you should be able 

to show that equation (ii) is true. (Show the details.) 

(5) (Show that equation (iii) is true.) Add equation (i) and equation (ii) together and divide by 

2. (Show the details.) 

End of proof 

 

Now on to Type 6 angles. You will justify some of the steps in the proof and fill in some missing 

steps in a homework exercise. 

 

Theorem 146 the angle measure of an angle of Type 6. 

The angle measure of an angle of Type 6 is equal to one half the arc angle measure of the arc 

intercepted by the angle. 

In the picture at right, Type 6 angle ∠𝐴𝐵𝐶 intercepts 

arc 𝐵𝐷�̂�. Notice that the angle only intercepts one arc. 

But both endpoints of the arc lie on ray 𝐵𝐶      , and one 

endpoint of the arc lies one ray 𝐵𝐴      . This is allowed by 

the definition, because each ray of the angle contains 

at least one endpoint of the arc. Note that the picture is 

the special case when angle ∠𝐴𝐵𝐶 is acute, but this is 

not necessarily the case. The theorem states that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�)

2
 

Proof  

(1) Suppose that an angle of Type 6 is given. 

(2) There are three possibilities for the angle. 

(i) It is a right angle. 

(ii) It is an obtuse angle. That is, its measure is greater than 90. 

(iii) It is an acute angle. That is, its measure is less than 90. 

Case (i) 

(3) Suppose that the angle is a right angle (Make a drawing.) 

(4) (Labeling) Label the angle ∠𝐴𝐵𝐶 where 𝐴 is a point on the tangent ray and 𝐶 is the 

second point of intersection of the secant ray and the circle. Let 𝐷 be a point in the 

interior of the arc intercepted by the angle, so that the arc is denoted by the symbols 

𝐴 
𝐵 

𝐶 

𝐷 
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𝐵𝐷�̂�. (Update your drawing.) With this labeling, our goal is to show that 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐵𝐷�̂�)

2
. 

(5) But 𝑚(∠𝐴𝐵𝐶) = 90 because it is a right angle, and �̂�(𝐵𝐷�̂�) = 180 because it is a 

semicircle. So the equation 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐵𝐷�̂�)

2
 is true. So in this case, the angle 

measure of the angle of Type 6 is equal to one half the arc angle measure of the arc 

intercepted by the angle. 

 

Case (ii) 

(6) Suppose that the angle is obtuse. (Make a new drawing.) 

(7) (Labeling) Label the angle ∠𝐴𝐵𝐶 where 𝐴 is a point on the tangent line and 𝐶 is the 

second point of intersection of the secant line of the circle. 

(8) There exist a point 𝐷 on the same side of line 𝐴𝐵 ⃡     as point 𝐶 such that 𝑚(∠𝐴𝐵𝐷) = 90. 

(Justify.) (Make a new drawing.) 

(9) Ray 𝐴𝐷       intersects the circle at a point that we can label 𝐸. (Justify.) (Update your 

drawing.) Observe that point 𝐸 is in the interior of angle ∠𝐴𝐵𝐶, and that angle ∠𝐴𝐵𝐶 

intercepts arc 𝐵𝐸�̂�. (Update your drawing.) With this labeling, our goal is to show that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐵𝐸�̂�)

2
. 

(10) Let 𝐹 be a point in the interior of the arc intercepted by angle ∠𝐴𝐵𝐸, so that the arc is 

denoted by the symbols 𝐵𝐹�̂�, and let 𝐺 be a point in the interior of the arc intercepted 

by angle ∠𝐸𝐵𝐶, so that the arc is denoted by the symbols 𝐸𝐺�̂�. (Update your 

drawing.) 

(11) 𝑚(∠𝐴𝐵𝐸) = 90 =
�̂�(𝐵𝐹�̂�)

2
. (Justify.) 

(12) 𝑚(∠𝐸𝐵𝐶) =
�̂�(𝐸𝐺�̂�)

2
. (Justify.) 

(13) 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐵𝐹�̂�)

2
+

�̂�(𝐸𝐺�̂�)

2
. (Justify.) 

(14) 𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐵𝐸�̂�)

2
. (Justify.)  

 

Case (iii) 

(15) Suppose that the angle is acute. (Make a new drawing.) You should be able to prove 

that in this case, the angle measure of the angle of Type 6 is equal to one half the arc 

angle measure of the arc intercepted by the angle. (Fill in the missing steps, with 

justifications.) 

 

Conclusion of cases 

(16) We see that in every case, the angle measure of the angle of Type 6 is equal to one half 

the arc angle measure of the arc intercepted by the angle. 

End of proof 

 

Finally, our last proof relating the measures of angles of Types 1 – 7 to the arc angle measure of 

the arcs that they intersect. We will state and prove a result about Type 7 angles. The proof will 

make use of the result for Type 6 angles. You will justify the proof steps in a homework 

exercise. 

 

Theorem 147 the angle measure of an angle of Type 7. 
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The angle measure of an angle of Type 7 is equal to one half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed by subracting 

the smaller arc angle measure from the larger one. 

Type 7 angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂� and also 

intercepts arc 𝐴𝐸�̂�. Notice that the angle intercepts 

two arcs and the arcs share an endpoint. The theorem 

states that 

𝑚(∠𝐴𝐵𝐶) =
�̂�(𝐴𝐷�̂�) − �̂�(𝐸𝐺�̂�)

2
 

 

The proof is left to you as a homework exercise. 

 
 

So far, this chapter has just been about the list of seven types of angles and the arcs that they 

intersect. We have studied theorems about relationships between their measures. In the next two 

sections and in the exercises, we will see how these theorems can be put to use to solve 

interesting geometric problems.  

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 12.6 on page 281. 

12.4. Cyclic Quadrilaterals 
We know from Theorem 107 that in Euclidean Geometry, every triangle can be circumscribed. 

That is, there exists a circle that passes through all three vertices of the triangle. (Another way of 

stating this fact is that given any three non-collinear points in Euclidean Geometry, there exists a 

circle that passes through them.) And the circle is unique: there cannot be two different circles 

that pass through the same three points. We know this because the center of the circle must be at 

the point where the perpendicular bisectors of the three sides of the triangle intersect. There is 

only one such point. 

 

Can the same be said of quadrilaterals in Euclidean Geometry? That is, can every quadrilateral 

be circumscribed? 

 

It is obvious from pictures that a non-convex quadrilateral cannot be 

circumscribed. A circle that goes through three of the vertices will not pass 

through the fourth. We haven’t proven this, but we won’t bother trying to 

prove it. Non-convex quadrilaterals are too messy to deal with. 

 
But what about convex quadrilaterals? Can they be circumscribed? Or are there some that can be 

circumscribed and some that cannot? 

𝐴 
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𝐶 
𝐷 
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𝐸 
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A quick answer is, of course there are some that can be circumscribed 

and some that cannot be circumscribed. In the picture at right, we know 

that 𝑄𝑢𝑎𝑑(𝐴𝐵𝐶𝐸) cannot be circumscribed, because the only circle that 

passes through vertices 𝐴, 𝐵, 𝐶 is the one shown, and it does not pass 

through 𝐸. 

 
It turns out that there is a simple test to determine whether or not a convex quadrilateral can be 

circumscribed, and the test is a nice application of the theorems of the previous section. 

 

First, a definition. 

 

Definition 100 cyclic quadrilateral 

A quadrilateral is said to be cyclic if the quadrilateral can be circumscribed. That is, if there 

exists a circle that passes through all four vertices of the quadrilateral. 

 

We start by considering a quadrilateral that is known to be cyclic. Here is a theorem that you will 

prove in the exercises. Its proof uses Theorem 141 about the measure of inscribed angles. 

 

Theorem 148 In Euclidean Geometry, in any cyclic quadrilateral, the 

sum of the measures of each pair of opposite angles is 

180. That is, if 𝑄𝑢𝑎𝑑(𝐴𝐵𝐶𝐷) is cyclic, then 𝑚(∠𝐴) +
𝑚(∠𝐶) = 180 and 𝑚(∠𝐵) + 𝑚(∠𝐷) = 180. 

 

 
An obvious question is, does the theorem just presented work in reverse? That is, if it is known 

that a quadrilateral has the property that the sum of the measures of each pair of opposite angles 

is 180, then will the quadrilateral definitely be cyclic? The answer will turn out to be yes, but we 

need to prove that answer as a theorem. To do that, we will need a preliminary theorem. 

 

Theorem 149 about angles that intercept a given arc 

In Euclidean geometry, given an arc 𝐴𝐵�̂� and a point 𝑃 on the opposite side of line 𝐴𝐶 ⃡     from 

point 𝐵, the following are equivalent: 

(1) Point 𝑃 lies on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶). 

(2) 𝑚(∠𝐴𝑃𝐶) =
�̂�(𝐴𝐵�̂�)

2
. 

Proof 

In Euclidean geometry, given an arc 𝐴𝐵�̂� and a point 𝑃 on the opposite side of line 𝐴𝐶 ⃡     from 

point 𝐵, the angle ∠𝐴𝑃𝐶 will intercept arc 𝐴𝐵�̂�.  

Show that (1)  (2). 

Suppose that (1) is true. That is, suppose that point 𝑃 lies 

on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶). Then ∠𝐴𝑃𝐶 will be an inscribed angle.  

Theorem 141 about the measure of inscribed angles tells 

us that 𝑚(∠𝐴𝑃𝐶) =
�̂�(𝐴𝐵�̂�)

2
, So (2) is true. 

 

Show that ~(1)  ~(2). 

 

𝐵 𝐶 

𝐷 𝐴 

𝐸 

𝐵 

𝐶 𝐷 

𝐴 

𝐴 

𝑃 

𝐶 
𝐵 
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Suppose that (1) is false. That is, suppose that point 𝑃 does not lie on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶). Then 

𝑃 lies in the interior of the circle or in the exterior. 

 

If 𝑃 lies in the interior of the circle, then it is an angle of Type 1 or Type 3. 

 

In either case, 𝑚(∠𝐴𝑃𝐶) >
�̂�(𝐴𝐵�̂�)

2
. (Justify) So statement (2) is false. 

 

If 𝑃 lies in the exterior of the circle, then it is an angle of Type 4, 5, or 7. 

 

In either case, 𝑚(∠𝐴𝑃𝐶) <
�̂�(𝐴𝐵�̂�)

2
. (Justify) So statement (2) is false. 

 

We see that in all cases, statement (2) is false. 

End of proof 

 

With Theorem 149 at our disposal, it is now possible to prove a theorem that answers the 

question that we posed earlier: If it is known that a quadrilateral has the property that the sum of 

the measures of each pair of opposite angles is 180, then will the quadrilateral definitely be 

cyclic? We discussed the fact that the answer would turn out to be yes. Here is the theorem. 

 

Theorem 150 In Euclidean Geometry, in any convex quadrilateral, if the sum of the measures of 

either pair of opposite angles is 180, then the quadrilateral is cyclic. 

Proof 

In Euclidean geometry, suppose that a convex quadrilateral has the property that the sum of 

the measures of one of its pairs of opposite angles is 180. Label the vertices 𝐴, 𝐵, 𝐶, 𝐷 so that 

it is angles ∠𝐵 and ∠𝐷 whose measures add up to 180. Let 𝑥 = 𝑚(∠𝐵) = 𝑚(∠𝐴𝐵𝐶), and 

let 𝑦 = 𝑚(∠𝐷) = 𝑚(∠𝐶𝐷𝐴). 

 

For now, forget about point 𝐷 and consider just points 𝐴, 𝐵, 𝐶. By Theorem 107, there exists 

a 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) that passes through these three points. The picture below illustrates such a 

𝐴 

𝐶 

𝑃 

𝐵 

𝐴 

𝐶 

𝑃 

𝐵 

𝐴 

𝑃 

𝐶 
𝐵 

𝐹 
𝐸 

𝐷 

𝐴 
𝑃 

𝐶 

𝐵 

𝐷 

𝐴 
𝑃 

𝐶 
𝐵 

𝐷 

𝐸 
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circle. In the picture, angle ∠𝐴𝐵𝐶 intercepts a dotted arc. By Theorem 141 about the measure 

of inscribed angles, the arc angle measure of the dotted arc must be 2𝑥. By Theorem 138, the 

arc angle measure of the dashed arc 𝐴𝐵�̂� that makes up the rest of the circle must be 360 −
2𝑥. 

 

Now consider the dashed arc 𝐴𝐵�̂�. Observe that 
�̂�(𝐴𝐵�̂�)

2
=

360−2𝑥

2
= 180 − 𝑥. This is the 

number that is the known measure of ∠𝐷 in our quadrilateral. Since point 𝐷 lies on the 

opposite side of line 𝐴𝐶 ⃡     from point 𝐵 and has the property that 𝑚(∠𝐴𝐷𝐶) = 180 − 𝑥 =
�̂�(𝐴𝐵�̂�)

2
, Theorem 149 tells us that point must 𝐷 lie somewhere on the dotted arc. 

 
So point 𝐷 must lie on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶). In other words, 𝑄𝑢𝑎𝑑𝑟𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝐴𝐵𝐶𝐷) is cyclic! 

End of proof 

 

Before going on to read the next section, you should do the exercises for the current section. The 

exercises are found in Section 12.6 on page 281. 

12.5. The Intersecting Secants Theorem 
So far in this chapter, our theorems have been about the measure of angles that intersect circles. 

In this final section of the chapter, we will turn our attention to the lengths of chords and other 

segments on secant lines. We will will only study three theorems. The key to all three is this first 

theorem. You will see that its proof uses similarity. 

 

Theorem 151 The Intersecting Secants Theorem 

In Euclidean geometry, if two secant lines intersect, then the product of the distances from 

the intersection point to the two points where one secant line intersects the circle equals the 

product of the distances from the intersection point to the two points where the other secant 

line intersects the circle. That is, if secant line 𝐿 passes through a point 𝑄 and intersects the 

circle at points 𝐴 and 𝐵 and secant line 𝑀 passes through a point 𝑄 and intersects the circle at 

points 𝐷 and 𝐸, then 𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐷 ⋅ 𝑄𝐸. 

 

Proof 

Case 1: 𝑸 is outside the circle. 

𝐵 

𝐶 

𝑥 
𝐴 

𝑇ℎ𝑒 𝑑𝑜𝑡𝑡𝑒𝑑 𝑎𝑟𝑐 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 2𝑥 

𝑇ℎ𝑒 𝑑𝑎𝑠ℎ𝑒𝑑 𝑎𝑟𝑐 𝐴𝐵�̂� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 360 − 2𝑥 

𝐵 

𝐶 

𝑥 
𝐴 

𝑚(∠𝐴𝐷𝐶) = 180 − 𝑥, 
𝑠𝑜 𝐷 𝑚𝑢𝑠𝑡 𝑙𝑖𝑒 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒 
𝑜𝑛 𝑡ℎ𝑒 𝑑𝑜𝑡𝑡𝑒𝑑 𝑎𝑟𝑐. 

𝑇ℎ𝑒 𝑑𝑎𝑠ℎ𝑒𝑑 𝑎𝑟𝑐 𝐴𝐵�̂� 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 360 − 2𝑥 

𝐷 
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(1) Suppose that 𝑄 is outside the circle. Then label the two intersection points of the circle 

and line 𝐿 as 𝐴, 𝐵 so that 𝑄 ∗ 𝐴 ∗ 𝐵. And label the two intersection points of the circle 

and line 𝑀 as 𝐷, 𝐸 so that 𝑄 ∗ 𝐷 ∗ 𝐸. 

 
(2) Observe that ∠𝑄𝐵𝐷 ≅ ∠𝑄𝐸𝐴. (Justify.) 

(3) Therefore, Δ𝑄𝐵𝐷~Δ𝑄𝐸𝐴. (Justify.) (Make a new drawing of the separate triangles.) 

(4) So 
𝑄𝐵

𝑄𝐸
=

𝑄𝐷

𝑄𝐴
. 

(5) Therefore, 𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐷 ⋅ 𝑄𝐸 . 
 

Case 2: 𝑸 is on the circle. 

(6) Suppose that 𝑄 is on the circle. Then label the two intersection points of the circle and 

line 𝐿 as 𝐴, 𝐵 so that 𝑄 = 𝐴. And label the two intersection points of the circle and line 𝑀 

as 𝐷, 𝐸 so that 𝑄 = 𝐷. 

(7) Observe that in this case, 𝑄𝐴 = 0 = 𝑄𝐷, so the equation 

 

𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐷 ⋅ 𝑄𝐸 

 

becomes the trivial equation 0 = 0, which is true. 

 

Case 3: 𝑸 is inside the circle but not at the center. 

(8) Suppose that 𝑄 is inside the circle but not at the center. Then label the two intersection 

points of the circle and line 𝐿 as 𝐴, 𝐵 so that 𝐴 ∗ 𝑄 ∗ 𝐵. And label the two intersection 

points of the circle and line 𝑀 as 𝐷, 𝐸, it doesn’t matter the order. 

 
(9) Fill in the missing details to show that the equation 

𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐷 ⋅ 𝑄𝐸  
is true in this case as well. 

 

Case 4: 𝑸 is at the center of the circle. 

(10) In this case, the four segments 𝑄𝐴̅̅ ̅̅ , 𝑄𝐵̅̅ ̅̅ , 𝑄𝐷̅̅ ̅̅ , 𝑄𝐸̅̅ ̅̅  are all radial segments, with length 𝑟, so 

the equation  

𝑄 

𝐴 𝐵 

𝐷 

𝐸 

𝐿 

𝑀 

𝑄 𝐴 

𝐵 𝐷 

𝐸 

𝐿 

𝑀 
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𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐷 ⋅ 𝑄𝐸 
 

becomes the trivial equation 𝑟2 = 𝑟2, which is true. 

End of proof 

 

The final theorem of the chapter has a statement that is believable. You will be asked to provide 

a proof in the exercises. 

 

Theorem 152 about intersecting secant and tangent lines. 

In Euclidean geometry, if a secant line and tangent line intersect, then the square of the 

distance from the point of intersection to the point of tangency equals the product of the 

distances from the intersection point to the two points where the secant line intersects the 

circle. That is, if a secant line passes through a point 𝑄 and intersects the circle at points 𝐴 

and 𝐵 and a tangent line passes through 𝑄 and intersects the circle at 𝐷, then  

(𝑄𝐷)2 = 𝑄𝐴 ⋅ 𝑄𝐵 

In the figure at right, secant line 𝐿 intercepts the 

circle at points 𝐴 and 𝐵. Line 𝑀 is tangent to the 

circle at point 𝐷. Lines 𝐿 and 𝑀 intersect at point 

𝑄. The theorem states that (𝑄𝐷)2 = 𝑄𝐴 ⋅ 𝑄𝐵. 

 

The proof is left to you as a homework exercise. 

 

12.6. Exercises for Chapter 12 
Exercises for Section 12.1 Circular Arcs (Section starts on page 263.) 

 

[1] The notion of an angle intercepting an arc was made precise in Definition 97 (angle 

intercepting an arc, found on page 265). In the discussion of the Type 7 angle, it is written that 

angle ∠𝐴𝐵𝐶 intercepts arc 𝐴𝐷�̂� and also intercepts arc 𝐴𝐸�̂�. Why does angle ∠𝐴𝐵𝐶 not 

intercept arc 𝐹𝐴�̂�? Explain. 

 

Exercises for Section 12.2 Angle Measure of an Arc (Section starts on page 267.) 

 

[2] Prove Theorem 139: Two chords of a circle are congruent if and only if their corresponding 

arcs have the same measure. 

 

[3] (Advanced) Provide drawings and fill in the missing part for the proof of Theorem 140 (The 

Arc Measure Addition Theorem) (found on page 268). 

 

Exercises for Section 12.3 The Measure of Angles Related to the Measures of Arcs that they 

Intercept (Section starts on page 270.) 

 

𝐷 𝑄 

𝐵 
𝐿 

𝑀 

𝐴 
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[4] Justify the steps and provide drawings for the proof of Theorem 141 (the angle measure of an 

inscribed angle (Type 2) is equal to half the arc angle measure of the intercepted arc.) (found on 

page 270). 

 

[5] Tangent circles were defined in Definition 69. They are circles that intersect in exactly one 

point. In Section 8.6 Exercises [19] and [20], it was proven that two tangent circles share a 

tangent line at their point of tangency, and that the centers of the two circles and their point of 

tangency are collinear. In this problem, consider two circles called 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃1, 𝑟) and 

𝐶𝑖𝑟𝑐𝑙𝑒(𝑃2, 𝑅) that are tangent at point 𝐴. 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃1, 𝑟) is inside 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃2, 𝑅). 

That is, center 𝑃1 is in the interior of 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃2, 𝑅), and 𝑟 < 𝑅. 

By the result cited above, points 𝐴, 𝑃1, 𝑃2 are collinear on a 

line that we can call 𝐿. This line is a secant line for both 

circles. Its second point of intersection with 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃1, 𝑟) is 

labeled 𝐷; its second point of intersection with 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃2, 𝑅) 

is labeled 𝐵. A second secant line 𝑀 intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃1, 𝑟) at 

points 𝐴 and 𝐸 and intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃2, 𝑅) at points 𝐴 and 𝐶. 

Prove that Δ𝐴𝐵𝐶~Δ𝐴𝐷𝐸. 
 

[6] In the drawing for the previous problem, suppose that 𝐴𝐸 = 8 and 𝐸𝐶 = 4 and 𝐷𝐸 = 6. Find 

𝐵𝐶 and the two radii 𝑟 and 𝑅. 

[7] In the drawing at right, the two circles are tangent. 𝐷 is the 

midpoint of segment 𝐴𝐵̅̅ ̅̅ . Prove that 𝐸 is the midpoint of segment 

𝐴𝐶̅̅ ̅̅ . 

 
[8] Justify the steps and provide drawings for the proof of Theorem 143 (the angle measure of an 

angle of Type 3.) (found on page 272). 

 

[9] Prove Theorem 144 (the angle measure of an angle of Type 4.) (found on page 273). 

 

[10] Justify the steps, fill in missing details, and provide drawings for the proof of Theorem 145 

(the angle measure of an angle of Type 5.) (found on page 273). 

 

[11] Justify the steps, fill in missing details, and provide drawings for the proof of Theorem 146 

(the angle measure of an angle of Type 6.) (found on page 274). 

 

[12] Parallel lines 𝐿 and 𝑀 both intersect a circle. There are two arcs that have the following 

properties: 

 One endpoint of the arc lies on each line.  

 The interior of the arc lies between the lines. 

We will say that these two arcs are intercepted by the parallel lines 𝐿 and 𝑀. Prove that the two 

arcs have the same measure. 

 

There are three possible cases. Use the following notation. 

𝑀 

𝐴 𝑃1 𝐷 𝐵 

𝐶 
𝐸 

𝐿 

𝑃2 

𝐴 𝐷 𝐵 

𝐶 𝐸 
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Case 1: Lines 𝐿 and 𝑀 are both tangent. The two intercepted 

arcs can be labeled 𝐴𝐵�̂� and 𝐴𝐷�̂�. 

Prove that �̂�(𝐴𝐵�̂�) = �̂�(𝐴𝐷�̂�). 

Hint: Draw segment 𝐴𝐶̅̅ ̅̅ . 

 

Case 2: Lines 𝐿 is a tangent line and line 𝑀 is a secant line. 

The two intercepted arcs can be labeled 𝐴𝐵�̂� and 𝐴𝐷�̂�. 

Prove that �̂�(𝐴𝐵�̂�) = �̂�(𝐴𝐷�̂�). 

Hint: Draw segment 𝐴𝐶̅̅ ̅̅ . 

 

Case 3: Both lines are secant lines. The two intercepted arcs 

can be labeled 𝐴𝐵�̂� and 𝐷𝐸�̂�. 

Prove that �̂�(𝐴𝐵�̂�) = �̂�(𝐷𝐸�̂�). 

Hint: Draw segment 𝐷𝐶̅̅ ̅̅ . 
 

 

[13] Prove Theorem 147 (the angle measure of an angle of Type 7.) (found on page 275). 

 

Exercises for Section 12.4 Cyclic Quadrilaterals (Section starts on page 276.) 

 

[14] Prove Theorem 148 (In Euclidean Geometry, in any cyclic quadrilateral, the sum of the 

measures of each pair of opposite angles is 180. That is, if 𝑄𝑢𝑎𝑑(𝐴𝐵𝐶𝐷) is cyclic, then 

𝑚(∠𝐴) + 𝑚(∠𝐶) = 180 and 𝑚(∠𝐵) + 𝑚(∠𝐷) = 180.) (found on page 277). 

 

Exercises for Section 12.5 The Intersecting Secants Theorem (Section starts on page 279.) 

 

[15] Justify the steps and fill in the missing parts of the proof of Theorem 151 (The Intersecting 

Secants Theorem) (found on page 279). 

 

[16] Prove Theorem 152 (about intersecting secant and tangent lines.) (found on page 281). 

Make lots of drawings. 

Hint: Study the proof of Theorem 151 (The Intersecting Secants Theorem) (found on page 279). 

Notice the key to the proof was to identify two similar triangles. They were known to be similar 

by the AA Similarity Theorem. One of the pairs of congruent angles was known to be congruent 

because they were either the same angle or vertical angles. The other pair of congruent angles 

was known to be congruent because they were both inscribed angles and they intercepted the 

same arc. The same sort of strategy will work for this theorem. 

 

[17] The figure at right is not drawn to scale. Find 𝑥. 
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[18] In the figure at right, the circle has radius 𝑟 = 4. If 𝑄𝐴 = 7 

and 𝐴𝐵 = 5, find 𝑄𝐶. 

 
[19] In the proof of Theorem 151 Cases 1 and 3, similar triangles are used. In both cases, the 

proof uses the equality of the ratios of the lengths of two pairs of corresponding sides that all 

have the point 𝑄 as one of their endpoints. It is reasonable to wonder if anything useful can be 

made of the fact that the ratio of the lengths of the third pair of corresponding sides (the sides 

that don’t touch point 𝑄) is also the same. That is, in those figures,  
𝑄𝐵

𝑄𝐸
=

𝑄𝐷

𝑄𝐴
=

𝐵𝐷

𝐸𝐴
 

Here is a rockin problem that uses the ratio of the lengths of the third sides. I did not make this 

problem up. It was created by a mathematician named Vasil'ev and appeared in the Russian 

magazine Kvant (M26, March-April, 1991, 30). (According to Wikipedia, Kvant (Russian: 

Квант for "quantum") is a popular science magazine in physics and mathematics for school 

students and teachers, issued since 1970 in Soviet Union and continued in Russia.) It was also 

included in the book Mathematical Chestnuts from Around the World, by R. Honsberger. 

Boat 1 and boat 2, which travel at constant speeds, 

not necessarily the same speed, depart at the same 

time from docks 𝐴 and 𝐷, respectively, on the 

banks of a circular lake. If they go straight to 

docks 𝐵 and 𝐸, respectively, they collide. Prove 

that if boat 1 goes instead straight to dock 𝐸 and 

boat 2 goes straight to dock 𝐵, they arrive at their 

destinations simultaneously. 

 
Hints: (Okay, this is really a complete outline of the solution.) 

(1) Let 𝑣1 and 𝑣2 be the speeds of boat 1 and boat 2. 

(2) The time it takes boat 1 to get from 𝐴 to 𝑄 is 
𝐴𝑄

𝑣1
.  The time it takes boat 2 to get from 𝐷 to 𝑄 

is 
𝐷𝑄

𝑣2
. These two times must be equal, because the boats will collide at 𝑄. 

(3) The time it takes boat 1 to get from 𝐴 to 𝐸 is 
𝐴𝐸

𝑣1
. The time it takes boat 2 to get from 𝐷 to 𝐵 is 

𝐷𝐵

𝑣2
. The goal is to prove that these two times are equal. 

(4) Because the times in steps must be equal, the two ratios must be equal. Set the two ratios 

equal and solve for the ratio 
𝑣1

𝑣2
. The result should be an equation involves the ratios 

𝑣1

𝑣2
 and 

𝐴𝑄

𝐷𝑄
. 

(5) Using facts about angles and arcs, identify similar triangles. 

(6) Find a realtionship between the the ratios 
𝐴𝑄

𝐷𝑄
 and 

𝐴𝐸

𝐷𝐵
. 

(7) From results of (4) and (6), find an equation giving a relationship between ratios 
𝑣1

𝑣2
 and 

𝐴𝐸

𝐷𝐵
. 

(8) Rearrange the equation from (7) to get a new equation expressing a relationship between the 

ratios 
𝐴𝐸

𝑣1
 and 

𝐷𝐵

𝑣2
. 

𝐵 

𝑄 

𝐴 

𝐶 

7 5 

𝑄 𝐴 
𝐵 𝐶 

𝐷 

𝐸 
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13. Euclidean Geometry VI: Advanced 

Triangle Theorems 
This short chapter presents some advanced theorems about triangles in Euclidean Geometry. You 

will be asked to prove them.  

13.1. Six Theorems 
Our first theorem is about the existence of a point of intersection of three circles attached to a 

triangle. 

 

Theorem 153 Miquel’s Theorem 

If points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are given such that points 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐷 ∗ 𝐵 and 

𝐵 ∗ 𝐸 ∗ 𝐶 and 𝐶 ∗ 𝐹 ∗ 𝐴, then 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐷, 𝐹) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝐸, 𝐷) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐶, 𝐹, 𝐸) exist 

and there exists a point 𝐺 that lies on all three circles. 

 
 

The next theorem is about a surprising relationship between the collinearity of three points on the 

lines determined by the sides of a triangle and the ratios of the lengths of certain segments 

defined by those points. 

 

Theorem 154 Menelaus’s Theorem 

Given: points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 such that 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐵 ∗ 𝐷 and 𝐵 ∗ 𝐸 ∗ 𝐶 

and 𝐶 ∗ 𝐹 ∗ 𝐴 

Claim: The following are equivalent 

(1) Points 𝐷, 𝐸, 𝐹 are collinear. 

(2)  
𝐴𝐷

𝐷𝐵
⋅

𝐵𝐸

𝐶𝐸
⋅

𝐶𝐹

𝐴𝐹
= −1 

 
 

The next theorem is about a surprising relationship between the concurrence of three lines 

determined by points on the sides of a triangle and the ratios of the lengths of certain segments 

determined by those points. 
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Thm 154 

𝐴𝐷

𝐷𝐵
⋅
𝐵𝐸

𝐶𝐸
⋅
𝐶𝐹

𝐴𝐹
= −1 
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Theorem 155 Ceva’s Theorem 

Given: points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 such that 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐷 ∗ 𝐵 and 𝐵 ∗ 𝐸 ∗ 𝐶 

and 𝐶 ∗ 𝐹 ∗ 𝐴 

Claim: The following are equivalent 

(1) Lines 𝐴𝐸 ⃡    , 𝐵𝐹 ⃡    , 𝐶𝐷 ⃡     are concurrent 

(2)  
𝐴𝐷

𝐷𝐵
⋅

𝐵𝐸

𝐶𝐸
⋅

𝐶𝐹

𝐴𝐹
= 1 

 
 

The next theorem is a corollary to Ceva’s Theorem. 

 

Theorem 156 (Corollary to Ceva’s Theorem) 

If 𝐴, 𝐵, 𝐶 are non-collinear points and 𝐴 ∗ 𝐷 ∗ 𝐵 and 𝐵 ∗ 𝐸 ∗ 𝐶 and 𝐶 ∗ 𝐹 ∗ 𝐴 are the points of 

tangency of the inscribed circle for Δ𝐴𝐵𝐶, then lines 𝐴𝐸 ⃡    , 𝐵𝐹 ⃡    , 𝐶𝐷 ⃡     are concurrent. 

 
 

Recall our three important theorems about concurrence of each of three kinds of important lines 

associated to triangles. 

 In Theorem 106 on page 214, we proved that the perpindicular bisectors of the three sides 

of any triangle are concurrrent. In Definition 71 we gave the name circumcenter to that 

point of concurrence. 

 In Theorem 113 on page 219, we proved that the three altitudes of any triangle are 

concurrent. Definition 76 gave the name orthocenter to that point of concurrence. 

 In Theorem 116 on page 220, we proved that the three medians of any triangle are 

concurrent. Definition 78 gave the name centroid to that point of concurrence. 

 

Of course, if a triangle is equilateral, then the three kinds of important lines are all the same lines 

(Can you prove this? The proof would be similar to the proof of Theorem 85 on page 199), so the 

circumcenter, orthocenter, and centroid will all be the same point. 
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C 

D 
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F 
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𝐴𝐷

𝐷𝐵
⋅
𝐵𝐸

𝐶𝐸
⋅
𝐶𝐹

𝐴𝐹
= 1 
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The following surprising theorem is about the case where the triangle is not equilateral. 

 

Theorem 157 Collinearity of the orthcenter, centroid, and circumcenter 

If a non-equilateral triangle’s orthcenter, centroid, and circumcenter are labeled 𝐴, 𝐵, 𝐶, 

Then 𝐴, 𝐵, 𝐶 are collinear, with 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴𝐵 = 2𝐵𝐶. 

 

 
 

Definition 101 The Euler Line of a non-equilateral triangle 

Given a non-equilateral triangle, the Euler Line is defined to be the line containing the 

orthocenter, centroid, and circumcenter of that triangle. (Existence and uniqueness of this 

line is guaranteed by Theorem 157.) 

 

The statement of our final theorem of the section is made simpler if we first introduce a new kind 

of special point. 

 

Definition 102 The three Euler Points of a triangle are defined to be the midpoints of the 

segments connecting the vertices to the orthocenter. 

 

Given any triangle, consider the following three sets of three special points and the three special 

circles that they define. 

 The midpoints of the three sides. These could be labeled 𝑀1, 𝑀2, 𝑀3. These three points 

are non-collinear (Can you explain why?), so there exists a circle that passes through all 

three. It would be denonted 𝐶𝑖𝑟𝑐𝑙𝑒(𝑀1, 𝑀2, 𝑀3) 

 The feet of the three altitudes. These could be labeled 𝐹1, 𝐹2, 𝐹3. These are the points 

where the altitude lines intersect the lines defined by the vertices. The three feet are non-

collinear (Can you explain why?), so as with the three midoints, there exists a circle that 

passes through all three feet. It would be denoted 𝐶𝑖𝑟𝑐𝑙𝑒(𝐹1, 𝐹2, 𝐹3). 

 The feet of the three Euler points. These could be labeled 𝐸1, 𝐸2, 𝐸3. The three Euler 

points are non-collinear (Can you explain why?), so as with the three midoints and the 

three feet, there exists a circle that passes through all three Euler points. It would be 

denoted 𝐶𝑖𝑟𝑐𝑙𝑒(𝐸1, 𝐸2, 𝐸3). 

 

B 

A 

C 

A 

B 

C 
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(point of concurrence of 

altitudes) 
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perpendicular bisectors) 
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It is an astonishing fact that the three special circles described above are in fact the same circle. 

That is, there exists a single circle that passes through all nine special points. This fact is 

articulated in the following theorem. 

 

Theorem 158 Existence of a circle passing through nine special points associated to a triangle 

For every triangle, there exists a single circle that passes through the midpoints of the three 

sides, the feet of the three altitudes, and the three Euler points. 

 

Definition 103 The nine point circle associated to a triangle is the circle that passes through the 

midpoints of the three sides, the feet of the three altitudes, and the three Euler 

points. (The existence of the nine point circle is guaranteed by Theorem 158.) 

 

The drawing below illustrates the statement of Theorem 158. 

 
 

13.2. Exercises for Chapter 13 
The six theorems in this chapter are all advanced. (One clue that they are advanced is that five of 

them are named for the mathematicians to whom the first proof is attributed. That only happens 

for advanced theorems.) But all seven can be proven using the definitions and theorems that you 

have studied in previous chapters. Write proofs of the seven theorems. You are encouraged to 

collaborate with others, and to look to the internet for clues and sample proofs. But ultimately, 

your proof should be written using references to defined terms and theorems from this book.. 

circle passing through 

the midpoints of 

the three sides 

circle passing through 

the feet of 

the three altitudes 

circle passing through 

the three Euler points 

Thm 158 

The three circles are actually the same circle, 

called the nine point circle, 
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14. The Circumference and Area of Circles 
At some point in junior high and high school, you learned the formulas for the circumference 𝐶 

and area 𝐴 of a circle of radius 𝑟 and diameter 𝑑 = 2𝑟: 

𝐶 = 𝜋𝑑 = 2𝜋𝑟 
𝐴 = 𝜋𝑟2 

You learned these as given rules, rules that could be applied to solve geometric problems. We 

would like to fit those formulas into what we have learned so far. But there are two obvious 

questions: 

 

(1) What is 𝜋? 

(2) How do we know that the formulas above are true? 

 

But there is a third, less obvious question: 

 

(3) What do we mean by the circumference of a circle, or the area of a circular region? 

 

In this chapter, we will discuss these questions. We will answer them in reverse order. 

14.1. Defining the Circumference and Area of a Circle 
We have a notion of length in our geometry: The length of a line segment is defined to be the 

distance between the endpoints. We generalize this for the length of a segmented path: the length 

of the segmented path is the sum of the lengths of the line segments that make up that path. But 

we have never discussed a notion of length for curvy objects. Notice that when we measured arcs 

in the previous chapter, it was arc angle measure that we were measuring, not arc length. In this 

section, we will introduce the circumference of a circle. It will be a number obtained as the limit 

of a sequence of numbers that are lengths of segmented paths. 

 

For now, consider a circle with radius 𝑟 =
1

2
 and with a regular polygon inscribed inside. We will 

be interested in regular n-gons with 𝑛 = 6,12,24,48,96, …. In other words, 𝑛 = 3 ⋅ 2𝑘 for 𝑘 =
1,2,3,4, …. 

 

The first case, 𝑘 = 1, is shown in the diagram at right below. The table at left below introduces 

notation for some quantities that will be useful to us, and gives their values. 

Value of 𝒌: 𝑘 = 1 

Name of polygonal region: 𝑃𝑜𝑙𝑦1 

Number of sides: 𝑛 = 3 ⋅ 2𝑘 = 3 ⋅ 21 = 6 

Length of sides: 𝑥1 =
1

2
. 

Perimeter: 𝑃1 = 3 

Area: 𝐴1 =
3√3

8
≈ 0.65 

 

The value of the perimeter is easy: Six sides of length 𝑥1 =
1

2
 each. For the area, we used the fact 

that an equilateral triangle that has sides of length 𝑥 will have a height of ℎ =
𝑥√3

2
. 
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To get a polygon for the second case, 𝑘 = 2, we start with the figure above, then draw the three 

lines that pass through the center of the circle and through the midpoints of the sides of the 

hexagon. We put points at the intersection of these lines and the circle. These six new points, 

along with the six vertices of the original hexagon, will be the twelve vertices of the new 

polygon. 

Value of 𝒌: 𝑘 = 2 

Name of polygonal region: 𝑃𝑜𝑙𝑦2 

Number of sides: 𝑛 = 3 ⋅ 2𝑘 = 3 ⋅ 22 = 12 

Length of sides: 𝑥2 =?. 

Perimeter: 𝑃2 =? 

Area: 𝐴2 =? 

 
It would not be terribly difficult to compute the length of the sides for this region, or to compute 

its area. But those values are not important.  

What is important is to notice that the area 𝐴2 will be greater than the 

area  𝐴1. We see that from the figure at right. The shaded region is 

part of 𝑃𝑜𝑙𝑦2 but not part of 𝑃𝑜𝑙𝑦1. Therefore, 

𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦2) = 𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦1 ∪ 𝑠ℎ𝑎𝑑𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛) 
= 𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦1) + 𝐴𝑟𝑒𝑎(𝑠ℎ𝑎𝑑𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛) 
> 𝐴𝑟𝑒𝑎(𝑃𝑜𝑙𝑦1) 

 

It is also important to notice that the perimeter 𝑃2 will be greater than 

the perimeter  𝑃1. We see that from the figure at right. The solid dark 

line is part of the perimeter of 𝑃𝑜𝑙𝑦1, while the dotted dark line is 

part of the perimeter of 𝑃𝑜𝑙𝑦2. 

 
Even more important is to realize that the method that we used to construct 𝑃𝑜𝑙𝑦2 from 𝑃𝑜𝑙𝑦1 

will be the same method that we will use in general to construct 𝑃𝑜𝑙𝑦𝑘+1 from 𝑃𝑜𝑙𝑦𝑘. To get 

𝑃𝑜𝑙𝑦𝑘+1, we start with 𝑃𝑜𝑙𝑦𝑘 and draw the lines that pass through the center of the circle and 

through the midpoints of the sides of 𝑃𝑜𝑙𝑦𝑘. We put points at the intersection of these lines and 

the circle. These new points, along with the vertices of 𝑃𝑜𝑙𝑦𝑘, will be the vertices of the new 

𝑃𝑜𝑙𝑦𝑘+1. As a result, there will be pictures analogous to the two above that will show that 

𝑃𝑘+1 > 𝑃𝑘 and 𝐴𝑘+1 > 𝐴𝑘. 

 

So we have a list of regular polygons inscribed in the circle. Their polygonal regions are called 

 

𝑃𝑜𝑙𝑦1, 𝑃𝑜𝑙𝑦2, 𝑃𝑜𝑙𝑦3, … , 𝑃𝑜𝑙𝑦𝑘, 𝑃𝑜𝑙𝑦𝑘+1, … 
 

Their perimeters form a strictly increasing sequence of real numbers 

 

3 = 𝑃1 < 𝑃2 < 𝑃3 < ⋯ < 𝑃𝑘 < 𝑃𝑘+1 < ⋯ 
 

and their areas form a strictly increasing sequence of real numbers 
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3√3

8
= 𝐴1 < 𝐴2 < 𝐴3 < ⋯ < 𝐴𝑘 < 𝐴𝑘+1 < ⋯ 

 

Also, observe that the sequence of perimeters is bounded above by the number 4 and the 

sequence of areas is bounded above by the number 1. To see why, consider a square tangent to 

the circle as shown in the figure at left below. Once we have the square, it helps to omit the circle 

and some lines as shown in the figures in the middle and at right below. 

 
The square has sides of length 1 because that is the length of a diameter of the circle. So the 

square has perimeter 4 and area 1. Looking at the middle drawing, it is very believeable that 

each polygonal region 𝑃𝑜𝑙𝑦𝑘 has perimeter 𝑃𝑘 < 4. But to be thorough about it, one should 

demonstrate that each polygonal path is a shortcut compared to the path around the square. We 

won’t do this. Looking at the drawing on the right, we see that the square region can be 

considered as a union of the polygonal region 𝑃𝑜𝑙𝑦𝑘 and the shaded region outside 𝑃𝑜𝑙𝑦𝑘. But 

the shaded region is a polygonal region with some positive area. So the area of the square is 

strictly greater than the area of 𝑃𝑜𝑙𝑦𝑘. Therefore, each polygonal region 𝑃𝑜𝑙𝑦𝑘 has area 𝐴𝑘 < 1. 

 

Recall that any sequence of real numbers that is increasing and bounded above will have a limit. 

So, there exists a real number that is the lim
𝑘→∞

𝑃𝑘 and a there also exists a real number that is the 

lim
𝑘→∞

𝐴𝑘. It is these real numbers that we will define to be the circumference of the circle and the 

area of the circular region. Before doing that, note that all of our analysis has been for a circle of 

diameter 1. The same sort of analysis could be done for a general circle of diameter 𝑑. 

 

Definition 104 circumference of a circle and area of a circular region 

Given a circle of diameter 𝑑, for each 𝑘 = 1,2,3, … define 𝑃𝑜𝑙𝑦𝑘 to be a polygonal region 

bounded by a regular polygon with 3 ⋅ 2𝑘 sides, inscribed in the circle. Define 𝑃𝑘 and 𝐴𝑘 

to be the perimeter and area of the 𝑘𝑡ℎ polygonal region. The resulting sequences {𝑃𝑘} 

and {𝐴𝑘} are increasing and bounded above and so they each have a limit. 

 Define the circumference of the circle to be the real number 𝐶 = lim
𝑘→∞

𝑃𝑘. 

 Define the area of the circular region to be the real number 𝐴 = lim
𝑘→∞

𝐴𝑘. 

 

With that definition, we have answered the third question that was posed on page 289: 

 

(3) What do we mean by the circumference of a circle, or the area of a circular region? 

 

But that definition does not tell us much about the values of the real numbers that are the 

circumference and area. We will consider the values of those numbers in the next section. 
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14.2. Estimating the Value of the Circumference and 

Area of a Circle 
In the previous section, we defined the real numbers that are the circumference of a circle and the 

area of a circular region, but our definition did not mention the values of these numbers. How big 

are they? 

 

We should note that we can state some crude estimates based on work that we have already done. 

 

Let’s start by estimating the circumference. For the circumference of a circle of diameter 𝑑 = 1, 

we saw that the perimeters of the inscribed polygons form a strictly increasing sequence of real 

numbers 

 

3 = 𝑃1 < 𝑃2 < 𝑃3 < ⋯ < 𝑃𝑘 < 𝑃𝑘+1 < ⋯ 
 

and that this sequence was bounded above by the number 4. Therefore, the circumference 𝐶 =
lim
𝑘→∞

𝑃𝑘 will be bounded by 3 < 𝐶 ≤ 4. 

 

More generally, for the circumference of a circle of diameter 𝑑, the perimeters of the inscribed 

polygons will form a strictly increasing sequence of real numbers 

 

3𝑑 = 𝑃1 < 𝑃2 < 𝑃3 < ⋯ < 𝑃𝑘 < 𝑃𝑘+1 < ⋯ 
 

and this sequence will be bounded above by the number 4𝑑. Therefore, the circumference 𝐶 =
lim
𝑘→∞

𝑃𝑘 will be bounded by 3𝑑 < 𝐶 ≤ 4𝑑. 

 

Now let’s estimate the area. For the area of a circle of diameter 𝑑 = 1, we saw that the areas of 

the inscribed polygons form a strictly increasing sequence of real numbers 

 

3√3

8
= 𝐴1 < 𝐴2 < 𝐴3 < ⋯ < 𝐴𝑘 < 𝐴𝑘+1 < ⋯ 

 

and that this sequence was bounded above by the number 1. Therefore, the area 𝐴 = lim
𝑘→∞

𝐴𝑘 will 

be bounded by 
3√3

8
< 𝐴 ≤ 1. 

 

More generally, for the area of a circle of diameter 𝑑, the areas of the inscribed polygons will 

form a strictly increasing sequence of real numbers 

 

3√3

8
𝑑2 = 𝐴1 < 𝐴2 < 𝐴3 < ⋯ < 𝐴𝑘 < 𝐴𝑘+1 < ⋯ 

 

and this sequence will be bounded above by the number 𝑑2. Therefore, the area 𝐴 = lim
𝑘→∞

𝐴𝑘 will 

be bounded by 
3√3

8
𝑑2 < 𝐴 ≤ 𝑑2. In terms of the radius, the bounds are 

3√3

2
𝑟2 < 𝐴 ≤ 4𝑟2. Note 

that 
3√3

2
≈ 2.598, so we have the bounds 2.5𝑟2 < 𝐴 ≤ 4𝑟2 
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14.3. Introducing 𝑷𝒊 
We would like to have a more precise estimate of the circumference and area, more precise than 

the crude estimates that we have found so far.  

 

We will start by trying to make precise the relationship between the circumference and the 

diameter and also make precise the relationship between the area and the diameter (or radius).  

 

The following theorem will get us started. 

 

Theorem 159 The ratio 
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 is the same for all circles. 

 

Proof: 

Consider two different circles 𝐴 and 𝐵 of radius 𝑟𝐴 and 𝑟𝐵 and diameter 𝑑𝐴 = 2𝑟𝐴 and 𝑑𝐵 = 2𝑟𝐵 

and circumference  𝐶𝐴 and 𝐶𝐵. With this notation, our goal is to show that 

 
𝐶𝐴

𝑑𝐴
=

𝐶𝐵

𝑑𝐵
 

 

For each circle, we will consider the 𝑘𝑡ℎ inscribed polygon as described in Section 14.1. We will 

denote these by the symbols 𝑃𝑜𝑙𝑦𝑘,𝐴 and 𝑃𝑜𝑙𝑦𝑘,𝐵. These polygons have perimeters 𝑃𝑘,𝐴 and 𝑃𝑘,𝐵. 

Each is regular polygon is made up of isosceles triangles.  

 

In each of the isosceles triangles, the two congruent sides have length 𝑟𝐴 and 𝑟𝐵. 

 
The top angles have measure 

𝛼 =
360

3 ⋅ 2𝑘
 

 

Therefore, the isosceles triangles are similar, by the SAS Similarity Theorem. This gives us the 

equality of ratios 
𝑏𝑎𝑠𝑒𝐴

𝑏𝑎𝑠𝑒𝐵
=

𝑠𝑖𝑑𝑒𝐴

𝑠𝑖𝑑𝑒𝐵
 

 

Cross multiplying, we obtain the new equation 

 
𝑏𝑎𝑠𝑒𝐴

𝑠𝑖𝑑𝑒𝐴
=

𝑏𝑎𝑠𝑒𝐵

𝑠𝑖𝑑𝑒𝐵
 

 

𝑟𝐴 𝑟𝐴 

𝑟𝐵 𝑟𝐵 
𝛼 𝛼 

𝑥𝑘,𝐴 

𝑥𝑘,𝐵 
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But the bases of the isosceles triangles are the lengths 𝑥𝑘,𝐴 and 𝑥𝑘,𝐵 that are the lengths of the 

sides of the regular polygons  𝑃𝑜𝑙𝑦𝑘,𝐴 and 𝑃𝑜𝑙𝑦𝑘,𝐵. And the sides of the isosceles triangles are 

the radii of the circles, 𝑟𝐴 and 𝑟𝐵. Substituting these symbols into our equation, we obtain 
𝑥𝑘,𝐴

𝑟𝐴
=

𝑥𝑘,𝐵

𝑟𝐵
 

Here’s a trick: Multiply each side of this equation by the constant 
3⋅2𝑘

2
. The result is the new 

equation  

3 ⋅ 2𝑘

2
⋅
𝑥𝑘,𝐴

𝑟𝐴
=

3 ⋅ 2𝑘

2
⋅
𝑥𝑘,𝐵

𝑟𝐵
 

 

Rearranging factors, we obtain 

 

3 ⋅ 2𝑘 ⋅ 𝑥𝑘,𝐴

2𝑟𝐴
=

3 ⋅ 2𝑘 ⋅ 𝑥𝑘,𝐵

2𝑟𝐵
 

 

We recognize the expressions for the perimiters of the  polygons and for the diameters of the 

circles. 

 
𝑃𝑘,𝐴

𝑑𝐴
=

𝑃𝑘,𝐵

𝑑𝐵
 

 

We take the limit of both sides of this equation as 𝑘 → ∞. 

 

lim
𝑘→∞

(
𝑃𝑘,𝐴

𝑑𝐴
) = lim

𝑘→∞
(
𝑃𝑘,𝐵

𝑑𝐵
) 

 

The denominators are constants, so the limits can be moved to the numerators. 

 
lim
𝑘→∞

𝑃𝑘,𝐴

𝑑𝐴
=

lim
𝑘→∞

𝑃𝑘,𝐵

𝑑𝐵
 

 

Finally, notice that the values of the limits in the numerators will simply be the circumference of 

each circle! 

 
𝐶𝐴

𝑑𝐴
=

𝐶𝐵

𝑑𝐵
 

End of proof 

 

The theorem just presented makes precise the relationship between the circumference and 

diameter of a circle: their ratio is always the same real number. We give this real number a name. 

 

Definition 105 The symbol 𝑝𝑖, or 𝜋, denotes the real number that is the ratio  
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 for 

any circle. That is, 𝜋 =
𝐶

𝑑
. (That this ratio is the same for all circles is guaranteed 

by Theorem 159, found on page 293.) 
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Rearranging the equation that defines 𝜋, we obtain the equation 𝐶 = 𝜋𝑑. We see that this 

equation is really just a restatement of the definition of 𝜋. It is not a formula that can be 

somehow proved. It is a definition of what the symbol 𝜋 means. 

 

From the results of the previous section, we can give a rough estimate of the value of 𝜋. For a 

circle of diameter 𝑑 = 1, we have 𝐶 = 𝜋. In the previous section, we found that for such a circle, 

the circumference 𝐶 will be bounded by 3 < 𝐶 ≤ 4. Therefore, 3 < 𝜋 ≤ 4. 

 

So far in this section, we have made precise the relationship between the circumference and 

diameter of a circle. They are related  by the equation 𝐶 = 𝜋𝑑. Now let’s make precise the 

relationship between the area and diameter, or the relationship between area and radius. 

The 𝑘𝑡ℎ polygonal region 𝑃𝑜𝑙𝑦𝑘 can be subdivided into isosceles triangles 

like the one shown at right. The area of the triangular region is  
1

2
𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 =

1

2
𝑥𝑘 ⋅ ℎ𝑘 

We could come up with formulas for 𝑥𝑘 and ℎ𝑘, but it would be hard. 

Luckily, it will turn out that we don’t need formulas for these lengths. 

 
The polygonal region 𝑃𝑜𝑙𝑦𝑘 is made up of 𝑛 = 3 ⋅ 2𝑘 of the isosceles triangular regions, so its 

area will be 

𝐴𝑘 = (3 ⋅ 2𝑘) ⋅ (
1

2
𝑥𝑘 ⋅ ℎ𝑘) =

1

2
(3 ⋅ 2𝑘 ⋅ 𝑥𝑘)ℎ𝑘 

 

We recognize the expression in parentheses. It is the perimeter of the 𝑘𝑡ℎ polygonal region 

𝑃𝑜𝑙𝑦𝑘. The perimeter is denoted by 𝑃𝑘. 

 

𝐴𝑘 =
1

2
(3 ⋅ 2𝑘 ⋅ 𝑥𝑘)ℎ𝑘 =

1

2
𝑃𝑘ℎ𝑘 

 

The area of the circle will be the limit: 

 

𝐴 = lim
𝑘→∞

𝐴𝑘 = lim
𝑘→∞

(
1

2
𝑃𝑘ℎ𝑘) =

1

2
( lim

𝑘→∞
𝑃𝑘) ( lim

𝑘→∞
ℎ𝑘) =

1

2
𝐶𝑟 =

𝜋𝑑𝑟

2
=

𝜋2𝑟𝑟

2
= 𝜋𝑟2 

 

There are a few things to notice here. 

(1) The reason that we did not need formulas for 𝑥𝑘 and ℎ𝑘 is that we only needed to 

consider their limits, and those limits were familiar.  

(2) The formula for area involves the same constant 𝜋 that shows up in the formula for 

circumference. 

(3) The radius is squared in the formula for area. This does not surprise us, because from the 

section on similarity we are used to the idea that area is related to the square of lengths. 

But what is surprising is that the constant 𝜋 is not squared in the formula for area. 

 

Before going on, let’s restate the formulas for circumference and area of a circle in the following 

theorem. 

 

 

𝑟 𝑟 

𝑥𝑘 

ℎ𝑘 
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Theorem 160 The circumference of a circle is 𝑐 = 𝜋𝑑. The area of a circle is 𝐴 = 𝜋𝑟2. 

 

Proof 

Definition 104 (found on page 291) states precisely what we mean by the circumference of a 

circle and the area of a circular region in terms of limits. 

 

From Theorem 159 (found on page 293) we know that the ratio 
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 is the same for 

all circles. Definition 105 (found on page 294) introduces the symbol 𝜋 as the value of that 

ratio. That is, 𝜋 =
𝑐

𝑑
. This gives us the equation 𝑐 = 𝜋𝑑. 

 

The calculations on the preceeding page gave us the formula 𝐴 = 𝜋𝑟2. 

End of Proof 

 

With Theorem 160, we have answered the second question that was posed on page 289: 

 

(2) How do we know that the formulas 𝑐 = 𝜋𝑑 and 𝐴 = 𝜋𝑟2 are true? 

 

Having made precise the relationships between circumference and area and the diameter and 

radius, we will now turn our attention to finding more precise estimates of the value of 𝜋. 

14.4. Approximations for 𝑷𝒊 
From the formula 𝐶 = 𝜋𝑑, we know that 𝜋 will be equal to the circumference of a circle of 

diameter 𝑑 = 1. We defined that circumference in terms of a limit: 

 

𝐶 = lim
𝑘→∞

𝑃𝑘 

 

One approach to finding a value for 𝐶 would be to find an explicit formula for 𝑃𝑘 and then take 

the limit of that formula as 𝑘 → ∞. But an explicit expression is difficult to obtain. Instead, we 

will define 𝑃𝑘 recursively. That is, we will show how to obtain a value for 𝑃𝑘+1 from a known 

value of 𝑃𝑘. Since we know that 𝑃1 = 3, we can use the recursive formula to make a list of 

values of 𝑃𝑘 for 𝑘 = 1,2,3, …. 

 

The 𝑘𝑡ℎ polygonal region 𝑃𝑜𝑙𝑦𝑘 can be subdivided into isosceles 

triangles like the shaded one shown at right. The solid horizontal 

segment that forms the base of the triangle is one of the sides of 

𝑃𝑜𝑙𝑦𝑘. Its length is 𝑥𝑘, but for our purposes, it is more useful to 

break the segment into two segments of length 
𝑥𝑘

2
. The two 

congruent sides of the isosceles triangle have length 𝑟 =
1

2
, the 

radius of the circle. The dotted segments are two sides of the 
(𝑘 + 1)𝑠𝑡 polygonal region 𝑃𝑜𝑙𝑦𝑘+1. Each of the dotted segments 

has length 𝑥𝑘+1.  
 

 

Our goal is to find the perimeter 𝑃𝑘+1 in terms of 𝑃𝑘. We will start by finding the length 𝑥𝑘+1 in 

terms of 𝑥𝑘.   

𝑥𝑘

2
 

𝑥𝑘+1 

ℎ 

𝑏 

𝑟 =
1

2
 

𝑥𝑘

2
 

𝑟 =
1

2
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𝑥𝑘+1 = √(
𝑥𝑘

2
)

2

+ 𝑏2 

= √(
𝑥𝑘

2
)

2

+ (
1

2
− ℎ)

2

 

= √(
𝑥𝑘

2
)

2

+ (
1

2
− √(

1

2
)

2

− (
𝑥𝑘

2
)

2

)

2

 

=
1

2
√𝑥𝑘

2 + (1 − √1 − 𝑥𝑘
2)

2

 

=
1

2
√𝑥𝑘

2 + (1 − 2√1 − 𝑥𝑘
2 + (1 − 𝑥𝑘

2)) 

=
1

2
√2 − 2√1 − 𝑥𝑘

2 

=
1

√2
√1 − √1 − 𝑥𝑘

2 

 

Now we use the fact that 𝑃𝑘 = 3 ⋅ 2𝑘 ⋅ 𝑥𝑘 so that 𝑥𝑘 =
𝑃𝑘

3⋅2𝑘 

 

𝑥𝑘+1 =
1

√2
√1 − √1 − (

𝑃𝑘

3 ⋅ 2𝑘
)

2

 

 

And finally, we use the fact that 𝑃𝑘+1 = 3 ⋅ 2𝑘+1 ⋅ 𝑥𝑘+1. 

 

𝑃𝑘+1 =
3 ⋅ 2𝑘+1

√2
√1 − √1 − (

𝑃𝑘

3 ⋅ 2𝑘
)

2

 

= 3 ⋅ 2𝑘√2 ⋅ √1 − √1 − (
𝑃𝑘

3 ⋅ 2𝑘
)

2

 

 

This is the equation that we were seeking. It shows us how to obtain a value for 𝑃𝑘+1 from a 

known value of 𝑃𝑘. As an example of the use of this formula,  we use the formula with 𝑘 = 1 

and 𝑃1 = 3 and obtain  

 

𝑃2 = 3 ⋅ 21√2 ⋅ √1 − √1 − (
3

3 ⋅ 21
)

2

= 6 √2 − √3 ≈ 3.10582854 
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Continuing, we can obtain a list of values of 𝑃𝑘 for 𝑘 = 1,2,3, …. The values of 𝑃𝑘 on this list 

will converge to a real number. The symbol for that real number is 𝜋. 

 

How does the list look beyond the first two terms? The easiest way to answer that is to use the 

recursive formula for 𝑃𝑘 to make a table of values in Excel. 

 

k n 𝑃𝑘 

1 6 3.00000000000000000000 
2 12 3.10582854123025000000 
3 24 3.13262861328124000000 
4 48 3.13935020304687000000 
5 96 3.14103195089053000000 
6 192 3.14145247228534000000 
7 384 3.14155760791162000000 
8 768 3.14158389214894000000 
9 1536 3.14159046323676000000 

10 3072 3.14159210604305000000 
11 6144 3.14159251658816000000 
12 12288 3.14159261864079000000 
13 24576 3.14159264532122000000 
14 49152 3.14159264532122000000 

The good news is that these numbers seem to be converging to a number close to 3.14159. The 

bad news is that from the 15𝑡ℎ decimal place on, all the digits are 0, and the that the values of 

𝑃13 and 𝑃14 are exactly the same. This seems to indicate that the value of 𝜋 is the number 

3.14159264532122000000. 
 

But this is suspicious. Consider the table entry for 𝑃2. We found that the expression for 𝑃2 was 

 

𝑃2 = 6 √2 − √3 

 

In earlier courses, you learned that √3 is irrational. Therefore, 2 − √3 will be irrational and 

√2 − √3 will be irrational and 𝑃2 = 6 √2 − √3 will be irrational. 

 

The table says 𝑃2 = 3.10582854123025000000. This is a rational number because it can be 

written 

𝑃2 = 3.10582854123025000000 =
310582854123025

100000000000000
 

 

So the value of 𝑃2 given by Excel is definitely wrong. It should not end in zeroes. 

 

Similar reasoning could be used to tell us that all of the other 𝑃𝑘 values for 𝑘 ≥ 2 are also 

irrational, so the other 𝑃𝑘 values in the table are wrong, as well. The problem is in round-off 

errors commited by Excel. A more scientific program like MATLAB could be used to produce a 

list with more digits of accuracy. 

 



14.5: Arc Length 299 

But what about the value of 𝜋? Is it irrational? We know that each 𝑃𝑘 value for 𝑘 ≥ 2 is 

irrational, and that 𝜋 = lim
𝑘→∞

𝑃𝑘, but that does not imply that 𝜋 must be irrational. Indeed, it is 

possible to produce a sequence of irrational numbers that converges to a rational number. But in 

fact it has been shown that 𝜋 is irrational. 

 

In conclusion, we see that 𝜋 is an irrational number close to 3.14159. So we have answered the 

first question that was posed on page 289: 

 

(1) What is 𝜋? 

 

Now we turn our attention to the concept of arc length. 

14.5. Arc Length 
The angle measure of an arc was defined in Definition 99, found on page 267 in Section 12.2. 

Recall that the angle measure is a number 𝑚 in the range 0 < 𝑚 < 360. Now that we have seen 

a definition of the circumference of a circle, we are ready to discuss arc length. 

 

We could start from scratch and consider segmented paths inscribed in circles, as we did at the 

beginning of this chapter. But that would be tedious and not terribly productive: our investigation 

of the circumference of a circle gave us enough of an idea of how that process works. Studying it 

again in a more difficult setting would not make us much wiser. 

 

Instead, we will simply skip to the result of all that work and state it as a definition. 

 

Definition 106 arc length 

The length of an arc 𝐴𝐵�̂� on a circle of radius 𝑟 is defined to be the number 

�̂�(𝐴𝐵�̂�) =
�̂�(𝐴𝐵�̂�)𝜋𝑟

180
 

. 

14.6. Area of Regions Bounded by Arcs and Line 

Segments 
Now that we have defined the area of polygonal regions and circular regions it would be nice to 

have a notion of the area of regions bounded by arcs and line segments. In the case of polygonal 

regions, we first defined triangular regions, and then defined polygonal regions to be finite 

unions of triangular regions. In the case of regions bounded by arcs and line segments, it is not 

clear if there is a basic shape bounded by arcs and segments, a shape that can be arranged like 

pieces of a puzzle in order to make more general shapes bounded by arcs and segments. 

 

For this edition of the book, we will not consider that general question. Instead, we will simply 

use our intuition to solve certain simple problems involving the area of regions bounded by arcs 

and line segments. Our main tools will be the following “rules” about area. 

 

Definition 107 Rules for computing area 
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(1) The area of a triangular region is equal to one-half the base times the height. It does not 

matter which side of the triangle is chosen as the base. 

(2) The area of a polygonal region is equal to the sum of the areas of the triangles in a 

complex for the region. 

(3) The area of a circular region is 𝜋𝑟2. 

(4) More generally, the area of a circular sector bounded by arc 𝐴𝐵�̂� is  𝜋𝑟2 ⋅
�̂�(𝐴𝐵�̂�)

360
. 

(5) Congruence property: If two regions have congruent boundaries, then the area of the two 

regions is the same. 

(6) Additivity property: If a region is the union of two smaller regions whose interiors do not 

intersect, then the area of the whole region is equal to the sum of the two smaller regions. 

 

For example, at right is a slice of a pizza that had radius 1 foot. The 

crust is an arc of angle measure 60. Six of these slices arranged in a 

circle and touching without overlap would make up the entire pizza. By 

the additivity property, the sum of the areas of the six slices must equal 

the area of the pizza. By the congruence property, the areas of the six 

slices  
 

must be equal. Therefore, the area of this slice must be one sixth of the area of the pizza. That is, 

this slice must have area 𝐴 =
𝜋

6
 square feet. Another way of reaching the same result is to use 

rule (4) to compute the area. That is, 

𝐴 = 𝜋𝑟2 ⋅
�̂�(𝐴𝐵�̂�)

360
= 𝜋(1)2 ⋅

60

360
=

𝜋

6
 

 

At right is some leftover crust of the same pizza after an equilateral 

triangle has been eaten. The triangle has area 
√3

4
 square feet, so by the 

additivity property, the leftover crust has area 𝐴 =
𝜋

6
−

√3

4
 square feet.  

 

In the exercises, you will see some more computational problems like this example involving 

adding and subtracting areas. 

  



14.7: Exercises for Chapter 14 301 

14.7. Exercises for Chapter 14 

[1] In Section 14.4, we saw that an expression for 𝑃2 was 𝑃2 = 6 √2 − √3.  

(A) Find the exact expression for 𝑃3. Try to simplify it as much as I simplified the expression for 

𝑃2. 

(B) Using a calculator, find a decimal approximation for 𝑃3 that has more accurate digits than the 

decimal approximation presented in the table. 

 

[2] I gave a pretty sketchy explanation of how we know that 𝑃2 is irrational. See if you can 

explain it more thoroughly. One approach would be to do a sort of proof by contradiction. That 

is, assume that 𝑃2 is rational. That means that it can be written as a ratio of integers, 

6 √2 − √3 =
𝑚

𝑛
 

Square both sides of this expression. Do some arithmetic and reach a contradiction. 

 

[3] Which path from point 𝐴 to point 𝐵 is longer: the one 

consisting of two small semicircles or the one consisting of 

one large semicircle? Justify your answer with calculations. 

 
[4] OSHA has decided that a fence needs to be erected along the equator to keep people from 

falling from the northern hemisphere into the southern. The fence needs to have two rails: one 

that is three feet off the surface of the earth, and another that is low enough that Shemika Charles 

cannot limbo under it. What is the length of the top rail (in feet and inches), and what is the 

length of the bottom rail? Explain your calculations clearly. (You may assume that the earth is 

spherical, but you will need to look up its diameter.) 

 

[5] In each picture below, the square has sides of length 1. Find the shaded areas. Show your 

work clearly. Note: You will see an obvious pattern in the answers to (a),(b),(c), so you will be 

able to guess the right answer to (d). But I want you to calculate the answer to (d) and show that 

it does indeed equal your guess. This will require that you figure out some way to work with the 

positive integer variable 𝑛. 

 

[6] In the figure at right, the outer square has sides of length 2. Find the 

value of the unshaded area. Show the details of the calculation clearly and 

simplify your answer. 

 

𝐴 𝐵 

picture (a) picture (b) picture (d) 

n by n 

array 

of circles 

picture (c) 
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[7] In each picture below, a regular polygon is inscribed in the outer circle and is tangent to the 

inner circle. For each picture, find the ratio of the area of the outer circle to the area of the inner 

circle. 

 

[8] Prove that the sum of the areas of the two smaller semicircular 

regions in the figure at right equals the area of the larger semicircular 

region. 

 

[9] In the figure at right, the two solid arcs are semicircles. The one 

large dotted arc is also a semicircle. Prove that the shaded area 

equals the area of the triangle. Hint: Use your result from [8]. 

 

[10] In the figure at right, each circle has the same radius 𝑟 and 

passes through the center of the other two circles. Find the shaded 

area. 

 

[11] In the figure at right, the hexagon has sides of length 𝑥. Find the 

area of the portion of the hexagon that is not covered up by the petals 

of the flower. 

 
 

. 
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15. Maps, Transformations, Isometries 

15.1. Functions 
Recall our definition of function from Section 7.1: 

 

Definition 51: function, domain, codomain, image, machine diagram; correspondence 

Symbol: 𝑓: 𝐴 → 𝐵  

Spoken: “𝑓 is a function that maps 𝐴 to 𝐵.” 

Usage: 𝐴 and 𝐵 are sets. Set 𝐴 is called the domain and set 𝐵 is called the codomain. 

Meaning: 𝑓 is a machine that takes an element of set 𝐴 as input and produces an element of 

set 𝐵 as output. 

More notation: If an element 𝑎 ∈ 𝐴 is used as the input to the function , then the symbol 

𝑓(𝑎) is used to denote the corresponding output. The output 𝑓(𝑎) is called the 

image of 𝑎 under the map 𝑓. 

Machine Diagram: 

   
Additional notation:  If 𝑓 is both one-to-one and onto (that is, if 𝑓 is a bijection), then the 

symbol 𝑓: 𝐴 ↔ 𝐵 will be used. In this case, 𝑓 is called a correspondence between 

the sets 𝐴 and 𝐵. 

 

When you studied functions in earlier courses, the domain and codomain were almost always 

sets of numbers. In Geometry, we often work with functions whose domains and codomains are 

sets of points. Even so, we will discuss many examples involving functions whose domain and 

codomain are sets of numbers, because they are simple and familiar. 

 

Definition 108 Image and Preimage of a single element 

If 𝑓: 𝐴 → 𝐵 and 𝑎 ∈ 𝐴 is used as input to the function 𝑓, then the corresponding output 

𝑓(𝑎) ∈ 𝐵 is called the image of 𝑎. 

If 𝑓: 𝐴 → 𝐵 and 𝑏 ∈ 𝐵, then the preimage of 𝑏, denoted 𝑓−1(𝑏), is the set of all elements of 

𝐴 whose image is 𝑏. That is, 𝑓−1(𝑏) = {𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎) = 𝑏}. 

 

Observe that the image of a single element of the domain is a single element of the codomain, 

but the preimage of a single element of the codomain is a set. 

 

For example, consider the function 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2. 

 The image of 3 is 𝑓(3) = 9. 

 The preimage of 9 is the set 𝑓−1(9) = {−3,3}. 
 The preimage of −5 is the empty set, because there is no real number 𝑎 such that 𝑎2 =

−5. 

input output 

𝑎 
𝑓 

Domain: 

the set 𝐴 

Codomain: 

the set 𝐵 

𝑓(𝑎) 
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Notice that in the definition of function, inputs are fed into the function one at a time. So in the 

symbol 𝑓(𝑎), the letter 𝑎 represents a single element of the domain and the symbol 𝑓(𝑎) 

represents a single element of the codomain. In our study of functions in Geometry, we will often 

make use of the concept of the image of a set and the preimage of a set. Here is a definition. 

 

Definition 109 Image of a Set and Preimage of a Set 

If 𝑓: 𝐴 → 𝐵 and 𝑆 ⊂ 𝐴, then the image of 𝑆, denoted 𝑓(𝑆), is the set of all elements of 𝐵 that 

are images of elements of 𝑆. That is, 

𝑓(𝑆) = {𝑏 ∈ 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏 = 𝑓(𝑎) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝑆} 

If 𝑓: 𝐴 → 𝐵 and 𝑇 ⊂ 𝐵, then the preimage of 𝑇, denoted 𝑓−1(𝑇), is the set of all elements of 

𝐴 whose images are elements of 𝑇. That is, 

𝑓−1(𝑇) = {𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎) ∈ 𝑇} 
 

For example, consider again the function 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2. 

 

 The image of the set {−2,0,1,9} is the set 𝑓({−2,0,1,9}) = {0,1,4,81}.  
 The preimage of the same set {−2,0,1,9} is the set 𝑓−1({−2,0,1,9}) = {−3, −1,0,1,3}.  

 

So with the new definition of the image of a set, we must keep in mind that when we encounter 

the symbol 𝑓(𝑡ℎ𝑖𝑛𝑔), the 𝑡ℎ𝑖𝑛𝑔 inside might be a single element of the domain—in which case 

the symbol 𝑓(𝑡ℎ𝑖𝑛𝑔) represents a single element of the codomain—or the 𝑡ℎ𝑖𝑛𝑔 inside might be 

a subset of the domain—in which case the symbol 𝑓(𝑡ℎ𝑖𝑛𝑔) represents a subset of the codomain. 

 

We will spend a lot of time studying the composition of functions. Here is the definition. 

 

Definition 110 composition of fuctions, composite function 

Symbol: 𝑔 ∘ 𝑓 

Spoken: “𝑔 circle 𝑓”,or “𝑔 after 𝑓”, or “𝑔 composed with 𝑓” 

Usage: 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 

Meaning: the function 𝑔 ∘ 𝑓: 𝐴 → 𝐶 defined by 𝑔 ∘ 𝑓(𝑎) = 𝑔(𝑓(𝑎)). 

Additional terminology: A function of the form 𝑔 ∘ 𝑓 is called a composite function. 

 

For example, 𝑓: ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2 and 𝑔: ℝ → ℝ defined by 𝑔(𝑥) = 𝑥 + 1, we have 

the following two compostions: 

(a) 𝑔 ∘ 𝑓 is the function defined by 𝑔 ∘ 𝑓(𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑥2) = 𝑥2 + 1. 

(b) 𝑓 ∘ 𝑔 is the function defined by 𝑓 ∘ 𝑔(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(𝑥 + 1) = (𝑥 + 1)2. 

 

Observe that in this example, 𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓. This illustrates that function composition is usually 

not commutative. We will return to this terminology later in the chapter. 

 

However, function composition is associative. That is, for all functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 

and ℎ: 𝐶 → 𝐷, the functions ℎ ∘ (𝑔 ∘ 𝑓) and (ℎ ∘ 𝑔) ∘ 𝑓 are equal. To prove this, we need to 

show that when the two functions are given the same input, they always produce the same 

output. Here is the claim stated as a theorem. The proof follows. 

 

Theorem 161 Function composition is associative. 
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For all functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 and ℎ: 𝐶 → 𝐷, the functions ℎ ∘ (𝑔 ∘ 𝑓) and 
(ℎ ∘ 𝑔) ∘ 𝑓 are equal. 

Proof 

For any 𝑎 ∈ 𝐴, we simply compute the resulting outputs. 

 

ℎ ∘ (𝑔 ∘ 𝑓)(𝑎) = ℎ((𝑔 ∘ 𝑓)(𝑎)) = ℎ (𝑔(𝑓(𝑎))) 

(ℎ ∘ 𝑔) ∘ 𝑓(𝑎) = (ℎ ∘ 𝑔)(𝑓(𝑎)) = ℎ (𝑔(𝑓(𝑎))) 

Since the resulting outputs are the same, we conclude that the functions are the same. 

 

End of Proof 

 

In previous courses, you studied one-to-one functions and onto functions. Here are definitions 

 

Definition 111 One-to-One Function 

Words: The function 𝑓: 𝐴 → 𝐵 is one-to-one. 

Alternate Words: The function 𝑓: 𝐴 → 𝐵 is injective. 

Meaning in Words: Different inputs always produce different outputs. 

Meaning in Symbols:  ∀𝑥1, 𝑥2, 𝑖𝑓 𝑥1 ≠ 𝑥2 𝑡ℎ𝑒𝑛 𝑓(𝑥1) ≠ 𝑓(𝑥2). 

Contrapositive: If two outputs are the same, then the inputs must have been the same. 

Contrapositive in Symbols:  ∀𝑥1, 𝑥2, 𝑖𝑓 𝑓(𝑥1) = 𝑓(𝑥2), 𝑡ℎ𝑒𝑛 𝑥1 = 𝑥2. 

 

Definition 112 Onto Function 

Words: The function 𝑓: 𝐴 → 𝐵 is onto. 

Alternate Words: The function 𝑓: 𝐴 → 𝐵 is surjective. 

Meaning in Words: For every element of the codomain, there exists an element of the 

domain that will produce that element of the codomain as output. 

Meaning in Symbols:  ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) = 𝑦. 

 

You may have heard the term range in previous courses. That word is problematic, because it 

has different meanings in different books. 

 

 In some books, the range of a function is defined the way that we defined codomain. That 

is, for 𝑓: 𝐴 → 𝐵, the range of 𝑓 would be defined as the set 𝐵. 

 In some books, the range of a function is defined to be the image of the domain. That is, 

for 𝑓: 𝐴 → 𝐵, the range of 𝑓 would be defined as the set 𝑓(𝐴) ⊂ 𝐵. 

 

The two uses of the words are not equivalent. For example, for the function 𝑓: ℝ → ℝ defined by 

𝑓(𝑥) = 𝑥2, the codomain is the set of all real numbers, ℝ, while the image of the domain is the 

set of all non-negative real numbers. That is, 

𝑓(𝑑𝑜𝑚𝑎𝑖𝑛) = 𝑓(ℝ) = ℝ𝑛𝑜𝑛𝑛𝑒𝑔 = {𝑦 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 ≥ 0} 
So the image of the domain is not the same set as the entire codomain in this case. 

 

In this book, I have tried to avoid using terminology that has conflicting definitions in common 

use. For that reason, we will not use the word range. But I will sometimes refer to the image of 

the domain. 
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For example, it is useful to observe that the definition of an onto function could be summarized 

simply in the following way: 

An onto function 𝑓 is one for which 𝑓(𝑑𝑜𝑚𝑎𝑖𝑛) = 𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛. 

 

We will be interested in functions that are both one-to-one and onto. They have two commonly-

used names: 

 

Definition 113 Bijection, One-to-One Correspondence 

Words: “The function 𝑓 is a bijection”, or “the function 𝑓 is bijective”. 

Alternate Words: The function 𝑓 is a one-to-one correspondence. 

Meaning: The function 𝑓 is both one-to-one and onto. 

15.2. Inverse Functions 
You might have learned in earlier courses that every bijective function has an inverse that is also 

a bijection. We will prove the fact here, because it gives us a good chance to review and because 

the proof is wonderfully simple if the notation is done right. 

 

We start by abbreviating in symbols the definition of function (Definition 51). That definition 

says that a function 𝑓: 𝐴 → 𝐵 takes any element of the domain 𝐴 as input and produces as output 

exactly one element of the codomain 𝐵. In the language of quantifiers, this would be written as 

follows: 

 

Definition of function, using quantifiers: 

For every 𝑎 ∈ 𝐴, there exists a unique 𝑏 ∈ 𝐵 such that 𝑓(𝑎) = 𝑏. 

 

In symbols, we use the exclamation point “!” as the abbreviation for the word unique and the 

colon “:” as the abbreviation for the words such that. Using those symbols, the definition of 

function would be abbreviated as follows: 

 

Definition of function, using quantifiers, abbreviated in symbols: 

∀𝑎 ∈ 𝐴, ∃! 𝑏 ∈ 𝐵: 𝑓(𝑎) = 𝑏 
 

Now let’s abbreviate in symbols the meaning of the word bijection. A bijection is both one-to-

one and onto. The definition of onto says 

 

Definition of onto, using quantifiers: 

For every 𝑏 ∈ 𝐵, there exists an 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

 

For the present discussion, it helps to be clearer about this: the words there exists really mean 

there exists at least one. 

 

Definition of onto, using quantifiers, clarified 

For every 𝑏 ∈ 𝐵, there exists at least one 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

 

But a bijection 𝑓 is both onto and one-to-one. The fact that 𝑓 is one-to-one means that there 

cannot be more than one 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. Combined with the fact that 𝑓 is onto, we 
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see that there exists exactly one 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. In other words, there exists a unique 

𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

 

Definition of bijection, using quantifiers: 

For every 𝑏 ∈ 𝐵, there exists a unique 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

This is ready to be abbreviated: 

 

Definition of bijection, using quantifiers, abbreviated in symbols: 

∀𝑏 ∈ 𝐵, ∃! 𝑎 ∈ 𝐴: 𝑓(𝑎) = 𝑏 
 

Summarizing, here is the definition of a bijective function, written in symbols. 

 

Definition of bijective function 𝑓: 𝐴 → 𝐵 in symbols: 

(i) ∀𝑎 ∈ 𝐴, ∃! 𝑏 ∈ 𝐵: 𝑓(𝑎) = 𝑏  (definition of function) 

(ii) ∀𝑏 ∈ 𝐵, ∃! 𝑎 ∈ 𝐴: 𝑓(𝑎) = 𝑏  (definition of bijective) 

 

Now consider defining a new symbol as follows: 

 

New Symbol: 𝑔(𝑏) = 𝑎. 

Meaning: 𝑓(𝑎) = 𝑏. 

 

It might seem silly to do that. But now consider what happens if we substitue the new symbol 

into the two symbolic expressions above. The result is two new symbolic expressions 

 

(new i) ∀𝑎 ∈ 𝐴, ∃! 𝑏 ∈ 𝐵: 𝑔(𝑏) = 𝑎 

(new ii) ∀𝑏 ∈ 𝐵, ∃! 𝑎 ∈ 𝐴: 𝑔(𝑏) = 𝑎 

 

Observe that expression (new ii) tells us that 𝑔 is qualified to be called a function, 𝑔: 𝐵 → 𝐴. 

And observe that expression (new i) tells us that the function 𝑔 is a bijection!  

 

Let’s explore the function 𝑔 further. In particular, let’s study what happens when we compose 𝑓 

and 𝑔. Note that because 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐴, we can compose them in either order. That is, 

 

The function 𝑔 ∘ 𝑓 will be a function with domain 𝐴 and codomain 𝐴. That is, 𝑔 ∘ 𝑓: 𝐴 → 𝐴. 

The function 𝑓 ∘ 𝑔 will be a function with domain 𝐵 and codomain 𝐵. That is, 𝑓 ∘ 𝑔: 𝐵 → 𝐵. 

 

Consider what happens when we feed inputs into these composite functions. For this discussion, 

suppose that 𝑓(𝑎) = 𝑏. Then 𝑔(𝑏) = 𝑎 where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. 

 

Start with the function 𝑔 ∘ 𝑓. Given 𝑎 ∈ 𝐴 as input, what will be the output 𝑔 ∘ 𝑓(𝑎)? 

 

𝑔 ∘ 𝑓(𝑎) = 𝑔(𝑓(𝑎)) meaning of the composition symbol 

 = 𝑔(𝑏) because 𝑓(𝑎) = 𝑏 

 = 𝑎 because 𝑔(𝑏) = 𝑎 

 

We see that when 𝑎 ∈ 𝐴 is used as input to the function 𝑔 ∘ 𝑓, the output will be 𝑔 ∘ 𝑓(𝑎) = 𝑎. 
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Now consider the function 𝑓 ∘ 𝑔. Given some 𝑏 ∈ 𝐵 as input, what will be the output 𝑓 ∘ 𝑔(𝑏)? 

 

𝑓 ∘ 𝑔(𝑏) = 𝑓(𝑔(𝑏)) meaning of the composition symbol 

 = 𝑓(𝑎) because 𝑔(𝑏) = 𝑎 

 = 𝑏 because 𝑓(𝑎) = 𝑏 

We see that when 𝑏 ∈ 𝐵 is used as input to the function  𝑓 ∘ 𝑔, the output will be 𝑓 ∘ 𝑔(𝑏) = 𝑏. 

 

It is worthwhile to stop here and summarize what we have done. 

 

Given a bijective function 𝑓: 𝐴 → 𝐵, we defined a new symbol 𝑔(𝑏) = 𝑎 to mean the same thing 

as the symbol 𝑓(𝑎) = 𝑏. We saw that this defines a bijective function 𝑔: 𝐵 → 𝐴. The 

compositions of functions 𝑓 and 𝑔 have the following two properties: 

 

∀𝑎 ∈ 𝐴, 𝑔 ∘ 𝑓(𝑎) = 𝑎 
∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑔(𝑏) = 𝑏 

 

In math, functions 𝑓 and 𝑔 that have the two properties above are called inverses of one another. 

The two properties are called inverse relations. Here is the definition: 

 

Definition 114 Inverse Functions, Inverse Relations 

Words: Functions 𝑓 and 𝑔 are inverses of one another. 

Usage: 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐴 

Meaning: 𝑓 and 𝑔 satisfy the following two properties, called inverse relations: 

 

∀𝑎 ∈ 𝐴, 𝑔 ∘ 𝑓(𝑎) = 𝑎 
∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑔(𝑏) = 𝑏 

 

Additional Symbols and Terminology: Another way of saying that functions 𝑓 and 𝑔 are 

inverses of one another is to say that 𝑔 is the inverse of 𝑓. Instead of using different 

letters for a function and its inverse, it is common to use the symbol 𝑓−1 to denote the 

inverse of a function 𝑓. With this notation, we would say that 𝑓: 𝐴 → 𝐵 and 𝑓−1: 𝐵 → 𝐴, 

and the inverse relations become: 

 

∀𝑎 ∈ 𝐴, 𝑓−1 ∘ 𝑓(𝑎) = 𝑎 
∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑓−1(𝑏) = 𝑏 

 

Our discussion on the previous two pages, in which we introduced the function g and discussed 

its properties, can now be summarized using the terminology of inverse functions. It is worth 

presenting this as a theorem. 

 

Theorem 162 Bijective functions have inverse functions that are also bijective. 

If 𝑓: 𝐴 → 𝐵 is a bijective function, then 𝑓 has an inverse function 𝑓−1: 𝐵 → 𝐴. The 

inverse function is also bijective. 

 

Proof: The discussion on the previous few pages. 

 

Another theorem from earlier courses is the following: 
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Theorem 163 If a function has an inverse function, then both the function and its inverse are 

bijective. 

If functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐴 are inverses of one another (that is, if they satisfy the 

inverse relations), then both 𝑓 and 𝑔 are bijective. 

 

The proof of Theorem 163 is easy if one makes use of the following wonderful trick. The trick 

can be employed any time it is known that a function 𝑓: 𝐴 → 𝐵 has an inverse function. Recall 

that the meaning of the term inverse function is that 𝑓 and 𝑓−1 satisfy the inverse relations 

 

∀𝑎 ∈ 𝐴, 𝑓−1 ∘ 𝑓(𝑎) = 𝑎 
∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑓−1(𝑏) = 𝑏 

 

Here’s the trick. Because we know the inverse relations are satisfied, any element 𝑎 ∈ 𝐴 can be 

replaced by the expression 𝑓−1(𝑓(𝑎)). That may seem silly, because the expression 𝑓−1(𝑓(𝑎)) 

takes up a lot more room on the page than the expression 𝑎. But there are times (such as in the 

proof of Theorem 163) when the longer expression is useful. Similarly, any element 𝑏 ∈ 𝐵 can 

be replaced by the expression 𝑓(𝑓−1(𝑏)). And of course, the trick works the other way as well. 

That is, the expression 𝑓−1(𝑓(𝑎)) can be replaced by the letter 𝑎, and the expression 𝑓(𝑓−1(𝑏)) 

can be replaced by the letter 𝑏. But this doesn’t seem so tricky. 

 

Now we will prove Theorem 163, making use of the trick. 

 

Proof of Theorem 163 

Part 1: Show that 𝒇 is one-to-one and that 𝒈 is one-to-one. 

(1) Suppose that 𝑓(𝑎1) = 𝑓(𝑎2). 

(2) Then 𝑔(𝑓(𝑎1)) = 𝑔(𝑓(𝑎2)) because 𝑔 is a function. 

(3) Therefore, 𝑎1 = 𝑎2, because 𝑔 is the inverse of 𝑓. (Here we have used the trick.) 

 

Steps (1) – (3) prove that 𝑓 is one-to-one. Analogous steps would prove that 𝑔 is also one-to-

one. 

End of Proof Part 1 

 

Part 2: Show that 𝒇 is onto and that 𝒈 is onto. 

 

To show that 𝑓: 𝐴 → 𝐵 is onto, we must show that for any 𝑏 ∈ 𝐵, there exists some 𝑎 ∈ 𝐴 

such that 𝑓(𝑎) = 𝑏. 

 

(7) Suppose that 𝑏 ∈ 𝐵. 

(8) We can write 𝑏 = 𝑓(𝑔(𝑏)), because 𝑓 and 𝑔 are inverses of each other. (Here we have 

used the trick.) 

(9) Observe that 𝑔(𝑏) is an element of the set 𝐴, because 𝑔: 𝐵 → 𝐴. So let 𝑎 = 𝑔(𝑏). Then 

𝑏 = 𝑓(𝑎). We have found an 𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

 

Steps (7) – (9) prove that 𝑓 is onto. Analogous steps would prove that 𝑔 is also onto. 

End of Proof Part 2 
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Theorem 163 is useful for proving that a function is bijective without having to do any work. 

That sounds very vague, so let me give an example to illustrate. Here is a theorem about the 

inverse of a composition of functions. The proof will use Theorem 163. 

 

Theorem 164 about the inverse of a composition of functions 

If functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are both bijective, then their composition 𝑔 ∘ 𝑓 will 

be bijective. The inverse of the composition will be (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1. 

 

Proof 

 

Part 1: Prove that (𝒈 ∘ 𝒇)−𝟏 = 𝒇−𝟏 ∘ 𝒈−𝟏. 

 

Consider the composition of (𝑔 ∘ 𝑓) and (𝑓−1 ∘ 𝑔−1). Observe that 

 

(𝑔 ∘ 𝑓) ∘ (𝑓−1 ∘ 𝑔−1) = 𝑔 ∘ (𝑓 ∘ (𝑓−1 ∘ 𝑔−1)) 

= 𝑔 ∘ ((𝑓 ∘ 𝑓−1) ∘ 𝑔−1) 

= 𝑔 ∘ (𝑖𝑑 ∘ 𝑔−1) 
= 𝑔 ∘ 𝑔−1 
= 𝑖𝑑 

Similarly,  

(𝑓−1 ∘ 𝑔−1) ∘ (𝑔 ∘ 𝑓) = 𝑖𝑑 
 

Since the functions (𝑔 ∘ 𝑓) and (𝑓−1 ∘ 𝑔−1) satisfy the inverse relations, we conclude they 

are inverses of one another. Or, we could say that (𝑓−1 ∘ 𝑔−1) is the inverse of (𝑔 ∘ 𝑓). That 

is, (𝑓−1 ∘ 𝑔−1) = (𝑔 ∘ 𝑓)−1. 

 

Part 2: Prove that 𝒈 ∘ 𝒇 is bijective. 

 

We have found an inverse function for 𝑔 ∘ 𝑓. By Theorem 163, 𝑔 ∘ 𝑓 must be bijective. 

 

End of Proof 

15.3. Maps of the Plane 
As mentioned at the start of this chapter, in Geometry we will be interested in functions whose 

domain and codomain are sets of points. Recall from Definition 20 that the symbol 𝒫 is used to 

denote the set of all points. So far in our course, we have not used any other name for that set. 

But many books refer to the set 𝒫 as the plane. We can make it official with a definition. 

 

Definition 115 The plane is defined to be the set 𝒫 of all points. 

 

With this terminology, we can refer to maps of the plane. 

 

Definition 116 A map of the plane is defined to be a function 𝑓: 𝒫 → 𝒫. 
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We will be interested in maps of the plane that have certain other properties. In particular, we 

will be interested in maps of the plane that are bijective. We give such functions the name 

tranformations. Here is the official definition. 

 

Definition 117 A transformation of the plane is defined to be a bijective map of the plane. The 

set of all transformations of the plane is denoted by the symbol 𝑇. 

But we are more interested in maps of the plane that are distance preserving. We will give such 

functions the name isometries. Here is the official definition. 

 

Definition 118 Isometry of the Plane 

Words: 𝑓 is an isometry of the plane. 

Meaning: 𝑓 is a distance preserving map of the plane. That is, for all points 𝑃 and 𝑄, the 

distance from 𝑃 to 𝑄 is the same as the distance from 𝑓(𝑃) to 𝑓(𝑄). 

Meaning in symbols: ∀𝑃, 𝑄 ∈ 𝒫, 𝑑(𝑃, 𝑄) = 𝑑(𝑓(𝑃), 𝑓(𝑄)). 

 

In the next section, we will study transformations of the plane. In later sections, we will study 

isometries of the plane. 

15.4. Transformations of the Plane 
We will start this section with a quick presentation of three examples of Transformations of the 

Plane.  

 

Our first example of a transformation of the plane is so simple that it might seem silly to 

introduce it. But in fact, it is a very important function. 

 

Definition 119 The Identity Map of the Plane is the map 𝑖𝑑: 𝒫 → 𝒫 defined by 𝑖𝑑(𝑄) = 𝑄 for 

every point 𝑄. 

 

Observe that the identity map of the plane is clearly both one-to-one and onto, so it is a 

transformation of the plane. 

 

This is a good time to introduce the terminology of fixed points. Here is a definition. 

 

Definition 120 a Fixed Point of a Map of the Plane 

Words: 𝑄 is a fixed point of the map 𝑓. 

Meaning: 𝑓(𝑄) = 𝑄 

 

We see that every point in the plane is a fixed point of the identity map of the plane. 

 

Our second example of a transformation of the plane is the dilation. Here is the definition. 

 

Definition 121 The Dilation of the Plane 

Symbol: 𝐷𝐶,𝑘 

Spoken: The dilation centered at 𝐶 with scaling factor 𝑘 

Usage: 𝐶 is a point, called the center of the dilation, and 𝑘 is a positive real number. 

Meaning: The map 𝐷𝐶,𝑘: 𝒫 → 𝒫 defined as follows 

The point 𝐶 is a fixed point of 𝐷𝐶,𝑘. That is, 𝐷𝐶,𝑘(𝐶) = 𝐶. 
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When a point 𝑄 ≠ 𝐶 is used as input to the map 𝐷𝐶,𝑘, the output is the unique point 

𝑄′ = 𝐷𝐶,𝑘(𝑄) that has these two properties: 

 Point 𝑄′ lies on ray 𝐶𝑄       

 The distance 𝑑(𝐶, 𝑄′) = 𝑘𝑑(𝐶, 𝑄) 

(The existence and uniqueness of such a point 𝑄′ is guaranteed by the Congruent 

Segment Construction Theorem, (Theorem 24).) 

 

For example, consider the dilation with 𝑘 = 2, denoted by 

the symbol 𝐷𝐶,2. It has 𝐶 as a fixed point. If any other 

point 𝑄 ≠ 𝐶 is used as input to the map 𝐷𝐶,2, the output 

will be the point 𝑄′ as shown. in the figure at right. 

 
It is probably reasonably clear to you that the dilation 𝐷𝐶,𝑘 is one-to-one and onto. That is, it is a 

transformation of the plane. You are asked to provide the details in an exercise. 

 

Our third example of a transformation of the plane is the reflection. Here is the definition. 

 

Definition 122 The Reflection of the Plane 

Symbol: 𝑀𝐿 

Spoken: The reflection in line 𝐿 

Usage: 𝐿 is a line, called the line of reflection 

Meaning: The map 𝑀𝐿: 𝒫 → 𝒫 defined as follows 

Every point on the line 𝐿 is a fixed point of 𝑀𝐿. That is, if 𝑃 ∈ 𝐿 then 𝑀𝐿(𝑃) = 𝑃. 

When a point 𝑄 not on line 𝐿 is used as input to the map 𝑀𝐿, the output is the unique 

point 𝑄′ = 𝑀𝐿(𝑄) such that line 𝐿 is the perpendicular bisector of segment 𝑄𝑄′̅̅ ̅̅ ̅. 

(The existence and uniqueness of such a point 𝑄′ is can be proven using the axioms 

and theorems of Neutral Geometry. You are asked to provide the details in an 

exercise.) 

 

 

For example, see the reflection 𝑀𝐿 with line of reflection 𝐿 as 

shown in the figure at right.  

 
 

It is probably reasonably clear to you that the reflection 𝑀𝐿 is one-to-one and onto. That is, it is a 

transformation of the plane. You are asked to provide the details in an exercise. 

15.5. Review of Binary Operations and Groups 
In the next section, we will show that the set of transformations of the plane is a group. We 

should start by reviewing the definition of a group. That is what we will do in this section. In 

order to do that, we need to first review the definition of a binary operation on a set. 

 

Definition 123 A binary operation on a set 𝑆 is a function ∗: 𝑆 × 𝑆 → 𝑆. 

𝐶 = 𝐶′ 

𝑄′ 

𝑄 

𝑃 

𝑃′ 

𝑃 = 𝑃′ 

𝑄′ 
𝐿 

𝑄 
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In other words, a binary operation is a function that takes as input a pair of elements of the set 𝑆 

and produces as output a single element of the set 𝑆. 

 

The definition of a binary operation might be unfamiliar to you, but in fact you have been 

working with binary operations since grade school. 

 

Example #1 of a binary operation: 

The operation of addition is a binary operation on the set of integers. That is, addition may be 

thought of as a function, +: ℤ × ℤ → ℤ. If a pair of integers is used as input to the function, 

the resulting output is an integer. For example, +(2,5) = 7. But of course, this is not the way 

that we are used to writing the addition operation. We would write 2 + 5 = 7 instead. But it 

is the same operation. 

 

Example #2 of a binary operation: 

The operation of subtraction is a binary operation on the set of integers. That is, subtraction 

may be thought of as a function, −: ℤ × ℤ → ℤ. If a pair of integers is used as input to the 

function, the resulting output is an integer. For example, −(2,5) = −3. As with the operation 

of addition, this is not the way that we are used to writing the subtraction operation. We 

would write 2 − 5 = −3 instead. But it is the same operation. 

 

Example #3 of a binary operation: 

The operation of multiplication is a binary operation on the set of real numbers. That is, 

multiplication may be thought of as a function, ∗: ℝ × ℝ → ℝ. If a pair of real numbers is 

used as input to the function, the resulting output is a real number. For example, ∗ (𝜋,
1

2
) =

𝜋

2
. 

Again, this is not the way that we are used to writing the multiplication operation. We would 

write 𝜋 ∗
1

2
=

𝜋

2
 instead. But it is the same operation. 

 

The three examples just presented illustrate a common notation for binary operations. The 

symbol that represents the operation is often placed in between the elements in the pair that is the 

input to the operation instead of in front of the pair. For example, we write 2 + 5 = 7 instead of 

writing +(2,5) = 7. 

 

We will be interested in four properties that a binary operation may or may not have. They are 

associativity, the existence of an identity, the existence of inverses, and commutativity. Here are 

the definitions and examples. 

 

We start with the definition of the associativity property. 

 

Definition 124 associativity, associative binary operation 

Words: “∗ is associative” or “∗ has the associativity property” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

 

For example, addition on the set of integers (Example #1 above) is an associative binary 

operation. (Associativity of addition is specified in the axioms for integer arithmetic.) 
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But subtraction on the set of integers (Example #2 above) is not associative. As a 

counterexample, observe that 

 

10 − (8 − 5) ≠ (10 − 8) − 5 
 

So subtraction is a binary operation, but it is not associative. 

 

The second property that we will discuss is the existence of an identity element. 

 

Definition 125 identity element, binary operation with an identity element 

Words: “∗ has an identity element.” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning:.There is an element ∃𝑒 ∈ 𝑆 with the following property: 

∀𝑎 ∈ 𝑆, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

Meaning in symbols: ∃𝑒 ∈ 𝑆: ∀𝑎 ∈ 𝑆, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

Additional Terminology: The element ∃𝑒 ∈ 𝑆 is called the identity for operation ∗. 

 

For example, addition on the set of integers (Example #1 above) has an identity element: the 

integer 0. We say that 0 is the additive identity element. 

 

As a second example, multiplication on the set of integers has an identity element: the integer 1. 

We say that 1 is the multiplicative identity element. 

 

As a third example, consider the operation of multiplication on the set of even integers. This is a 

binary operation, because when two even integers are multiplied, the result is an even integer. 

But there is no identity element. That is because the only integer that could possibly be an 

identity element would be the integer 1, but 1 is not an even integer. 

 

As a fourth example, consider the binary operation of subtraction on the set of integers. 

(Example #2 above). Notice that the number 0 has the property that for any integer 𝑚, the 

equation 𝑚 − 0 = 𝑚 is true. Based on this, one might suspect that the number 0 might be an 

identity element for the operation of subtraction. But notice that the equation 0 − 𝑚 = 𝑚 is not 

always true. For example, 0 − 0 = 0 is true, but 0 − 5 = 5 is false. Since the equation 0 − 𝑚 =
𝑚 is not always true, the integer 0 is not qualified to be called an identity element for the 

operation of subtraction. It should be clear that the operation of subtraction on the set of integers 

does not have an identity element. 

 

The example just presented shows the significance of the expression  𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 in the 

definition of an identity element. That single expression means that the equalities 𝑎 ∗ 𝑒 = 𝑎 and 

𝑒 ∗ 𝑎 = 𝑎 must both be satisfied. It is sometimes possible to find an element that satisfies one of 

the equalities but not both. Such an element is not qualified to be called an identity element. 

 

The third property that we will discuss is the existence of an inverse for each element. 

 

Definition 126 binary operation with inverses 

Words: “∗ has inverses.” 
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Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: For each element 𝑎 ∈ 𝑆, there exists is an 𝑎−1 ∈ 𝑆 such that 

𝑎 ∗ 𝑎−1 = 𝑒 and 𝑎−1 ∗ 𝑎 = 𝑒. 

Meaning in symbols: ∀𝑎 ∈ 𝑆, ∃𝑎−1 ∈ 𝑆: 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 

Additional Terminology: The element 𝑎−1 ∈ 𝑆 is called the inverse of 𝑎. 

 

For example, consider the binary operation of addition on the set of real numbers. For this 

operation, the set of real numbers contians an inverse for each element. For the real number 𝑥, 

the inverse is the real number – 𝑥. We would say that – 𝑥 is the additive inverse of 𝑥. 

 

For another example, consider the binary operation of multiplication on the set of real numbers. 

For this operation, the set of real numbers contians an inverse for some elements, but not for 

every element. If 𝑥 ≠ 0, then the real number 
1

𝑥
 is a multiplicative inverse for 𝑥. But the real 

number 0 does not have a multiplicative inverse. So we must say that the operation of 

multiplication on the set of real numbers does not have an inverse for every element. 

 

The notation of inverse elements can be confusing. For an element 𝑎, the generic symbol for the 

inverse element is 𝑎−1. But for different binary operations, different symbols are sometimes 

used. Maybe a table will help clarify. 

 

binary operation element generic symbol for the 

inverse of the element 

common symbol for the 

inverse of the element 

addition 

on ℝ 
𝑥 

𝑥−1 
(never used in this context) 

−𝑥 

the additive inverse of 𝑥 

multiplication 

on ℝ 
𝑥 𝑥−1 

𝑥−1 or 
1

𝑥
 

the multiplicative inverse of 𝑥 

 

The commutative property is our fourth and final definition of a property that binary operations 

may or may not have. 

 

Definition 127 commutativity, commutative binary operation 

Words: “∗ is commutative” or “∗ has the commutative property” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

 

For example, addition on the set of integers (Example #1 above) is a commutative binary 

operation. (Commutativity of addition is specified in the axioms for integer arithmetic.) 

 

But subtraction on the set of integers (Example #2 above) is a non-commutative binary 

operation. As a counterexample, observe that 10 − 7 ≠ 7 − 10. 

 

Now that we have introduced the four properties associativity, the existence of an identity, the 

existence of inverses, and commutativity, we are ready to indiscuss the definition of a group. 

 

Definition 128 Group 
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A Group is a pair (𝐺,∗) consisting of a set 𝐺 and a binary operation ∗ on 𝐺 that has the 

following three properties. 

(1) Associativity (Definition 124) 

(2) Existence of an Identity Element (Definition 125) 

(3) Existence of an Inverse for each Element (Definition 126) 

 

Notice that the definition of group does not include any mention of commutativity, the fourth 

property that we introduced above. Some groups will have this property; some will not. There is 

a special name for those groups that do have the property. 

 

Definition 129 Commutative Group, Abelian Group 

A commutative group (or abelian group) is a group (𝐺,∗) that has the commutativity property 

(Definition 127) 

 

For instance, consider the binary operation of addition on the set of integers. 

(1) Note that or all integers 𝑎, 𝑏, 𝑐, the equation 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 is true. So the 

operation is associative. 

(2) Consider the integer 0. Observe that for all integers 𝑚, the equations 𝑚 + 0 = 𝑚 and 0 +
𝑚 = 𝑚 are both true. Therefore, the integer 0 is qualified to be called an identity element 

for the operation of addition. 

(3) For any integer 𝑚, observe that the number – 𝑚 is an integer and that the two equations 

𝑚 + (−𝑚) = 0 and (−𝑚) + 𝑚 = 0 are both true. So the integer – 𝑚 is qualified to be 

called an additive inverse for the integer 𝑚. 

We conclude that the pair (ℤ, +) is a group. Observe that it is a commutative group, because it 

also has the fourth important property: 

Commutative property: for all integers 𝑚, 𝑛 the equation 𝑚 + 𝑛 = 𝑛 + 𝑚 is true. 

 

On the other hand, consider the binary operation of multiplication on the set of integers. 

(1) Note that or all integers 𝑎, 𝑏, 𝑐, the equation 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 is true. So the 

operation is associative. 

(2) Consider the integer 1. Observe that for all integers 𝑚, the equations 𝑚 ∗ 1 = 𝑚 and 1 ∗
𝑚 = 𝑚 are both true. Therefore, the integer 1 is qualified to be called an identity element 

for the operation of multiplication. 

(3) The integer 5 does not have a multiplicative inverse. The real number 
1

5
 does have the 

property that 
1

5
∗ 5 = 1 and 5 ∗

1

5
= 1, but the real number 

1

5
 is not an integer. 

We conclude that the pair (ℤ,∗) is not group because the set ℤ does not contain a multiplicitive 

inverse for each element. 

15.6. The Set of Transformations of the Plane is a Group 
In this short section, we will prove the following theorem. 

 

Theorem 165 the pair (𝑇,∘) consisting of the set of Transformations of the Plane and the 

operation of composition of functions, is a group. 

 

Proof of the theorem 

Part (0): Prove that ∘ is a binary operation on the set 𝑻. 
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To prove that ∘ is a binary operation on the set 𝑇, we must prove that if 𝑓 and 𝑔 are elements 

of 𝑇, then 𝑓 ∘ 𝑔 is also an element of 𝑇. That is, we must show that if 𝑓 and 𝑔 are bijective 

maps of the plane, then 𝑓 ∘ 𝑔 is also bijective. But this was proven in Theorem 164. 

Part 1: Prove that the binary operation ∘ on the set 𝑻 is associative. 

In Theorem 161 we proved that function composition is associative. Transformations of the 

plane are just a particular kind of function. Therefore composition of transformations is 

associative. 

Part 2: Prove that there exists an identity element in the set 𝑻. 

This is easy. Consider the map 𝑖𝑑: 𝒫 → 𝒫 introduced in Definition 119. We have observed 

that it is both one-to-one and onto, so it is a transformation of the plane. We must consider its 

composition with other transformations. In particular, we must show that for any 

transformation 𝑓, the equations 𝑖𝑑 ∘ 𝑓 = 𝑓 and 𝑓 ∘ 𝑖𝑑 = 𝑓 are both true. Realize that these 

are equations about equality of functions. To prove that two functions are equal, one must 

prove that when fed the same input, they produce the same ouput.  

So we must consider the output for any given point 𝑄 ∈ 𝒫. Observe that 

𝑖𝑑 ∘ 𝑓(𝑄) = 𝑖𝑑(𝑓(𝑄)) = 𝑓(𝑄) 

This tells us that the functions 𝑖𝑑 ∘ 𝑓 and 𝑓 are the same function. Therefore, the equation 

𝑖𝑑 ∘ 𝑓 = 𝑓 is true. 

A similar calculation would show that the equation 𝑓 ∘ 𝑖𝑑 = 𝑓 is true. 

Part 3: Prove that there is an inverse for each element. 

Transformations of the plane are bijections.  Theorem 162 tells us that bijective functions 

have inverses that are also bijections. So every transformation of the plane has an inverse that 

is also a transformation of the plane. This all sounds good, but we need to be careful. In the 

context of Theorem 162, the inverse of a function 𝑓 iss a function called 𝑓−1 that has the 

following property: 

 

For every 𝑄 ∈ 𝒫, the equations 𝑓−1 ∘ 𝑓(𝑄) = 𝑄 and 𝑓 ∘ 𝑓−1(𝑄) = 𝑄 are both true. 

 

In our present context, the inverse of a function 𝑓 is a function called 𝑓−1 that has this 

property: 

𝑓−1 ∘ 𝑓 = 𝑖𝑑 and 𝑓 ∘ 𝑓−1 = 𝑖𝑑 

 

We see that the two properties mean the same thing. That is, the kind of inverse that is 

guaranteed by Theorem 162 is equivalent to the kind of inverse that we need for a binary 

operation. 

End of Proof 

 

We have proved that the set of transformations of the plane is a group, that is, that the set of 

transformations has the first three important properties of binary operations that we introduced in 

the previous section. So it is natural to wonder if the set of transformations also has the fourth 

property, commutativity. That is, is the set of transformations an abelian group? It is very easy to 

find a counterexample that shows that the group is non-abelian. Here’s one: 

 

Example to illustrate that the group of Transformations of the Plane is non-abelain. 

Let 𝑀𝐾 and 𝑀𝐿 be the reflections in the lines 𝐾 and 𝐿 shown in the figures below. For the 

given point 𝑄, the outputs 𝑄′′ = 𝑀𝐾 ∘ 𝑀𝐿(𝑄) and 𝑄′′ = 𝑀𝐿 ∘ 𝑀𝐾(𝑄) are shown. We see that 
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the two outputs are not the same. Therefore, the transformations 𝑀𝐾 ∘ 𝑀𝐿 and 𝑀𝐿 ∘ 𝑀𝐾 are 

not the same. 

 

15.7. Isometries of the Plane 
In the previoius sections, we studied maps of the plane that are also bijective, the so-called 

transformations of the plane. But as mentioned in Section 15.3, we are more interested in the 

isometries of the plane. Those are the distance preserving maps of the plane. In this section, we 

will begin our study of isometries of the plane by showing that they have a number of other 

properties. 

 

For starters, it is very easy to prove that the composition of two isometries is another isometry: 

 

Theorem 166 The composition of two isometries of the plane is also an isometry of the plane. 

Proof 

Suppose that 𝑓 and 𝑔 are isometries of the plane. 

Let 𝑃, 𝑄 be any two points. Then 

 

𝑑(𝑔 ∘ 𝑓(𝑃), 𝑔 ∘ 𝑓(𝑄)) = 𝑑 (𝑔(𝑓(𝑃)), 𝑔(𝑓(𝑄)))     (𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

= 𝑑(𝑓(𝑃), 𝑓(𝑄))     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑔 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

= 𝑑(𝑃, 𝑄)     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 
 

So 𝑔 ∘ 𝑓 preserves distance. That is, 𝑔 ∘ 𝑓 is an isometry. 

End of proof 

 

It is also very easy to prove that every isometry of the plane is also one-to-one. Here is the 

theorem and a quick proof: 

 

Theorem 167 Every isometry of the plane is one-to-one. 

 

Proof 

Suppose that 𝑓 is an isometry of the plane and that 𝑃 and 𝑄 are two points such that 𝑓(𝑃) =
𝑓(𝑄). That is, the two symbols 𝑓(𝑃) and 𝑓(𝑄) represent the same point. (We must show that 

𝑃 and 𝑄 are in fact the same point.) 

0 = 𝑑(𝑓(𝑃), 𝑓(𝑃)) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓(𝑃) = 𝑓(𝑄)  

= 𝑑(𝑃, 𝑄) 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔 

𝑄 

𝑄′ = 𝑀𝐿(𝑄) 

𝐿 

𝑀 

𝑄′′ = 𝑀𝑀(𝑀𝐿(𝑄)) 

𝑄 

𝑄′ = 𝑀𝑀(𝑄) 

𝐿 

𝑀 

𝑄′′ = 𝑀𝐿(𝑀(𝑄)) 
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Therefore, 𝑃 and 𝑄 are the same point. 

End of proof 

 

It is a little harder to prove that every isometry is also onto. One goal for the rest of this section 

will be to prove that fact. But we will start by proving that isometries also preserve collinearity. 

 

Our first theorem is really just a restatement of facts that have been proven in two earlier 

theorems. We restate them here in a form that is useful for the current section. 

 

Theorem 168 For three distinct points, betweenness is related to distance between the points. 

For distinct points 𝐴, 𝐵, 𝐶, the following two statements are equivalent. 

(i) 𝐴 ∗ 𝐵 ∗ 𝐶 

(ii) 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) = 𝑑(𝐴, 𝐶) 

Proof 

(1) Suppose that 𝐴, 𝐵, 𝐶 are distinct points. 

(2) Either they are collinear or they are not. 

Case I: Points 𝑨, 𝑩, 𝑪 are non-collinear. 

(3) Suppose that points 𝐴, 𝐵, 𝐶 are non-collinear. 

(4) Then the statement (i) is false, because part of the definition of the symbol 𝐴 ∗ 𝐵 ∗ 𝐶 is 

that the three points are collinear. 

(5) 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) > 𝑑(𝐴, 𝐶) by Theorem 64, the Triangle Inequality, applied to the three 

non-collinear points 𝐴, 𝐵, 𝐶. So statement (ii) is false. 

(6) We see that in this case, statements (i) and (ii) are both false. 

Case II: Points 𝑨, 𝑩, 𝑪 are collinear. 

(7) Suppose that points 𝐴, 𝐵, 𝐶 are collinear. 

(8) Then statements (i) and (ii) are equivalent by Theorem 16 

Conclusion 

(9) We see that in either case, statements (i) and (ii) are equivalent. 

End of proof 

 

Because we have seen that betweenness of points is related to the distances between the points, it 

should come as no surprise that isometries of the plane preserve collinearity. Here is the theorem 

and a quick proof. 

 

Theorem 169 Isometries of the plane preserve collinearity. 

If 𝐴, 𝐵, 𝐶 are distinct, collinear points and 𝑓 is an isometry of the plane, then 

𝑓(𝐴), 𝑓(𝐵), 𝑓(𝐶) are distinct, collinear points. 

Proof 

(1) Suppose that 𝐴, 𝐵, 𝐶 are distinct, collinear points. 

(2) Then 𝑓(𝐴), 𝑓(𝐵), 𝑓(𝐶) are distinct points (because 𝑓 is one-to-one, by Theorem 167) 

(3) Exactly one of the three points 𝐴, 𝐵, 𝐶 is between the other two (by Theorem 15). Assume 

that it is point 𝐵 that is the one in the middle, so 𝐴 ∗ 𝐵 ∗ 𝐶. (If not, rename the three points so 

that point 𝐵 is the one in the middle.) 

(4) Then 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) = 𝑑(𝐴, 𝐶) (by (3) and Theorem 168 (i)(ii)). 

(5) So 𝑑(𝑓(𝐴), 𝑓(𝐵)) + 𝑑(𝑓(𝐵), 𝑓(𝐶)) = 𝑑(𝑓(𝐴), 𝑓(𝐶)). (because 𝑓 preserves distance). 

(6) Therefore, 𝑓(𝐴) ∗ 𝑓(𝐵) ∗ 𝑓(𝐶). (by (2), (5), and Theorem 168 (ii)(i)). 

End of proof 
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Now we can prove that every isometry of the plane is onto. 

 

Theorem 170 Every isometry of the plane is onto. 

 

Proof 

(1) Suppose 𝑓 is an isometry of the plane. 

(2) Let 𝑌 be any point. (We must show that there exists a point 𝑋 such that 𝑓(𝑋) = 𝑌.) 

(3) There exist two distinct points 𝐴, 𝐵.  

(4) There are three possibilities for 𝑓(𝐴) and 𝑓(𝐵) and 𝑌. 

(i) 𝑓(𝐴) = 𝑌 or 𝑓(𝐵) = 𝑌. 

(ii) 𝑓(𝐴) ≠ 𝑌 and 𝑓(𝐵) ≠ 𝑌 but 𝑓(𝐴) and 𝑓(𝐵) and 𝑌 are collinear. 

(iii) 𝑓(𝐴) and 𝑓(𝐵) and 𝑌 are non-collinear. 

Case (i)  

(5) If 𝑓(𝐴) = 𝑌 or 𝑓(𝐵) = 𝑌 then simply let 𝑋 = 𝐴 or 𝑋 = 𝐵. We have shown that in this 

case, there exists a point 𝑋 such that 𝑓(𝑋) = 𝑌. 

Case (ii)  

(6) Suppose that 𝑓(𝐴) ≠ 𝑌 and 𝑓(𝐵) ≠ 𝑌 but 𝑓(𝐴) and 𝑓(𝐵) and 𝑌 are collinear. 

Introduce point 𝑿. 

(7) Let 𝐿 be line 𝐴𝐵 ⃡     and let 𝑀 be line 𝑓(𝐴)𝑓(𝐵) ⃡                  . 

(8) Let 𝑋 be the point on line 𝐿 such that 𝑑(𝑋, 𝐴) = 𝑑(𝑌, 𝑓(𝐴)) and 𝑑(𝑋, 𝐵) = 𝑑(𝑌, 𝑓(𝐵)). 

(It is not hard to show that such a point 𝑋 exists, but it is tedious. It can be done by 

using coordinate systems on lines 𝐿 and 𝑀, or by using the congruent segment 

construction theorem.) 

Show that 𝒇(𝑿) = 𝒀. 

(9) Observe that 𝐴, 𝐵, 𝑋 are distinct, collinear points. (Although we do not know which one is 

in the middle.) 

(10) By Theorem 169, we know that 𝑓(𝐴), 𝑓(𝐵), 𝑓(𝑋) are also distinct collinear points. So 

point 𝑓(𝑋) lies on line 𝑀. 

(11) Because 𝑓 preserves distance, we know that 𝑑(𝑓(𝑋), 𝑓(𝐴)) = 𝑑(𝑋, 𝐴) = 𝑑(𝑌, 𝑓(𝐴)) 

and that 𝑑(𝑓(𝑋), 𝑓(𝐵)) = 𝑑(𝑋, 𝐵) = 𝑑(𝑌, 𝑓(𝐵)). This tells us that points 𝑓(𝑋) and 𝑌 

must be the same point on line 𝑀. 

(12) We have shown that in this case, there exists a point 𝑋 such that 𝑓(𝑋) = 𝑌. 

 

Case (iii) 

(13) Suppose that 𝑓(𝐴) and 𝑓(𝐵) and 𝑌 are non-collinear.  

Introduce point 𝒁. 

(14) Let 𝑟1 = 𝑑(𝑌, 𝑓(𝐴)) and 𝑟2 = 𝑑(𝑌, 𝑓(𝐵)). Then point 𝑌 is an intersection point of the 

two circles 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝐴), 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝐵), 𝑟2). 

(15) Because 𝑓(𝐴) and 𝑓(𝐵) and 𝑌 are non-collinear, we know that the two circles will also 

intersect at another point that we can call 𝑍. 

Introduce points 𝑾, 𝑿. 

 (16) Observe that the points 𝑌, 𝑍 are the same distances from point 𝑓(𝐴) and are the same 

distances from point 𝑓(𝐵). That is, 

 

𝑑(𝑌, 𝑓(𝐴)) = 𝑑(𝑍, 𝑓(𝐴)) = 𝑟1 
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𝑑(𝑌, 𝑓(𝐵)) = 𝑑(𝑍, 𝑓(𝐵)) = 𝑟2 

 

(17) Because 𝑑(𝐴, 𝐵) = 𝑑(𝑓(𝐴), 𝑓(𝐵)), we know that the two circles 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟1) and 

𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝑟1) will also intersect at two points that we can call 𝑊 and 𝑋. 

Show that 𝒇({𝑾, 𝑿}) = {𝒀, 𝒁}. 

 (18) Observe that the points 𝑊, 𝑋 are the same distances from point 𝐴 and are the same 

distances from point 𝐵. That is, 

 

𝑑(𝑊, 𝐴) = 𝑑(𝑋, 𝐴) = 𝑟1 
𝑑(𝑊, 𝐵) = 𝑑(𝑋, 𝐵) = 𝑟2 

 

(19) Because 𝑓 is distance preserving, we know  

 

𝑑(𝑓(𝑊), 𝑓(𝐴)) = 𝑑(𝑊, 𝐴) = 𝑟1 

𝑑(𝑓(𝑋), 𝑓(𝐴)) = 𝑑(𝑋, 𝐴) = 𝑟1 

𝑑(𝑓(𝑊), 𝑓(𝐵)) = 𝑑(𝑊, 𝐵) = 𝑟2 

𝑑(𝑓(𝑋), 𝑓(𝐵)) = 𝑑(𝑋, 𝐵) = 𝑟2 

 

In other words, points 𝑓(𝑊), 𝑓(𝑋) must lie at the two intersection points of the two circles 

𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝐴), 𝑟1) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝐵), 𝑟2). But those two intersection points are 𝑌 and 𝑍. 

This could be written in symbols as 𝑓({𝑊, 𝑋}) = {𝑌, 𝑍}. 

(20) So the output points 𝑓(𝑊), 𝑓(𝑋) must be the same points as 𝑌, 𝑍, although we don’t 

know which one is which. But 𝑓 is one-to-one, so we do know that the two inputs do 

not both produce the same output. Therefore, one of the inputs will definitely produce 

an output of 𝑌. We can interchange the names of 𝑊, 𝑋 if necessary so that 𝑓(𝑋) = 𝑌. 

(21) We have shown that in this case, there exists a point 𝑋 such that 𝑓(𝑋) = 𝑌. 

Conclusion 

(11) We have shown that in every case, there exists a point 𝑋 such that 𝑓(𝑋) = 𝑌. 

End of Proof 

 

The following corollary follows immediately from Theorem 167 and Theorem 170 and 

Definition 117. 

 

Theorem 171 (corollary) Every isometry of the plane is also a transformation of the plane. 
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The Venn diagram at right summarizes the 

relationship between the types of maps of 

the plane that we have studied so far. 

 

Note that because every isometry of the 

plane is a transformation of the plane, we 

know that every isometry of the plane will 

have an inverse. This fact could be stated 

as a quick corollary of the theorem just 

proved. But instead, I will combine it with 

another fact as part of the following 

theorem.  
 

Theorem 172 Every isometry of the plane has an inverse that is also an isometry. 

 

Proof 

(1) Suppose that 𝑓 is an isometry of the plane. 

(2) Then 𝑓 is a transformation of the plane (Justify) and so it has an inverse 𝑓−1 that is also a 

transformation of the plane. (Justify) That is, both 𝑓 and 𝑓−1 are transformations of the 

plane. 

(3) Let 𝑃, 𝑄 be any two points. Then 

 

𝑑(𝑓−1(𝑃), 𝑓−1(𝑄)) = 𝑑 (𝑓(𝑓−1(𝑃)), 𝑓(𝑓−1(𝑄)))  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦) 

= 𝑑(𝑃, 𝑄)  (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 
 

(4) So 𝑓−1 preserves distance. That is, 𝑓−1 is also an isometry. 

End of Proof 

 

15.8. The set of isometries of the plane is a group 
In Section 15.6, we proved that the set of transformations of the plane, with the operation of 

composition, is a group (Theorem 165). In this section, we will prove the same for the set of 

isometries. 

 

Theorem 173 the pair (𝐼,∘) consisting of the set of Isometries of the Plane and the operation of 

composition of functions, is a group. 

 

Proof of the theorem 

Part (0): Prove that ∘ is a binary operation on the set 𝑰. 

To prove that ∘ is a binary operation on the set 𝐼, we must prove that if 𝑓 and 𝑔 are elements 

of 𝐼, then 𝑓 ∘ 𝑔 is also an element of 𝐼. That is, we must show that if 𝑓 and 𝑔 are isometries 

of the plane, then 𝑓 ∘ 𝑔 is also an isometry of the plane. But this was proven in Theorem 166.  

Part 1: Prove that the binary operation ∘ on the set 𝑰 is associative. 

In Theorem 161 we proved that function composition is associative. Isometries of the plane 

are just a particular kind of function. Therefore composition of isometries is associative. 

Part 2: Prove that there exists an identity element in the set 𝑰. 

Isometries of the Plane 

Transformations of the Plane 

Maps of the Plane 
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The  map 𝑖𝑑: 𝒫 → 𝒫 introduced in Definition 119 is an isometry of the plane. It is also an 

identity map in the sense of composition of maps of the plane. That is, for any 𝑓 that is a map 

of the plane, the equations 𝑓 ∘ 𝑖𝑑 = 𝑓 and 𝑖𝑑 ∘ 𝑓 = 𝑓 are both true.  

Part 3: Prove that there is an inverse for each element. 

Theorem 172 tells us that every isometry of the plane has an inverse that is alsO an isometry. 

In the context of Theorem 172, the inverse of a function 𝑓 is a function called 𝑓−1 that has 

the following property: 

 

For every 𝑄 ∈ 𝒫, the equations 𝑓−1 ∘ 𝑓(𝑄) = 𝑄 and 𝑓 ∘ 𝑓−1(𝑄) = 𝑄 are both true. 

 

In our present context, the inverse of a function 𝑓 is a function called 𝑓−1 that has this 

property: 

𝑓−1 ∘ 𝑓 = 𝑖𝑑 and 𝑓 ∘ 𝑓−1 = 𝑖𝑑 

We see that the two properties mean the same thing. That is, the kind of inverse that is 

guaranteed by Theorem 172 is equivalent to the kind of inverse that we need for a binary 

operation. 

End of Proof 
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Theorem 174 Isometries of the plane preserve lines. 

If 𝐿 is a line and 𝑓: 𝒫 → 𝒫 is an isometry, then the image 𝑓(𝐿) is also a line. 

Proof 

(1) Suppose that 𝐿 is a line and 𝑓: 𝒫 → 𝒫 is an isometry. 

(2) There exist two distinct points 𝐴, 𝐵 on line 𝐿. (Justify.) 

(3) 𝑓(𝐴) ≠ 𝑓(𝐵). (Justify.) 

(4) There is a unique line passing through points 𝑓(𝐴) and 𝑓(𝐵). (Justify.) Call this line 𝑀. 

 

Our goal now is to prove that 𝑓(𝐿) = 𝑀. This is a statement about equality of two sets. To 

prove it, we must prove that 𝑓(𝐿) ⊂ 𝑀 and that 𝑀 ⊂ 𝑓(𝐿). 

 

Part 1: Prove that 𝒇(𝑳) ⊂ 𝑴. 

(5) To prove that 𝑓(𝐿) ⊂ 𝑀, we must show that if 𝑃 ∈ 𝐿 then 𝑓(𝑃) ∈ 𝑀. 

(6) In the case the 𝑃 = 𝐴 or 𝑃 = 𝐵, we already know that 𝑓(𝑃) ∈ 𝑀 because of the way that 

we defined line 𝑀. 

(7) So suppose that 𝐴, 𝐵, 𝑃 are distinct points on 𝐿. 

(8) Then 𝑓(𝐴), 𝑓(𝐵), 𝑓(𝑃) are distinct, collinear points. (Justify.) So point 𝑓(𝑃) lies on line 

𝑀. 

Part 2: Prove that 𝑴 ⊂ 𝒇(𝑳). 

 

To prove that 𝑀 ⊂ 𝑓(𝐿), we must show that if 𝑄 ∈ 𝑀 then there exists a point 𝑃 ∈ 𝐿 such 

that 𝑓(𝑃) = 𝑄. 

 

(9) In the case the 𝑄 = 𝑓(𝐴) or 𝑄 = 𝑓(𝐵), then we’re done: we can let 𝑃 = 𝐴 or 𝑃 = 𝐵.  

(10) So suppose that 𝑓(𝐴), 𝑓(𝐵), 𝑄 are distinct points on 𝑀. 

(11) The isometry 𝑓 has an inverse 𝑓−1 that is also an isometry. (Justify.) 
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(12) Then 𝑓−1(𝑓(𝐴)), 𝑓−1(𝑓(𝐵)), 𝑓−1(𝑄) are distinct, collinear points. (Justify.) So point 

𝑓(𝑃) lies on line 𝑀. That is, 𝐴, 𝐵, 𝑓−1(𝑄) are distinct, collinear points. (Justify.) So 

point 𝑓−1(𝑄) lies on line 𝐿. 

(13) Let 𝑃 = 𝑓−1(𝑄). Then 𝑃 lies on 𝐿 and 𝑓(𝑃) = 𝑓(𝑓−1(𝑄)) = 𝑄.  

Conclusion of cases 

(14) We see that in either case, there exists a point 𝑃 ∈ 𝐿 such that 𝑓(𝑃) = 𝑄. 

Conclusion of Proof 

(15) We have proven that 𝑓(𝐿) ⊂ 𝑀 and that 𝑀 ⊂ 𝑓(𝐿). Conclude that 𝑓(𝐿) = 𝑀. 

End of Proof 

 

Here is an analogous theorem for circles. 

 

Theorem 175 Isometries of the plane preserve circles. 

If 𝑓: 𝒫 → 𝒫 is an isometry, then the image of a circle is a circle with the same radius. 

More specifically, the image 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) is the circle 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). 

Proof 

(1) Suppose that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) is given and that 𝑓: 𝒫 → 𝒫 preserves distance. 

 

Our goal is to prove that 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). This is a statement about 

equality of sets. To prove it, we must prove that 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) ⊂ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) and that 

𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) ⊂ 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). 
 

Part 1: Show that 𝒇(𝑪𝒊𝒓𝒄𝒍𝒆(𝑷, 𝒓)) ⊂ 𝑪𝒊𝒓𝒄𝒍𝒆(𝒇(𝑷), 𝒓). 

To show that 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) ⊂ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟), we must show that if 𝑋 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟), 

then 𝑓(𝑋) ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). 

 

(2) Suppose that 𝑋 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟). 

(3) Then 

𝑟 = 𝑑(𝑋, 𝑃)     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑋 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒) 
= 𝑑(𝑓(𝑋), 𝑓(𝑃))     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

(4) So 𝑓(𝑋) ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). (by (3)) 

End of Proof Part 1 

 

Part 2: Show that 𝑪𝒊𝒓𝒄𝒍𝒆(𝒇(𝑷), 𝒓) ⊂ 𝒇(𝑪𝒊𝒓𝒄𝒍𝒆(𝑷, 𝒓)). 

To show that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) ⊂ 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)), we must show that if 𝑌 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟), 

then there exists a point 𝑋 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) such that 𝑓(𝑋) = 𝑌. 

 

(5) Suppose that 𝑌 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). 

(6) The isometry 𝑓 has an inverse 𝑓−1 that is also an isometry. (Justify.) 

(7) Observe that 

 

𝑟 = 𝑑(𝑦, 𝑓(𝑝))  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑌 𝑖𝑠 𝑜𝑛 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟)) 

= 𝑑 (𝑓−1(𝑌), 𝑓−1(𝑓(𝑃)))  (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓−1 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦) 

= 𝑑(𝑓−1(𝑌), 𝑃)  (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 
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(8) So point 𝑓−1(𝑌) lies on 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟). Let 𝑋 = 𝑓−1(𝑌). Then 𝑋 lies on 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) and 

𝑓(𝑋) = 𝑓(𝑓−1(𝑌)) = 𝑌.  

(9) We have shown that for every 𝑌 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟), there exists a point 𝑋 ∈ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) 

such that 𝑓(𝑋) = 𝑌. This shows that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) ⊂ 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). 

End of Proof Part 2 

 

Conclusion of Proof 

(10) We have shown that 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) ⊂ 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) and that 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟) ⊂

𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). This proves that 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). 

End of Proof 

 

It turns out that isometries of the plane can be completely determined by the outputs that they 

produce when three non-collinear points are used as inputs. The following theorem is about the 

situation where the three non-collinear input points are fixed points. 

 

Theorem 176 If an isometry has three non-collinear fixed points, then the isometry is the 

identity map. 

Proof 

(1) Suppose that 𝑓: 𝒫 → 𝒫 is an isometry with three non-collinear fixed points 𝐴, 𝐵, 𝐶. 

(2) Let 𝑄 be any point. (We must show that 𝑓(𝑄) = 𝑄.) 

(3) Assume that 𝑓(𝑄) ≠ 𝑄. 

(4) Note that 𝑄 is not any of the points 𝐴, 𝐵, 𝐶, because they are all fixed points. 

(5) Observe that  

𝑑(𝐴, 𝑄) = 𝑑(𝑓(𝐴), 𝑓(𝑄))     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓 𝑖𝑠 𝑎𝑛 𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦) 

= 𝑑(𝐴, 𝑓(𝑄))     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝐴 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡) 

That is, point 𝐴 is equidistant from points 𝑄 and 𝑓(𝑄). 

(6) Therefore, 𝐴 lies on the line that is the perpendicular bisector of segment 𝑄𝑓(𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

(7) Similarly, we could show that point 𝐵 is equidistant from points 𝑄 and 𝑓(𝑄), so 𝐵 also 

lies on the line that is the perpendicular bisector of segment 𝑄𝑓(𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

(8) And we could show that point 𝐶 is equidistant from points 𝑄 and 𝑓(𝑄), so 𝐶 lies on the 

line that is the perpendicular bisector of segment 𝑄𝑓(𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

(9) We have shown that points 𝐴, 𝐵, 𝐶 all lie on the line that is the perpendicular bisector of 

segment 𝑄𝑓(𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

(10) Statement (9) contradicts statement (1) that says that points 𝐴, 𝐵, 𝐶 are non-collinear. 

Therefore, our assumption in step (3) was wrong. It must be that 𝑓(𝑄) = 𝑄. In other 

words, the map 𝑓 is the identity map. 

End of Proof 

 

The theorem just proved is the heart of the proof of the following theorem that essentially says 

that an isometry is completely determined by its image at three non-collinear fixed points. 

 

Note that the proof uses the trick described after Theorem 163. 

 

Theorem 177 If two isometries have the same images at three non-collinear fixed points, then 

the isometries are in fact the same isometry. 
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If 𝑓: 𝒫 → 𝒫 and 𝑔: 𝒫 → 𝒫 are isometries and 𝐴, 𝐵, 𝐶 are non-collinear points such that 

𝑓(𝐴) = 𝑔(𝐴) and 𝑓(𝐵) = 𝑔(𝐵) and 𝑓(𝐶) = 𝑔(𝐶), then 𝑓 = 𝑔. 

Proof 

(1) Suppose that 𝑓: 𝒫 → 𝒫 and 𝑔: 𝒫 → 𝒫 are isometries and 𝐴, 𝐵, 𝐶 are non-collinear points 

such that 𝑓(𝐴) = 𝑔(𝐴) and 𝑓(𝐵) = 𝑔(𝐵) and 𝑓(𝐶) = 𝑔(𝐶). 

(2) Let 𝑄 be any point. (We must show that 𝑓(𝑄) = 𝑔(𝑄).) 

(3) The map 𝑔 has an inverse 𝑔−1 that is also an isometry. (Justify.) 

(4) The map 𝑔−1 ∘ 𝑓 is also an isometry. (Justify.) 

(5) Observe that  

𝑔−1(𝑓(𝐴)) = 𝑔−1(𝑔(𝐴))     (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑓(𝐴) = 𝑔(𝐴)) 

= 𝐴     (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

That is, point 𝐴 is a fixed point of the isometry 𝑔−1 ∘ 𝑓. 

(6) Similarly, we could show that point 𝐵 is a fixed point of the isometry 𝑔−1 ∘ 𝑓. 

(8) And we could show that point 𝐶 is a fixed point of the isometry 𝑔−1 ∘ 𝑓. 

(9) We have shown that the non-collinear points 𝐴, 𝐵, 𝐶 are all fixed points of the isometry 

𝑔−1 ∘ 𝑓. Therefore, 𝑔−1 ∘ 𝑓 = 𝑖𝑑. (Justify.) 

(10) Similarly, we could introduce the the isometry 𝑓 ∘ 𝑔−1 and show that points 𝐴, 𝐵, 𝐶 are 

all fixed point of it. Therefore, 𝑓 ∘ 𝑔−1 = 𝑖𝑑. (Justify.) 

(11) Statements (9) and (10) tell us that 𝑔−1 must be the inverse of 𝑓. But 𝑔−1 is the inverse 

of 𝑔. So 𝑓 = 𝑔. 

End of Proof 

 

 

Here is a simple example of the use of 

Theorem 177. 

 

For the lines 𝐽, 𝐾, 𝐿 shown, prove that 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 = 𝑀𝐾. 

 

 

 
 

Solution: For each map 𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 and 𝑀𝐾, we will consider the images of the non-collinear 

points 𝐴, 𝐵, 𝐶. 

 

𝐴 

𝐽 

𝐾 

𝐶 

𝐿 

𝐵 

𝜃 
𝜃 
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(i) Describe the trajectories of the three 

points 𝐴, 𝐵, 𝐶 under the mapping 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 

 

The trajectory of point 𝐴 under the map 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 is: 

𝐴 → 𝐴 → 𝐴 → 𝐴 

 

The trajectory of point 𝐵 under the map 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 is: 

𝐵 → 𝐵′ → 𝐵′′ → 𝐵 
 

The trajectory of point 𝐶 under the map 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 is: 

𝐶 → 𝐶 → 𝐶′′ → 𝐶′′ 
 

 
(ii) Now Describe the trajectories of the 

three points 𝐴, 𝐵, 𝐶 under the mapping 

𝑀𝐾 
 

The trajectory of point 𝐴 under the map 

𝑀𝐾 is: 

𝐴 → 𝐴 
 

The trajectory of point 𝐵 under the map 

𝑀𝐾 is: 

𝐵 → 𝐵 
 

The trajectory of point 𝐶 under the map 

𝑀𝐾 is: 

𝐶 → 𝐶′′ 
 

 
 

(iii) Conclusion: We see that 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐴) = 𝑀𝐾(𝐴) 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐵) = 𝑀𝐾(𝐵) 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐶) = 𝑀𝐾(𝐶) 

 

Therefore, 𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 = 𝑀𝐾 by Theorem 177. 

  

𝐴 

𝐽 

𝐾 

𝐶 

𝐿 

𝐵 

𝜃 
𝜃 

𝐵′′ 

𝐶′′ 

𝐵′ 

𝐴 

𝐽 

𝐾 

𝐶 

𝐿 

𝐵 

𝜃 
𝜃 

𝐶′′ 
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15.10. Exercises 
[1] (a) Prove that the dilation map 𝐷𝐶,𝑘 (introduced in Definition 121) is bijective. 

(b) What is 𝐷𝐶,𝑘
−1? Explain. 

 

[2] (a) Prove the existence and uniqueness of the point 𝑄′ described in the definition of 𝑀𝐿, the 

reflection in line 𝐿 (introduced in Definition 122). 

 

(b) Prove that the reflection 𝑀𝐿 is bijective. 

 

(c) What is 𝑀𝐿
−1? Explain. 

 

 

[3] Prove that the reflection 𝑀𝐿 is an isometry. 

 

 

[4] Prove that the dilation 𝐷𝐶,𝑘 is not an isometry. 

 

 

[5] Justify the steps in the proof of Theorem 172, which states that every isometry of the plane 

has an inverse that is also an isometry. 

 

 

[6] In the proof of Theorem 176 (If an isometry has three non-collinear fixed points, then the 

isometry is the identity map.), step (3) is the assumption that 𝑓(𝑄) ≠ 𝑄. This fact does not get 

mentioned explicitly later in the proof. Explain where this fact is used. 

 

 

[7] For the lines 𝐽, 𝐾 and the non-collinear 

points 𝐴, 𝐵, 𝐶 shown, 

 

(a) Find the images of the three points 

𝐴, 𝐵, 𝐶 under the mapping 𝑀𝐾 ∘ 𝑀𝐽. That 

is, 

 

Find 𝑀𝐾 ∘ 𝑀𝐽(𝐴). 

Find 𝑀𝐾 ∘ 𝑀𝐽(𝐵). 

Find 𝑀𝐾 ∘ 𝑀𝐽(𝐶). 

 

(b) Based on your answer to (A), what is 

another name for the mapping 𝑀𝐾 ∘ 𝑀𝐽? 

Explain. (You might need to make up 

some notation. Go ahead.) 

 

  
 

  

𝐴 

𝐽 

𝐾 

𝐶 

𝐵 

𝜃 
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[8] For the parallel lines 𝐽, 𝐾 and the non-collinear 

points 𝐴, 𝐵, 𝐶 shown, 

 

(a) Find the images of the three points 𝐴, 𝐵, 𝐶 under 

the mapping 𝑀𝐾 ∘ 𝑀𝐽. That is, find 𝑀𝐾 ∘ 𝑀𝐽(𝐴) and 

find 𝑀𝐾 ∘ 𝑀𝐽(𝐵) and find 𝑀𝐾 ∘ 𝑀𝐽(𝐶). 

 

(b) Based on your answer to (A), what is another 

name for the mapping 𝑀𝐾 ∘ 𝑀𝐽? Explain. 

 

 

 

 

[9] For the lines 𝐽, 𝐾, 𝐿 and the non-

collinear points 𝐴, 𝐵, 𝐶 shown, 

 

(a) Find the images of the three points 

𝐴, 𝐵, 𝐶 under the mapping 

 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 

 

That is, find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐴) 

and find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐵) 

and find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐶). 
 

(b) Based on your answer to (A), what 

is another name for the mapping 

 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽? 

 

Explain. 

 
 

𝐴 
𝐽 

𝐾 

𝐶 

𝐵 

𝐴 

𝐽 

𝐾 

𝐿 

𝐵 

𝐶 
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[10] For the lines 𝐽, 𝐾, 𝐿 and the non-

collinear points 𝐴, 𝐵, 𝐶, 𝐷 shown, 

 

(a) Find the images of the four points 

𝐴, 𝐵, 𝐶, 𝐷 under the mapping 

 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽 

 

That is, find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐴) 

and find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐵) 

and find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐶) 

and find 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽(𝐷). 
 

(b) Based on your answer to (A), what 

is another name for the mapping 

 

𝑀𝐿 ∘ 𝑀𝐾 ∘ 𝑀𝐽? 

 

Explain.  
 

 

 

 

 

 

𝐴 

𝐽 

𝐾 
𝐿 

𝐵 

𝐷 

𝐶 
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Appendix 1: List of Definitions 
 

Definition 1: Interpretation of an axiom system (page 18) 

Suppose that an axiom system consists of the following four things 

 an undefined object of one type, and a set 𝐴 containing all of the objects of that type 

 an undefined object of another type, and a set 𝐵 containing all of the objects of that type 

 an undefined relation ℛ from set 𝐴 to set 𝐵 

 a list of axioms involving the primitive objects and the relation 

An interpretation of the axiom systems is the following three things 

 a designation of an actual set 𝐴′ that will play the role of set 𝐴 

 a designation of an actual set 𝐵′ that will play the role of set 𝐵 

 a designation of an actual relation ℛ′ from 𝐴′ to 𝐵′ that will play the role of the relation ℛ 

 

Definition 2: successful interpretation of an axiom system; model of an axiom system (page 20) 

To say that an interpretation of an axiom system is successful means that when the 

undefined terms and undefined relations in the axioms are replaced with the 

corresponding terms and relations of the interpretation, the resulting statements are all 

true. A model of an axiom system is an interpretation that is successful. 

 

Definition 3: isomorphic models of an axiom system (page 21) 

Two models of an axiom system are said to be isomorphic if it is possible to describe a 

correspondence between the objects and relations of one model and the objects and 

relations of the other model in a way that all corresponding relationships are preserved. 

 

Definition 4: consistent axiom system (page 21) 

An axiom system is said to be consistent if it is possible for all of the axioms to be true. 

The axiom system is said to be inconsistent if it is not possible for all of the axioms to be 

true. 

 

Definition 5: dependent and independent axioms (page 24) 

An axiom is said to be dependent if it is possible to prove that the axiom is true as a 

consequence of the other axioms. An axiom is said to be independent if it is not possible 

to prove that it is true as a consequence of the other axioms. 

 

Definition 6: independent axiom system (page 26) 

An axiom system is said to be independent if all of its axioms are independent. An axiom 

system is said to be not independent  if one or more of its axioms are not independent. 

 

Definition 7: complete axiom system (page 26) 

An axiom system is said to be complete if any two models of the axiom system are 

isomorphic. An axiom system is said to be not complete if there exist two models that are 

not isomorphic. 
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Definition 8: Alternate definition of a complete axiom system (page 28) 

An axiom system is said to be not complete if it is possible to write an additonal 

independent statement regarding the primitive terms and relations. (An additional 

independent statement is a statement S that is not one of the axioms and such that there is a 

model for the axiom system in which Statement S is true and there is also a model for the 

axiom system in which Statement S is false.) An axiom system is said to be complete if it is 

not possible to write such an additional independent statement. 

 

Definition 9: passes through (page 35) 

 words: Line L passes through point P. 

 meaning: Point P lies on line L. 

 

Definition 10: intersecting lines (page 35) 

 words: Line L intersects line M. 

 meaning: There exists a point (at least one point) that lies on both lines. 

 

Definition 11: parallel lines (page 35) 

 words: Line L is parallel to line M. 

 symbol: L||M. 

 meaning: Line L does not intersect line M. That is, there is no point that lies on both lines. 

 

Definition 12: collinear points (page 35) 

 words: The set of points {P1, P2, … , Pk} is collinear. 

 meaning: There exists a line L that passes through all the points. 

 

Definition 13: concurrent lines (page 36) 

 words: The set of lines {L1, L2, … , Lk} is concurrent. 

 meaning: There exists a point P that lies on all the lines. 

 

Definition 14: Abstract Model, Concrete Model, Relative Consistency, Absolute Consistency 

(page 51) 

 An abstract model of an axiom system is a model that is, itself, another axiom system. 

 A concrete model of an axiom system is a model that uses actual objects and relations. 

 An axiom system is called relatively consistent if an abstract model has been 

demonstrated. 

 An axiom system is called absolutely consistent if a concrete model has been 

demonstrated. 

 

Definition 15: the concept of duality and the dual of an axiomatic geometry (page 52) 

Given any axiomatic geometry with primitive objects point and line, primitive relation 

“the point lies on the line”, and defined relation “the line passes through the point”, one 

can obtain a new axiomatic geometry by making the following replacements. 

 

 Replace every occurrence of point in the original with line in the new axiom system. 

 Replace every occurrence of line in the original with point in the new axiom system. 

 Replace every occurrence of lies on in the original with passes through in the new. 

 Replace every occurrence of passes through in the original with lies on in the new. 
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The resulting new axiomatic geometry is called the dual of the original geometry. The 

dual geometry will have primitive objects line and point, primitive relation “the line 

passes through the point”, and defined relation “the point lies on the line.” Any theorem 

of the original axiom system can be translated as well, and the result will be a valid 

theorem of  the new dual axiom system. 

 

Definition 16: self-dual geometry (page 56) 

An axiomatic geometry is said to be self-dual if the statements of the dual axioms are true 

statements in the original geometry. 

 

Definition 17: The Axiom System for Neutral Geometry (page 61) 

Primitive Objects: point, line 

Primitive Relation: the point lies on the line 

Axioms of Incidence and Distance 

<N1> There exist two distinct points. (at least two) 

<N2> For every pair of distinct points, there exists exactly one line that both points 

lie on. 

<N3> For every line, there exists a point that does not lie on the line. (at least one) 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

<N5> (The Ruler Axiom) Every line has a coordinate function. 

Axiom of Separation 

<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets 

called half-planes, denoted 𝐻1 and 𝐻2, with the following three properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

Axioms of Angle measurement 

<N7> (Angle Measurement Axiom) There exists a function 𝑚: 𝒜 → (0,180), called 

the Angle Measurement Function. 

<N8> (Angle Construction Axiom) Let 𝐴𝐵       be a ray on the edge of the half-plane 𝐻. 

For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃       with point 

𝑃 in 𝐻 such that 𝑚(∠𝑃𝐴𝐵) = 𝑟. 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of ∠𝐵𝐴𝐶, then 

𝑚(∠𝐵𝐴𝐶) = 𝑚(∠𝐵𝐴𝐷) + 𝑚(∠𝐷𝐴𝐶). 

Axiom of Triangle Congruence 

<N10> (SAS Axiom) If there is a one-to-one correspondence between the vertices of 

two triangles, and two sides and the included angle of the first triangle are 

congruent to the corresponding parts of the second triangle, then all the 

remaining corresponding parts are congruent as well, so the correspondence is a 

congruence and the triangles are congruent. 

 

Definition 18: the unique line passing through two distinct points (page 63) 

words: line 𝑃, 𝑄 

symbol: 𝑃𝑄 ⃡     

usage: 𝑃 and 𝑄 are distinct points 
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meaning: the unique line that passes through both 𝑃 and 𝑄. (The existence and uniqueness of 

such a line is guaranteed by Axiom <N2>.) 

 

Definition 19: The set of all abstract points is denoted by the symbol 𝒫 and is called the plane. 

(page 69) 

 

Definition 20: abbreviated symbol for the distance between two points (page 69) 

abbreviated symbol: 𝑃𝑄 

meaning: the distance between points 𝑃 and 𝑄, that is, 𝑑(𝑃, 𝑄) 

 

Definition 21: Coordinate Function (page 70) 

Words: 𝑓 is a coordinate function on line 𝐿. 

Meaning: 𝑓 is a function with domain 𝐿 and codomain ℝ (that is, 𝑓: 𝐿 → ℝ) that has the 

following properties: 

(1) 𝑓 is a one-to-one correspondence. That is, 𝑓 is both one-to-one and onto. 

(2) 𝑓 “agrees with” the distance function 𝑑 in the following way: 

For all points 𝑃,𝑄 on line 𝐿, the equation |𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) is true. 

Additional Terminology: In standard function notation, the symbol 𝑓(𝑃) denotes the output 

of the coordinate function 𝑓 when the point 𝑃 is used as input. Note that 𝑓(𝑃) is a real 

number. The number 𝑓(𝑃) is called the coordinate of point 𝑃 on line 𝐿. 

Additional Notation: Because a coordinate function is tied to a particular line, it might be a 

good idea to have a notation for the coordinate function that indicates which line the 

coordinate function is tied to. We could write 𝑓𝐿 for a coordinate function on line 𝐿. With 

that notation, the symbol 𝑓𝐿(𝑃) would denote the coordinate of point 𝑃 on line 𝐿. But 

although it might be clearer, we do not use the symbol 𝑓𝐿. We just use the symbol 𝑓. 

 

Definition 22: Distance Function on the set of Real Numbers (page 72) 

Words: The Distance Function on the Set of Real Numbers 

Meaning: The function 𝑑ℝ: ℝ × ℝ → ℝ defined by 𝑑ℝ(𝑥, 𝑦) = |𝑥 − 𝑦|. 
 

Definition 23: betweenness for real numbers (page 97) 

words: “𝑦 is between 𝑥 and 𝑧”, where 𝑥, 𝑦, and 𝑧 are real numbers. 

symbol: 𝑥 ∗ 𝑦 ∗ 𝑧, where 𝑥, 𝑦, and 𝑧 are real numbers 

meaning: 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥. 

additional symbol: the symbol 𝑤 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧 means 𝑤 < 𝑥 < 𝑦 < 𝑧 or 𝑧 < 𝑦 < 𝑥 < 𝑤, etc. 

 

Definition 24: betweenness of points (page 100) 

words: “𝑄 is between 𝑃 and 𝑅”, where 𝑃, 𝑄, 𝑅 are points. 

symbol: 𝑃 ∗ 𝑄 ∗ 𝑅, where 𝑃, 𝑄, 𝑅 are points. 

meaning: Points 𝑃, 𝑄, 𝑅 are collinear, lying on some line 𝐿, and there is a coordinate 

function 𝑓 for line 𝐿 such that the real number coordinate for 𝑄 is between the real 

number coordinates of 𝑃 and 𝑅. That is, 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅). 

remark: By Theorem 14, we know that it does not matter which coordinate function is used 

on line 𝐿. The betweenness property of the coordinates of the three points will be the 

same regardless of the coordinate function used. 

additional symbol: The symbol 𝑃 ∗ 𝑄 ∗ 𝑅 ∗ 𝑆 means 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅) ∗ 𝑓(𝑆), etc. 
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Definition 25: segment, ray (page 102) 

words and symbols: “segment 𝐴, 𝐵”, denoted 𝐴𝐵̅̅ ̅̅ , and “ray 𝐴, 𝐵”, denoted 𝐴𝐵       

usage: 𝐴 and 𝐵 are distinct points.  

meaning: Let 𝑓 be a coordinate function for line 𝐴𝐵 ⃡     with the property that 𝑓(𝐴) = 0 and 𝑓(𝐵) 

is positive. (The existence of such a coordinate function is guaranteed by Theorem 

11 (Ruler Placement Theorem).) 

 Segment 𝐴𝐵̅̅ ̅̅  is the set 𝐴𝐵̅̅ ̅̅ = {𝑃 ∈ 𝐴𝐵 ⃡     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑓(𝑃) ≤ 𝑓(𝐵)}. 

 Ray 𝐴𝐵       is the set 𝐴𝐵      = {𝑃 ∈ 𝐴𝐵 ⃡     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑓(𝑃)}. 

additional terminology:  

 Points 𝐴 and 𝐵 are called the endpoints of segment 𝐴𝐵̅̅ ̅̅ . 

 Point 𝐴 is called the endpoint of ray 𝐴𝐵      . 

 The length of a segment is defined to be the distance between the endpoints. That is, 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑑(𝐴, 𝐵). As mentioned in Definition 20, many books use the symbol 

𝐴𝐵 to denote 𝑑(𝐴, 𝐵). Thus we have the following choice of notations: 

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑑(𝐴, 𝐵) = 𝐴𝐵 
 

Definition 26: Opposite rays are rays of the form 𝐵𝐴       and 𝐵𝐶       where 𝐴 ∗ 𝐵 ∗ 𝐶. (page 103) 

 

Definition 27: angle (page 103) 

words: “angle 𝐴, 𝐵, 𝐶” 

symbol: ∠𝐴𝐵𝐶 

usage: 𝐴, 𝐵, 𝐶 are non-collinear points.  

meaning: Angle 𝐴, 𝐵, 𝐶 is defined to be the following set: ∠𝐴𝐵𝐶 = 𝐵𝐴      ∪ 𝐵𝐶       

additional terminology: Point 𝐵 is called the vertex of the angle. Rays 𝐵𝐴       and 𝐵𝐶       are each 

called a side of the angle. 

 

Definition 28: triangle (page 104) 

words: “triangle 𝐴, 𝐵, 𝐶” 

symbol: Δ𝐴𝐵𝐶 

usage: 𝐴, 𝐵, 𝐶 are non-collinear points.  

meaning: Triangle 𝐴, 𝐵, 𝐶 is defined to be the following set: Δ𝐴𝐵𝐶 = 𝐴𝐵̅̅ ̅̅ ∪ 𝐵𝐶̅̅ ̅̅ ∪ 𝐶𝐴̅̅ ̅̅  

additional terminology: Points 𝐴, 𝐵, 𝐶 are each called a vertex of the triangle. Segments 𝐴𝐵̅̅ ̅̅  

and 𝐵𝐶̅̅ ̅̅  and 𝐶𝐴̅̅ ̅̅  are each called a side of the triangle. 

 

Definition 29: segment congruence (page 104) 

Two line segments are said to be congruent if they have the same length. The symbol ≅ is 

used to indicate this. For example 𝐴𝐵̅̅ ̅̅ ≅ 𝐶𝐷̅̅ ̅̅  means 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴𝐵̅̅ ̅̅ ) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝐷̅̅ ̅̅ ). Of course, 

this can also be denoted 𝑑(𝐴, 𝐵) = 𝑑(𝐶, 𝐷) or 𝐴𝐵 = 𝐶𝐷. 

 

Definition 30: reflexive property (page 105) 

words: Relation ℛ is reflexive. 

usage: ℛ is a relation on some set 𝐴.  

meaning: Element of set 𝐴 is related to itself. 

abbreviated version: For every 𝑥 ∈ 𝐴, the sentence ℛ𝑥𝑥  is true. 

More concise abbreviaton: ∀𝑥 ∈ 𝐴, ℛ𝑥𝑥  
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Definition 31: symmetric property (page 105) 

words: Relation ℛ is symmetric. 

usage: ℛ is a relation on some set 𝐴.  

meaning: If 𝑥 is related to 𝑦, then 𝑦 is related to 𝑥. 

abbreviated version: For every 𝑥, 𝑦 ∈ 𝐴, if ℛ𝑦𝑥  is true then ℛ𝑥𝑦  is also true. 

More concise abbreviaton: ∀𝑥, 𝑦 ∈ 𝐴, 𝑖𝑓 ℛ𝑦𝑥  𝑡ℎ𝑒𝑛 ℛ𝑥𝑦  

 

Definition 32: transitive property (page 105) 

words: Relation ℛ is transitive. 

usage: ℛ is a relation on some set 𝐴.  

meaning: If 𝑥 is related to 𝑦 and 𝑦 is related to 𝑧, then 𝑥 is related to 𝑧. 

abbreviated: For every 𝑥, 𝑦, 𝑧 ∈ 𝐴, if ℛ𝑦𝑥  is true and ℛ𝑧𝑦  is true, then ℛ𝑧𝑥  is also true. 

More concise abbreviaton: ∀𝑥, 𝑦 ∈ 𝐴, 𝑖𝑓 ℛ𝑦𝑥  𝑎𝑛𝑑 ℛ𝑧𝑦  𝑡ℎ𝑒𝑛 ℛ𝑧𝑥  

 

Definition 33: equivalence relation (page 105) 

words: Relation ℛ is an equivalence relation. 

usage: ℛ is a relation on some set 𝐴. 

meaning: ℛ is reflexive and symmetric and transitive. 

 

Definition 34: midpoint of a segment (page 110) 

Words: 𝑀 is a midpoint of Segment 𝐴, 𝐵. 

Meaning: 𝑀 lies on 𝐴𝐵 ⃡     and 𝑀𝐴 = 𝑀𝐵. 

 

Definition 35: convex set (page 118) 

 Without names: A set is said to be convex if for any two distinct points that are elements 

of the set, the segment that has those two points as endpoints is a subset of the set.  

 With names: Set 𝑆 is said to be convex if for any two distinct points 𝑃, 𝑄 ∈ 𝑆, the 

segment 𝑃𝑄̅̅ ̅̅ ⊂ 𝑆. 

 

Definition 36: same side, opposite side, edge of a half-plane. (page 119) 

Two points are said to lie on the same side of a given line if they are both elements of the 

same half-plane created by that line. The two points are said to lie on opposite sides of the 

line if one point is an element of one half-plane and the other point is an element of the other. 

The line itself is called the edge of the half-plane. 

 

Definition 37: Angle Interior (page 123) 

Words: The interior of ∠𝐴𝐵𝐶. 

Symbol:  𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) 

Meaning: The set of all points 𝐷 that satisfy both of the following conditions. 

Points 𝐷 and 𝐴 are on the same side of line 𝐵𝐶 ⃡    . 

Points 𝐷 and 𝐶 are on the same side of line 𝐴𝐵 ⃡    . 

Meaning abbreviated in symbols: 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) = 𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴) 

Related term: The exterior of ∠𝐴𝐵𝐶 is defined to be the set of points that do not lie on the 

angle or in its interior. 
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Definition 38: Triangle Interior (page 123) 

Words: The interior of Δ𝐴𝐵𝐶. 

Symbol:  𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) 

Meaning: The set of all points 𝐷 that satisfy all three of the following conditions. 

Points 𝐷 and 𝐴 are on the same side of line 𝐵𝐶 ⃡    . 

Points 𝐷 and 𝐵 are on the same side of line 𝐶𝐴 ⃡    . 

Points 𝐷 and 𝐶 are on the same side of line 𝐴𝐵 ⃡    . 

Meaning abbreviated in symbols: 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶) = 𝐻𝐴𝐵 ⃡    (𝐶) ∩ 𝐻𝐵𝐶 ⃡    (𝐴) ∩ 𝐻𝐶𝐴 ⃡    (𝐵). 

Related term: The exterior of Δ𝐴𝐵𝐶 is defined to be the set of points that do not lie on the 

triangle or in its interior. 

 

Definition 39: quadrilateral (page 129) 

words: “quadrilateral 𝐴, 𝐵, 𝐶, 𝐷” 

symbol: □𝐴𝐵𝐶𝐷 

usage: 𝐴, 𝐵, 𝐶, 𝐷 are distinct points, no three of which are collinear, and such that the segments 

𝐴𝐵̅̅ ̅̅ , 𝐵𝐶̅̅ ̅̅ , 𝐶𝐷̅̅ ̅̅ , 𝐷𝐴̅̅ ̅̅  intersect only at their endpoints. 

meaning: quadrilateral 𝐴, 𝐵, 𝐶, 𝐷 is the set □𝐴𝐵𝐶𝐷 = 𝐴𝐵̅̅ ̅̅ ∪ 𝐵𝐶̅̅ ̅̅ ∪ 𝐶𝐷̅̅ ̅̅ ∪ 𝐷𝐴̅̅ ̅̅  

additional terminology: Points 𝐴, 𝐵, 𝐶, 𝐷 are each called a vertex of the quadrilateral. 

Segments 𝐴𝐵̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  and 𝐷𝐴̅̅ ̅̅  are each called a side of the quadrilateral. 

Segments 𝐴𝐶̅̅ ̅̅  and 𝐵𝐷̅̅ ̅̅  are each called a diagonal of the quadrilateral. 

 

Definition 40: convex quadrilateral (page 132) 

A convex quadrilateral is one in which all the points of any given side lie on the same side of 

the line determined by the opposite side. A quadrilateral that does not have this property is 

called non-convex. 

 

Definition 41: The set of all abstract angles is denoted by the symbol 𝒜. (page 139) 

 

Definition 42: adjacent angles (page 141) 

Two angles are said to be adjacent if they share a side but have disjoint interiors. That is, the 

two angles can be written in the form ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶, where point 𝐶 is not in the interior 

of ∠𝐴𝐵𝐷 and point 𝐴 is not in the interior of ∠𝐷𝐵𝐶.  

 

Definition 43: angle bisector (page 142) 

An angle bisector is a ray that has its endpoint at the vertex of the angle and passes through a 

point in the interior of the angle, such that the two adjacent angles created have equal 

measure. That is, for an angle ∠𝐴𝐵𝐶, a bisector is a ray 𝐵𝐷        such that 𝐷 ∈ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟(∠𝐴𝐵𝐶) 

and such that 𝑚(∠𝐴𝐵𝐷) = 𝑚(∠𝐷𝐵𝐶). 

 

Definition 44: linear pair (page 144) 

Two angles are said to be a linear pair if they share one side, and the sides that they do not 

share are opposite rays. That is, if the two angles can be written in the form ∠𝐴𝐵𝐷 and 

∠𝐷𝐵𝐶, where 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Definition 45: vertical pair (page 146) 

A vertical pair is a pair of angles with the property that the sides of one angle are the opposite 

rays of the sides of the other angle.  
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Definition 46: acute angle, right angle, obtuse angle (page 149) 

An acute angle is an angle with measure less than 90. 

A right angle is an angle with measure 90. 

An obtuse angle is an angle with measure greater than 90. 

 

Definition 47: perpendicular lines (page 149) 

Two lines are said to be perpendicular if there exist two rays that lie in the lines and whose 

union is a right angle. The symbol 𝐿 ⊥ 𝑀 is used to denote that lines 𝐿 and 𝑀 are 

perpendicular.  

 

Definition 48: perpendicular lines, segments, rays (page 149) 

Suppose that Object 1 is a line or a segment or a ray and that Object 2 is a line or a segment 

or a ray. Object 1 is said to be perpendicular to Object 2 if the line that contains Object 1 is 

perpendicular to the line that contains Object 2 by the definition of perpendicular lines in the 

previous definition. The symbol 𝐿 ⊥ 𝑀 is used to denote that objects 𝐿 and 𝑀 are 

perpendicular. 

 

Definition 49: angle congruence (page 152) 

Two angles are said to be congruent if they have the same measure. The symbol ≅ is used to 

indicate this. For example ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹 means 𝑚(∠𝐴𝐵𝐶) = 𝑚(∠𝐷𝐸𝐹).  

 

Definition 50: symbol for equality of two sets (found on page 157) 

Words: 𝑆 𝑒𝑞𝑢𝑎𝑙𝑠 𝑇. 

Symbol: 𝑆 = 𝑇. 

Usage: 𝑆 and 𝑇 are sets. 

Meaning: 𝑆 and 𝑇 are the same set. That is, every element of set 𝑆 is also an element of set 

𝑇, and vice-versa. 

 

Definition 51: function, domain, codomain, image, machine diagram, correspondence (found on 

page 157) 

Symbol: 𝑓: 𝐴 → 𝐵  

Spoken: “𝑓 is a function that maps 𝐴 to 𝐵.” 

Usage: 𝐴 and 𝐵 are sets. Set 𝐴 is called the domain and set 𝐵 is called the codomain. 

Meaning: 𝑓 is a machine that takes an element of set 𝐴 as input and produces an element of 

set 𝐵 as output. 

More notation: If an element 𝑎 ∈ 𝐴 is used as the input to the function , then the symbol 

𝑓(𝑎) is used to denote the corresponding output. The output 𝑓(𝑎) is called the 

image of 𝑎 under the map 𝑓. 

Machine Diagram: 

   

input output 

𝑎 
𝑓 

Domain: 

the set 𝐴 

Codomain: 

the set 𝐵 

𝑓(𝑎) 
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Additional notation:  If 𝑓 is both one-to-one and onto (that is, if 𝑓 is a bijection), then the 

symbol 𝑓: 𝐴 ↔ 𝐵 will be used. In this case, 𝑓 is called a correspondence between 

the sets 𝐴 and 𝐵. 

 

Definition 52: Correspondence between vertices of two triangles (found on page 159) 

Words: “𝑓  is a correspondence between the vertices of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹.” 

Meaning: 𝑓 is a one-to-one, onto function with domain {𝐴, 𝐵, 𝐶} and codomain {𝐷, 𝐸, 𝐹}. 
 

Definition 53: corresponding parts of two triangles (found on page 160) 

Words: Corresponding parts of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

Usage: A correspondence between the vertices of triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 has been given. 

Meaning: As discussed above, if a correspondence between the vertices of triangles Δ𝐴𝐵𝐶 

and Δ𝐷𝐸𝐹 has been given, then there is an automatic correspondence between the 

sides of triangle Δ𝐴𝐵𝐶 and and the sides of triangle Δ𝐷𝐸𝐹, and also between the 

angles of triangle Δ𝐴𝐵𝐶 and the angles of Δ𝐷𝐸𝐹, For example, if the correspondence 

between vertices were (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹), then corresponding parts would be pairs 

such as the pair of sides 𝐴𝐵̅̅ ̅̅ ↔ 𝐷𝐸̅̅ ̅̅  and the pair of angles ∠𝐴𝐵𝐶 ↔ ∠𝐷𝐸𝐹. 

 

Definition 54: triangle congruence (found on page 160) 

To say that two triangles are congruent means that there exists a correspondence between the 

vertices of the two triangles such that corresponding parts of the two triangles are congruent. 

If a correspondence between vertices of two triangles has the property that corresponding 

parts are congruent, then the correspondence is called a congruence. That is, the expression a 

congruence refers to a particular correspondence of vertices that has the special property that 

corresponding parts of the triangles are congruent. 

 

Definition 55: symbol for a congruence of two triangles (found on page 160) 

Symbol: Δ𝐴𝐵𝐶 ≅ Δ𝐷𝐸𝐹. 

Meaning: The correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) of vertices is a congruence. 

 

Definition 56: scalene, isosceles, equilateral, equiangular triangles (found on page 164) 

A scalene triangle is one in which no two sides are congruent. 

An isosceles triangle is one in which at least two sides are congruent. 

An equilateral triangle is one in which all three sides are congruent. 

An equiangular triangle is one in which all three angles are congruent. 

 

Definition 57: exterior angle, remote interior angle (found on page 170) 

An exterior angle of a triangle is an angle that forms a linear pair with one of the angles of 

the triangle. Each of the two other angles of the triangle is called a remote interior angle for 

that exterior angle. For example, a triangle Δ𝐴𝐵𝐶 has six exterior angles. One of these is 

∠𝐶𝐵𝐷, where 𝐷 is a point such that 𝐴 ∗ 𝐵 ∗ 𝐷. For the exterior angle ∠𝐶𝐵𝐷, the two remote 

interior angles are ∠𝐴𝐶𝐵 and ∠𝐶𝐴𝐵. 

 

Definition 58: right triangle, and hypotenuse and legs of a right triangle (found on page 180) 

A right triangle is one in which one of the angles is a right angle. Recall that Theorem 60 

states that if a triangle has one right angle, then the other two angles are acute, so there can 

only be one right angle in a right triangle. In a right triangle, the side opposite the right angle 
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is called the hypotenuse of the triangle. Each of the other two sides is called a leg of the 

triangle. 

 

Definition 59: altitude line, foot of an altitude line, altitude segment (found on page 181) 

An altitude line of a triangle is a line that passes through a vertex of the triangle and is 

perpendicular to the opposite side. (Note that the altitude line does not necessarily have to 

intersect the opposite side to be perpendicular to it. Also note that Theorem 66 in the 

previous chapter tells us that there is exactly one altitude line for each vertex.) The point of 

intersection of the altitude line and the line determined by the opposite side is called the foot 

of the altitude line. An altitude segment has one endpoint at the vertex and the other endpoint 

at the foot of the altitude line drawn from that vertex. For example, in triangle Δ𝐴𝐵𝐶, an 

altitude line from vertex 𝐴 is a line 𝐿 that passes through 𝐴 and is perpendicular to line 𝐵𝐶 ⃡    . 

The foot of altitude line 𝐿 is the point 𝐷 that is the intersection of line 𝐿 and line 𝐵𝐶 ⃡    . The 

altitude segment from vertex 𝐴 is the segment 𝐴𝐷̅̅ ̅̅ . Point 𝐷 can also be called the foot of the 

altitude segment 𝐴𝐷̅̅ ̅̅ . 

 

Definition 60: transversal (found on page 185) 

Words: Line 𝑇 is transversal to lines 𝐿 and 𝑀. 

Meaning: Line 𝑇 intersects 𝐿 and 𝑀 in distinct points. 

 

Definition 61: alternate interior angles, corresponding angles, interior angles on the same side of 

the transversal (found on page 185) 

Usage: Lines 𝐿, 𝑀, and transversal 𝑇 are given. 

Labeled Points: 

Let 𝐵 be the intersection of lines 𝑇 and 𝐿, and let 𝐸 be the intersection of lines 𝑇 and 𝑀. (By 

definition of transversal, 𝐵 and 𝐸 are not the same point.) By Theorem 15, there exist points 

𝐴 and 𝐶 on line 𝐿 such that 𝐴 ∗ 𝐵 ∗ 𝐶, points 𝐷 

and 𝐹 on line 𝑀 such that 𝐷 ∗ 𝐸 ∗ 𝐹, and points 

𝐺 and 𝐻 on line 𝑇 such that 𝐺 ∗ 𝐵 ∗ 𝐸 and 𝐵 ∗
𝐸 ∗ 𝐻. Without loss of generality, we may 

assume that points 𝐷 and 𝐹 are labeled such 

that it is point 𝐷 that is on the same side of line 

𝑇 as point 𝐴. (See the figure at right.) 

Meaning: 

Special names are given to the following eight pairs of angles: 

 The pair {∠𝐴𝐵𝐸, ∠𝐹𝐸𝐵} is a pair of alternate interior angles. 

 The pair {∠𝐶𝐵𝐸, ∠𝐷𝐸𝐵} is a pair of alternate interior angles. 

 The pair {∠𝐴𝐵𝐺, ∠𝐷𝐸𝐺} is a pair of corresponding angles. 

 The pair {∠𝐴𝐵𝐻, ∠𝐷𝐸𝐻} is a pair of corresponding angles. 

 The pair {∠𝐶𝐵𝐺, ∠𝐹𝐸𝐺} is a pair of corresponding angles. 

 The pair {∠𝐶𝐵𝐻, ∠𝐹𝐸𝐻} is a pair of corresponding angles. 

 The pair {∠𝐴𝐵𝐸, ∠𝐷𝐸𝐵} is a pair of interior angles on the same side of the transversal. 

 The pair {∠𝐶𝐵𝐸, ∠𝐹𝐸𝐵} is a pair of interior angles on the same side of the transversal. 

  

𝐴 𝐵 𝐶 
𝐹 𝐸 𝐷 

𝐻 

𝐺 
𝐿 

𝑀 

𝑇 



 341 

Definition 62: special angle property for two lines and a transversal (found on page 188) 

Words: Lines 𝐿 and 𝑀 and transversal 𝑇 have the special angle property. 

Meaning: The eight statements listed in Theorem 73 are true. That is, each pair of alternate 

interior angles is congruent. And each pair of corresponding angles is congruent. And each 

pair of interior angles on the same side of the transversal has measures that add up to 180. 

 

Definition 63: circle, center, radius, radial segment, interior, exterior (found on page 195) 

Symbol: 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) 

Spoken: the circle centered at 𝑃 with radius 𝑟 

Usage: 𝑃 is a point and 𝑟 is a positive real number. 

Meaning: The following set of points: 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 = 𝑟} 

Additional Terminology: 

 The point 𝑃 is called the center of the circle. 

 The number  𝑟 is called the radius of the circle. 

 The interior is the set 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 < 𝑟}.  

 The exterior is the set 𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) = {𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑄 > 𝑟}. 

 Two circles are said to be congruent if they have the same radius. 

 Two circles are said to be concentric if they have the same center. 

 

Definition 64: Tangent Line and Secant Line for a Circle (found on page 195) 

A tangent line for a circle is a line that intersects the circle at exactly one point. 

A secant line for a circle is a line that intersects the circle at exactly two points. 

 

Definition 65: chord, diameter segment, diameter, radial segment (found on page 197) 

 A chord of a circle is a line segment whose endpoints both lie on the circle. 

 A diameter segment for a circle is a chord that passes through the center of the circle. 

 The diameter of a circle is the number 𝑑 = 2𝑟. That is, the diameter is the number that is 

the length of a diameter segment. 

 A radial segment for a circle is a segment that has one endpoint at the center of the circle 

and the other endpoint on the circle. (So that the radius is the number that is the length of 

a radial segment.) 

 

Definition 66: median segment and median line of a triangle (found on page 199) 

A median line for a triangle is a line that passes through a vertex and the midpoint of the 

opposite side. A median segment for triangle is a segment that has its endpoints at those points. 

 

Definition 67: incenter of a triangle (found on page 203) 

The incenter of a triangle in Neutral Geometry is defined to be the point where the three 

angle bisectors meet. (Such a point is guaranteed to exist by Theorem 92.) 

 

Definition 68: inscribed circle (found on page 204) 

An inscribed circle for a polygon is a circle that has the property that each of the sides of the 

polygon is tangent to the circle. 

 

Definition 69: tangent circles (found on page 205) 

Two circles are said to be tangent to each other if they intersect in exactly one point. 

 



Appendix 1: List of Definitions  page 342 

Definition 70: The Axiom System for Euclidean Geometry (found on page 209) 

Primitive Objects: point, line 

Primitive Relation: the point lies on the line 

Axioms of Incidence and Distance 

<N1> There exist two distinct points. (at least two) 

<N2> For every pair of distinct points, there exists exactly one line that both points 

lie on. 

<N3> For every line, there exists a point that does not lie on the line. (at least one) 

<N4> (The Distance Axiom) There exists a function 𝑑: 𝒫 × 𝒫 → ℝ, called the 

Distance Function on the Set of Points. 

<N5> (The Ruler Axiom) Every line has a coordinate function. 

Axiom of Separation 

<N6> (The Plane Separation Axiom) For every line 𝐿, there are two associated sets 

called half-planes, denoted 𝐻1 and 𝐻2, with the following three properties: 

(i) The three sets 𝐿, 𝐻1, 𝐻2 form a partition of the set of all points. 

(ii) Each of the half-planes is convex. 

(iii) If point 𝑃 is in 𝐻1 and point 𝑄 is in 𝐻2, then segment 𝑃𝑄̅̅ ̅̅  intersects line 𝐿. 

Axioms of Angle measurement 

<N7> (Angle Measurement Axiom) There exists a function 𝑚: 𝒜 → (0,180), called 

the Angle Measurement Function. 

<N8> (Angle Construction Axiom) Let 𝐴𝐵       be a ray on the edge of the half-plane 𝐻. 

For every number 𝑟 between 0 and 180, there is exactly one ray 𝐴𝑃       with point 

𝑃 in 𝐻 such that 𝑚(∠𝑃𝐴𝐵) = 𝑟. 

<N9> (Angle Measure Addition Axiom) If 𝐷 is a point in the interior of ∠𝐵𝐴𝐶, then 

𝑚(∠𝐵𝐴𝐶) = 𝑚(∠𝐵𝐴𝐷) + 𝑚(∠𝐷𝐴𝐶). 

Axiom of Triangle Congruence 

<N10> (SAS Axiom) If there is a one-to-one correspondence between the vertices of 

two triangles, and two sides and the included angle of the first triangle are 

congruent to the corresponding parts of the second triangle, then all the 

remaining corresponding parts are congruent as well, so the correspondence is a 

congruence and the triangles are congruent. 

Euclidean Parallel Axiom 

<EPA> (EPA Axiom) For any line 𝐿 and any point 𝑃 not on 𝐿, there is not more than 

one line 𝑀 that passes through 𝑃 and is parallel to 𝐿. 

 

Definition 71: circumcenter of a triangle (found on page 215) 

The circumcenter of a triangle in Euclidean Geometry is defined to be the point where the 

perpendicular bisectors of the three sides intersect. (Such a point is guaranteed to exist by 

Theorem 106) 

 

Definition 72: a circle circumscribes a triangle (found on page 215) 

We say that a circle circumscribes a triangle if the circle passes through all three vertices of 

the triangle. 

 

Definition 73: parallelogram (found on page 215) 

A parallelogram is a quadrilateral with the property that both pairs of opposite sides are 

parallel. 
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Definition 74: midsegment of a triangle (found on page 217) 

A midsegment of a triangle is a line segment that has endpoints at the midpoints of two of the 

sides of the triangle. 

 

Definition 75: medial triangle (found on page 217) 

Words: Triangle #1 is the medial triangle of triangle #2. 

Meaning: The vertices of triangle #1 are the midpoints of the sides of triangle #2. 

Additional Terminology: We will refer to triangle #2 as the outer triangle. 

 

Definition 76: Orthocenter of a triangle in Euclidean Geometry (found on page 219) 

The orthocenter of a triangle in Euclidean Geometry is a point where the three altitude lines 

intersect. (The existence of such a point is guaranteed by Theorem 113.) 

 

Definition 77: Equally-Spaced Parallel Lines in Euclidean Geometry (found on page 220) 

Words: lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 are equally-spaced parallel lines. 

Meaning: The lines are parallel and 𝐿1𝐿2 = 𝐿2𝐿3 = ⋯ = 𝐿𝑛−1𝐿𝑛. 

 

Definition 78: Centroid of a triangle in Euclidean Geometry (found on page 222) 

The centroid of a triangle in Euclidean Geometry is the point where the three medians 

intersect. (Such a point is guaranteed to exist by Theorem 116.) 

 

Definition 79: Parallel Projection in Euclidean Geometry (found on page 225) 

Symbol: 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 

Usage: 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀. 

Meaning: 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇 is a function whose domain is the set of points on line 𝐿 and whose 

codomain is the set of points on line 𝑀. In function notation, this would be denoted by 

the symbol 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇: 𝐿 → 𝑀. Given an input point 𝑃 on line 𝐿, the output point on line 

𝑀 is denoted 𝑃′. That is, 𝑃′ = 𝑃𝑟𝑜𝑗𝐿,𝑀,𝑇(𝑃). The output point 𝑃′ is determined in the 

following way: 

Case 1: If 𝑃 happens to lie at the intersection of lines 𝐿 and 𝑇, then 𝑃′ is defined to be 

the point at the intersection of lines 𝑀 and 𝑇. 

Case 2: If 𝑃 lies on 𝐿 but not on 𝑇, then there exists exactly one line 𝑁 that passes 

through 𝑃 and is parallel to line 𝑇. (Such a line 𝑁 is guaranteed by Theorem 97). 

The output point 𝑃′ is defined to be the point at the intersection of lines 𝑀 and 𝑁. 

Drawing: 

 
. 

 

𝐿 

𝑀 

𝑇 

𝑃 

𝑃′ 

Case 1: 𝑃 lies on both 𝐿 and 𝑇. 

𝐿 

𝑀 

𝑇 

𝑃′ 

𝑃 

Case 2: 𝑃 lies on 𝐿 but not on 𝑇. 

𝑁 
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Definition 80: triangle similarity (found on page 230) 

To say that two triangles are similar means that there exists a correspondence between the 

vertices of the two triangles and the correspondence has these two properties: 

 Each pair of corresponding angles is congruent. 

 The ratios of the lengths of each pair of corresponding sides is the same. 

If a correspondence between vertices of two triangles has the two properties, then the 

correspondence is called a similarity. That is, the expression a similarity refers to a particular 

correspondence of vertices that has the two properties. 

 

Definition 81: symbol for a similarity of two triangles (found on page 231) 

Symbol: Δ𝐴𝐵𝐶~Δ𝐷𝐸𝐹. 

Meaning: The correspondence (𝐴, 𝐵, 𝐶) ↔ (𝐷, 𝐸, 𝐹) of vertices is a similarity. 

 

Definition 82: base times height (found on page 238) 

For each side of a triangle, there is an opposite vertex, and there is an altitude segment drawn 

from that opposite vertex. The expression "𝑏𝑎𝑠𝑒 𝑡𝑖𝑚𝑒𝑠 ℎ𝑒𝑖𝑔ℎ𝑡" or "𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡" refers to 

the product of the length of a side of a triangle and the length of the corresponding altitude 

segment drawn to that side. The expression can be abbreviated 𝑏 ⋅ ℎ. 

 

Definition 83: triangular region, interior of a triangular region, boundary of a triangular region 

(found on page 243) 

Symbol: ▲𝐴𝐵𝐶 

Spoken: triangular region 𝐴, 𝐵, 𝐶 

Usage: 𝐴, 𝐵, 𝐶 are non-collinear points 

Meaning: the union of triangle Δ𝐴𝐵𝐶 and the interior of triangle Δ𝐴𝐵𝐶. In symbols, we 

would write ▲𝐴𝐵𝐶 = Δ𝐴𝐵𝐶 ∪ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶). 

Additional Terminology: the interior of a triangular region is defined to be the interior of 

the associated triangle. That is, 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(▲𝐴𝐵𝐶) = 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(Δ𝐴𝐵𝐶). The boundary of 

a triangular region is defined to be the associated triangle, itself. That is, 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(▲𝐴𝐵𝐶) = Δ𝐴𝐵𝐶.. 

 

Definition 84: the set of all triangular regions is denoted by ℛ . (found on page 244) 

Definition 85: the area function for triangular regions (found on page 244) 

symbol: 𝐴𝑟𝑒𝑎
▴

 

spoken: the area function for triangular regions 

meaning: the function 𝐴𝑟𝑒𝑎
▴
: ℛ
▴

→ ℝ+ defined by 𝐴𝑟𝑒𝑎
▴
(▲𝐴𝐵𝐶) =

𝑏ℎ

2
, where 𝑏 is the 

length of any side of Δ𝐴𝐵𝐶 and ℎ is the length of the corresponding altitude segment. 

(Theorem 132 guarantees that the resulting value does not depend on the choice of base.) 

 

Definition 86: polygon (found on page ) 

words: polygon 𝑃1, 𝑃2, … , 𝑃𝑛 

symbol: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) 

usage: 𝑃1, 𝑃2, … , 𝑃𝑛 are distinct points, with no three in a row being collinear, and such that the 

segments 𝑃1𝑃2
̅̅ ̅̅ ̅̅ , 𝑃1𝑃2

̅̅ ̅̅ ̅̅ , … , 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  intersect only at their endpoints. 

meaning: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) is defined to be the following set: 
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𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) = 𝑃1𝑃2
̅̅ ̅̅ ̅̅ ∪ 𝑃1𝑃2

̅̅ ̅̅ ̅̅ ∪ … ∪ 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  

additional terminology: Points 𝑃1, 𝑃2, … , 𝑃𝑛 are each called a vertex of the polygon. Pairs of 

vertices of the form {𝑃𝑘, 𝑃𝑘+1} and the pair {𝑃𝑛, 𝑃1} are called adjacent vertices. The 

𝑛 segments 𝑃1𝑃2
̅̅ ̅̅ ̅̅ , 𝑃1𝑃2

̅̅ ̅̅ ̅̅ , … , 𝑃𝑛𝑃1
̅̅ ̅̅ ̅̅  whose endpoints are adjacent vertices are each 

called a side of the polygon. Segments whose endpoints are non-adjacent vertices 

are each called a diagonal of the polygon. 

 

Definition 87: convex polygon (found on page 247) 

A convex polygon is one in which all the vertices that are not the endpoints of a given side lie 

in the same half-plane determined by that side. A polygon that does not have this property is 

called non-convex. 

 

Definition 88: complex, polygonal region, separated, connected polygonal regions (found on 

page 247) 

A complex is a finite set of triangular regions whose interiors do not intersect. That is, a set of 

the form 𝐶 = {▲
1
, ▲

2
, … , ▲

𝑘
} where each ▲

𝑖
 is a triangular region and such that if 𝑖 ≠ 𝑗, 

then the intersection 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(▲
𝑖
) ∩ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 (▲

𝑗
) is the empty set. 

 

A polygonal region is a set of points that can be described as the union of the triangular 

regions in a complex. That is a set of the form 

𝑅 = ▲
1

∪ ▲
2

∪ … ∪ ▲
𝑘

= ⋃ ▲
𝑖

𝑘

𝑖=1

 

We say that a polygonal region can be separated if it can be written as the union of two 

disjoint polygonal regions. A connected polygonal region is one that cannot be separated into 

two disjoint polygonal regions. We will often use notation like 𝑅𝑒𝑔𝑖𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛) to denote 

a connected polygonal region. In that symbol, the letters 𝑃1, 𝑃2, … , 𝑃𝑛 are vertices of the 

region (I won’t give a precise definition of vertex. You get the idea.) 

 

Definition 89: open disk, closed disk (found on page 248) 

symbol: 𝑑𝑖𝑠𝑘(𝑃, 𝑟) 

spoken: the open disk centered at point 𝑃 with radius 𝑟. 

meaning: the set 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). That is, the set {𝑄: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝑄) < 𝑟}. 

another symbol: 𝑑𝑖𝑠𝑘(𝑃, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

spoken: the closed disk centered at point 𝑃 with radius 𝑟. 

meaning: the set 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) ∪ 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)). That is, {𝑄: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃, 𝑄) ≤ 𝑟}. 

pictures: 

  
 the open disk 

𝑑𝑖𝑠𝑘(𝑃, 𝑟) 

the closed disk 

𝑑𝑖𝑠𝑘(𝑃, 𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
 

Definition 90: interior of a polygonal region, boundary of a polygonal region (page 249) 

words: the interior of polygonal region 𝑅 

meaning: the set of all points 𝑃 in 𝑅 with the property that there exists some open disk 

centered at point 𝑃 that is entirely contained in 𝑅 

𝑃 𝑟 𝑃 𝑟 
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meaning in symbols: {𝑃 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∃𝑟 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑖𝑠𝑘(𝑃, 𝑟) ⊂ 𝑅} 

additional terminology: the boundary of polygonal region 𝑅 

meaning: the set of all points 𝑄 in 𝑅 with the property that no open disk centered at point 𝑄 

is entirely contained in 𝑅. This implies that every open disk centered at point 𝑄 

contains some points that are not elements of the region 𝑅. 

meaning in symbols: {𝑄 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑟 > 0, 𝑑𝑖𝑠𝑘(𝑃, 𝑟) ⊄ 𝑅} 

picture: 

 
 𝑃 is an interior point; 𝑄 is a boundary point 

 

Definition 91: the set of all polygonal regions is denoted by ℛ. (found on page 250) 

 

Definition 92: the area function for polygonal regions (found on page 251) 

spoken: the area function for polygonal regions 

meaning: the function 𝐴𝑟𝑒𝑎: ℛ → ℝ+ defined by 

𝐴𝑟𝑒𝑎(𝑅) = 𝐴𝑟𝑒𝑎
▴
(▲

1
) + 𝐴𝑟𝑒𝑎

▴
(▲

2
) + ⋯ + 𝐴𝑟𝑒𝑎

▴
(▲

3
) = ∑ 𝐴𝑟𝑒𝑎

▴
(▲

𝑖
)

𝑘

𝑖=1

 

where 𝐶 = {▲
1
, ▲

2
, … , ▲

𝑘
} is a complex for region 𝑅. (Theorem 133 guarantees that the 

resulting value does not depend on the choice of complex 𝐶.) 

 

Definition 93: polygon similarity (found on page 254) 

To say that two polygons are similar means that there exists a correspondence between the 

vertices of the two polygons and the correspondence has these two properties: 

 Each pair of corresponding angles is congruent. 

 The ratios of the lengths of each pair of corresponding sides is the same. 

If a correspondence between vertices of two polygons has the two properties, then the 

correspondence is called a similarity. That is, the expression a similarity refers to a particular 

correspondence of vertices that has the two properties. 

 

Definition 94: symbol for a similarity of two polygons (found on page 254) 

Symbol: 𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1𝑃2 … 𝑃𝑛)~𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑃1′𝑃2′ … 𝑃𝑛′). 

Meaning: The correspondence (𝑃1𝑃2 … 𝑃𝑛) ↔ (𝑃1′𝑃2′ … 𝑃𝑛′) of vertices is a similarity. 

 
  

𝑄 

𝑃 

𝑅 
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Definition 95: seven types of angles intersecting circles (found on page 263) 

 

Type 1 Angle (Central Angle) 

 

A central angle of a circle is an angle whose rays lie 

on two secant lines that intersect at the center of the 

circle. 

 

In the picture at right, lines 𝐴𝐸 ⃡     and 𝐶𝐹 ⃡    are secant 

lines that intersect at the center point 𝐵 of the circle. 

Angle ∠𝐴𝐵𝐶 is a central angle. So are angles 

∠𝐶𝐵𝐸, ∠𝐸𝐵𝐹, ∠𝐹𝐵𝐴. 
 

Type 2 Angle (Inscribed Angle) 

 

An inscribed angle of a circle is an angle whose rays 

lie on two secant lines that intersect on the circle and 

such that each ray of the angle intersects the circle at 

one other point. In other words, an angle of the form 

∠𝐴𝐵𝐶, where 𝐴, 𝐵, 𝐶 are three points on the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an inscribed 

angle. 
 

Type 3 Angle 

Our third type of an angle intersecting a circle is an 

angle whose rays lie on two secant lines that intersect 

at a point that is inside the circle but is not the center 

of the circle. 

In the picture at right, lines 𝐴𝐸 ⃡     and 𝐶𝐹 ⃡    are secant 

lines that intersect at point 𝐵 in the interior of the 

circle. Angle ∠𝐴𝐵𝐶 is an angle of type three. So are 

angles ∠𝐶𝐵𝐸, ∠𝐸𝐵𝐹, ∠𝐹𝐵𝐴.  

Type 4 Angle 

 

Our fourth type of an angle intersecting a circle is an 

angle whose rays lie on two secant lines that intersect 

at a point that is outside the circle and such that each 

ray of the angle intersects the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

four. 
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Type 5 Angle 

 

Our fifth type of an angle intersecting a circle is an 

angle whose rays lie on two tangent lines and such 

that each ray of the angle intersects the circle. 

Because the rays lie in tangent lines, we know that 

each ray intersects the circle exactly once. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

five. 
 

Type 6 Angle 

 

Our sixth type of an angle intersecting a circle is an 

angle whose vertex lies on the circle and such that one 

ray contains a chord of the circle and the other ray lies 

in a line that is tangent to the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

six. 
 

Type 7 Angle 

 

Our seventh type of an angle intersecting a circle is an 

angle whose rays lie on a secant line and tangent line 

that intersect outside the circle and such that each ray 

of the angle intersects the circle. 

 

In the picture at right, angle ∠𝐴𝐵𝐶 is an angle of type 

seven. 
 

 

Definition 96: Circular Arc (found on page 265) 

Symbol: 𝐴𝐵�̂� 

Spoken: arc 𝐴, 𝐵, 𝐶 

Usage: 𝐴, 𝐵, 𝐶 are non-collinear points. 

Meaning: the set consisting of points 𝐴 and 𝐶 and all points of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) that lie on the 

same side of line 𝐴𝐶 ⃡     as point 𝐵.  

Meaning in Symbols: 𝐴𝐵�̂� = {𝐴 ∪ 𝐶 ∪ (𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) ∩ 𝐻𝐵)} 
Additional terminology: 

 Points 𝐴 and 𝐶 are called the endpoints of arc 𝐴𝐵�̂�. 

 The interior of the arc is the set 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) ∩ 𝐻𝐵. 

 If the center 𝑃 lies on the opposite side of line 𝐴𝐶 ⃡     from point 𝐵, then arc 𝐴𝐵�̂� is 

called a minor arc. 

 If the center 𝑃 of 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶) lies on the same side of line 𝐴𝐶 ⃡     as point 𝐵,then arc 

𝐴𝐵�̂� is called a major arc. 
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 If the center 𝑃 lies on line 𝐴𝐶 ⃡    , then arc 𝐴𝐵�̂� is called a semicircle. 

Picture:  

 
 

Definition 97: angle intercepting an arc (found on page 265) 

We say that an angle intercepts an arc if each ray of the angle contains at least one endpoint 

of the arc and if the interior of the arc lies in the interior of the angle. 

 

Definition 98: the symbol for the set of all circular arcs is �̂�. (found on page 267)  

 

Definition 99: the angle measure of an arc (found on page 267) 

Symbol: �̂� 
Name: the Arc Angle Measurement Function 

Meaning: The function �̂�: �̂� → (0,360), defined in the following way: 

 If 𝐴𝐵�̂� is a minor arc, then �̂�(𝐴𝐵�̂�) = 𝑚(∠𝐴𝑃𝐶), where point 𝑃 is the 

center of the circle. 

 If 𝐴𝐵�̂� is a major arc, then �̂�(𝐴𝐵�̂�) = 360 − 𝑚(∠𝐴𝑃𝐶), where point 𝑃 

is the center of the circle. 

 If 𝐴𝐵�̂� is a semicircle, then �̂�(𝐴𝐵�̂�) = 180. 

Picture:  

 
 

Definition 100: cyclic quadrilateral (found on page 277) 

A quadrilateral is said to be cyclic if the quadrilateral can be circumscribed. That is, if there 

exists a circle that passes through all four vertices of the quadrilateral. 

 

Definition 101: The Euler Line of a non-equilateral triangle (found on page 287) 
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�̂�(𝐴𝐵�̂�) = 𝑚(∠𝐴𝑃𝐶) �̂�(𝐴𝐵�̂�) = 360 − 𝑚(∠𝐴𝑃𝐶) �̂�(𝐴𝐵�̂�) = 180 
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Given a non-equilateral triangle, the Euler Line is defined to be the line containing the 

orthocenter, centroid, and circumcenter of that triangle. (Existence and uniqueness of this 

line s guaranteed by Theorem 157.) 

 

Definition 102: The three Euler Points of a triangle are defined to be the midpoints of the 

segments connecting the vertices to the orthocenter. (found on page 287) 

 

Definition 103: The nine point circle associated to a triangle is the circle that passes through the 

midpoints of the three sides, the feet of the three altitudes, and the three Euler points. (The 

existence of the nine point circle is guaranteed by Theorem 158.) 

 

Definition 104: circumference of a circle and area of a circular region (found on page 291) 

Given a circle of diameter 𝑑, for each 𝑘 = 1,2,3, … define 𝑃𝑜𝑙𝑦𝑘 to be a polygonal region 

bounded by a regular polygon with 3 ⋅ 2𝑘 sides, inscribed in the circle. Define 𝑃𝑘 and 𝐴𝑘 

to be the perimeter and area of the 𝑘𝑡ℎ polygonal region. The resulting sequences {𝑃𝑘} 

and {𝐴𝑘} are increasing and bounded above and so they each have a limit. 

 Define the circumference of the circle to be the real number 𝐶 = lim
𝑘→∞

𝑃𝑘. 

 Define the area of the circular region to be the real number 𝐴 = lim
𝑘→∞

𝐴𝑘. 

 

Definition 105: The symbol 𝑝𝑖, or 𝜋, denotes the real number that is the ratio  
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 for 

any circle. That is, 𝜋 =
𝐶

𝑑
. (That this ratio is the same for all circles is guaranteed by Theorem 

159, found on page 293.) (found on page 294) 

 

Definition 106: arc length (found on page 299) 

The length of an arc 𝐴𝐵�̂� on a circle of radius 𝑟 is defined to be the number 

�̂�(𝐴𝐵�̂�) =
�̂�(𝐴𝐵�̂�)𝜋𝑟

180
 

Definition 107: Rules for computing area (found on page 299) 

(1) The area of a triangular region is equal to one-half the base times the height. It does not 

matter which side of the triangle is chosen as the base. 

(2) The area of a polygonal region is equal to the sum of the areas of the triangles in a 

complex for the region. 

(3) The area of a circular region is 𝜋𝑟2. 

(4) More generally, the area of a circular sector bounded by arc 𝐴𝐵�̂� is  𝜋𝑟2 ⋅
�̂�(𝐴𝐵�̂�)

360
. 

(5) Congruence property: If two regions have congruent boundaries, then the area of the two 

regions is the same. 

(6) Additivity property: If a region is the union of two smaller regions whose interiors do not 

intersect, then the area of the whole region is equal to the sum of the two smaller regions. 

 

Definition 108: Image and Preimage of a single element 

If 𝑓: 𝐴 → 𝐵 and 𝑎 ∈ 𝐴 is used as input to the function 𝑓, then the corresponding output 

𝑓(𝑎) ∈ 𝐵 is called the image of 𝑎. 

If 𝑓: 𝐴 → 𝐵 and 𝑏 ∈ 𝐵, then the preimage of 𝑏, denoted 𝑓−1(𝑏), is the set of all elements of 

𝐴 whose image is 𝑏. That is, 𝑓−1(𝑏) = {𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎) = 𝑏}. 
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Definition 109: Image of a Set and Preimage of a Set 

If 𝑓: 𝐴 → 𝐵 and 𝑆 ⊂ 𝐴, then the image of 𝑆, denoted 𝑓(𝑆), is the set of all elements of 𝐵 that 

are images of elements of 𝑆. That is, 

𝑓(𝑆) = {𝑏 ∈ 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏 = 𝑓(𝑎) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝑆} 

If 𝑓: 𝐴 → 𝐵 and 𝑇 ⊂ 𝐵, then the preimage of 𝑇, denoted 𝑓−1(𝑇), is the set of all elements of 

𝐴 whose images are elements of 𝑇. That is, 

𝑓−1(𝑇) = {𝑎 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑎) ∈ 𝑇} 

Definition 110: composition of fuctions, composite function 

Symbol: 𝑔 ∘ 𝑓 

Spoken: “𝑔 circle 𝑓”,or “𝑔 after 𝑓”, or “𝑔 composed with 𝑓”, or “𝑔 after 𝑓” 

Usage: 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 

Meaning: the function 𝑔 ∘ 𝑓: 𝐴 → 𝐶 defined by 𝑔 ∘ 𝑓(𝑎) = 𝑔(𝑓(𝑎)). 

Additional terminology: A function of the form 𝑔 ∘ 𝑓 is called a composite function. 

Definition 111: One-to-One Function 

Words: The function 𝑓: 𝐴 → 𝐵 is one-to-one. 

Alternate Words: The function 𝑓: 𝐴 → 𝐵 is injective. 

Meaning in Words: Different inputs always produce different outputs. 

Meaning in Symbols:  ∀𝑥1, 𝑥2, 𝑖𝑓 𝑥1 ≠ 𝑥2 𝑡ℎ𝑒𝑛 𝑓(𝑥1) ≠ 𝑓(𝑥2). 

Contrapositive: If two outputs are the same, then the inputs must have been the same. 

Contrapositive in Symbols:  ∀𝑥1, 𝑥2, 𝑖𝑓 𝑓(𝑥1) = 𝑓(𝑥2), 𝑡ℎ𝑒𝑛 𝑥1 = 𝑥2. 

 

Definition 112: Onto Function 

Words: The function 𝑓: 𝐴 → 𝐵 is onto. 

Alternate Words: The function 𝑓: 𝐴 → 𝐵 is surjective. 

Meaning in Words: For every element of the codomain, there exists an element of the 

domain that will produce that element of the codomain as output. 

Meaning in Symbols:  ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) = 𝑦. 

 

Definition 113: Bijection, One-to-One Correspondence 

Words: “The function 𝑓 is a bijection”, or “the function 𝑓 is bijective”. 

Alternate Words: The function 𝑓 is a one-to-one correspondence. 

Meaning: The function 𝑓 is both one-to-one and onto. 

 

Definition 114: Inverse Functions, Inverse Relations 

Words: Functions 𝑓 and 𝑔 are inverses of one another. 

Usage: 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐴 

Meaning: 𝑓 and 𝑔 satisfy the following two properties, called inverse relations: 

∀𝑎 ∈ 𝐴, 𝑔 ∘ 𝑓(𝑎) = 𝑎 

∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑔(𝑏) = 𝑏 

Additional Symbols and Terminology: Another way of saying that functions 𝑓 and 𝑔 are 

inverses of one another is to say that 𝑔 is the inverse of 𝑓. Instead of using different 

letters for a function and its inverse, it is common to use the symbol 𝑓−1 to denote the 

inverse of a function 𝑓. With this notation, we would say that 𝑓: 𝐴 → 𝐵 and 𝑓−1: 𝐵 → 𝐴, 

and the inverse relations become: 

∀𝑎 ∈ 𝐴, 𝑓−1 ∘ 𝑓(𝑎) = 𝑎 

∀𝑏 ∈ 𝐵, 𝑓 ∘ 𝑓−1(𝑏) = 𝑏 
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Definition 115: The plane is defined to be the set 𝒫 of all points. 

 

Definition 116: A map of the plane is defined to be a function 𝑓: 𝒫 → 𝒫. 

 

Definition 117: A transformation of the plane is defined to be a bijective map of the plane. The 

set of all transformations of the plane is denoted by the symbol 𝑇. 

 

Definition 118: Isometry of the Plane 

Words: 𝑓 is an isometry of the plane. 

Meaning: 𝑓 is a distance preserving map of the plane. That is, for all points 𝑃 and 𝑄, the 

distance from 𝑃 to 𝑄 is the same as the distance from 𝑓(𝑃) to 𝑓(𝑄). 

Meaning in symbols: ∀𝑃, 𝑄 ∈ 𝒫, 𝑑(𝑃, 𝑄) = 𝑑(𝑓(𝑃), 𝑓(𝑄)). 

 

Definition 119: The Identity Map of the Plane is the map 𝑖𝑑: 𝒫 → 𝒫 defined by 𝑖𝑑(𝑄) = 𝑄 for 

every point 𝑄. 

 

Definition 120: a Fixed Point of a Map of the Plane 

Words: 𝑄 is a fixed point of the map 𝑓. 

Meaning: 𝑓(𝑄) = 𝑄 

 

Definition 121: The Dilation of the Plane 

Symbol: 𝐷𝐶,𝑘 

Spoken: The dilation centered at 𝐶 with scaling factor 𝑘 

Usage: 𝐶 is a point, called the center of the dilation, and 𝑘 is a positive real number. 

Meaning: The map 𝐷𝐶,𝑘: 𝒫 → 𝒫 defined as follows 

The point 𝐶 is a fixed point of 𝐷𝐶,𝑘. That is, 𝐷𝐶,𝑘(𝐶) = 𝐶. 

When a point 𝑄 ≠ 𝐶 is used as input to the map 𝐷𝐶,𝑘, the output is the unique point 

𝑄′ = 𝐷𝐶,𝑘(𝑄) that has these two properties: 

 Point 𝑄′ lies on ray 𝐶𝑄       

 The distance 𝑑(𝐶, 𝑄′) = 𝑘𝑑(𝐶, 𝑄) 

(The existence and uniqueness of such a point 𝑄′ is guaranteed by the Congruent 

Segment Construction Theorem, (Theorem 24).) 

Definition 122: The Reflection of the Plane 

Symbol: 𝑀𝐿 

Spoken: The reflection in line 𝐿 

Usage: 𝐿 is a line, called the line of reflection 

Meaning: The map 𝑀𝐿: 𝒫 → 𝒫 defined as follows 

Every point on the line 𝐿 is a fixed point of 𝑀𝐿. That is, if 𝑃 ∈ 𝐿 then 𝑀𝐿(𝑃) = 𝑃. 

When a point 𝑄 not on line 𝐿 is used as input to the map 𝑀𝐿, the output is the unique 

point 𝑄′ = 𝑀𝐿(𝑄) such that line 𝐿 is the perpendicular bisector of segment 𝑄𝑄′̅̅ ̅̅ ̅. 

(The existence and uniqueness of such a point 𝑄′ is can be proven using the axioms 

and theorems of Neutral Geometry. You are asked to provide details in an exercise.) 

 

Definition 123: A binary operation on a set 𝑆 is a function ∗: 𝑆 × 𝑆 → 𝑆. 

 

Definition 124: associativity, associative binary operation 
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Words: “∗ is associative” or “∗ has the associativity property” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

 

Definition 125: identity element, binary operation with an identity element 

Words: “∗ has an identity element.” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning:.There is an element ∃𝑒 ∈ 𝑆 with the following property: ∀𝑎 ∈ 𝑆, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

Meaning in symbols: ∃𝑒 ∈ 𝑆: ∀𝑎 ∈ 𝑆, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

Additional Terminology: The element ∃𝑒 ∈ 𝑆 is called the identity for operation ∗. 

 

Definition 126: binary operation with inverses 

Words: “∗ has inverses.” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: For each element 𝑎 ∈ 𝑆, there exists is an 𝑎−1 ∈ 𝑆 such that 

𝑎 ∗ 𝑎−1 = 𝑒 and 𝑎−1 ∗ 𝑎 = 𝑒. 

Meaning in symbols: ∀𝑎 ∈ 𝑆, ∃𝑎−1 ∈ 𝑆: 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 

Additional Terminology: The element 𝑎−1 ∈ 𝑆 is called the inverse of 𝑎. 

 

Definition 127: commutativity, commutative binary operation 

Words: “∗ is commutative” or “∗ has the commutative property” 

Usage: ∗ is a binary operation ∗ on some set 𝑆. 

Meaning: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

 

Definition 128: Group 

A Group is a pair (𝐺,∗) consisting of a set 𝐺 and a binary operation ∗ on 𝐺 that has the 

following three properties. 

(1) Associativity (Definition 124) 

(2) Existence of an Identity Element (Definition 125) 

(3) Existence of an Inverse for each Element (Definition 126) 

 

Definition 129: Commutative Group, Abelian Group 

A commutative group (or abelian group) is a group (𝐺,∗) that has the commutativity property 

(Definition 127). 

 

 

 

.  
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Appendix 2: List of Theorems 
Theorem 1: In Neutral Geometry, if 𝐿 and 𝑀 are distinct lines that intersect, then they intersect 

in only one point. (page 62) 

 

Theorem 2: In Neutral Geometry, there exist three non-collinear points. (page 62) 

 

Theorem 3: In Neutral Geometry, there exist three lines that are not concurrent. (page 62) 

 

Theorem 4: In Neutral Geometry, for every point 𝑃, there exists a line that does not pass 

through 𝑃. (page 62) 

 

Theorem 5: In Neutral Geometry, for every point 𝑃, there exist at least two lines that pass 

through 𝑃. (page 62) 

 

Theorem 6: In Neutral Geometry, given any points 𝑃 and 𝑄 that are not known to be distinct, 

there exists at least one line that passes through 𝑃 and 𝑄. (page 63) 

 

Theorem 7: about how many points are on lines in Neutral Geometry (page 70) 

In Neutral Geometry, given any line 𝐿, the set of points that lie on 𝐿 is an infinite set. More 

precisely, the set of points that lie on 𝐿 can be put in one-to-one correspondence with the set 

of real numbers ℝ. (In the terminology of sets, we would say that the set of points on line 𝐿 

has the same cardinality as the set of real numbers ℝ.) 

 

Theorem 8: The Distance Function on the Set of Points, the function 𝑑, is Positive Definite. 

(page 74) 

For all points 𝑃 and 𝑄, 𝑑(𝑃, 𝑄) ≥ 0, and 𝑑(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄. That is, if 

and only if 𝑃 and 𝑄 are actually the same point. 

 

Theorem 9: The Distance Function on the Set of Points, the function 𝑑, is Symmetric. (page 74) 

For all points 𝑃 and 𝑄, 𝑑(𝑃, 𝑄) = 𝑑(𝑄, 𝑃). 

 

Theorem 10: (Ruler Sliding and Ruler Flipping) Lemma about obtaining a new coordinate 

function from a given one (page 87) 

Suppose that 𝑓: 𝐿 → ℝ is a coordinate function for a line 𝐿. 

(A) (Ruler Sliding) If 𝑐 is a real number constant and 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 

𝑔(𝑃) = 𝑓(𝑃) + 𝑐, then 𝑔 is also a coordinate function for line 𝐿. 

(B) (Ruler Flipping) If 𝑔 is the function 𝑔: 𝐿 → ℝ defined by 𝑔(𝑃) = −𝑓(𝑃), then 𝑔 is also a 

coordinate function for line 𝐿. 

 

Theorem 11: Ruler Placement Theorem (page 89) 

If 𝐴 and 𝐵 are distinct points on some line 𝐿, then there exists a coordinate function ℎ for 

line 𝐿 such that ℎ(𝐴) = 0 and ℎ(𝐵) is positive. 

 

Theorem 12: facts about betweenness for real numbers (page 98) 

(A) If 𝑥 ∗ 𝑦 ∗ 𝑧 then 𝑧 ∗ 𝑦 ∗ 𝑥. 
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(B) If 𝑥, 𝑦, 𝑧 are three distinct real numbers, then exactly one is between the other two. 

(C) Any four distinct real numbers can be named in an order 𝑤, 𝑥, 𝑦, 𝑧 so that 𝑤 ∗ 𝑥 ∗ 𝑦 ∗ 𝑧. 

(D) If 𝑎 and 𝑏 are distinct real numbers, then  

(D.1) There exists a real number 𝑐 such that 𝑎 ∗ 𝑐 ∗ 𝑏. 

(D.2) There exists a real number 𝑑 such that 𝑎 ∗ 𝑏 ∗ 𝑑 

 

Theorem 13: Betweenness of real numbers is related to the distances between them. (page 98) 

Claim: For distinct real numbers 𝑥, 𝑦, 𝑧, the following are equivalent 

(A) 𝑥 ∗ 𝑦 ∗ 𝑧 

(B) |𝑥 − 𝑧| = |𝑥 − 𝑦| + |𝑦 − 𝑧|. That is, 𝑑ℝ(𝑥, 𝑧) = 𝑑ℝ(𝑥, 𝑦) + 𝑑ℝ(𝑦, 𝑧). 

 

Theorem 14: Lemma about betweenness of coordinates of three points on a line (page 99) 

If 𝑃, 𝑄, 𝑅 are three distinct points on a line 𝐿, and 𝑓 is a coordinate function on line 𝐿, and 

the betweenness expression 𝑓(𝑃) ∗ 𝑓(𝑄) ∗ 𝑓(𝑅) is true, then for any coordinate function 

𝑔 on line 𝐿, the expression 𝑔(𝑃) ∗ 𝑔(𝑄) ∗ 𝑔(𝑅) will be true. 

 

Theorem 15: Properties of Betweenness for Points (page 100) 

(A) If 𝑃 ∗ 𝑄 ∗ 𝑅 then 𝑅 ∗ 𝑄 ∗ 𝑃. 

(B) For any three distinct collinear points, exactly one is between the other two. 

(C) Any four distinct collinear points can be named in an order 𝑃, 𝑄, 𝑅, 𝑆 such that 𝑃 ∗
𝑄 ∗ 𝑅 ∗ 𝑆. 

(D) If 𝑃 and 𝑅 are distinct points, then 

(D.1) There exists a point 𝑄 such that 𝑃 ∗ 𝑄 ∗ 𝑅. 

(D.2) There exists a point 𝑆 such that 𝑃 ∗ 𝑅 ∗ 𝑆. 

 

Theorem 16: Betweenness of points on a line is related to the distances between them. (page 

101) 

Claim: For distinct collinear points 𝑃, 𝑄, 𝑅, the following are equivalent 

(A) 𝑃 ∗ 𝑄 ∗ 𝑅 

(B) 𝑑(𝑃, 𝑅) = 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅). 

 

Theorem 17: Lemma about distances between three distinct, collinear points. (page 102) 

If 𝑃, 𝑄, 𝑅 are distinct collinear points such that 𝑃 ∗ 𝑄 ∗ 𝑅 is not true, 

then the inequality 𝑑(𝑃, 𝑅) < 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Theorem 18: (Corollary) Segment 𝐴𝐵̅̅ ̅̅  is a subset of ray 𝐴𝐵      . (page 103) 

 

Theorem 19: about the use of different second points in the symbol for a ray. (page 103) 

If 𝐴𝐵       and 𝐶 is any point of 𝐴𝐵       that is not 𝐴, then 𝐴𝐵      = 𝐴𝐶      . 

 

Theorem 20: Segment congruence is an equivalence relation. (page 106) 

 

Theorem 21: About a point whose coordinate is the average of the coordinates of the endpoints. 

(page 111) 

Given 𝐴𝐵̅̅ ̅̅ , and Point 𝐶 on line 𝐴𝐵 ⃡    , and any coordinate function 𝑓 for line 𝐴𝐵 ⃡    , the 

following are equivalent: 
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(i) The coordinate of point 𝐶 is the average of the coordinates of points 𝐴 and 𝐵. 

That is, 𝑓(𝐶) =
𝑓(𝐴)+𝑓(𝐵)

2
. 

(ii) Point 𝐶 is a midpoint of segment 𝐴𝐵̅̅ ̅̅ . That is, 𝐶𝐴 = 𝐶𝐵. 

 

Theorem 22: Corollary of Theorem 21. (page 112) 

Given 𝐴𝐵̅̅ ̅̅ , and Point 𝐶 on line 𝐴𝐵 ⃡    , and any coordinate functions 𝑓 and 𝑔 for line 𝐴𝐵 ⃡    , the 

following are equivalent: 

(i) 𝑓(𝐶) =
𝑓(𝐴)+𝑓(𝐵)

2
. 

(ii) 𝑔(𝐶) =
𝑔(𝐴)+𝑔(𝐵)

2
. 

 

Theorem 23: Every segment has exactly one midpoint. (page 112) 

 

Theorem 24: Congruent Segment Construction Theorem. (page 113) 

Given a segment 𝐴𝐵̅̅ ̅̅  and a ray 𝐶𝐷      , there exists exactly one point 𝐸 on ray 𝐶𝐷       such that 

𝐶𝐸̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅ . 

 

Theorem 25: Congruent Segment Addition Theorem. (page 113) 

If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅  then 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅. 

 

Theorem 26: Congruent Segment Subtraction Theorem. (page 113) 

If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴′ ∗ 𝐵′ ∗ 𝐶′ and 𝐴𝐵̅̅ ̅̅ ≅ 𝐴′𝐵′̅̅ ̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ≅ 𝐴′𝐶′̅̅ ̅̅ ̅ then 𝐵𝐶̅̅ ̅̅ ≅ 𝐵′𝐶′̅̅ ̅̅ ̅̅ . 

 

Theorem 27: Given any line, each of its half-planes contains at least three non-collinear points. 

(page 120) 

 

Theorem 28: (Pasch’s Theorem) about a line intersecting a side of a triangle between vertices 

(page 122) 

If a line intersects the side of a triangle at a point between vertices, then the line also 

intersects the triangle at another point that lies on at least one of the other two sides. 

 

Theorem 29: about a line intersecting two sides of a triangle between vertices (page 122) 

If a line intersects two sides of a triangle at points that are not vertices, then the line cannot 

intersect the third side. 

 

Theorem 30: about a ray with an endpoint on a line (page 124) 

If a ray has its endpoint on a line but does not lie in the line, 

then all points of the ray except the endpoint are on the same side of the line. 

 

Theorem 31: (Corollary of Theorem 30) about a ray with its endpoint on an angle vertex (p. 

125) 

If a ray has its endpoint on an angle vertex and passes through a point in the angle interior, 

then every point of the ray except the endpoint lies in the angle interior. 

 

Theorem 32: (Corollary of Theorem 30.) about a segment that has an endpoint on a line (p. 125) 

If a segment that has an endpoint on a line but does not lie in the line, 
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then all points of the segment except that endpoint are on the same side of the line. 

 

Theorem 33: (Corollary of Theorem 32.) Points on a side of a triangle are in the interior of the 

opposite angle. (page 125) 

If a point lies on the side of a triangle and is not one of the endpoints of that side, 

then the point is in the interior of the opposite angle. 

 

Theorem 34: The Z Lemma (page 126) 

If points 𝐶 and 𝐷 lie on opposite sides of line 𝐴𝐵 ⃡    , then ray 𝐴𝐶       does not intersect ray 𝐵𝐷       . 

 

Theorem 35: The Crossbar Theorem (page 126) 

If point 𝐷 is in the interior of ∠𝐴𝐵𝐶, then 𝐵𝐷        intersects 𝐴𝐶̅̅ ̅̅  at a point between 𝐴 and 𝐶. 

 

Theorem 36: about a ray with its endpoint in the interior of a triangle (page 128) 

If the endpoint of a ray lies in the interior of a triangle, then the ray intersects the triangle 

exactly once. 

 

Theorem 37: about a line passing through a point in the interior of a triangle (page 128) 

If a line passes through a point in the interior of a triangle, then the line intersects the triangle 

exactly twice. 

 

Theorem 38: Three equivalent statements about quadrilaterals (page 130) 

For any quadrilateral, the following statements are equivalent: 

(i) All the points of any given side lie on the same side of the line determined by the 

opposite side. 

(ii) The diagonal segments intersect. 

(iii) Each vertex is in the interior of the opposite angle. 

 

Theorem 39: about points in the interior of angles (page 141) 

Given: points 𝐶 and 𝐷 on the same side of line 𝐴𝐵 ⃡    .  

Claim: The following are equivalent: 

(I) 𝐷 is in the interior of ∠𝐴𝐵𝐶. 

(II) 𝑚(∠𝐴𝐵𝐷) < 𝑚(∠𝐴𝐵𝐶). 

 

Theorem 40: Every angle has a unique bisector. (page 143) 

 

Theorem 41: Linear Pair Theorem. (page 144) 

If two angles form a linear pair, then the sum of their measures is 180. 

 

Theorem 42: Converse of the Linear Pair Theorem (page 146) 

If adjacent angles have measures whose sum is 180, then the angles form a linear pair. 

That is, if angles ∠𝐴𝐵𝐷 and ∠𝐷𝐵𝐶 are adjacent and 𝑚(∠𝐴𝐵𝐷) + 𝑚(∠𝐷𝐵𝐶) = 180, 

then 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Theorem 43: Vertical Pair Theorem (page 146) 

If two angles form a vertical pair then they have the same measure. 
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Theorem 44: about angles with measure 90 (page 148) 

For any angle, the following two statements are equivalent.  

(i) There exists another angle that forms a linear pair with the given angle and that has 

the same measure. 

(ii) The given angle has measure 90. 

 

Theorem 45: If two intersecting lines form a right angle, then they actually form four. (page 

150) 

 

Theorem 46: existence and uniqueness of a line that is perpendicular to a given line through a 

given point that lies on the given line (page 150) 

For any given line, and any given point that lies on the given line, there is exactly one 

line that passes through the given point and is perpendicular to the given line. 

 

Theorem 47: Angle congruence is an equivalence relation. (page 152) 

 

Theorem 48: Congruent Angle Construction Theorem (page 152) 

Let 𝐴𝐵       be a ray on the edge of a half-plane 𝐻. For any angle ∠𝐶𝐷𝐸, there is exactly one 

ray 𝐴𝑃       with point 𝑃 in 𝐻 such that ∠𝑃𝐴𝐵 ≅ ∠𝐶𝐷𝐸. 

 

Theorem 49: Congruent Angle Addition Theorem (page 152) 

If point 𝐷 lies in the interior of ∠𝐴𝐵𝐶 and point 𝐷′ lies in the interior of ∠𝐴′𝐵′𝐶′, and 

∠𝐴𝐵𝐷 ≅ ∠𝐴′𝐵′𝐷′ and ∠𝐷𝐵𝐶 ≅ ∠𝐷′𝐵′𝐶′, then ∠𝐴𝐵𝐶 ≅ ∠𝐴′𝐵′𝐶′. 
 

Theorem 50: Congruent Angle Subtraction Theorem (page 152) 

If point 𝐷 lies in the interior of ∠𝐴𝐵𝐶 and point 𝐷′ lies in the interior of ∠𝐴′𝐵′𝐶′, and 

∠𝐴𝐵𝐷 ≅ ∠𝐴′𝐵′𝐷′ and ∠𝐴𝐵𝐶 ≅ ∠𝐴′𝐵′𝐶′, then ∠𝐷𝐵𝐶 ≅ ∠𝐷′𝐵′𝐶′. 
 

Theorem 51: triangle congruence is an equivalence relation (page 160) 

 

Theorem 52: the CS  CA theorem for triangles (the Isosceles Triangle Theorem) (page 164) 

In Neutral geometry, if two sides of a triangle are congruent, then the angles opposite those 

sides are also congruent. That is, in a triangle, if CS then CA. 

 

Theorem 53: (Corollary) In Neutral Geometry, if a triangle is equilateral then it is equiangular. 

(page 165) 

 

Theorem 54: the ASA Congruence Theorem for Neutral Geometry (page 165) 

In Neutral Geometry, if there is a one-to-one correspondence between the vertices of two 

triangles, and two angles and the included side of one triangle are congruent to the 

corresponding parts of the other triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

Theorem 55: the CA  CS theorem for triangles in Neutral Geometry (page 167) 

In Neutral geometry, if two angles of a triangle are congruent, then the sides opposite those 

angles are also congruent. That is, in a triangle, if CA then CS. 
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Theorem 56: (Corollary) In Neutral Geometry, if a triangle is equiangular then it is equilateral. 

(page 167) 

 

Theorem 57: (Corollary) The CACS theorem for triangles in Neutral Geometry. (page 168)  

In any triangle in Neutral Geometry, congruent angles are always opposite congruent sides. 

That is, CA  CS. 

 

Theorem 58: the SSS congruence theorem for Neutral Geometry (page 168) 

In Neutral Geometry, if there is a one-to-one correspondence between the vertices of two 

triangles, and the three sides of one triangle are congruent to the corresponding parts of the 

other triangle, then all the remaining corresponding parts are congruent as well, so the 

correspondence is a congruence and the triangles are congruent. 

 

Theorem 59: Neutral Exterior Angle Theorem (page 170) 

In Neutral Geometry, the measure of any exterior angle is greater than the measure of either 

of its remote interior angles. 

 

Theorem 60: (Corollary) If a triangle has a right angle, then the other two angles are acute. 

(page 172) 

 

Theorem 61: the BS  BA theorem for triangles in Neutral Geometry (page 172) 

In Neutral Geometry, if one side of a triangle is longer than another side, then the measure of 

the angle opposite the longer side is greater than the measure of the angle opposite the shorter 

side. That is, in a triangle, if BS then BA. 

 

Theorem 62: the BA  BS theorem for triangles in Neutral Geometry (page 172) 

In Neutral Geometry, if the measure of one angle is greater than the measure of another 

angle, then the side opposite the larger angle is longer than the side opposite the smaller 

angle. That is, in a triangle, if BA then BS. 

 

Theorem 63: (Corollary) The BABS theorem for triangles in Neutral Geometry. (page 173) 

In any triangle in Neutral Geometry, bigger angles are always opposite bigger sides. That is, 

BA  BS. 

 

Theorem 64: The Triangle Inequality for Neutral Geometry (page 174) 

In Neutral Geometry, the length of any side of any triangle is less than the sum of the lengths 

of the other two sides. 

That is, for all non-collinear points 𝐴, 𝐵, 𝐶, the inequality 𝐴𝐶 < 𝐴𝐵 + 𝐵𝐶 is true. 

 

Theorem 65: The Distance Function Triangle Inequality for Neutral Geometry (page 175) 

The function 𝑑 satisfies the Distance Function Triangle Inequality. 

That is, for all points 𝑃, 𝑄, 𝑅, the inequality 𝑑(𝑃, 𝑅) ≤ 𝑑(𝑃, 𝑄) + 𝑑(𝑄, 𝑅) is true. 

 

Theorem 66: existence and uniqueness of a line that is perpendicular to a given line through a 

given point that does not lie on the given line (page 178) 

For any given line and any given point that does not lie on the given line, there is exactly 

one line that passes through the given point and is perpendicular to the given line. 

 



 361 

Theorem 67: The shortest segment connecting a point to a line is the perpendicular. (page 180) 

 

Theorem 68: In any right triangle in Neutral Geometry, the hypotenuse is the longest side. (page 

181) 

 

Theorem 69: (Lemma) In any triangle in Neutral Geometry, the altitude to a longest side 

intersects the longest side at a point between the endpoints. (page 181) 

Given: Neutral Geometry triangle Δ𝐴𝐵𝐶, with point 𝐷 the foot of the altitude line 

drawn from vertex 𝐶 to line 𝐴𝐵 ⃡    . 

Claim: If 𝐴𝐵̅̅ ̅̅  is the longest side (that is, if 𝐴𝐵 > 𝐵𝐶 and 𝐴𝐵 > 𝐵𝐶), then 𝐴 ∗ 𝐷 ∗ 𝐵. 

 

Theorem 70: the Angle-Angle-Side (AAS) Congruence Theorem for Neutral Geometry (p.183) 

In Neutral Geometry, if there is a correspondence between parts of two right triangles such 

that two angles and a non-included side of one triangle are congruent to the corresponding 

parts of the other triangle, then all the remaining corresponding parts are congruent as well, 

so the correspondence is a congruence and the triangles are congruent. 

 

Theorem 71: the Hypotenuse Leg Congruence Theorem for Neutral Geometry (page 183) 

In Neutral Geometry, if there is a one-to-one correspondence between the vertices of any two 

right triangles, and the hypotenuse and a side of one triangle are congruent to the 

corresponding parts of the other triangle, then all the remaining corresponding parts are 

congruent as well, so the correspondence is a congruence and the triangles are congruent. 

 

Theorem 72: the Hinge Theorem for Neutral Geometry (page 185) 

In Neutral Geometry, if triangles Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 have 𝐴𝐵̅̅ ̅̅ ≅ 𝐷𝐸̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅  and 

𝑚(∠𝐴) > 𝑚(∠𝐷), then 𝐵𝐶 > 𝐸𝐹. 

 

Theorem 73: Equivalent statements about angles formed by two lines and a transversal in 

Neutral Geometry (page 186) 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇, with points 𝐴, ⋯ , 𝐻 labeled as 

in Definition 61, above. 

Claim: The following statements are equivalent: 

(1) The first pair of alternate interior angles is congruent. That is, ∠𝐴𝐵𝐸 ≅ ∠𝐹𝐸𝐵. 

(2) The second pair of alternate interior angles is congruent. That is, ∠𝐶𝐵𝐸 ≅ ∠𝐷𝐸𝐵. 

(3) The first pair of corresponding angles is congruent. That is, ∠𝐴𝐵𝐺 ≅ ∠𝐷𝐸𝐺. 

(4) The second pair of corresponding angles is congruent. That is, ∠𝐴𝐵𝐻 ≅ ∠𝐷𝐸𝐻. 

(5) The third pair of corresponding angles is congruent. That is, ∠𝐶𝐵𝐺 ≅ ∠𝐹𝐸𝐺. 

(6) The fourth pair of corresponding angles is congruent. That is, ∠𝐶𝐵𝐻 ≅ ∠𝐹𝐸𝐻. 

(7) The first pair of interior angles on the same side of the transversal has measures that add 

up to 180. That is, 𝑚(∠𝐴𝐵𝐸) + 𝑚(∠𝐷𝐸𝐵) = 180. 

(8) The second pair of interior angles on the same side of the transversal has measures that 

add up to 180. That is, 𝑚(∠𝐶𝐵𝐸) + 𝑚(∠𝐹𝐸𝐵) = 180. 

 

Theorem 74: The Alternate Interior Angle Theorem for Neutral Geometry (page 188) 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If a pair of alternate interior angles is congruent, then lines 𝐿 and 𝑀 are parallel. 
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Contrapositive: If 𝐿 and 𝑀 are not parallel, then a pair of alternate interior angles are not 

congruent. 

 

Theorem 75: Corollary of The Alternate Interior Angle Theorem for Neutral Geometry (p. 189) 

Given: Neutral Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If any of the statements of Theorem 73 are true (that is, if lines 𝐿, 𝑀, 𝑇 have the 

special angle property), then 𝐿 and 𝑀 are parallel . 

Contrapositive: If 𝐿 and 𝑀 are not parallel, then all of the statements of Theorem 73 are 

false (that is, lines 𝐿, 𝑀, 𝑇 do not have the special angle property). 

 

Theorem 76: Existence of a parallel through a point 𝑃 not on a line 𝐿 in Neutral Geometry. 

(page 189) 

In Neutral Geometry, for any line 𝐿 and any point 𝑃 not on 𝐿, there exists at least one line 𝑀 

that passes through 𝑃 and is parallel to 𝐿. 

 

Theorem 77: In Neutral Geometry, the Number of Possible Intersection Points for a Line and a 

Circle is 0, 1, 2. (page 195) 

 

Theorem 78: In Neutral Geometry, tangent lines are perpendicular to the radial segment. (p.196) 

Given: A segment 𝐴𝐵̅̅ ̅̅  and a line 𝐿 passing through point 𝐵. 

Claim: The following statements are equivalent. 

(i) Line 𝐿 is perpendicular to segment 𝐴𝐵̅̅ ̅̅ . 

(ii) Line 𝐿 is tangent to 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) at point 𝐵. That is, 𝐿 only intersects 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐴𝐵) 

at point 𝐵. 

 

Theorem 79: (Corollary of Theorem 78) For any line tangent to a circle in Neutral Geometry, all 

points on the line except for the point of tangency lie in the circle’s exterior. (page 197) 

 

Theorem 80: about points on a Secant line lying in the interior or exterior in Neutral Geometry 

(page 197) 

Given: 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟) and a secant line 𝐿 passing through points 𝐵 and 𝐶 on the circle 

Claim:  

(i) If 𝐵 ∗ 𝐷 ∗ 𝐶, then 𝐷 is in the interior of the circle. 

(ii) If 𝐷 ∗ 𝐵 ∗ 𝐶 or 𝐵 ∗ 𝐶 ∗ 𝐷, then 𝐷 is in the exterior of the circle. 

 

Theorem 81: (Corollary of Theorem 80) about points on a chord or radial segment that lie in the 

interior in Neutral Geometry (page 198)  

In Neutral Geometry, all points of a segment except the endpoints lie in the interior of the 

circle. Furthermore, one endpoint of a radial segment lies on the circle; all the other points of 

a radial segment lie in the interior of the circle. 

 

Theorem 82: In Neutral Geometry, if a line passes through a point in the interior of a circle, then 

it also passes through a point in the exterior. (page 198) 

 

Theorem 83: In Neutral Geometry, if a line passes through a point in the interior of a circle and 

also through a point in the exterior, then it intersects the circle at a point between those two 

points. (page 198) 
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Theorem 84: (Corollary) In Neutral Geometry, if a line passes through a point in the interior of a 

circle, then the line must be a secant line. That is, the line must intersect the circle exactly twice. 

(page 198) 

 

Theorem 85: about special rays in isosceles triangles in Neutral Geometry (page 199) 

Given: Neutral Geometry, triangle Δ𝐴𝐵𝐶 with 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅  and ray 𝐴𝐷       such that 𝐵 ∗ 𝐷 ∗ 𝐶. 

Claim: The following three statements are equivalent. 

(i) Ray 𝐴𝐷       is the bisector of angle ∠𝐵𝐴𝐶. 

(ii) Ray 𝐴𝐷       is perpendicular to side 𝐵𝐶̅̅ ̅̅ . 

(iii) Ray 𝐴𝐷       bisects side 𝐵𝐶̅̅ ̅̅ . That is, point 𝐷 is the midpoint of side 𝐵𝐶̅̅ ̅̅ . 

 

Theorem 86: about points equidistant from the endpoints of a line segment in Neutral Geometry 

(page 200) 

In Neutral Geometry, the following two statements are equivalent 

(i) A point is equidistant from the endpoints of a line segment. 

(ii) The point lies on the perpendicular bisector of the segment. 

 

Theorem 87: In Neutral Geometry, any perpendicular from the center of a circle to a chord 

bisects the chord (page 200) 

 

Theorem 88: In Neutral Geometry, the segment joining the center to the midpoint of a chord is 

perpendicular to the chord. (page 200) 

 

Theorem 89: (Corollary of Theorem 86) In Neutral Geometry,  the perpendicular bisector of a 

chord passes through the center of the circle. (page 200) 

 

Theorem 90: about chords equidistant from the centers of circles in Neutral Geometry (p. 201) 

Given: Neutral Geometry, chord 𝐵𝐶̅̅ ̅̅  in 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝑟) and chord 𝑄𝑅̅̅ ̅̅  in 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟) with the 

same radius 𝑟. 

Claim: The following two statements are equivalent: 

(i) The distance from chord 𝐵𝐶̅̅ ̅̅  to center 𝐴 is the same as the distance from 

chord 𝑄𝑅̅̅ ̅̅  to center 𝑃. 

(ii) The chords have the same length. That is, 𝐵𝐶̅̅ ̅̅ ≅ 𝑄𝑅̅̅ ̅̅ . 

 

Theorem 91: about points on the bisector of an angle in Neutral Geometry (page 202) 

Given: Neutral Geometry, angle ∠𝐵𝐴𝐶, and point 𝐷 in the interior of the angle 

Claim: The following statements are equivalent 

(i) 𝐷 lies on the bisector of angle ∠𝐵𝐴𝐶.  

(ii) 𝐷 is equidistant from the sides of angle ∠𝐵𝐴𝐶. 

 

Theorem 92: in Neutral Geometry, the three angle bisectors of any triangle are concurrent at a 

point that is equidistant from the three sides of the triangle. (page 202) 

 

Theorem 93: about tangent lines drawn from an exterior point to a circle in Neutral Geometry 

(page 203) 



Appendix 2: List of Theorems  page 364 

Given: Neutral Geometry, 𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟), point 𝐴 in the exterior of the circle, and lines 𝐴𝐵 ⃡     

and 𝐴𝐶 ⃡     tangent to the circle at points 𝐵 and 𝐶. 

Claim: 𝐴𝐵̅̅ ̅̅ ≅ 𝐴𝐶̅̅ ̅̅  and ∠𝑃𝐴𝐵 ≅ ∠𝑃𝐴𝐶. 

 

Theorem 94: In Neutral Geometry, if three points lie on a circle, then they do not lie on any 

other circle. (page 204) 

 

Theorem 95: in Neutral Geometry, every triangle has exactly one inscribed circle. (page 204) 

 

Theorem 96: In Neutral Geometry, if one circle passes through a point that is in the interior of 

another circle and also passes through a point that is in the exterior of the other circle, then 

the two circles intersect at exactly two points. (page 205) 

 

Theorem 97: (Corollary) In Euclidean Geometry, the answer to the recurring question is exactly 

one line. (page 210) 

In Euclidean Geometry, for any line 𝐿 and any point 𝑃 not on 𝐿, there exists exactly one line 

𝑀 that passes through 𝑃 and is parallel to 𝐿. 

 

Theorem 98: (corollary) In Euclidean Geometry, if a line intersects one of two parallel lines, 

then it also intersects the other. (page 210) 

In Euclidean Geometry, if 𝐿 and 𝑀 are parallel lines, and line 𝑇 intersects 𝑀, then 𝑇 also 

intersects 𝐿. 

 

Theorem 99: (corollary) In Euclidean Geometry, if two distinct lines are both parallel to a third 

line, then the two lines are parallel to each other. (page 211) 

In Euclidean Geometry, if distinct lines 𝑀 and 𝑁 are both are parallel to line 𝐿, then 𝑀 and 𝑁 

are parallel to each other. 

 

Theorem 100: Converse of the Alternate Interior Angle Theorem for Euclidean Geometry (page 

211) 

Given: Euclidean Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If 𝐿 and 𝑀 are parallel, then a pair of alternate interior angles is congruent  

 

 

Theorem 101: (corollary) Converse of Theorem 75. (page 212) 

Given: Euclidean Geometry, lines 𝐿 and 𝑀 and a transversal 𝑇 

Claim: If 𝐿 and 𝑀 are parallel, then all of the statements of Theorem 73 are true (that is, 

lines 𝐿, 𝑀, 𝑇 have the special angle property). 

 

Theorem 102: (corollary) In Euclidean Geometry, if a line is perpendicular to one of two 

parallel lines, then it is also perpendicular to the other. That is, if lines 𝐿 and 𝑀 are parallel, and 

line 𝑇 is perpendicular to 𝑀, then 𝑇 is also perpendicular to 𝐿. (page 212) 

 

Theorem 103: In Euclidean Geometry, the angle sum for any triangle is 180. (page 212) 

 

Theorem 104: (corollary) Euclidean Exterior Angle Theorem. (page 213) 
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In Euclidean Geometry, the measure of any exterior angle is equal to the sum of the measure 

of its remote interior angles 

 

Theorem 105: (corollary) In Euclidean Geometry, the angle sum of any convex quadrilateral is 

360. (page 213) 

 

Theorem 106: In Euclidean Geometry, the perpendicular bisectors of the three sides of any 

triangle are concurrent at a point that is equidistant from the vertices of the 

triangle. (This point will be called the circumcenter.) (page 214) 

Theorem 107: (corollary) In Euclidean Geometry, every triangle can be circumscribed. (p. 215)  

 

Theorem 108: equivalent statements about convex quadrilaterals in Euclidean Geometry (p.216) 

In Euclidean Geometry, given any convex quadrilateral, the following statements are 

equivalent (TFAE) 

(i) Both pairs of opposite sides are parallel. That is, the quadrilateral is a parallelogram. 

(ii) Both pairs of opposite sides are congruent. 

(iii) One pair of opposite sides is both congruent and parallel. 

(iv) Each pair of opposite angles is congruent. 

(v) Either diagonal creates two congruent triangles. 

(vi) The diagonals bisect each other. 

 

Theorem 109: (corollary) In Euclidean Geometry, parallel lines are everywhere equidistant. 

(page 216) 

In Euclidean Geometry, if lines 𝐾 and 𝐿 are parallel, and line 𝑀 is a transversal that is 

perpendicular to lines 𝐾 and 𝐿 at points 𝐴 and 𝐵, and line 𝑁 is a transversal that is 

perpendicular to lines 𝐾 and 𝐿 at points 𝐶 and 𝐷, then 𝐴𝐵 = 𝐶𝐷. 

 

Theorem 110: The Euclidean Geometry Triangle Midsegment Theorem (page 217) 

In Euclidean Geometry, if the endpoints of a line segment are the midpoints of two sides of a 

triangle, then the line segment is parallel to the third side and is half as long as the third side. 

That is, a midsegment of a triangle is parallel to the third side and half as long. 

 

Theorem 111: Properties of Medial Triangles in Euclidean Geometry (page 218) 

(1) The sides of the medial triangle are parallel to sides of outer triangle and are half as long. 

(2) The altitude lines of the medial triangle are the perpendicular bisectors of the sides of the 

outer triangle. 

(3) The altitude lines of the medial triangle are concurrent. 

 

Theorem 112: In Euclidean Geometry any given triangle is a medial triangle for some other. 

(page 218) 

 

Theorem 113:  (Corollary) In Euclidean Geometry, the altitude lines of any triangle are 

concurrent.  (page 219) 

 

Theorem 114: about 𝑛 distinct parallel lines intersecting a transversal in Euclidean Geometry 

(page 220) 

Given: in Euclidean Geometry, parallel lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 intersecting a transversal 𝑇 at 

points 𝑃1, 𝑃2, ⋯ , 𝑃𝑛 such that 𝑃1 ∗ 𝑃2 ∗ ⋯ ∗ 𝑃𝑛. 
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Claim: The following are equivalent 

(i) Lines 𝐿1, 𝐿2, ⋯ , 𝐿𝑛 are equally spaced parallel lines. 

(ii) The lines cut congruent segments in transversal 𝑇. That is, 𝑃1𝑃2
̅̅ ̅̅ ̅̅ ≅ 𝑃2𝑃3

̅̅ ̅̅ ̅̅ ≅ ⋯ ≅ 𝑃𝑛−1𝑃𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

Theorem 115: (Corollary) about 𝑛 distinct parallel lines cutting congruent segments in 

transversals in Euclidean Geometry (page 220)  

If a collection of 𝑛 parallel lines cuts congruent segments in one transversal, then the n 

parallel lines must be equally spaced and so they will also cut congruent segments in any 

transversal. 

Theorem 116: about concurrence of medians of triangles in Euclidean Geometry (page 220) 

In Euclidean Geometry, the medians of any triangle are concurrent at a point that can be 

called the centroid. Furthermore, the distance from the centroid to any vertex is 2/3 the 

length of the median drawn from that vertex. 

 

Theorem 117: Parallel Projection in Euclidean Geometry is one-to-one and onto. (page ) 

 

Theorem 118: Parallel Projection in Euclidean Geometry preserves betweenness. (page 228) 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶 are points on 𝐿 with 𝐴 ∗ 𝐵 ∗ 𝐶, 

then 𝐴′ ∗ 𝐵′ ∗ 𝐶′. 
 

Theorem 119: Parallel Projection in Euclidean Geometry preserves congruence of segments. 

(page 228) 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶, 𝐷 are points on 𝐿 with 𝐴𝐵̅̅ ̅̅ ≅

𝐶𝐷̅̅ ̅̅ , then 𝐴′𝐵′̅̅ ̅̅ ̅̅ ≅ 𝐶′𝐷′̅̅ ̅̅ ̅̅ . 

 

Theorem 120: Parallel Projection in Euclidean Geometry preserves ratios of lengths of 

segments. (page 229) 

If 𝐿, 𝑀, 𝑇 are lines, and 𝑇 intersects both 𝐿 and 𝑀, and 𝐴, 𝐵, 𝐶, 𝐷 are points on 𝐿 with 𝐶 ≠ 𝐷, 

then 
𝐴′𝐵′

𝐶′𝐷′
=

𝐴𝐵

𝐶𝐷
. 

 

Theorem 121: (corollary) about lines that are parallel to the base of a triangle in Euclidean 

Geometry. (page 229) 

In Euclidean Geometry, if line 𝑇 is parallel to side 𝐵𝐶̅̅ ̅̅  of triangle Δ𝐴𝐵𝐶 and intersects rays 

𝐴𝐵       and 𝐴𝐶       at points 𝐷 and 𝐸, respectively, then 
𝐴𝐷

𝐴𝐵
=

𝐴𝐸

𝐴𝐶
. 

 

Theorem 122: The Angle Bisector Theorem. (page 230) 

In Euclidean Geometry, the bisector of an angle in a triangle splits the opposite side into two 

segments whose lengths have the same ratio as the two other sides. That is, in Δ𝐴𝐵𝐶, if 𝐷 is 

the point on side 𝐴𝐶̅̅ ̅̅  such that ray 𝐵𝐷        bisects angle ∠𝐴𝐵𝐶, then 
𝐷𝐴

𝐷𝐶
=

𝐵𝐴

𝐵𝐶
. 

 

Theorem 123: triangle similarity is an equivalence relation (page 231) 

 

Theorem 124: The Angle-Angle-Angle (AAA) Similarity Theorem for Euclidean Geometry 

(page 233) 

If there is a one-to-one correspondence between the vertices of two triangles, and each pair of 

corresponding angles is a congruent pair, then the ratios of the lengths of each pair of 
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corresponding sides is the same, so the correspondence is a similarity and the triangles are 

similar. 

 

Theorem 125: (Corollary) The Angle-Angle (AA) Similarity Theorem for Euclidean Geometry 

(page 234) 

If there is a one-to-one correspondence between the vertices of two triangles, and two pairs 

of corresponding angles are congruent pairs, then the third pair of corresponding angles is 

also a congruent pair, and the ratios of the lengths of each pair of corresponding sides is the 

same, so the correspondence is a similarity and the triangles are similar. 

Theorem 126: (corollary) In Euclidean Geometry, the altitude to the hypotenuse of a right 

triangle creates two smaller triangles that are each similar to the larger triangle. 

(page 234) 

 

Theorem 127: The Side-Side-Side (SSS) Similarity Theorem for Euclidean Geometry (p. 234) 

If there is a one-to-one correspondence between the vertices of two triangles, and the ratios 

of lengths of all three pairs of corresponding sides is the same, then all three pairs of 

corresponding angles are congruent pairs, so the correspondence is a similarity and the 

triangles are similar. 

 

Theorem 128: The Side-Angle-Side (SAS) Similarity Theorem for Euclidean Geometry (p. 235) 

If there is a one-to-one correspondence between the vertices of two triangles, and the ratios 

of lengths of two pairs of corresponding sides is the same and the corresponding included 

angles are congruent, then the other two pairs of corresponding angles are also congruent 

pairs and the ratios of the lengths of all three pairs of corresponding sides is the same, so the 

correspondence is a similarity and the triangles are similar. 

 

Theorem 129: About the ratios of lengths of certain line segments associated to similar triangles 

in Euclidean Geometry. (page 236) 

In Euclidean Geometry, if Δ~Δ′, then  
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑖𝑑𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑖𝑑𝑒′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟′
=

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎𝑛

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑒𝑑𝑖𝑎𝑛′
 

 

Theorem 130: The Pythagorean Theorem of Euclidean Geometry (page 237) 

In Euclidean Geometry, the sum of the squares of the length of the two sides of any right 

triangle equals the square of the length of the hypotenuse. That is, in Euclidean Geometry, 

given triangle Δ𝐴𝐵𝐶 with 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 and 𝑐 = 𝐴𝐵, if angle ∠𝐶 is a right angle, then 

𝑎2 + 𝑏2 = 𝑐2. 

 

Theorem 131: The Converse of the Pythagorean Theorem of Euclidean Geometry (page 238) 

In Euclidean Geometry, if the sum of the squares of the length of two sides of a triangle 

equals the square of the length of the third side, then the angle opposite the third side is a 

right angle. That is, in Euclidean Geometry, given triangle Δ𝐴𝐵𝐶 with 𝑎 = 𝐵𝐶 and 𝑏 = 𝐶𝐴 

and 𝑐 = 𝐴𝐵, if 𝑎2 + 𝑏2 = 𝑐2, then angle ∠𝐶 is a right angle. 

 

Theorem 132: In Euclidean Geometry, the product of 𝑏𝑎𝑠𝑒 ⋅ ℎ𝑒𝑖𝑔ℎ𝑡 in a triangle does not 

depend on which side of the triangle is chosen as the base. (page 238) 
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Theorem 133: (accepted without proof) Given any polygonal region, any two complexes for that 

region have the same area sum. (page 250) 

If 𝑅 is a polygonal region and 𝐶1 and 𝐶2 are two complexes for 𝑅, then the sum of the areas 

of the triangular regions of complex 𝐶1 equals the sum of the areas of the triangular regions 

of complex 𝐶2. 

 

Theorem 134: Properties of the Area Function for Polygonal Regions (page 251) 

Congruence: If 𝑅1 and 𝑅2 are triangular regions bounded by congruent triangles, 

then 𝐴𝑟𝑒𝑎(𝑅1) = 𝐴𝑟𝑒𝑎(𝑅2). 

Additivity: If 𝑅1 and 𝑅2 are polygonal regions whose interiors do not intersect, 

then 𝐴𝑟𝑒𝑎(𝑅1 ∪ 𝑅2) = 𝐴𝑟𝑒𝑎(𝑅1) + 𝐴𝑟𝑒𝑎(𝑅2). 

 

Theorem 135: about the ratio of the areas of similar triangles (page 253) 

The ratio of the areas of a pair of similar triangles is equal to the square of the ratio of the 

lengths of any pair of corresponding sides. 

 

Theorem 136: polygon similarity is an equivalence relation (page 254) 

 

Theorem 137: about the ratio of the areas of similar n-gons (page 256) 

The ratio of the areas of a pair of similar n-gons (not necessarily convex) is equal to the 

square of the ratio of the lengths of any pair of corresponding sides. 

 

Theorem 138: If two distinct arcs share both endpoints, then the sum of their arc angle measures 

is 360. That is, if 𝐴𝐵�̂� and 𝐴𝐷�̂� are distinct, then �̂�(𝐴𝐵�̂�) + �̂�(𝐴𝐷�̂�) = 360. (page 268) 

 

Theorem 139: Two chords of a circle are congruent if and only if their corresponding arcs have 

the same measure.(page 268) 

 

Theorem 140: The Arc Measure Addition Theorem (page 268) 

If 𝐴𝐵�̂� and 𝐶𝐷�̂� are arcs that only intersect at 𝐶, then �̂�(𝐴𝐶�̂�) = �̂�(𝐴𝐵�̂�) + �̂�(𝐶𝐷�̂�). 

 

Theorem 141: the angle measure of an inscribed angle (Type 2) is equal to half the arc angle 

measure of the intercepted arc. (page 270) 

 

Theorem 142: (Corollary) Any inscribed angle that intercepts a semicircle is a right angle. (page 

272) 

 

Theorem 143: the angle measure of an angle of Type 3. (page 272) 

The angle measure of an angle of Type 3 is equal to the average of the arc angle measures of 

two arcs. One arc is the arc intercepted by the angle, itself. The other arc is the arc 

intercepted by the angle formed by the opposite rays of the original angle. 

 

Theorem 144: the angle measure of an angle of Type 4. (page 273) 

The angle measure of an angle of Type 4 is equal to one half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed by subracting 

the smaller arc angle measure from the larger one.) 
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Theorem 145: the angle measure of an angle of Type 5. (page 273) 

The angle measure of an angle of Type 5 can be related to the arc angle measures of the arcs 

that it intersects in three useful ways: 

(i) The angle measure of the angle is equal to 180 minus the arc angle measure of 

the smaller intercepted arc 

(ii) The angle measure of the angle is equal to the arc angle measure of the larger 

intercepted arc minus 180 

(iii) The angle measure of the angle is equal to half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed 

by subracting the smaller arc angle measure from the larger one.) 

 

Theorem 146: the angle measure of an angle of Type 6. (page 274) 

The angle measure of an angle of Type 6 is equal to one half the arc angle measure of the arc 

intercepted by the angle. 

 

Theorem 147: the angle measure of an angle of Type 7. (page 275) 

The angle measure of an angle of Type 7 is equal to one half the difference of the arc angle 

measures of the two arcs intercepted by the angle. (The difference computed by subracting 

the smaller arc angle measure from the larger one. 

 

Theorem 148: In Euclidean Geometry, in any cyclic quadrilateral, the sum of the measures of 

each pair of opposite angles is 180. That is, if 𝑄𝑢𝑎𝑑(𝐴𝐵𝐶𝐷) is cyclic, then 𝑚(∠𝐴) + 𝑚(∠𝐶) =
180 and 𝑚(∠𝐵) + 𝑚(∠𝐷) = 180. (page 277) 

 

Theorem 149: about angles that intercept a given arc (page 277) 

In Euclidean geometry, given an arc 𝐴𝐵�̂� and a point 𝑃 on the opposite side of line 𝐴𝐶 ⃡     from 

point 𝐵, the following are equivalent: 

(1) Point 𝑃 lies on 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐵, 𝐶). 

(2) 𝑚(∠𝐴𝑃𝐶) =
�̂�(𝐴𝐵�̂�)

2
. 

Theorem 150: In Euclidean Geometry, in any convex quadrilateral, if the sum of the measures 

of either pair of opposite angles is 180, then the quadrilateral is cyclic. (page 278) 

 

Theorem 151: The Intersecting Secants Theorem (p. 279) 

In Euclidean geometry, if two secant lines intersect, then the product of the distances from 

the intersection point to the two points where one secant line intersects the circle equals the 

product of the distances from the intersection point to the two points where the other secant 

line intersects the circle. That is, if secant line 𝐿 passes through a point 𝑄 and intersects the 

circle at points 𝐴 and 𝐵 and secant line 𝑀 passes through a point 𝑄 and intersects the circle at 

points 𝐷 and 𝐸, then 𝑄𝐴 ⋅ 𝑄𝐵 = 𝑄𝐴 ⋅ 𝑄𝐵. 

 

Theorem 152: about intersecting secant and tangent lines. (page 281) 

In Euclidean geometry, if a secant line and tangent line intersect, then the square of the 

distance from the point of intersection to the point of tangency equals the product of the 

distances from the intersection point to the two points where the secant line intersects the 

circle. That is, if a secant line passes through a point 𝑄 and intersects the circle at points 𝐴 

and 𝐵 and a tangent line passes through 𝑄 and intersects the circle at 𝐷, then  

(𝑄𝐷)2 = 𝑄𝐴 ⋅ 𝑄𝐵 
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Theorem 153: Miquel’s Theorem (page 285) 

If points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are given such that points 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐷 ∗ 𝐵 and 

𝐵 ∗ 𝐸 ∗ 𝐶 and 𝐶 ∗ 𝐹 ∗ 𝐴, then 𝐶𝑖𝑟𝑐𝑙𝑒(𝐴, 𝐷, 𝐹) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐵, 𝐸, 𝐷) and 𝐶𝑖𝑟𝑐𝑙𝑒(𝐶, 𝐹, 𝐸) exist 

and there exists a point 𝐺 that lies on all three circles.  

 

Theorem 154: Menelaus’s Theorem (page 285) 

Given: points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 such that 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐵 ∗ 𝐷 and 𝐵 ∗ 𝐸 ∗ 𝐶 

and 𝐶 ∗ 𝐹 ∗ 𝐴 

Claim: The following are equivalent 

(1) 𝐹 ∗ 𝐸 ∗ 𝐷 

(2)  
𝐴𝐷

𝐷𝐵
⋅

𝐵𝐸

𝐶𝐸
⋅

𝐶𝐹

𝐴𝐹
= −1 

 

Theorem 155: Ceva’s Theorem (found on page 286) 

Given: points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 such that 𝐴, 𝐵, 𝐶 are non-collinear and 𝐴 ∗ 𝐷 ∗ 𝐵 and 𝐵 ∗ 𝐸 ∗ 𝐶 

and 𝐶 ∗ 𝐹 ∗ 𝐴 

Claim: The following are equivalent 

(1) Lines 𝐴𝐸 ⃡    , 𝐵𝐹 ⃡    , 𝐶𝐷 ⃡     are concurrent 

(2)  
𝐴𝐷

𝐷𝐵
⋅

𝐵𝐸

𝐶𝐸
⋅

𝐶𝐹

𝐴𝐹
= 1 

 

Theorem 156: (Corollary to Ceva’s Theorem) (found on page 286) 

If 𝐴, 𝐵, 𝐶 are non-collinear points and 𝐴 ∗ 𝐷 ∗ 𝐵 and 𝐵 ∗ 𝐸 ∗ 𝐶 and 𝐶 ∗ 𝐹 ∗ 𝐴 are the points of 

tangency of the inscribed circle for Δ𝐴𝐵𝐶, then lines 𝐴𝐸 ⃡    , 𝐵𝐹 ⃡    , 𝐶𝐷 ⃡     are concurrent. 

 

Theorem 157: Collinearity of the orthcenter, centroid, and circumcenter (found on page 287) 

If a non-equilateral triangle’s orthcenter, centroid, and circumcenter are labeled 𝐴, 𝐵, 𝐶, 

Then 𝐴, 𝐵, 𝐶 are collinear, with 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴𝐵 = 2𝐵𝐶. 

 

Theorem 158: Existence of a circle passing through nine special points associated to a triangle 

(found on page 288) 

For every triangle, there exists a single circle that passes through the midpoints of the three 

sides, the feet of the three altitudes, and the three Euler points. 

 

Theorem 159: The ratio 
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 is the same for all circles. (page 293) 

 

Theorem 160: The circumference of a circle is 𝑐 = 𝜋𝑑. The area of a circle is 𝐴 = 𝜋𝑟2. (p. 296) 

 

Theorem 161: Function composition is associative. (page 304) 

For all functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 and ℎ: 𝐶 → 𝐷, the functions ℎ ∘ (𝑔 ∘ 𝑓) and 
(ℎ ∘ 𝑔) ∘ 𝑓 are equal. 

 

Theorem 162: Bijective functions have inverse functions that are also bijective. (page 308) 

If 𝑓: 𝐴 → 𝐵 is a bijective function, then 𝑓 has an inverse function 𝑓−1: 𝐵 → 𝐴. The 

inverse function is also bijective. 
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Theorem 163: If a function has an inverse function, then both the function and its inverse are 

bijective. (page 309) 

If functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐴 are inverses of one another (that is, if they satisfy the 

inverse relations), then both 𝑓 and 𝑔 are bijective. 

 

Theorem 164: about the inverse of a composition of functions (page 310) 

If functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶 are both bijective, then their composition 𝑔 ∘ 𝑓 will 

be bijective. The inverse of the composition will be (𝑔 ∘ 𝑓)−1 = 𝑓−1 ∘ 𝑔−1. 

 

Theorem 165: the pair (𝑇,∘) consisting of the set of Transformations of the Plane and the 

operation of composition of functions, is a group. (page 316) 

 

Theorem 166: The composition of two isometries of the plane is also an isometry of the plane. 

(page 318) 

 

Theorem 167: Every isometry of the plane is one-to-one. (page 318) 

 

Theorem 168: For three distinct points, betweenness is related to distance between the points. 

(page 319) 

For distinct points 𝐴, 𝐵, 𝐶, the following two statements are equivalent. 

(i) 𝐴 ∗ 𝐵 ∗ 𝐶 

(ii) 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶) = 𝑑(𝐴, 𝐶) 

 

Theorem 169: Isometries of the plane preserve collinearity. (page 319) 

If 𝐴, 𝐵, 𝐶 are distinct, collinear points and 𝑓 is an isometry of the plane, then 

𝑓(𝐴), 𝑓(𝐵), 𝑓(𝐶) are distinct, collinear points. 

 

Theorem 170: Every isometry of the plane is onto. (page 320) 

 

Theorem 171: (corollary) Every isometry of the plane is also a transformation of the plane. 

(page 321) 

 

Theorem 172: Every isometry of the plane has an inverse that is also an isometry. ( page 322) 

 

Theorem 173: the pair (𝐼,∘) consisting of the set of Isometries of the Plane and the operation of 

composition of functions, is a group. (page 322) 

 

Theorem 174: Isometries of the plane preserve lines. (page 323) 

If 𝐿 is a line and 𝑓: 𝒫 → 𝒫 is an isometry, then the image 𝑓(𝐿) is also a line. 

 

Theorem 175: Isometries of the plane preserve circles. (page 324) 

If 𝑓: 𝒫 → 𝒫 is an isometry, then the image of a circle is a circle with the same radius. 

More specifically, the image 𝑓(𝐶𝑖𝑟𝑐𝑙𝑒(𝑃, 𝑟)) is the circle 𝐶𝑖𝑟𝑐𝑙𝑒(𝑓(𝑃), 𝑟). 

 

Theorem 176: If an isometry has three non-collinear fixed points, then the isometry is the 

identity map. (page 325) 

 



Appendix 2: List of Theorems  page 372 

Theorem 177: If two isometries have the same images at three non-collinear fixed points, then 

the isometries are in fact the same isometry. (page 325) 

If 𝑓: 𝒫 → 𝒫 and 𝑔: 𝒫 → 𝒫 are isometries and 𝐴, 𝐵, 𝐶 are non-collinear points such that 

𝑓(𝐴) = 𝑔(𝐴) and 𝑓(𝐵) = 𝑔(𝐵) and 𝑓(𝐶) = 𝑔(𝐶), then 𝑓 = 𝑔. 
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