
 ADVANCED ELECTROMAGNETICS, VOL. 8, NO. 2, MARCH 2019 

  

An Inverse Scattering Approach Based on Inhomogeneous Medium 

Green's Functions for Microwave Imaging of Brain Strokes 
 

Eda Konakyeri Arıcı1*, Ali Yapar1 
 

1Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey 
*corresponding author, E-mail: edakonakyeri@yahoo.com 

 

 

Abstract 

In this study, an inverse scattering approach is investigated 
for the detection and imaging of an abnormal structure (a 
bleeding or a stroke) inside the human brain. The method is 
mainly based on the solution of an integral equation whose 
kernel is the Green’s function of the inhomogeneous medium 
(corresponding to a human head model) which is obtained by 
a numerical approach based on Method of Moments (MoM). 
In this context, an inverse scattering problem related to the 
difference of healthy and unhealthy brain models is 
formulated and a difference function is obtained which 
indicates the region where the anomaly is located by solving 
this inverse problem. In order to reduce the reflection effects 
caused by the electromagnetic differences between the free 
space and the brain, a matching medium is used as the 
background space.  

1. Introduction 

Forward and inverse electromagnetic scattering problems 
related to inhomogeneous objects are important research 
subjects currently and the results of those researches are 
widely used practically in many fields such as remote 
sensing, geophysical exploration, biomedical and microwave 
imaging, etc. [1-5]. One of the most significant applications 
of electromagnetic scattering problems on biomedical area is 
detecting abnormal structures/tissues on organs in human 
body. Especially, detection of various abnormal structures 
like cancer and bleeding on brain and breast cancer imaging 
have become very hot research topics for last two decades 
and thus a huge number of studies have been contributed to 
the open literature [6-10]. 

Main principle on these problems is illuminating the 
structures that are desired to be imaged by some incident 
wave sources and detecting/imaging the abnormal structures 
by using the measured scattering fields from these structures. 
In addition to being an inhomogeneous structure, the brain 
tissues also have electromagnetic properties substantially 
different from the background medium. Therefore, it is 
difficult to analyze the scattering field for such a high 
contrast medium. On the other hand, one of the most 
significant issues in these applications is the penetration 
problem arising from high conductivities. Usually, the 
incident waves could not penetrate into high contrast and 
lossy media such as brain or breast if they are excited from 

the free space. Most of the incident power will be reflected 
back from the surface of the structure that is clearly not 
desired.  This problem can be alleviated by choosing proper 
electromagnetic parameters for background (host) media. If 
the contrast between the inhomogeneous medium under test 
and the surrounding host medium decreased to an acceptable 
degree then it would be possible for the incident wave to 
penetrate the inhomogeneous region and to interact with the 
tissues to be imaged. Such appropriate host medium is called 
as “matching medium”.  It is shown in the literature that 
using matching medium for the purpose of reducing the   
undesired effects such as huge reflections and of having 
larger penetration depths is useful [6, 11, 12]. To some extent 
the penetration problem could be reduced by an appropriate 
matching medium, however the other parameters such as the 
location, the size and the electromagnetic properties of the 
abnormal structures inside the brain are also other factors that 
may affect the solution significantly. In summary, the 
problem of detecting and/or imaging of inhomogeneities 
such as tumors or bleedings inside another inhomogeneous 
region such as brain or breast is a very difficult and 
challenging problem. As it is expected, the difficulties arising 
from the physical structure of the problem directly affect the 
mathematical formulation, and require some new 
approaches. Thus, the problem at hand is also very open to 
new contributions for more comprehensive analyses.  

In this study, an inverse scattering approach is 
investigated for the detection and imaging of an abnormal 
structure inside the human brain. The method is mainly based 
on the solution of an integral equation whose kernel is the 
Green’s function of the inhomogeneous medium that 
corresponds to a human head model. A MoM based 
numerical calculation of this type of Green’s function is 
presented in [5] for an arbitrary source-observation point 
pair. The problem considered here is formulated and 
examined in a two-dimensional (2-D) configuration since it 
would be much more convenient to present the preliminary 
results, first.  Extension to three-dimensional (3-D) problem 
that is certainly the more realistic case left as a future work. 
Hence, a slice of Zubal head phantom [13] will be used as a 
2-D head model. For this purpose, 2-D head model is 
considered as an inhomogeneous medium and the scattering 
field from head model is represented with an integral 
expression by using the inhomogeneous Green’s function. 
This representation is basically the convolution of 
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inhomogeneous Green’s function with the incident field. 
Then, based on the subtraction of two integral representations 
of healthy and bleeding head models, problem is reduced to 
a Fredholm integral equation of the first kind that contains 
the contrast difference function as an unknown. The contrast 
difference function refers to the difference between object 
functions of healthy and bleeding head models. This equation 
is solved using Tikhonov regularization to calculate the 
contrast difference function. Section 2 is devoted to the 
mathematical formulation of the problem in terms of integral 
equations. Various examples supporting the effectiveness 
and the applicability of the method are given as numerical 
results in Section 3, while in Section 4 the conclusions are 
outlined. Time factor exp(−𝑖𝜔𝑡)  is used and omitted 
throughout. 

2. Analysis of Scattering Fields from 

Inhomogeneous Structures and Inverse Problem 

Consider the inhomogeneous structure illustrated in Figure 1. 
In this structure, the two-dimensional and bounded region D 
is a finite size, non-magnetic and inhomogeneous dielectric 
medium with electromagnetic parameters 𝜇0and ɛ(𝑥). Total 
field 𝑢 at any point 𝑥 is written as 

𝑢(𝑥) = 𝑢𝑖(𝑥) + 𝑢𝑠(𝑥)                                            (1) 

where  𝑢𝑖 and 𝑢𝑠 denote the incident and the scattering fields, 
respectively. The wave equation for the total field is 

𝛻2𝑢(𝑥) + 𝑘̅2(𝑥)𝑢(𝑥) = 0                                            (2) 

where 

𝑘̅2(𝑥) = {
 𝑘2(𝑥) = 𝜔2ɛ(𝑥)𝜇0  ;  𝑥 є 𝐷

𝑘𝑏
2 = 𝜔2ɛ𝑏 𝜇0  ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (3) 

is the square of the complex wave-number defined in whole 
space. In (3), the region outside D has the electromagnetic 
parameters ɛ𝑏 and  𝜇0. To obtain the scattering field, first the 
total field in (1) is substituted in (2). Then using  

∇2𝑢𝑖(𝑥) + 𝑘𝑏
2𝑢𝑖(𝑥) = 0,                                         (4) 

the inhomogeneous wave equation for the scattered field 
could be written as  

∇2𝑢𝑠(𝑥) + 𝑘̅2(𝑥)𝑢𝑠(𝑥) = −𝑘𝑏
2𝑣(𝑥)𝑢𝑖(𝑥).             (5) 

When the electric type Green’s function for this structure is 
shown as 𝐺(𝑥, 𝑦), the scattering field can be expressed as 

𝑢𝑠(𝑥) = 𝑘𝑏
2 ∫ 𝐺(𝑥, 𝑦) 𝑣(𝑦) 𝑢𝑖(𝑦) 𝑑𝑦                      (6) 

where 

𝑣(𝑥) = {
𝑘2(𝑥)

𝑘𝑏
2 − 1 ;  𝑥 є 𝐷

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                        (7) 

is the object function, whose support is the region  𝐷. 
Calculation of the Green’s function appearing in (6) for 
arbitrary (𝑥, 𝑦) pair is a complicated problem whose solution 
is given in [5]. In this present study, the head model is 
illuminated by a line source which is located to an arbitrary 
point 𝑦 є 𝑅2\𝐷 . Therefore, Green’s function for 

inhomogeneous structures in (6) is calculated numerically by 
means of formulation given in [5, 14], taking the singularity 
of the problem into account.  

 
Figure 1: Geometry of the problem. 

 
As the scattering field is obtained, the inverse problem 

can be examined. (6) is rewritten for healthy and bleeding 
brains as,  

𝑢𝑏𝑏
𝑠 (𝑥) = 𝑘𝑏

2 ∫ 𝐺𝑏𝑏(𝑥, 𝑦)𝑣𝑏𝑏(𝑦) 𝑢𝑖(𝑦) 𝑑𝑦          (8) 

𝑢ℎ𝑏
𝑠 (𝑥) = 𝑘𝑏

2 ∫ 𝐺ℎ𝑏(𝑥, 𝑦)𝑣ℎ𝑏(𝑦)  𝑢𝑖(𝑦) 𝑑𝑦.          (9) 

Now, subtracting (9) from (8) yields, 

𝛿𝑢𝑠(𝑥) = 𝑘𝑏
2 ∫[𝐺𝑏𝑏(𝑥, 𝑦)𝑣𝑏𝑏(𝑦) − 𝐺ℎ𝑏(𝑥, 𝑦)𝑣ℎ𝑏(𝑦) ] 𝑢𝑖(𝑦) 𝑑𝑦 (10) 

Where 𝛿𝑢𝑠(𝑥) = 𝑢𝑏𝑏
𝑠 (𝑥) − 𝑢ℎ𝑏

𝑠 (𝑥)  shows the difference 
between scattering fields for healthy and bleeding brains. 𝐺ℎ𝑏 
and 𝐺𝑏𝑏  denote the Green’s functions for healthy and 
bleeding brains, respectively. It can be assumed that the 
bleeding area is not distinctly different from the general 
structure of the brain in terms of electromagnetic properties. 
Therefore, we can use the approximation 𝐺𝑏𝑏(𝑥, 𝑦) ≅
𝐺ℎ𝑏(𝑥, 𝑦). As a result, (10) can be approximated as 

𝛿𝑢𝑠(𝑥) ≅ 𝑘𝑏
2 ∫ 𝐺ℎ𝑏(𝑥, 𝑦) 𝛿𝑣(𝑦) 𝑢𝑖(𝑦)  𝑑𝑦        (11) 

where 

𝛿𝑣(𝑦) = 𝑣𝑏𝑏(𝑦) − 𝑣ℎ𝑏(𝑦) .                                  (12) 

(11) is the difference between scattering fields from healthy 
and bleeding brains in terms of the contrast difference of 
bleeding and healthy cases given in (12). In order to detect the 
abnormal region inside the brain, calculating the difference 
between object functions of healthy and bleeding brains 
shown as 𝛿𝑣 is sufficient. In other words, 𝛿𝑣 is the contrast 
difference function. For this purpose, Fredholm integral 
equation of the second kind could be reduced to matrix 
system with the discretization that is expressed as 

[𝐴][𝛿𝑣] = [𝛿𝑢𝑠].                                                   (13) 

In (13), 𝐴 shows the discretized matrix equivalent of integral 
operator which contains 𝐺ℎ𝑏(𝑥, 𝑦)  in (11), while [𝛿𝑣]  and 
[𝛿𝑢𝑠] correspond to the discretized versions of the related 
functions, respectively. Note that (13) (or equivalently (11)) 
is an ill-posed system since the kernel of the related integral 
operator is a compact one. Therefore, it would only be 
possible to obtain a regularized solution of (13). To this aim 
(13) is first reduced to the following regularized system  
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[𝛼 𝐼 + 𝐴∗𝐴][𝛿𝑣] = [𝐴∗][𝛿𝑢𝑠],                               (14) 

where 𝐴∗ is the conjugate transpose of the matrix 𝐴, 𝐼 is the 
identity matrix in appropriate size and 𝛼  is the Tikhonov 
regularization parameter. Then the solution in the sense of 
Tikhonov regularization is given by 

[𝛿𝑣] = [𝛼 𝐼 + 𝐴∗𝐴]−1[𝐴∗][𝛿𝑢𝑠].                           (15) 

3. Numerical Results 

In this study, with the purpose of detecting unhealthy regions 
inside the brain such as bleeding or tumor, a slice of Zubal 
head phantom is used as a 2-D head model [13]. Real and 
imaginary parts of relative dielectric permittivity of the head 
model are given in Figure 2(a) and 2(b). As it is seen in 
Figure 2(a) and 2(b), these values have high contrast in terms 
of electromagnetic parameters. The operating frequency is 
1.2GHz and the head model is illuminated with 8 line sources 
which are surrounding it with distances of 0.2 and 0.28m 
from the center. Observation points are 0.14m by the center. 
The results are given by means of 2-D plots of real part of 𝛿𝑣 
which is the difference contrast. All results demonstrate 
arithmetic mean of the results obtained for each illumination. 

It is observed from the numerical trials that in the single 
illumination case the results are not satisfactory. Therefore, 
in all numerical examples multiple illuminations (8 line 
sources separately) are used and quite satisfying results are 
obtained.  

 

 
Figure 2: Variations of relative dielectric permittivity of 2-D 
head model (a) Real Part, (b) Imaginary Part. 

 

  

 

 
Figure 3: (a) Real parts of relative dielectric permittivity of 
2-D head model with blood region, (b) Detection of blood 
region (Real parts of 𝛿𝑣) without matching medium (MM), 
(c) with MM 𝜀𝑏𝑟 = 10, (d) with MM 𝜀𝑏𝑟 = 30.  
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Figure 4: (a) Real parts of relative dielectric permittivity of 
2-D head model with blood regions, (b) Detection of blood 
regions (Real parts of 𝛿𝑣).  
 

Firstly, an unhealthy head model given in Figure 3(a) is 
created by placing a structure with a relative dielectric 
permittivity of 70, (which is moderately different from 
electromagnetic parameters of the head model) into the head 
model. For the first application, the background medium is 
chosen as free space (𝜀𝑏𝑟 = 1). According to result given in 
Figure 3(b) that is obtained by using the proposed method, 
the blood region cannot be detected clearly. For an accurate 
analysis, as it is also explained in Section 1, incident field 
should penetrate into the head sufficiently. It is difficult for 
the incident field to penetrate into the brain due to the high 
contrast difference between the region outside the head and 
the head itself. As mentioned in Section 1, matching medium 
is used as a background medium to increase the penetrating 
field into the head during analysis [6, 11, 12].  To see the 
effect of matching medium for the proposed method, the 
analysis of the head model for 𝜀𝑏𝑟 = 10 is done in Figure 
3(c). In this figure, the blood region is evident. As a result of 
the tests to determine the appropriate matching medium, it is 
determined that the optimal matching medium should have a 
relative dielectric constant 𝜀𝑏𝑟 = 30 . The same analysis 
given in Figure 3(c) is repeated using matching medium with 
𝜀𝑏𝑟 = 30 in Figure 3(d). Detection of the blood region inside 
the head model is accomplished easily by obtaining 
difference of object functions between two models in Figure 
3(d). 𝜀𝑏𝑟 = 30 will be used in the following examples for 
background medium because the results are better than the 
other results used with different values of 𝜀𝑏𝑟 for this head 

model. The following examples are given to see if the method 
can detect blood region(s) when the location, size, number 
and dielectric permittivity of the bleeding are changed. 

 

 
Figure 5: (a) Real parts of relative dielectric permittivity of 
2-D head model with blood region, (b) Detection of blood 
region (Real parts of 𝛿𝑣).  

 
Two different structures are placed into the head model 

given in Figure 4(a) to see if the method can detect multiple 
and different blood regions in the brain. Relative dielectric 
constants of left and right blood regions are 70 and 80, 
respectively. In Figure 4(b), detection of related regions is 
clearly seen.  

In order to see the operability of the proposed method for 
bleeding which has smaller size than sizes of bleeding given 
in the other examples, a new small blood region in Figure 
5(a) with relative dielectric constant of 70 is considered.  
It is obvious from Figure 5(b) that the blood region is clearly 
detectable although it occupies a relatively small volume.  

To examine the condition for relative dielectric 
permittivities of bleedings with smaller values that are close 
to the relative dielectric permittivity values of the head 
model, the bleedings are considered in Figure 6(a). There are 
three blood regions with relative dielectric constant of 50. 
Because this value is quite close to the average values of the 
head model, blood regions are indicated by circles in order to 
make the bleedings clear. According to the results of Figure 
6(b), the presented method can detect blood regions 
successfully for different types/sizes of bleeding.   
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Figure 6: (a) Real parts of relative dielectric constant of 2-D 
head model with blood regions, (b) Detection of blood 
regions (Real parts of 𝛿𝑣).  

4. Conclusions 

In this study, detection of abnormal regions such as a 
bleeding inside 2-D head model is successfully accomplished 
by means of proposed method. Matching medium should be 
chosen properly as a background medium in order to 
penetrate incident field into the head model and to obtain 
better results. The effectiveness of the method is analyzed 
through different examples. Electromagnetic properties, size, 
number and location of the blood region(s) inside the head 
model to be detected are important parameters for the 
applicability of the proposed method. Studies are being 
carried out to improve the method so the effect of these kind 
of differences on the problem could be reduced. 
Additionally, detection of the bleeding in 3-D head models, 
which would obviously be a more realistic case left as a 
future study. 
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