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Abstract

Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells of the adrenal medulla, and paragangliomas 
(PGLs) are extra-adrenal pheochromocytomas. These can be mainly found in clinical syndromes including multiple endocrine neoplasia (MEN), 
von Hippel–Lindau (VHL) syndrome, neurofibromatosis-1 (NF-1) and familial paraganglioma (FPGL). PCCs and PGLs are thought to have the 
highest degree of heritability among human tumors, and it has been estimated that 60% of the patients have genetic abnormalities. This review 
provides an overview of the clinical syndrome and the genetic screening strategies of PCCs and PGLs. Comprehensive screening principles and 
strategies, along with specific screening based on clinical symptoms, biochemical tests and immunohistochemistry, are discussed.
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Introduction
Pheochromocytomas (PCCs) and paragangliomas (PGLs), 
with an incidence of 2–8 per million population per year (1, 
2), are rare neuroendocrine tumors that originate from chro-
maffin cells within or outside the adrenal medulla. With the 
recent recognition of the metastatic potential of PCC and 
PGL, risk stratification incorporating the metastatic potential, 

rather than just differentiation of benign or malignant, is rec-
ommended (3). PCC and PGL are thought to have the highest 
heritability among human tumors (4). Up to 40% of PCC and 
PGL are attributed to germline mutations, and overall, germ-
line and somatic mutations can be present in 60% of PCC and 
PGL (5). Hereditary PCC and PGL (HPCC/PGL) are usually 
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associated with neoplasm syndromes including multiple en-
docrine neoplasia (MEN 1 and MEN 2), von Hippel–Lindau 
(VHL), neurofibromatosis-1 (NF-1), and familial paragan-
glioma (FPGL). Apart from these, some catecholamine- 
secreting syndromes such as Sturge–Weber syndrome, tuberous 
sclerosis complex, ataxia-telangiectasia syndrome, and Carney 
Trilogy can be related to PCC and PGL (6). To date, there are 
29 genes known to be related to PCC and PGL and the explo-
ration of new genes is far from over (7). Genetic screening is 
useful to identify carriers of the pathogenic mutations of PCC 
and PGL. With the development of high-throughput screening 
technologies and comprehensive screening strategies, signifi-
cant progress has been made in the field. This review provides 
an overview of the clinical syndromes and genetic screening 
strategies for PCC and PGL.

Clinical Syndromes of PCC/PGL
PCC and PGL are considered to be part of clinical syn-
dromes when it comes to hereditary form. An understand-
ing of these syndromes may help to raise awareness of PCC 
and PGL systematically. The PCC/PGL-related syndromes 
are summarized in Table 1, and the clinical presentations of 
PCC/PGL-related syndromes are depicted in Figure 1.

Multiple Endocrine Neoplasia 2

MEN 2 is an autosomal-dominant inheritance syndrome 
characterized by the presence of diseases such as medullary 
thyroid carcinoma (MTC), PCC, and hyperthyroidism (8). 
MEN 2 has three subtypes: MEN 2A, MEN 2B, and famil-
ial MTC (FMTC). Mutations of the proto-oncogene RET, 
 located at chromosome 10q11.2, are responsible for the 
pathogenesis, and nearly 90% of MEN 2 is caused by sin-
gle point mutation. The RET gene encodes tyrosine kinase 
receptor (TK receptor), which binds to the glial cell line- 
derived neurotrophic factor (GDNF) and modulates the tar-
gets downstream. There are 21 exons in the RET gene, and 
mutations in exons 10, 11, 13, 14, and 15 are responsible for 
the pathogenesis of MEN 2A (9, 10). According to Tang et al. 
(11), the incidence rate of MEN 2A is 1/25,000 and FMTC is 
1.54/1,000,000; MEN 2B is the rarest form afflicting approx-
imately 5% of the MEN 2 patients. All MEN 2 patients will 
suffer from MTC at an average age of 20 (10–30 years), about 
50% cases of MEN 2 will contract PCC/PGL and 20–30% 
cases will develop parathyroid tumors (12). However, PCC 
caused by the mutation of RET has a relative low risk of 
becoming a malignant tumor, and the characteristic clinical 
manifestation is pathogenesis in both adrenal glands, which 
easily relapse. MTC typically occurs in MEN 2A patients 
during adulthood, in MEN 2B patients in childhood, and 
in FMTC patients in midlife. Some MEN 2A patients will 
develop amyloidosis of the skin. The clinical manifestations 
of MEN 2B are similar to MEN 2A with some considerably 

various characteristics such as multiple mucosal neuromas 
and Marfan-like syndrome (13).

Multiple Endocrine Neoplasia 1

MEN 1 is also an autosomal-dominant disease caused by 
inactivating mutation of  MEN 1 tumor suppressor gene 
that is located on chromosome 11q13. This gene consists 
of  10 exons that encode a 610-amino acid suppressor pro-
tein, menin, whose main function is maintaining DNA 
stability and gene regulation. The prevalence of  MEN1 is 
approximately 1/30,000 (14). Neuroendocrine tumors of 
parathyroid gland, pancreas, and pituitary gland are more 
common in MEN1, with occasional tumors of  the adrenal, 
thymus, and bronchi (15). Therefore, when these lesions 
appear on the parathyroid gland, pancreas, and pituitary 
gland, MEN 1 should be considered. Biochemical tests for 
parathyroid hormone (PTH), calcium concentrations, glu-
cagonomas, prolactin (PRL), and growth hormone (GH) 
can assist in the diagnosis of  MEN 1. The most common 
clinical manifestation of  MEN 1 is primary hyperparathy-
roidism (PHPT), which can occur in 90% of  patients. The 
prevalence of  MEN 1 patients who exhibit gastro-entero- 
pancreatic (GEP) tract lesions, such as gastrinomas and 
benign insulinomas, varies from 30% to 70% (16). The 
 occurrence of  anterior pituitary tumors in MEN 1 ranges 
between 10% and 60% (16).

Von Hippel–Lindau Syndrome

VHL is an autosomal-dominant inheritance syndrome 
caused by the germline mutations of  VHL tumor suppres-
sor gene. The VHL gene, which has three exons, is located 
in chromosome 3p25. The clinical manifestations of  VHL 
syndrome include hemangioblastomas of  retina and central 
nervous system, multiple neoplasms (clear cell carcinoma, 
multiple endocrine neoplasia, and pheochromocytoma), and 
cysts (multiple cysts in kidney and pancreas) (17). VHL con-
tains a significant variation in phenotype and an age-related 
penetrance (18). The incidence rate of  VHL is 1/36,000 (19), 
and there is an extremely high penetrance which reaches 
95% before 60 years old. Although there has been a signifi-
cant development in the recognition of  molecular biology 
of  VHL and advances in management strategies, the average 
survival age of  VHL patients is mere 49 years. According 
to the possibility of  suffering from PCC, VHL can be sepa-
rated into two types: type 1 and type 2 (20). Type 1 VHL can 
also be separated into two subtypes: type 1A and type 1B, 
based on the probability of  developing renal cell carcinoma. 
Type 1A patients will develop ccRCC without suffering from 
PCC. Therefore, VHL patients who suffer from PCC are rec-
ognized as Type 2. Type 2 VHL syndrome can also be clas-
sified into type 2A (hemangioblastoma, PCC, no ccRCC), 
type 2B (hemangioblastoma, PCC, and ccRCC), and type 
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2C (the only clinical manifestation is PCC). The VHL gene 
encodes the VHL protein (pVHL), which has a wide range 
of  functions (21), the most important being the degradation 
of  hypoxia inducible factors (HIFs). Without degradation, 
HIFs can be translocated to the nucleus and initiate tran-
scription of  multiple target genes, which can promote cell 
proliferation, angiogenesis, erythropoiesis, and anaerobe 
metabolism (22, 23).

Neurofibromatosis-1

NF-1 is also an autosomal-dominant disorder caused by muta-
tion of the NF-1 gene that is located at chromosome 17q11.2, 
whose main function is to inhibit cell proliferation by con-
verting RAS protein into its inactive form (6). Mutation can 
cause tumors to grow out of control, most commonly on pe-
ripheral nerves. NF-1 has a variety of clinical manifestations: 

Table 1.  PCC/PGL-related syndromes.

Clinical syndrome Subtype Main manifestations Mutation gene Genetic nature

MEN 1 PHPT, gastrinomas, benign insulinomas, anterior 
pituitary tumors, and PCC

MEN 1 Tumor suppressor

MEN 2 MEN 2A MTC, PCC, hyperthyroidism, and amyloidosis of 
the skin

RET Proto oncogene

MEN 2B MTC, PCC, hyperthyroidism, multiple mucosal 
neuromas, and Marfan-like syndrome

RET Proto oncogene

FMTC HMTC RET Proto oncogene

VHL Type 1A Hemangioblastoma in retina and central nervous 
system, multiple abdominal neoplasms and cysts, 
ccRCC, and no PCC

VHL Tumor suppressor

Type 1B Hemangioblastoma in retina and central nervous 
system, multiple abdominal neoplasms and cysts, 
and no ccRCC or PCC

VHL Tumor suppressor

Type 2A PCC, hemangioblastoma in retina or central ner-
vous system, and no ccRCC

VHL Tumor suppressor

Type 2B PCC, hemangioblastoma in retina or central 
nervous system, ccRCC, endocrine neoplasia, and 
pancreatic cyst

VHL Tumor suppressor

Type 2C Only PCC VHL Tumor suppressor

NF-1 Caft-au-lait macules, neurofibromas, freckling in 
the axillary or inguinal region, optic glioma, lisch 
nodules, osseous lesion, and PCC

NF-1 Tumor suppressor

FPGL FPGL-1 Multiple head and neck PGLs SDHD Tumor suppressor

FPGL-2 Head and neck PGLs SDHAF2 Tumor suppressor

FPGL-3 Solitary head and neck PGLs SDHC Tumor suppressor

FPGL-4 The abdomen, pelvis, and mediastinum PGLs SDHB Tumor suppressor

FPGL-5 Leigh’s syndrome SDHA Tumor suppressor

TMEM127 PCC and rare renal cancers TMEM127 Tumor suppressor

MAX PCC/PGL MAX Tumor suppressor

FH Cutaneous and uterine leiomyomas, type 2 papillary 
renal carcinoma, and rare PCC/PGL

FH Tumor suppressor

PHPT, primary hyperparathyroidism; PCC, pheochromocytoma; MTC, medullary thyroid carcinoma; HMTC, hereditary medullary thyroid 
carcinoma; ccRCC, clear-cell renal cell carcinoma; PGL, paraganglioma.



Syndromes and genetic screening of PCC and PGL

Journal of Kidney Cancer and VHL 2018; 5(4): 14–22 17

caft-au-lait macules, neurofibromas, freckling in the axillary 
or inguinal region, optic glioma, lisch nodules, osseous lesion, 
and PCC. The diagnosis of NF-1 is usually based on its clin-
ical presentations. The National Institutes of Health (NIH) 
suggest that if two or more of the above manifestations are 
found in someone, NF-1 should be considered by the clinician, 
and several examination measures may help the diagnosis, for 
example, CT or MRI for the detection of optic gliomas and 
plexiform neurofibromas, and biopsy for histologic confirma-
tion. It is important to choose different examination measures 
to detect different clinical manifestations. There are also sev-
eral variants of NF-1: segmental neurofibromatosis in which 
the lesions are confined to one or more well-circumscribed re-
gions; spinal neurofibromatosis in which the tumors are mostly 
on the spinal nerve roots; NF-Noonan syndrome that is char-
acterized by microsomia, webbed neck, and congenital heart 
disease; and Watson syndrome that is characterized by pul-
monic stenosis, caft-au-lait macules, and decreased IQ (6, 24).

Other Catecholamine-Secreting Syndromes

Catecholamine-secreting tumors, although rare, can be found 
in patients with other neurocutaneous syndromes such as 
Sturge–Weber syndrome (encephalotrigeminal angiomato-
sis—a congenital neurological and skin disorder), tuberous 
sclerosis complex (a multisystem genetic disease), ataxia- 
telangiectasia syndrome (a neurodegenerative, autosomal re-
cessive disease causing severe disability), and Carney–Trilogy 
(gastrointestinal stromal tumor, pulmonary chondroma, and 
extra-adrenal paraganglioma) (25).

SDH Mutations and Familial Paragangliomas
Mutations in the succinate dehydrogenase (SDH, mitochon-
drial complex II) and its subunit genes (SDHA, SDHB, 
SDHC, SDHD, and SDHAF2) can lead to FPGLs. The SDH 
is a part of both the electron transport chain and the tricar-
boxylic acid (TCA) cycle (26). It is worth noting that mu-
tation in SDHB is possibly related to malignancy and poor 
prognosis (27). Mutations in SDHD and SDHAF2 are fre-
quently found in head and neck PGLs in the paternal branch. 
SDHA-, SDHAF2-, and SDHC-related PGLs are infrequent.

FPGL-1

Mutations in SDHD are responsible for FPGL-1 (23–25), 
which are inherited in an autosomal-dominant fashion with 
a parent of origin effect. The gene is located on chromosome 
11q23. Piccini et al. reported that SDHD was the most mu-
tated gene among the genes coding for the SDHX complex 
(28). Usually, the clinical characteristics of the PGL-1 are 
multiple head and neck PGLs in patients with an age range 
of 28–31 years (29). Other tumors such as rare renal cancers 
and gastric stromal tumors have also been found in these pa-
tients (5).

FPGL-2

The germline loss-of-function mutations in the SDHAF2 
(SDH5) gene, which is located on chromosome 11q13.1, lead 
to FPGL-2 (30). This syndrome is transmitted in an autoso-
mal-dominant pattern with a parent of origin effect, similar 
to SDHD. FPGL-2 is commonly associated with parasympa-
thetic PGL at the skull base and neck, and there has been no 
record of metastases. The average age of initial diagnosis is 
33 years, with a range of 22–47 years (31).

FPGL-3

The gene for FPGL-3 is identified as SDHC, which is mapped 
to chromosome 1q23.3. FPGL-3 is an autosomal-dominant 
syndrome, which is unlikely to be PCC (32). Most patients 
develop solitary head and neck FPGLs. Tumors with SDHC 
mutations do not tend to be malignant or multifocal. The 
mean age of onset for patients with FPGL-3 is 38 years (33).

Figure 1. Clinical presentations of PCC/PGL-related syn-
dromes. (A1 and A2): Patient diagnosed with MEN-2 pre-
sented with bilateral PCC and MTC. (B1 and B2): Patient 
diagnosed with NF-1 presented with PCC of right adrenal 
and multiple neurofibromas on her body. (C): Patient di-
agnosed with VHL presented with bilateral PCC and left 
ccRCC. (D): Patient diagnosed with FPGL presented with 
PGL in her left foramina jugulare, and genetic testing identi-
fied germline SDHB mutation of her and her families.
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FPGL-4

FPGL-4 is caused by inactivating mutations in the tumor 
suppressor gene SDHB, located on chromosome 1p35-36, 
with an autosomal-dominant inheritance endowing the 
tumor susceptibility. Clinically, this syndrome is character-
ized by PGLs in the abdomen, pelvis, and mediastinum (34). 
The mean age at diagnosis of these tumors is 25–30 years 
(35). Furthermore, there is an increased risk of malignant 
PGL associated with this gene mutation (36).

FPGL-5

The SDHA gene mutations that map to chromosome 5p15 
can result in FPGL-5. Biallelic mutations in SDHA are as-
sociated with Leigh’s syndrome (37). SDHA germline muta-
tions have been identified in patients with PCC/PGL (38).

Other mutations

Apart from the typical mutations mentioned above, muta-
tions in TMEM127 (locus of 2q11.2), MAX (14q23.3), FH 
(11q42.1), SPAS1/HIF2A (2P21), EGN1 (1q42.1), and KIF1β 
(1p36.22) have also been proved to be associated with PCC/
PGL development (39, 40).

Genetic Screening Strategies of PCC/PGL
As PCC/PGL accounts for the highest proportion of heredi-
tary-related tumors, it is recommended that all patients with 
PCC/PGL should be tested for genetic mutations for the fol-
lowing reasons: (i) up to 40% patients carry disease-causing 
germline mutations (41); (ii) even for sporadic patients, the 
overall frequency of germline mutation is higher than 10% 
(42); (iii) specific genetic mutations are related to malignant 
PCC/PGL; (iv) positive genetic test may lead to an accurate 
pre-surgery diagnosis; (v) germline mutation in genes may 
cause other syndromic morbidity; and (vi) positive genetic 
mutation of the proband may result in an earlier diagnosis 
of their relatives. To date, approximately 30 different genes 
have been reported to be related with the morbidity of PCC/
PGL and the number is rising with the use of next-generation 
sequencing (NGS) (6). Thus, using NGS to test the germ-
line mutation of patients with PCC/PGL may be a suitable 
process. These techniques include whole-genome sequencing 
(WGS), whole-exome sequencing (WES), and targeted NGS.

Whole-Genome Sequencing

WGS is a method of sequencing the whole human genome 
or determining the complete nucleotide sequence of an en-
tire DNA sample (43, 44). It involves sequencing of all the 
coding and non-coding regions, making it one of the most 
comprehensive methods (45, 46). With sufficient read depth 
and fast sequencing time, it has been successfully used to 

detect chromosomal aberrations in circulating cancer cells 
(47). WGS has several disadvantages. In order to extract 
useful data with regard to known disease-causing mutations 
from enormous data that WGS generate, extensive filtering is 
usually needed (44). Ethical issues may also be raised when 
pathogenic mutations are identified in patients who have no 
known connections to the disease for which the genetic diag-
nosis was originally requested (44). WGS has been performed 
to characterize 179 cases of PCC/PGL in order to figure out 
genomic alterations in PCC/PGL (45, 46). However, high 
cost and complex data analysis have prevented WGS from 
being used as a routine diagnostic tool in PCC/PGL (48).

Whole-Exome Sequencing

Unlike WGS, which analyzes almost all nucleotides of the ge-
nome, WES only sequences coding regions of DNA (7). WES 
allows analysis of all potential disease-causing genes includ-
ing known disease genes and genes unrelated to a disease (44). 
WES can also identify new disease genes or mutations that 
have not yet been associated with certain clinical phenotypes. 
Compared with WGS, WES can achieve higher read depths at 
a lower cost. However, regions such as promoters, enhancers, 
and transcription factor binding sites, which adjoin the exons, 
are often missed when WES is performed (7). Another limita-
tion of WES is its incomplete representation due to the fact that 
exons are not included in the manufacturer’s capture design and 
coverage of base-pair reads in certain exons are relatively low 
(44). Due to the fact that about 85% of disease-causing muta-
tions are expected to occur within the exome, WES has gained 
popularity in analysis of PCC/PGL (49). However, when WES 
is applied in PCC/PGL, the individual exon coverage of PCC/
PGL genes and sequence depth are not easily achieved upon 
the completion of the analysis (7). Also, unsolicited pathogenic 
mutations are concerns when WES is applied in clinical diag-
nostic for monogenetic disorders just like WGS.

Targeted NGS

In targeted NGS method, only the coding regions of genes 
are enriched to target a specific disease (50). By restricting the 
mutation detection to a limited gene sets, targeted NGS can 
achieve better quality of representation and a much higher 
read depth than WGS or WES. Moreover, as the analysis is 
targeted at known disease genes, turn-around times for test 
results are significantly reduced due to simpler procedures in 
analyzing datasets and interpreting variants (51). In addition, 
unlike WGS and WES, targeted NGS minimizes the problem 
of unsolicited findings and thereby increases the willingness 
of patients in taking part in NGS method (52). In the diag-
nosis of PCC/PGL, three types of targeted NGS gene pan-
els have been recommended. The first one, the basic panel, 
includes the PCC/PGL genes mutated at the germline level 
and is associated with familial disease (7). Second, the ex-
tended panel consists of the basic panel genes and candidate 
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genes that have been proven to be functionally relevant in 
the pathogenesis of PCC/PGL (7). Third, the comprehensive 
panel includes all the extended panel genes, genes mutated 
at the germline or somatic level, and the genes found to be 
exclusively mutated at the somatic level (7, 45, 46). A high 
degree of diagnostic agreement with targeted NGS and con-
ventional Sanger sequencing method in the analysis of PCC/
PGL has been reported in several studies (50, 53). However, 
the application of targeted NGS is limited by problems like 
difficulty in adding new genes to existing panels and instru-
ments-based errors.

Genetic screening according to clinical features and 
syndromic presentations

NGS is not feasible for all patients because of  the high 
cost. In addition, patients with specific clinical features 
indicate different germline mutations. Therefore, estab-
lishing the priorities for genetic testing with a clinical 
feature-driven diagnostic algorithm can be a cost-saving 
and effective screening approach for PCC/PGL patients. 
Probands or their relatives presented with other syndromic 
morbidity (Table 1) may be directed for targeted germline 
mutation testing.

Genetic screening for patients with bilateral PCC

The presence of bilateral PCC means a relatively high prob-
ability of a germline mutation. For such patients, genetic 
screening of VHL and RET should be the priority as about 
50% of these patients present with VHL/RET mutations. In 
addition, in bilateral PCC, TMEM127 is mutated in 39.1% of 
patients and MAX is mutated in 66.7% of patients (40, 54). 
These genes should also be tested for patients without VHL 
or RET mutation. Germline mutation of KIF1Bβ has also 
been reported to cause bilateral PCC (55), but it is not recom-
mended for routine test as only a few patients with KIF1Bβ 
mutation have been reported. Although 14.1% of patients 
with NF1 germline mutation suffer bilateral PCC (40), the 
diagnosis of NF1 can be invariably established by clinical 
findings alone. Thus, genetic screening for these patients may 
base on syndromic presentations.

Genetic screening for patients with metastatic 
PCC/PGL

Because no single histological feature or immunohis-
tochemical profile is able to predict metastatic potential 
independently, malignancy is established only by the pres-
ence of  distant metastases in a site where paraganglia are 
not normally located (56, 57). However, to the modern 
understanding, PCC/PGL were granted to be malignant 
as all tumors have metastatic potential. Thus, PCC/PGL 
should be defined as metastatic or non-metastatic instead 
of  malignant or benign (3). Metastatic disease was reported 

to occur in 10–20% of  PCCs and in 15–35% of  abdominal 
PGLs, and the potential varies depending on the genetic 
background (58–60). For patients with metastatic disease, 
SDHB should be tested first as more than 40% of  this mu-
tation is related to metastatic PCC/PGL and 5.5% of  PCC/
PGL patients carried SDHB germline mutation (27, 40). 
Further, SDHD, RET, VHL, and MAX should be tested if  
the result of  SDHB mutation is negative given that 21.4% 
of  PCC/PGL patients carry these germline mutations and 
those genes were reported to cause metastatic PCC/PGL 
with a relatively considerable rate (40). Although germline 
mutation in FH, KMT2D, and MEN1 had been reported to 
cause metastatic PCC/PGL, the proportion of  PCC/PGL 
patients with these mutations is very low (61–63). Therefore, 
it is not recommended to be a routine test. Although the 
diagnosis of  NF1 can be established by clinical findings, it 
is reported that 9.3% of  patients with PCC/PGL caused by 
NF1 germline mutation suffer metastatic disease (40). Thus, 
genetic screening should be done among PCC/PGL patients 
clinically diagnosed with NF1 and their relatives for precise 
and early diagnosis.

Genetic screening according to the location of the tumor

Although PCC and PGL are both neuroendocrine tumors 
arising from chromaffin cells and regarded as the same dis-
ease, their location and hereditary background are different. 
Tumors that originate from the adrenal medulla are defined 
as PCCs, which are thought to be caused by the mutation 
of RET, VHL, MAX, NF1, and TMEM127; while tumors 
located in extra-adrenal positions are called paraganglio-
mas, which were more likely to be caused by the mutation of 
SDHx, MDH2, and HIF2A (54). Therefore, genetic screening 
should also be done according to the location of the tumor.

Genetic screening according to the genotype–
biochemical phenotype relationships

PCC and PGL are neuroendocrine tumors known to 
generally produce and secrete catecholamines and their 
metabolites which can be divided into three major pheno-
types determined by the underlying molecular pathways of 
the tumor: (i) noradrenergic phenotype characterized by a 
(pseudo) hypoxic signature caused by mutations of  VHL, 
SDHx, FH, MDH, and EPAS1; (ii) adrenergic pheno-
type characterized by activation of  kinase signaling path-
ways caused by mutations of  RET, NF1, TMEM127, and 
MAX; and (iii) dopaminergic phenotype, which is usually 
seen in patients with metastatic disease caused by SDHB 
and SDHD mutations. In addition, there are still tumors 
that do not exhibit elevations in either catecholamines or 
metanephrines, which is extremely rare, and are called the 
silent subgroup (64). Given all these, genetic screening 
could also be performed according to the genotype–bio-
chemical phenotype relationships.
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Genetic screening according to the 
immunohistochemical features

SDHB immunohistochemistry is negative in tumors mu-
tated on all SDHx genes (2). Studies by Papathomas et 
al. showed that immunohistochemistry for SDHB was a 
reliable surrogate marker of  SDHx mutation despite that 
the SDHB-immunonegative subset of  VHL- and NF1-mu-
tated paraganglionic tumors may influence the specificity 
(65). However, NF1 immunohistochemistry alone does not 
predict NF1 gene mutation status in PCCs (66). It is also 
reported that SDHA is negative only in SDHA-mutated tu-
mors, and negative SDHB and SDHA immunohistochem-
istry on paraffin-embedded tumors can be associated with 
the presence of  SDHA mutation. Generally, SDHD immu-
nohistochemistry is positive in tumors mutated on SDHx 
genes. SDHB negative immunostaining is sometimes diffi-
cult to interpret because of  background staining. So, the 
addition of  SDHD immunohistochemistry will be very 
useful to predict SDHx gene variants in PGL/PCC (67). In 
addition, study by Korpershoek et al proved high predictive 
value of  negative FH immunohistochemistry for patients 
with germline FH mutations (68, 69). Given these, SDHx 
should be tested for patients with negative SDHB immu-
nohistochemistry, and test of  VHL and NF1 should be per-
formed if  the test of  SDHx were negative. SDHA should be 
tested for patients with negative SDHA immunohistochem-
istry. FH should be tested for patients with negative FH 
immunohistochemistry.

Conclusion
Genetic screening can be of great importance for all patients 
with PCC/PGL, and their relatives, especially for those with 
syndromic manifestation, multiple tumors, metastatic dis-
ease, or a young age of onset. Although traditional approach 
to genetic testing is likely be replaced in the future because of 
the development of NGS methods, it takes time. Currently, 
NGS is still unaffordable for many patients with PCC/PGL, 
and targeted sequencing is more convenient and precise. 
Given these, preliminary targeted genetic screening can be 
performed based on clinical features of the patients.
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