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Abstract 

 
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of all kidney tumors. 

During the last few years, epigenetics has emerged as an important mechanism in ccRCC 

pathogenesis. Recent reports, involving large-scale methylation and sequencing analyses, 

have identified genes frequently inactivated by promoter methylation and recurrent 

mutations in genes encoding chromatin regulatory proteins. Interestingly, three of detected 

genes (PBRM1, SETD2 and BAP1) are located on chromosome 3p, near the VHL gene, 
inactivated in over 80% ccRCC cases. This suggests that 3p alterations are an essential part 

of ccRCC pathogenesis. Moreover, most of the proteins encoded by these genes cooperate in 

histone H3 modifications. The aim of this review is to summarize the latest discoveries 

shedding light on deregulation of chromatin machinery in ccRCC. Newly described ccRCC-

specific epigenetic alterations could potentially serve as novel diagnostic and prognostic 
biomarkers and become an object of novel therapeutic strategies. 
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Introduction 

 
Kidney cancer is one of the 15 most 

common malignancies occurring globally, 

with more than 270,000 new cases every 

year worldwide (1-3). The majority of 

malignant kidney tumors are renal cell 

carcinomas (RCC) with the most common 
and aggressive subtype being clear-cell 

renal cell carcinoma (ccRCC), comprising 

approximately 70% of all kidney tumors (4). 

Localized ccRCC is potentially curable by 

resection, though about 30% of patients 

relapse after initial nephrectomy (5). 
Unfortunately, ccRCC is frequently non-

symptomatic in the early phases, and is 

repeatedly detected in advanced stage often 
with metastases (6). When metastasized, 

ccRCC is chemo- and radiation-resistant 

and in most cases remains incurable, 

resulting in a 95% mortality rate (7, 8).  

 

To date no effective ccRCC treatment has 
been developed and none of the potential 

biomarkers have been approved for clinical 

application. For many years von Hippel-

Lindau (VHL) tumor suppressor gene (TSG) 

was the only TSG associated with ccRCC 

pathogenesis (9). Attempts to detect other 
mutated genes have been unsuccessful for 
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a long time, though deregulation of 

chromatin machinery has recently emerged 
as an important mechanism in renal 

neoplasms. Large-scale sequencing projects 

have identified novel TSGs, mapped to the 

frequently lost 3p21 locus and functioning 

as epigenetic chromatin and/or histone 
modifiers, indicating epigenetic changes 

may play an important role in ccRCC 

development (10-12). Silencing of VHL 

through promoter methylation in ccRCC 

was one of the first examples of this 

phenomenon and so far approximately 60 
genes have been suggested to be 

epigenetically deregulated in ccRCC (13). 

Here, we summarize the most recent 

discoveries in the field of ccRCC 

epigenomics, providing potential diagnostic 
and prognostic biomarkers as well as 

possible novel targets for therapeutic 

intervention. 

 

Epigenetic alterations in ccRCC 

 
The main mechanisms responsible for 

chromatin state regulation are: DNA 

methylation, nucleosome remodeling, and 

covalent histone modifications through 

methylation, acetylation, phosphorylation, 

ubiquitination, or sumoylation. These 
modifications can directly change DNA 

organization and/or accessibility as well as 

lead to the recruitment of proteins altering 

chromatin structure and in consequence 

influence transcription, replication, 
recombination and DNA repair (14, 15). 

Recent genome-wide methylation studies 

and sequencing projects demonstrated that 

the disruption of epigenetic control has a 

significant role in the initiation and 

progression of ccRCC (16-18). 
 
Inactivation of potential tumor suppressor 
genes through DNA methylation 

 

DNA methylation is the best studied 
epigenetic modification and the only 

epigenetic mark with a well described 

mechanism of mitotic inheritance (19). It 

plays an important role in various 

biological processes, for example, genomic 

imprinting, transposable elements 
silencing, and embryonic development (20). 

Methylation patterns are generated and 

maintained by DNA methyltransferases 

(DNMTs). DNMT1 acts during replication 

and maintains methylation of the new DNA 

strand, DNMT3a and DNMT3b are de novo 

methyltransferases that act independently 
of replication and display no preference for 

unmethylated nor hemi-methylated DNA 

(20-23).  

 

The majority of CpG-rich promoter regions 
(CpG islands) occupying near 60% of 

human gene promoters usually remain 

unmethylated (24). Gene silencing by 

promoter region methylation of TSGs is a 

frequent mechanism described in human 

cancers, with epigenetic inactivation of VHL 
in ccRCC being one of the first examples 

(13, 25, 26). VHL, while mutated in 

approximately 80% of sporadic ccRCC, is 

inactivated by methylation in an additional 

~10% of cases (27, 28). Identification of 
other epigenetically inactivated TSGs was 

an important approach to study the 

pathogenesis of ccRCC, and promoter 

hypermethylation of several genes 

commonly inactivated in ccRCC has been 

documented (18). Based on a search of 
online databases, compilation of candidate 

genes reported in numerous studies to 

show tumor-specific hypermethylation in 

ccRCC, has been published in 2010 (28). 

Morris et al. described 38 genes methylated 

in ccRCC, among those only a small 
number was methylated with high 

frequency (≥50% of cases: APAF1, COL1A1, 

DKK2, DKK3, SFRP2, SFRP4, SFRP5, and 

WIF1) while rarely (<10%) in matched 

normal tissue (28).  
 

The earlier, initial studies mostly 

implemented targeted, candidate-driven 

analyses. Recently, several whole genome 

strategies also have been applied. A large 

functional epigenetic screen of gene 
upregulation post 5-aza-2’-deoxycytidine 

demethylation treatment by high-density 

gene expression microarrays in 11 RCC cell 

lines (KTCL 26, RCC4, UMRC2, UMRC3, 

SKRC18, SKRC39, SKRC45, SKRC47, 
SKRC54, 786-0 and Caki-1) was applied by 
Morris et al. Genes re-expressed after 

demethylation were validated in 61 primary 

tumors (~80% clear cell and 20% non-clear 

cell RCC). Five genes (BNC1, COL14A1, 

CST6, PDLIM4, and SFRP1) demonstrated 
frequent tumor-specific promoter region 

methylation (>30%), associated with 

transcriptional silencing. Re-expression of 

BNC1, CST6, and SFRP1 suppressed the 
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growth of RCC cell lines, whereas RNAi 

knock-down of BNC1, SFRP1, and 
COL14A1 increased their growth, 

suggesting tumor suppressor activity (29). 

Similarly, methylated DNA 

immunoprecipitation (MeDIP) of primary 

tumors, followed by high-density whole-
genome expression microarray comparative 

analysis revealed 9 genes frequently 

methylated in primary ccRCC tumour 

samples: PCDH8 (58%), KLHL35 (39%), 

ATP5G2 (36%), CCDC8 (35%), FBN2 (34%), 

ZSCAN18 (32%), their promoter 
hypermethylation resulting in gene 

silencing (30). None of these genes have 

been reported previously to be methylated 

in RCC nor other cancers. 

 
Genome-wide DNA methylation studies in 

ccRCC have also been performed using 

BeadChip arrays. Comparison of  DNA 

methylation profiles in familial (n = 29) and 

sporadic (n = 20) VHL+/+ ccRCC showed 

more frequently methylated RASSF1, 
PITX2, CDH13, HS3ST2, TWIST1, TAL1, 

TUSC3, and DCC loci in sporadic cases, 

indicating differences in tumorigenesis 

mechanisms dependent on VHL status (31). 

Several novel ccRCC TSG candidates 

(SLC34A2, OVOL1, DLEC1, TMPRSS2, 
SSTand BMP4) have been found in a global 

study of CpG methylation in 38 ccRCC and 

9 age-matched healthy tissues (~27,500 

CpGs and >14,000 genes) (32). All of those 

exhibited frequent transcriptional silencing 
associated with promoter methylation (20-

60% of cases).  

 
Dmitriev et al. focused on genetic and 

epigenetic destabilization of genes on 

chromosome 3 (33). The study (validated by 
bisulfite genomic sequencing) showed 22 

genes displaying high frequency of 

methylation (17–57%) and/or deletion in 

ccRCC. Identified genes included well-

known TSGs VHL, CTDSPL, LRRC3B, 

ALDH1L1, and EPHB1, but also genes not 
previously linked to cancer development 

(LRRN1, GORASP1, FGD5, and PLCL2). 

Proteins encoded by a part of these genes 

are involved in signaling pathways and 

biological processes frequently affected in 
cancer, like apoptosis (GORASP1), 

regulation of actin cytoskeleton (FGD5), 

transmembrane signaling systems (GNAI2) 

or regulation of NFkappaB activity 

(NKIRAS1). Dmitriev et al. further confirm 

that mechanism of ccRCC development is 
linked to destabilization of genes at 

chromosome 3, discussed in more detail in 

the next paragraph. 

 

Studies described above have identified a 

large number of genes methylated in 
sporadic ccRCC. There is small overlap 

between studies and consensus on which 

genes play a role in its etiology and 

whether any of those are of relevance 

clinically. However, all of the reported 
genes are involved in processes often 

deregulated during tumorigenesis: 

apoptosis, proliferation, cell survival and 

tumor invasion.  The Cancer Genome Axis 

(TCGA) Kidney Renal Clear Cell Carcinoma 

(KIRC) database provides an excellent 
opportunity to confirm and unify previously 

obtained results (16). These data include 

199 ccRCC tumor/normal paired analyses 

using the Infinium HumanMethylation27 

BeadChip validated on 160 ccRCC 
tumor/normal paired samples using the 

Infinium HumanMethylation450 BeadChip.   

 
Mutations of genes regulating epigenetic 
modifications 
 
Non-covalent mechanisms, such as 

nucleosome remodeling can change 

chromatin structure and influence gene 

activity by altering the accessibility of 

regulatory DNA sequences to transcription 
factors (34). Currently, there are four 

known families of ATP-dependent 

remodeling complexes, characterized by 

different core ATPases: SWI/SNF, ISWI, 

NURD/Mi-2/CHD and INO80. Mutations of 

SWI/SNF subunits were documented in 
approximately 20% of human cancers (for 

example, medulloblastoma, breast cancer), 

indicating that inactivation of this complex 

is important in tumor formation (35). 

PBRM1 encodes the chromatin targeting 

subunit (BAF180) of the ATP-dependent 
SWI/SNF chromatin remodeling complex, 

implicated in proliferation, replication, 

transcription and DNA repair (Figure 1) 

(36). Truncating mutations in PBRM1 have 

been found in 88/257 (34%) of ccRCC 
cases (10). Further studies have shown 

similar mutation frequencies, making it the 

second most commonly altered gene in 

ccRCC, next to VHL (37). However, there is 
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Figure 1. Schematic representation of epigenetic changes identified in ccRCC tumors. DNMTs - DNA 
methyltransferases; HDMs - histone demethylases; HMTs - histone methyltransferases; Hubs - 
histone ubiquitinases; HDUbs - histone deubiquitinases; SWI/SNF - chromatin remodeling complex. 

 

 
no significant correlation between lack of 

PBRM1 expression and VHL mutations, 

and PBRM1 mutations occur at similar 

rates in tumors with or without VHL 
mutations (38). Functional in vitro assays 

in ccRCC cell lines with PBRM1 silenced 
via siRNA resulted in a significant increase 

of proliferation in ACHN and 786-O cell 

lines (with wild type PBRM1) but not in 

A704 with a homozygous PBRM1 

truncating mutation (10). In turn, 

reintroduction of PBRM1 into cells induced 
the cyclin-dependent kinase inhibitor p21 

expression and led to reduction in cell 

proliferation (39). PBRM1 silencing results 

also in increased colony formation in soft 

agar and increases cell migration in 786-O, 

SN12C and TK10 cells, suggesting a tumor 
suppressive role for PBRM1 in ccRCC (10). 

Additionally, ccRCCs deficient in PBRM1 

are associated with a distinct gene-

expression signature enriched for genes 

implicated in the cytoskeleton and cell 

motility (40). However, how loss of PBRM1 

function affects chromatin modulation 

patterns and promotes tumorigenesis is 

unknown. 

 

In a small proportion of ccRCCs, ARID1A 
(1p35) encoding for different subunit of the 

SWI/SNF complex (BAF250A) was also 

found to be mutated (Figure 1) (10). In 

another study, in 16% patients with 

ccRCC, ARID1A copy number loss was 

detected - 67% of tumors (n=79) had 
significantly lower expression of BAF250A 

than control tissue, and in approximately 

70% (n=404) decreased ARID1A mRNA 

expression was found (41, 42). ARID1A 

mutations are present at high frequency in 
other cancers, for example, ovarian clear 

cell carcinomas (50%), ovarian 

endometrioid carcinomas (30%), and 

gastric cancers (29%), and studies have 

suggested its roles in proliferation, 

differentiation, and apoptosis (43). The 
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mechanism of ARID1A alterations and their 

role in ccRCC pathogenesis is still unclear. 
 

Besides chromatin remodeling, histone 

modifications, controlled by balanced 

activity of histone modifying enzymes, also 

play a critical role in maintaining the 
proper functioning of cells (44). Most 

common N-terminal tail modifications 

include acetylation and methylation of 

lysine or arginine and serine 

phosphorylation (45). Depending on their 

type and location, modifications may 
influence the accessibility of chromatin or 

can recruit and/or block non-histone 

effector proteins. Various enzymes are 

responsible for this dynamic regulation, for 

example, histone acetyltransferases (HATs) 
and methyltransferases (HMTs) that add 

acetyl and methyl groups, respectively, as 

well as enzymes removing these groups: 

histone deacethylases (HDACs) and 

demethylases (HDMs) (46). Altered 

expression of some of those have been 
discovered in ccRCC, including SETD2 and 

MLL2 (methyltransferases) as well as 

JARID1C/KDM5C and UTX/KDM6A 

(demethylases) (Figure 1).  

 

SETD2 (SET domain containing protein 2) 
is mutated in approximately 3% to 8% of 

ccRCC and its inactivation leads to loss or 

decrease of trimethylation of lysine 36 of 

histone H3 (H3K36me3) (10, 11, 47). In 

addition, a connection has been reported 
between SETD2 mutations and extensive 

DNA hypomethylation in ccRCC (16). 

Similar to VHL and PBRM1, SETD2 is 

located on chromosome 3p and it was 

proposed as a novel TSG in ccRCC. A meta-

analysis based on 5 different studies 
suggests SETD2 mutations cooperate with 

mutations in PBRM1 (48). In addition, 
Garlinger et al. have shown that distinct 

SETD2 mutations are present in the same 

tumor, suggesting a high selective pressure 

to mutate SETD2 (49). How its biallelic 
inactivation is connected to ccRCC remains 

unclear. Two studies have linked SETD2 

and H3K36me3 to DNA mismatch repair 

and microsatellite instability of tumors (50, 

51). This finding was not confirmed by 
Kanu et al., who suggest a role for SETD2 

in nucleosome reassembly, suppression of 

replication stress, and the coordination of 

DNA double-strand breaks (DSBs) repair by 

homologous recombination (HR) (52). 

Findings linking SETD2 to HR have been 

also reported by Carvalho et al., who 
showed it is required for ATM activation 

upon formation of DSBs, and for HR repair 

of DSBs by promoting the formation of 

RAD51 filaments. SETD2-mutant ccRCC 

cells displayed impaired DNA damage 
signaling, decreased cell survival after DNA 

damage and failure to activate the p53-

mediated checkpoint (53). Another 

methyltransferase frequently mutated in 

ccRCC, MLL2 (mixed-lineage leukemia 

protein 2, localized at 12q13.12), directs 
tri-methylation of histone H3 lysine 4 (11). 

The role of MLL2 in pathogenesis of ccRCC 

is currently unknown. 

 

TSG function was also suggested for 
UTX/KDM6A gene coding for histone 

demethylase (with 3% mutation frequency 

in ccRCC) (11, 54). UTX/KDM6A 

demethylates H3K27me3 linked with 

repressed chromatin. It associates with 

MLL2 which also interacts with another 
H3K4 demethylase JARID1C/KDM5C, 

found to be frequently deactivated in 

ccRCC. Loss of JARID1C in 786-O ccRCC 

cells (VHL -/-) leads to significantly lower 

H3K4Me3 levels than in VHL+/+. JARID1C 

is proposed to have a tumor suppressor 
role - its knockdown in 786-O VHL-/- ccRCC 

cells significantly enhanced tumor growth 

in a mice xenograft model (55). Taken 

together, these data implicate deregulation 

of methylation/demethylation of histone 
H3 (a major regulator of 

euchromatin/transcription), as an 

important and complex phenomenon in 

ccRCC etiology. 

 

The BRCA1 Associated Protein-1 (BAP1) 
gene is also often mutated in ccRCC (8–

14%) (12, 37, 56). It is located at 3p and 

codes for a nuclear deubiquitinase 

targeting H2A, one of the most abundant 

ubiquitinated proteins in the nucleus, next 
to H2B (Figure 1) (57). BAP1 interacts with 

Host Cell Factor C1 (HCF-1), which recruits 

histone-modifying enzymes and serves as a 

scaffold for chromatin remodeling 

complexes, promoting the inhibition of cell 

proliferation (37). Interestingly, BAP1 and 
PBRM1 mutations are mutually exclusive 

and loss of either BAP1 or PBRM1 proteins 

has been observed in approximately 70% of 

ccRCC cases (37, 56). Moreover, VHL-

deficient mice with one active allele of BAP1 
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exhibited features of human ccRCC, which 

suggests an important role of BAP1 in the 
pathogenesis of ccRCC (58). 

 
Chromatin organization and chromatin 
accessibility changes 

 
Formaldehyde-assisted isolation of 

regulatory elements (FAIRE), enables 

interrogation of chromatin accessibility 

changes and is based on isolation of 

nucleosome-depleted regions of DNA, 

harboring regulatory elements (active 
transcriptional start sites, transcriptional 

enhancers, and silencers). Studies using 

this method showed functional 

consequences of mutations in genes 

encoding chromatin regulatory proteins on 
chromatin organization and transcription 

in human tumors (59). Buck et al. 

performed FAIRE on matched pairs of 

tumor/healthy samples and identified 

decreased chromatin accessibility at genes 

previously associated with ccRCC, such as 
PBRM1, SETD2 and MLL2 (60). Array-

based methylation analysis on this same 

set of tumors revealed that chromatin 

remodeling can occur in parallel with 

methylation or independent of it. Recently, 

Simon et al. used FAIRE to define the 
chromatin landscape in a cohort of 42 

primary ccRCC tumors and 7 matched 

normal tissues, and studied the  possible 

association of variations in chromatin 

organization with mutations in SETD2 (61). 
Changes in chromatin accessibility were 

identified primarily within actively 

transcribed genes, and increase in 

chromatin accessibility was linked to 

alterations in RNA processing (for example, 

intron retention and aberrant splicing), 
affecting ~25% of all expressed genes. 

Moreover, in tumors lacking H3K36me3 

decreased nucleosome occupancy proximal 

to aberrantly spliced exons was observed. 

This study links mutations in SETD2 to 
chromatin accessibility changes and RNA 

processing defects.  
 

Epigenetic modifications as markers for 

ccRCC diagnosis, prognosis, and 

surveillance 
 

No effective and noninvasive strategy for 

detection and prognosis of ccRCC has been 

established to date. ccRCC usually remains 

asymptomatic until a relatively late stage, 

therefore early detection, accurate 

prediction of disease progression and 
monitoring are critical. Potentially, altered 

expression of recently reported histone 

modifiers, might be of clinical relevance 

(Table 1). ccRCC patients with BAP1 

mutations were significantly more likely to 
present with advanced clinical stage and 

metastases, and shorter overall survival 

(56, 62). Similarly, PBRM1 downregulation 

correlated with advanced tumor stage, low 

differentiation grade and worse patient 

outcome while SETD2 mutations correlated 
with a high relapse rate (38, 56). Moreover, 

tumors with expression changes of PBRM1 

or BAP1, SETD2 and KDM5C were more 

likely to present with stage III disease or 

higher (62). Analysis of cancer specific 
survival (CSS) performed in a large patient 

cohort of 188 patients and additionally 421 

from TCGA, partially confirmed these initial 

findings (63). BAP1 mutations were 

associated with worse CSS in both cohorts 

(MSKCC, p=0.002; TCGA, p=0.002) while 
SETD2 only in the TCGA cohort (p=0.036). 

PBRM1 mutations were not correlated with 

CSS in this study. 

 

Cancer cells display global alterations of 

DNA methylation, therefore methylation 
profiling may be implemented in ccRCC 

biomarker discovery. A specific cancer 

phenotype designated as the CpG island 

methylator phenotype (CIMP) was found in 

ccRCC. It is characterized by DNA 
hypermethylation of 17 marker genes and 

by more aggressive tumors, poorer patient 

outcome, and a higher probability of both, 

recurrence and disease-related death. 

ccRCC-CIMP was validated and could be 

useful for diagnosis and prognostication of 
the patients (64, 65). A vast amount of 

aberrantly methylated genes, described in 

previous paragraphs and exemplified in 

Table 1, may potentially serve as 

biomarkers (4, 18, 66, 67). However, to 
predict methylation specificity/sensitivity 

and thus diagnostic potential, these data 

require more detailed investigation. 

 

Most studies on both mutation status of 

histone modifiers and gene methylation 
were conducted on tissue samples. Fluid 

based biomarkers for detection, staging 

and progression monitoring would be more 

attractive due to easy, non-invasive 
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Table 1. Genes involved in epigenetic DNA and chromatin modifications, proposed as 

potential biomarkers in ccRCC (a genes with methylation frequency above 30%).  
 Gene function Gene 

name 
Locus Methylation

/ 

mutation 
frequency 

Type of 
sample 

Clinical utility Type of 
potential 

biomarker 

Ref. 

P
ro

m
o
te

r 
m

e
th

y
la

ti
o
n
 a

 

 

W
n

t/
b
e
ta

-c
a
te

n
in

 s
ig

n
a
l 
tr

a
n

s
d
u

c
ti

o
n

 p
a
th

w
a
y
 

  
N

e
g
a

ti
v
e
 

re
g
u

la
ti

o
n

 
DKK1 10q11 52% tumor 

(n=50) 
methylation frequency higher 
in advanced tumor stage 

prognostic (89) 

DKK2 

 

4q25 

 

58% tumor 

(n=52) 
 

methylation frequency higher 

in high grade, stage, and size 
tumors 

prognostic 

 

(90) 

DKK3 11p15 50% tumor 

(n=62) 

cancer cell specific 

methylation 

predictive (91) 

 

P
o
s
it

iv
e
 r

e
g
u

la
ti

o
n

 

 

SFRP1  

 

8p11 34% 

 
 

tumor 

(n=61) 
 

methylation associated with 

poor prognosis  

prognostic 

 
 

(27) 

SFRP2  
 

4q31 
 

 
 

53% 
 

 
48% 

 

tumor 
(n=62) 

 
serum 

(n=33) 

cancer cell specific 
methylation 

 
methylation frequency higher 

in high grade and stage 

tumors  

predictive 
 

 
prognostic 

 

(91) 

SFRP4  
 

7p14-13 
 

53 % 
 

tumor 
(n=62) 

cancer cell specific 
methylation 

predictive 
prognostic 

(91) 

SFRP5  

 

10q24 

 
 

56% 

 
 

45% 
 

tumor 

(n=62) 
 

serum 
(n=33) 

cancer cell specific 

methylation 
 

methylation frequency higher 
in high grade and stage 
tumors 

predictive 

 
 

prognostic 

(91) 

WIF1 

 

12q14 73% tumor 

(n=62) 

cancer cell specific 

methylation 

predictive (91) 

A
p
o
p
to

ti
c
 s

ig
n

a
li
n

g
 

p
a
th

w
a
y
 

  
  

  
  

  
  

P
ro

-a
p

o
p

to
ti

c
 

APAF-1  

 

12q23 

 
 

41% 

 
41% 

tumor 

(n=90) 
tumor 

(n=196) 

methylation associated with 

low overall survival 
risk of metastatic disease, 

cancer-related death  

prognostic 

 
prognostic 

 

(92) 

 
(93) 

DAPK-1 

 

9q21 

 

64% 

 

tumor 

(n=196) 

frequently methylated in high 

stage tumors 

prognostic 

 

(93) 

 KILLIN 10q23 95% tumor 

(n=20) 

cancer cell specific 

methylation 

diagnostic (68) 

Extracellular 
matrix 

structural 

constituent 

COL1A1  
 

17q21  
 

65% tumor 
(n=20) 

frequently methylated in 
early-stage tumors 

prognostic 
 

(94) 

COL14A1 8q23  44% tumor 
(n=41) 

poor prognosis independent 
of tumor size, stage or grade 

prognostic (27) 

FBN2 5q23 40% 
 

52% 

tumor 
(n=199) 

(n=160) 

cancer cell specific 
methylation 

 

predictive 
 

(95) 

Regulation of 

transcription 

BNC1 15q25 

 

46% 

 

tumor 

(n=61) 

poor prognosis independent 

of tumor size, stage or grade 

prognostic 

 

(27) 

HOXA5 7p15 51% tumor 

(n=62) 

methylation frequency higher 

in high Fuhrman grade 
tumors 

prognostic (96) 

TSG DLEC1 3p21 31% tumor 

(n=81) 

methylation frequency higher 

in more advanced stage 
tumors  

prognostic (97) 

Inhibitor of 
 

GREM1 15q12 63% tumor 
(n=147) 

high methylation frequency 
associated with increased 

tumor size, grade and stage 

prognostic 
 

 

(98) 

C
h
ro

m
a
ti

n
 m

o
d
if

ie
rs

 m
u
ta

ti
o
n

s
 

SWI/SNF 
chromatin 

remodeling 
complex 

PBRM1 3p21 29% tumor 
(n=185) 

mutations associated with 
advanced tumor stage 

prognostic (61) 

histone H3K4 
demethylation 

JARID1C/ 
KDM5C 

Xp11 8% tumor 
(n=185) 

mutations associated with 
advanced tumor stage 
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acquisition. Nevertheless, to date only a 

limited number of studies aimed at finding 
specific ccRCC biomarkers in blood or 

urine has been executed. Methylation-

based biomarker candidates found in urine 

and serum of ccRCC patients, for example,  

INK4, SFRP1, and SFRP2 were reviewed by 
Baldewijns et al. in 2008 (4). Recently, to 

our knowledge, only two more reports have 

been published. RASSF1A, and VHL 

(detected in serum) as well as KILLIN, and 

LINE-1 (detected in peripheral blood) have 

been proposed as predictive biomarkers 
(68-70). Their association with ccRCC is 

suggested by significantly higher levels of 

promoter hypermethylation in ccRCC 

patients than in patients with benign 

tumors and healthy controls, respectively. 

High throughput screening strategies that 
revealed many new ccRCC biomarker 

candidates, give hope that in the near 

future exploration of fluid based epigenetic 

biomarkers will be intensified. 

 
Epigenetic therapies 

 

Studies that highlighted importance of 

epigenetic modifications in the 

pathogenesis of ccRCC provided new 

potential objects for therapeutic 
intervention. Cancer cells, including 

ccRCC, are generally characterized by the 

overexpression of HDACs leading to 

decreased histone acetylation and 

consequently silencing of genes involved in 
the regulation of key cancer pathways (71, 

72). Several studies proved the efficacy of 

some HDAC inhibitors in reducing tumor 

growth in cancer patients in phase I and II 

clinical trials (72-74). Currently, HDACs 

are intensively explored as targets of ccRCC 
therapy (67, 75). Monotherapies such as, 

with panobinostat, did not bring 

satisfactory results to date. A phase II 

study enrolled 20 patients with metastatic 

refractory ccRCC, previously treated with 

mTOR inhibitor(s). In the first evaluation, 
five patients showed stable disease and 

three patients experienced progression. 

Treatment was generally well tolerated but 

the median progression-free survival was 

limited to 17 months. Hence, panobinostat 
is recommended only in combination with 

other anticancer drugs (76). Also 

depsipeptide, tested in 29 patients with 

metastatic RCC (ccRCC n=25) in a phase II 

study, did not show satisfactory results as 

a monotherapy. The overall treatment 

response rate was 7%, in addition severe 
side effects like fatigue, nausea, vomiting, 

anemia were observed (77). 

 

Combined treatment approaches with 

HDAC inhibitors seem to be more effective 
than monotherapy. In models of RCC, the 

HDAC inhibitor vorinostat improved the 

anticancer activity of temsirolimus (78). 

Reduced cell viability, clonogenic survival 

and increased cell death was observed in 

RCC cell lines (86-O, A498, 769-P, Caki-1, 
Caki-2, SW839, ACHN, G401 and SK-NEP-

1) in response to combined treatment. In 

xenografts of RCC cell lines (786-O and 

Caki-1), vorinostat inhibited tumor cell 

proliferation, induced apoptosis and 
impaired angiogenesis, through a decrease 
in HIF-2a expression and vessel density. In 
vitro and in vivo studies have also shown 

that a combination of retinoic acid and 

HDAC inhibitor trichostatin A is more 

efficient than each drug alone (79). The 

combined therapy enhanced the retinoic 
acid pathway signaling, leading to a 

reduction of proliferation of human RCC 

cells lines (SK-RC-39 and SK-RC-45), 

inhibition of tumor model growth (SK-RC-

39) and increased apoptosis. In 
combination with retinoids, also MS-275, a 

benzamine derivative HDAC inhibitor, 

showed a better inhibitory effect on tumor 
growth in vivo. This effect persisted after 

treatment withdrawal, and after 

continuous treatment in animals RCC1.18 
tumor progression was not observed (80). 

Interestingly, an induction of retinoic acid 

receptor beta was observed during 

treatment, suggesting HDAC inhibitors 

might revert retinoid resistance. 

 
There are also attempts to develop drugs 

selectively targeting other enzymes involved 

in epigenetic modulation, especially histone 

methyltransferases or histone 

demethylases. There are a few 
methyltransferase inhibitors showing 

promising results in cancer models (75, 

81). In ccRCC, the S‑adenosylhomocysteine 

hydrolase inhibitor, 3‑deazaneplanocin A 

(DZNep), depletes cellular levels of the 

enhancer of zeste homologue 2 (EZH2). 

EZH2 is a catalytic subunit of the 

polycomb repressive complex 2 (PRC2), a 

histone methyltransferase that catalyzes 
tri-methylation of lysine 27 on histone 3 
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(82). DZNep reduces H3K27 trimethylation 

levels, additionally, RCC cells exposed to 
DZNep showed a significant decrease of cell 

migration and invasion in vitro, as well as 

inhibition of tumor growth, and prolonged 

survival in the in vivo mice model.  

 
In a recent report published by Adelaiye et 
al., resistance to sunitinib was studied in 

mice bearing two different patient-derived 

ccRCC xenografts (83). Increasing the drug 

dose led to partial overcome of initial 

sunitinib-induced resistance, suggesting its 

association with epigenetic changes such 
as overexpression of the methyltransferase 

EZH2 and modulation of histone marks. 

Moreover, specific EZH2 inhibition resulted 

in increased in vitro anti-tumor effect of 

sunitinib. These promising results indicate 
that high throughput screening strategies 

could be used to identify further drug-

candidates.  

 

Perspectives 

 
Availability of high-throughput methods 

have facilitated investigation of epigenetic 

modifications in general. The Roadmap 

Epigenomics Program recently published 

mapped epigenomes of 111 types of 
primary human healthy cells and tissues, 

providing valuable reference epigenome 

maps (84), moreover many epigenome-wide 

association studies (EWASs) initiated in 

various diseases are currently intensively 

conducted (85). Epigenetic studies have 
also widely broadened our understanding 

of the biology of ccRCC, providing evidence 

of various DNA mutation and methylation 

events, chromatin alterations and changes 

of DNA accessibility, and altogether 
suggesting that epigenetic alterations are 

connected to ccRCC 

pathogenesis/progression and require 

further detailed examination. A number of 

new large-scale projects seeking RCC 

biomarkers are currently ongoing, for 
example, CAGEKID, “Biomarker pipeline” 

(NIH), EuroTARGET or the PREDICT 

consortium (66, 86-89). These studies are 

expected to identify and characterize novel 

candidate biomarkers for ccRCC detection, 

staging and monitoring. 
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