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Abstract
In this paper the theoretical foundation of the fast multipole
method (FMM) applied to electromagnetic scattering prob-
lems is briefly presented, the truncation of the GREEN’s
function expansion is revisited, and the well established
truncation criteria, in terms of the relative accuracy of the
solutions of the electric field integral equation, is revised
from a numerical experiment. From this numerical proce-
dure an interesting result for the number L of poles is re-
ported. In FMM L is the number of terms in the GREEN’s
function expansion and it determines the precision of such
an expansion. In our experiment a lesser value of L is ob-
tained compared to previous studies.

1. Introduction
It is well known that entries of the system matrix [Z],
generated in electromagnetic scattering and radiation prob-
lems solved via the Galerkin’s form of Method of Moments
(MoM), are reactions [1]. In the ordinary implementation
of MoM reactions (interactions) are calculated individu-
ally, consequently the bigger the number of unknowns the
greater the time expended in filling the matrix [Z]. If the
Fast Multipole Method (FMM) is used inside the MoM, in-
teractions are divided in nearby and distant interactions by
grouping the source sub-domains in, say, M cubic clusters.
A cubic cluster is usually defined as the set of sources sub-
domains within a cube of diagonal d =

√
3w, where w is a

fraction of wavelength λ, typically w = λ/2 or w = λ/4
[2]. A nearby interaction is defined as the interaction be-
tween sources in the same cluster, or between sources be-
longing to adjacent clusters. A distant interaction is defined
as the interaction among sources belonging to groups sep-
arated by one or more groups. In applying the FMM, at
first, the matrix [Z] is partially filled with nearby reactions,
which are computed in the classical pairwise fashion. By
the way, entries of [Z] corresponding to distant interactions
are filled with zeroes; therefore, an intermediate sparse ma-
trix [Znear] is obtained. On the other hand, distant in-
teractions are calculated by factoring the scalar GREEN’s
function by means of a multipole expansion. In this man-
ner, the scalar GREEN’s function is expanded in a product
of three factors which are pre-calculated, stored, and re-
peatedly used for all distant interactions. A considerable
amount of time is saved in this way as compared with the

time needed in calculating these interactions in the ordinary
way. Then, the contribution of distant interactions are in-
corporated automatically inside a iterative solver avoiding
their explicit computation in [Z].

In the literature, there are surprisingly few papers on
numerical experiments regarding the truncation parameter
of the multipole expansion. There are some, as [3, 4] where
the topic is treated in general form. In [5, 6, 7] the FMM
truncation criteria is discussed for the case of Multi Level
FMM.

In its original conception, and by definition [3], the
FMM is based on the expansion of the kernel inside the
integral equation, i.e. the GREEN’s function. Indeed, this
original approach is used in all FMM implementations [2]
getting very accurate results.

In [3, 4] heuristic formulas for determining the value L
of terms, or poles, in the expansion of the GREEN’s func-
tion G are given. These formulas are based on a given er-
ror of such an expansion in comparison to G itself. In this
article the value of L is determined based on the error of
estimated weights In calculated using such an expansion of
G in comparison to values of In calculated using G with no
expansion.

The main objective of this paper is to investigate the
truncation criteria for the GREEN’s function expansion by
carrying out a simple numerical experiment based on the
fundamentals of the single level FMM.

This paper is organized as follows: In Section 2 the ba-
sics of the multipole expansion in electromagnetic scatter-
ing problems are briefly described. In Section 3, we per-
form a numerical experiment to determine a proper value
for the number L of poles in the multipole expansion and
a comparison with the values of L derived from common
semi-empirical formulas proposed in the literature is made.
The conclusions are presented in Section 4.

2. The multipole expansion in the FMM

The key idea in the FMM resides in the factorization of the
GREEN’s function G(r, r′) for distant interactions in the
form [3, 2]

∑

α

G(r, r′

α) = f1(r,a)f2(a, b)
∑

α

f3(b, r
′

α), (1)
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(a) (b)

Figure 1: Two distant groups from which the factorization in Eq. (1) holds. The square with center at b is the source group.
The square with center at a is the test group.

where G(r, r′

α) = e−κ|r−r
′
α|

|r−r′

α|
is the field at the obser-

vation point r within the cluster with center at a due to a
source located at r′

α within the cluster with center at b as
depicted in Figure 1.

The expansion (1) includes the so called aggrega-
tion, transmission, reception, radiation, and disaggregation
functions.

Let us review these functions in more detail. The
sources in the cluster with center b produce a field at r given
by

∑

α

G(r, r′

α) =
∑

α

e−κ|r−r′

α|

|r − r′

α|
. (2)

The term r − r′

α in (2), where α = 1, ..., N , can be ex-
pressed as (see Fig. 1)

r − r′

α = (rra − rr′αb)− rba,

= d−D,

where the involved vector quantities are as depicted in Fig-
ure 1. Using the addition theorem of spherical HANKEL

functions, the function e−κ|d−D|

|d−D| can be further expanded
as follows [1]:

e−κ|d−D|

|d−D| =

− κ

∞
∑

ℓ=0

(2ℓ+ 1)h
(2)
ℓ (κD)jℓ(κd)Pℓ(d̂ · D̂), (3)

where d = |d| and D = |D|, with d < D, and jℓ(κd) and
h
(2)
ℓ (κD) are the spherical BESSEL and HANKEL functions

of the first and second kind, respectively, whereasPℓ(d̂·D̂)
is the LEGENDRE polynomial of degree ℓ, and d̂ and D̂ are
normalized vectors along the corresponding directions. The
identity in (3) expresses the field radiated from the source
point b in terms of waves originating from the point a.

Since the function jℓ(κd)Pℓ(d̂ · D̂) can be expanded as
an integral of properly weighted plane waves in the form

[8]:

jℓ(κd)Pℓ(d̂ · D̂) =

−ℓ

4π

2π
ˆ

0

π̂

0

eκκ̂·dPℓ(κ̂ · D̂) sin θdθdφ, (4)

where κ̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, and the
integration domain is a unit sphere. Thus, the expansion (3)
can be rewritten as

e−κ|d−D|

|d−D| =

− κ

∞
∑

ℓ=0

(2ℓ+1)h
(2)
ℓ (κD)

−ℓ

4π

‹

4π

eκκ̂·dPℓ(κ̂ ·D̂)dΩ,

(5)

where
‚

4π
( )dΩ ≡

´ 2π

0

´ π

0
( ) sin θdθdφ. For numer-

ical purposes the summation in (5) needs to be truncated
at some point, say ℓ = L, and the integral must be eval-
uated numerically; values for L and cubature rules for the
integral are suggested in [3]. Such a truncation enables us
to interchange the summation and integration. Hence, we
obtain

e−κ|d−D|

|d−D| ≈
‹

4π

eκκ̂·d
[ κ

4π

L
∑

ℓ=0

(2ℓ+ 1)−(1+ℓ) . . .

h
(2)
ℓ (κD)Pℓ(κ̂ · D̂)

]

dΩ ≈
N
∑

q

eκκ̂q·d
[ κ

4π

L
∑

ℓ=0

(2ℓ+ 1)−(1+ℓ) . . .

h
(2)
ℓ (κD)Pℓ(κ̂q · D̂)

]

∆Ωq, (6)

where the integral has been approximated by the cuba-
ture rule

‚

4π f(κ̂) dΩ ≈ ∑N

q=1 f(κ̂q)Ωq , where κ̂q de-
note the sampling/quadrature nodes. As suggested in [3],
2L azimuthal samples and L polar samples, for a total of
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N = 2L2, have been taken over the unit sphere. The func-
tion in brackets is commonly known as transfer function,
viz.

T (κ, κ̂,D) ≡

κ

4π

L
∑

ℓ=0

(2ℓ+ 1)−(1+ℓ)h
(2)
ℓ (κD)Pℓ(κ̂ · D̂), (7)

and it plays the role of f2(a, b) in (1), mediating the in-
teraction from b to a. The function eκκ̂q·d in (6) can be
factorized in the form

eκκ̂q·d = eκκ̂q·rrae−κκ̂q·rr′αb ,

where eκκ̂q·rra is a sort of reception function, which yields
the disaggregation process by the cubature rule, whereas
e−κκ̂q·rr′αb is a sort of radiation function; hence, the co-
herent addition of all the radiation functions belonging to
sources within the cluster centered at b yields the process
of aggregation.

Finally, by grouping all previous results, we arrive at
[3]:

∑

α

e−κ|r−r′

α|

|r − r′

α|
≈

N
∑

q

eκκ̂q·rraT (κ, κ̂q,D)
∑

α

e−κκ̂q·rr′αb∆Ωq, (8)

where we see that the radiation function e−κκ̂q·rr′αb and
the reception function eκκ̂q·rra play the roles of f1(r, a)
and f3(b, r

′

α) in (1), respectively.

3. Revision of truncation criteria for the
expansion of the GREEN’s function

The GREEN’s function factorization described in the previ-
ous section is a key aspect of FMM. This factorization is
achieved by expanding G(r, r′) = e−κ|r−r′|/|r − r′| in
the form

G(r, r′) ≈ GFE(r, r′) =

N
∑

q

eκκ̂q·rraT (κ, κ̂q ,D)e−κκ̂q·rr′b∆Ωq, (9)

where we have coined the GFE abbreviation to such an ex-
pansion. GFE stands for GREEN’s Function Expanded and
it is a function of the number L of poles in the expansion.

The error ǫG(L) of the estimation is defined as follows:

ǫG(L) = G−GFE(L), (10)

where G is the exact value of the GREEN’s function for
a given set of source and test points. The order of ǫG is
the accuracy of the estimation GFE(L), and it depends on
the value of L. It is well known that the term T (κ, κ̂,D)

in the expansion of Eq. (9) exhibits a kind of oscillation
for L greater than κD, causing inaccuracies in the value
of GFE(r, r′) regarding the exact value G(r, r′). On the
other hand, L must be greater than κd for convergence of
Eq. (9). In [3] two semi-empirical formulas for setting a
proper value of L for a given precision are suggested:

Lα = κd+ α ln(κd+ π), (11)

whereα = 5 is used for single precision (∼ 10−6), andα =
10 is used for double precision. Further, CHEW and SONG
in [4] stated that Eq. (11) yields a good approximation of L
for κd up to 40, but the formula

Lβ = κd+ β(κd)
1

3 , (12)

where β is the number of digits of accuracy, is always a
good approximation. It must be noted that the terms ac-
curacy and precision are used here equivalently. Equation
(12) is due to ROKHLIN as well. In [2] it is stated that the
minimum among L (from any of the two semi-empirical
formulas given previously) and κD must be chosen as the
actual number of multipoles to be used in the expansion
given in Eq. (9):

L = min{Lα orLβ , κD}, (13)

Figure 2: Scatterer benchmark consisting of two square
PECs separated a distance D, where D ∈ {λ, 2λ, 3λ, 5λ},
used for the numerical experiment to set a proper value of
multipoles L.

In order to validate the value of L suggested in Eqs. (11)
(probably α = 5) and (12) (probably β = 6) for an accu-
racy of 6 digits (or 10−6), we have carried out a numerical
procedure for measuring the relative accuracy of the solu-
tions of the Electrical Field Integral Equation (EFIE) in a
problem of radar cross section (RCS) estimation. In this
procedure an array of two perfect electric conductor (PEC)
squares, with dimensions λ/2×λ/2, which have been sepa-
rated by distances D = λ, 2λ, 3λ, and 5λ successively, has
been used as the benchmark scatterer (see Fig. 2) leading to
four cases of study. The Method of Moments was applied to
solve the EFIE, and the Rao-Wilton-Glisson (RWG) basis
functions were used as basis and weighting functions. An
incident frontal plane wave was used as excitation.

For the purpose of this paper the error of the estimation
has been defined as follows:
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Figure 3: Relative accuracy of EFIE solutions (current weights of RWG basis functions) for different values of L and D for
the benchmark scatterer shown in Fig. 2. µAcc is the arithmetic mean and σAcc is the standard deviation of the accuracy of
magnitudes of the entries of vector [IGFE], in digits, computed from [ǫI(L)].

ǫnI (L) = IGn − IGFE
n (L), (14)

where IGn is the magnitude of the nth electrical current
weight of the nth RWG basis function computed from
the application of the ordinary Method of Moments, and
IGFE
n (L) is the magnitude of the same coefficient com-

puted by the same procedure but expanding through Eq. (9)
the GREEN’s function for far interactions. Then, we have
defined the order of error ǫI(L) as the relative accuracy of
the estimated weights IGFE

n (L).
The computation of weights In was accomplished from

the direct solution of the equations

[V ] =[Z][IG] (15)

[V ] =[Znear + Z far][IGFE ], (16)

where [V ] contains samples of the incident plane wave
impinging frontally to the scatterer. The entries Zmn =

〈Lfn,fm〉 of matrices [Z] in Eq. (15) and [Znear] in Eq.
(16), where fn.m is a RWG function, were computed nu-
merically as described in [9]:

Zmn = Znear
mn =

ωµ

ˆ

Sm

ˆ

Sn

{

fm(r) · fn(r
′)− 1

κ2
[∇ · fm(r)]×

. . . [∇′ · fn(r
′)]

}e−κ|r−r′|

|r − r′| ds′ds. (17)

The coefficients of matrix [Z far] were computed from
(17) by substitution of Eq. (9) in it [2]:

Z far
mn =

ωµ

4π

N
∑

q

[Rra(κ̂q) · T (κ, κ̂q, rba)Tr′b(κ̂q)]∆Ωq, (18)
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where

Tr′b(κ̂) = (I− κ̂κ̂) ·
ˆ

Sn

e−κκ̂·rr′bfndS
′,

Rra(κ̂) = (I− κ̂κ̂) ·
ˆ

Sm

eκκ̂·rrafmdS,

matrix I is the identity dyadic, and

κ̂κ̂ =
1

κ2





κ2
xx̂x̂ κxκyx̂ŷ κxκzx̂ẑ

κyκxŷx̂ κ2
yŷŷ κyκzŷẑ

κzκxẑx̂ κzκyẑŷ κ2
zẑẑ



 .

4. Numerical results
From [IG] and [IGFE ] a family of vectors [ǫI(L)], for val-
ues of L = 1 to L = 20, was computed in accordance with
Eq. (14). For each L a histogram was populated with the
orders of entries of [ǫI(L)], and then their arithmetic mean
µAcc and standard deviation σAcc were computed in terms
of digits of accuracy. In Fig. 3 these two parameters are
plotted for all the configurations of the benchmark scatterer
as a function of L.

For all the simulated scenariosLα, Lβ , κd and κD were
also computed, and the results are shown in Table 1.

Table 1: Parameters Lα (for α = 5), Lβ (for β = 6), κd
and κD for all the cases of study.

case of study Lα Lβ κd κD min{Lβ, κD}
D = λ 15 13 ≈ 5 ≈ 7 7
D = 2λ 15 13 ≈ 5 ≈ 13 13
D = 3λ 15 13 ≈ 5 ≈ 19 13
D = 5λ 15 13 ≈ 5 ≈ 32 13

From Table 1 and for the case D = λ the actual value of
L to be used is 7, which is less than Lβ = 13 (for β = 6),
so there would not be guarantee of achieving the desired ac-
curacy of 6 digits if such small separation of groups is used.
For the rest of cases, that is D = 2λ, 3λ and 5λ, the actual
value of L that would be used in accordance with the for-
mula (12) is 13. Despite those values of L, we have found
that from our numerical procedure (see Fig. 3) a value of
L = 6 is enough for this specific problem to achieve a rela-
tive accuracy of 6 digits in the EFIE’s solutions.

5. Conclusions
In this article we have revisited the theoretical foundation
of the Fast Multipole Method and established criteria for
truncating GREEN’s function. For the truncation of the
GREEN’s function it is well known that the number L of
multipoles must satisfy the condition κd < L < κD, and to
find an optimum value of L some semi-empirical formulas
have been proposed in the literature. In the usual approach
the accuracy of the solution is given in terms of the accu-
racy of the GREEN’s function expansion. In the proposed
experiment, we have set the value of L based on in the ac-
curacy of EFIE’s solutions. As a result, for a given accuracy

in the EFIE’s solutions a lower value of L is necessary in
comparison with that required for the same accuracy in the
GREEN’s function. This result could be explained by con-
sidering that, as a summation is involved in the calculation
of weights, far interactions are so weak in comparison with
the near ones, that their contribution is greatly minimized.
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