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Abstract 

The paper describes a simple analytical approximation for 
the inductance of two-wire transmission lines of circularly 
cylindrical wires with proximity effect. It yields precise 
results up to very high frequencies and at all interaxial dis-
tances between the wires above some limit. Its accuracy is 
established by comparison to numerical computations and 
to measurements. It is shown that the proximity effect can-
not be neglected unless the interaxial distance between the 
wires amounts to at least four wire diameters. Further, fig-
ures of the current distribution in various situations are 
discussed.  

1. Introduction 

At high frequencies inductance decreases compared to its 
value at DC (direct current) due to skin effect, which has 
been well documented for wires of circular, annular, and 
rectangular cross section [1] – [6].  
In a two-wire transmission line, the inductance is further 
reduced by the proximity effect ([3], p. 304-306). Kennelly 
et al. presented results of precise inductance and resistance 
measurements on rectangular loop coils composed of circu-
larly cylindrical copper wires at various wire distances and 
frequencies [5]. Some of these measurements entailed the 
proximity effect. For simplicity, we will henceforth just 
write cylindrical instead of circularly cylindrical. Amazing-
ly, despite the importance of the cylindrical two-wire 
transmission line in radio frequency engineering, the litera-
ture on inductance calculation taking the proximity effect 
into account seems rather scarce. Tsuk and Kong compared 
Kennelly’s results with their numerical calculations, which 
were based on a combination of the “finite filament meth-
od” with an integral equation approach [7]. To apply the 
finite filament method to conductors of circular cross sec-
tion, they divided the wires into filaments of triangular 
cross section instead of the usual rectangular one, and they 
derived an analytical expression for the GMD (geometric 
mean distance) between triangles [7]. Carson gave a series 
solution for the resistance [8]. Wang derived a series repre-
sentation for the internal partial self-inductance of the two 

wires [9]. But to be able to compute the total inductance, 
one also needs expressions for the external and the mutual 
inductance, which he didn’t provide.  
The conclusion is that, as of today, calculating inductance 
considering the proximity effect remains an ambitious task. 
There seems to be no way around extensive numerical cal-
culations. For engineering purposes it would be very helpful 
to have a simple calculational method at hand. Further, it 
even seems that no systematic calculations covering a com-
prehensive range of wire distances and frequencies have yet 
been reported. Also, we couldn’t find any figures of current 
distribution in the literature.  
In this paper we intend to fill these gaps. We describe a 
simple yet precise analytical approximation for the induct-
ance of a cylindrical two-wire transmission line that takes 
the proximity effect into account. We verify it by means of 
systematic numerical calculations for a set of interaxial wire 
distances and frequencies. In section 2 we describe the 
numerical method used. In section 3 we report the results 
obtained, and we also discuss figures of the current distribu-
tion in various situations. Section 4 introduces our analyti-
cal approximation and tests it against the numerical results. 
In section 5 we compare it to measurements reported in the 
literature and to own measurements. Conclusions are given 
in section 6.  

2. Numerical solution method 

In its original form, the “finite filament method” is based on 
the cross-sectional subdivision of the conductor into many 
equal filaments of small but finite rectangular cross section, 
all the same length as the conductor [3], [10]. Obviously, 
the method is perfectly suited for conductors of rectangular 
cross section. The conductor is modelled as a parallel con-
nection of magnetically coupled filaments. Thus, the poten-
tial differences along all filaments are prescribed to be iden-
tical. The distribution of current within a filament is as-
sumed to be uniform. But the magnitude of the current 
varies from filament to filament according to the current 
distribution in the wire cross section resulting from the 
calculation, which is subject to the skin and proximity effect 
caused by the coupling between the filaments. The solution 
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is found by solving a system of linear equations involving a 
huge matrix of impedances. Its diagonal elements are the 
impedances of the filaments formed by their partial self-
inductance and resistance. Its off-diagonal elements account 
for the mutual magnetic coupling between any two of the 
filaments. The method relies on the fact that the self-
inductance of and the mutual inductance between the fila-
ments can be calculated analytically. One way to do this is 
to use an analytical expression for the GMD between the 
rectangular cross sections of the filaments [3], [10].  
Tsuk and Kong stated that “Since the method is limited to 

rectangular elements, it is not capable of handling this 

case” (i.e. the conductor of circular cross section, [7], p. 
1343). We show this statement to be wrong. The finite fila-
ment method using filaments of square cross section can 
well be applied to cylindrical wires. As an example, we 
mention the calculation of the partial inductance of a single 
cylindrical wire with skin effect. The application of the 
method is simple: The circular cross section is embedded in 
a square, which is divided into 𝑁 × 𝑁  subsquares. Only 
those subsquares whose central point lies within the cross 
section of the wire are selected to represent a filament. 
Amazingly, with only 7 × 7 subsquares, the inductance of a 
wire of 0.5 mm radius at a frequency of 2 MHZ (the radius 
is more than 10 times larger than the skin depth) obtained 
by this method is accurate to 1 % (if the length is at least 25 
times larger than the radius).  
Unfortunately, the experience gained with single wires with 
skin effect cannot be transferred to two-wire transmission 
lines with proximity effect. The latter require much larger 
numbers of filaments, as we shall see. This is a result of the 
break-up of circular symmetry in the current distribution 
with proximity effect. The inductance 𝐿  depends on four 
parameters (apart from the temperature and the wire materi-
al): the length 𝑙 of the transmission line, the radius 𝑅 of the 
wires, their interaxial distance 𝑑, and the frequency 𝑓. We 
can reduce the dimensionality of the wanted fitting function 
for the analytical approximation to two by defining normal-
ized parameters which depend only on the relative interaxi-
al distance and the relative wire radius instead of the abso-
lute ones. If the two arguments of the wanted fitting func-
tion are relative size parameters, then the approximation 
will be valid for any size of the transmission line. First, we 
define the relative interaxial wire distance 𝜅 by normalizing 
the absolute distance 𝑑 to the radius 𝑅:  
 

𝜅 =
𝑑

𝑅
 .                                        (1) 

 
We adopt the natural definition of the relative wire radius or 
normalized frequency parameter 휁  (proportional to the 
square root of the frequency 𝑓) as the ratio of the radius to 
the skin depth 𝛿:  
 

휁 =
𝑅

𝛿
   ∝ √𝑓                                  (2) 

 
with the skin depth  

𝛿 = √
1

𝜇0𝜎𝜋𝑓
 ,                                     (3) 

 
where 𝜇0 is the magnetic permeability of the vacuum, 𝜇0 =
4𝜋 ∙ 10−7 Vs/(Am), and 𝜎  is the conductivity of the wire 
material. In our finite filament calculations, we used 𝜎 =
5.9595 ∙ 107 Ω−1m−1, corresponding to the resistivity 𝜌 =
1/𝜎 = 1.678 ∙ 10−8 Ωm  of copper at 20 ℃  ([11], 𝑇 =
293 K).  
At last, we don’t want to approximate the inductance 𝐿 
directly because it still depends on a third variable besides 𝜅 
and 휁, namely, the length 𝑙. So, we also need to normalize 
the inductance 𝐿 somehow to get rid of this third variable, 
to keep the target function to be fitted two-dimensional. In 
principle, we could just take the inductance per unit length 
since the inductance of two-wire transmission lines is pro-
portional to their length, at least if 𝑙 ≫ 𝑑. But there is a 
better choice: the normalization to the inductance 𝐿𝑠𝑘𝑖𝑛, in 
which only the skin effect is considered. Since 𝐿𝑠𝑘𝑖𝑛 is also 
proportional to 𝑙 , the dependency on 𝑙  cancels out. Only 
then did we succeed in finding a simple fitting function 
when the dependencies on  𝜅  and 휁  due to the skin effect 
alone had already been normalized out by means of 𝐿𝑠𝑘𝑖𝑛 . 
This choice of the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 as the target quantity to be 
fitted is further justified by the fact that 𝐿𝑠𝑘𝑖𝑛  can easily be 
calculated analytically. It is given by  
 

𝐿𝑠𝑘𝑖𝑛 = 2(𝐿1𝑠𝑘𝑖𝑛 − 𝑀12𝑠𝑘𝑖𝑛) ,                     (4) 
 
where 𝐿1𝑠𝑘𝑖𝑛 is the partial self-inductance of a single wire 
including skin effect only. For 𝑙 ≫ 𝑅 it is given by ([12], 
equation (29) multiplied by 𝑙, with equation (31) added),  
 

𝐿1𝑠𝑘𝑖𝑛 =
𝜇0𝑙

2𝜋
{log (

2𝑙

𝑅
) − 1 − Im [

𝑖

𝑘𝑅
 
J0(𝑘𝑅)

J1(𝑘𝑅)
]} ,      (5) 

 
where 𝑘 is the wave number within the wire,  
 

𝑘 =
1 − 𝑖

𝛿
 ,                                       (6) 

 
with 𝑖 being the imaginary unit, Im denoting the imaginary 
part, J0 and J1  the (complex) Bessel functions of first kind 
and orders 0 and 1, respectively, and where log refers to the 

natural logarithm, as throughout the paper. The quantity 
𝑀12𝑠𝑘𝑖𝑛  in equation (4) is the mutual inductance between 
the two wires with skin effect only. Due to the circularly 
symmetric current distribution when there is only skin ef-
fect, the mutual inductance may be well approximated by 
the formula for the mutual inductance of two parallel fila-
ments (of infinitely small cross section), of length 𝑙  and 
mutual distance 𝑑 ([13], equation (12))  
 
𝑀12𝑠𝑘𝑖𝑛 =

𝜇0

2𝜋
[𝑙 log (√𝑙2 + 𝑑2 + 𝑙) − 𝑙 log d − √𝑙2 + 𝑑2

+ 𝑑].                                                         (7) 
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In textbooks it is usually assumed that 𝑙 ≫ 𝑑. Substituting 
equations (5) and (7) into equation (4) and exploiting that 
assumption, we find  
 

𝐿𝑠𝑘𝑖𝑛 ≅
𝜇0𝑙

𝜋
{log (

𝑑

𝑅
) − Im [

𝑖

𝑘𝑅
 
J0(𝑘𝑅)

J1(𝑘𝑅)
]} ,           (8) 

 
which, in the DC limit 𝑘 → 0, yields the well-known formu-
la  

𝐿𝐷𝐶 ≅
𝜇0𝑙

𝜋
[log (

𝑑

𝑅
) +

1

4
] .                          (9) 

 
In equations (8) and (9), the proportionality of the induct-
ance to 𝑙 is explicitly visible. But it is better not to rely on 
approximation (8) and to use the more precise equations (4) 
– (7) instead. In the evaluation of our own measurements in 
section 5, where 𝑙 ≥ 22 ∙ 𝑑 after all, the approximation (8) 
would lead to an error of 5 % in 𝐿𝑠𝑘𝑖𝑛  and, consequently, 
also in 𝐿. For even shorter relative lengths, equation (5) and, 
eventually, equation (7) should be modified to include also 
other mean distances besides the GMD ([14], equations (33) 
and (62), respectively).  
We wanted to compute the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 for a dense enough 
set of parameters 𝜅 and 휁  allowing us to precisely fit and 
interpolate the data with a smooth two-dimensional func-
tion, and we wanted the domain of this function to be as 
large as possible. We chose the lower limit 𝜅 = 2.05 . 
Smaller values closer to the physical limit 𝜅 = 2 might be 
of interest, but they would have led to computations exceed-
ing the resources available to us. Smaller 𝜅-values demand 
bigger resources. With increasing 𝜅  the proximity effect 
drops quickly. Beyond 𝜅 ≥ 10 it has decreased to the extent 
that the two wires can be regarded as separated, i.e. only the 
skin effect remains, at least as far as the inductance is con-
cerned. So, there is no need to go beyond 𝜅 = 10. Parame-
ter 휁 cannot be made zero because in equation (5) we have 
𝑘 in the denominator, which becomes zero when 휁 is zero. 
We chose the lower limit 휁 = 0.05 . This corresponds to 
42.5 Hz for 𝑅 = 0.5 mm and to a skin depth of 10 mm. It 
represents the DC case very well. The upper limit 휁 = 100 
was again dictated by the limits of our computational re-
sources. So, we chose the following 16 values of the wire 
distance parameter 𝜅: 𝜅 = 2.05, 2.1, 2.2, 2.3, 2.4, 2.5, 2.75,  
 3, 3.5, 4, 5, 6, 7, 8, 9, 10, and the following 48 values of the 
wire radius or frequency parameter 휁: 휁 = 0.05, 0.1, 0.2,  
0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25,  
3.5, 3.75, 4, 4.5, 5, 5.5, 6, 7, 8, 10, 12, 14, 16,18, 20, 22.5, 25,  
27.5, 30, 32.5, 35, 37.5, 40, 45, 50, 55, 60, 70, 80, 90, 100.  
It was clear that the higher 휁, the more filaments we needed. 
But how many do we need exactly? A rule of thumb says 
that the cross-sectional side length of a filament should not 
exceed half the skin depth. At 휁 = 100, we have 100 skin 
depths along a radius, as per definition (2), or 200  skin 
depths along a diameter. If we follow the above rule of two 
filaments per skin depth, we have 𝑁 = 400 filaments along 
a diameter, or 400 × 400 subsquares in a square of width 
one diameter. For two squares for the two wires this results 
in a total of 320′000 subsquares, of which 251′324 have 

their central point within the wire cross section and are thus 
chosen as filaments. In the computer code, this would lead 
to two complex-valued matrices of size 251′324 ×
251′324, using more than 1 TByte of RAM (random access 
memory) each, which lies far beyond the storing capacity of 
any PC (personal computer). Moreover, two filaments per 
skin depth are not even enough, as we shall see! One possi-
ble remedy would be to adapt the cross-sectional size of the 
filaments, so that their number increases towards the surface 
of the wires.  
A simpler method is to select only those subsquares as fila-
ments whose central point lies within some multiple 𝑚 of 

the skin depth below the surface. This is possible because 
beyond that distance from the surface the filament current 
has nearly vanished. Suppose 𝑥  and 𝑦  are the rectangular 
coordinates of the central axis of a filament, with the origin 
in the axis of the wire. The radial coordinate of the central 
axis of the filament is then 𝑟 = √𝑥2 + 𝑦2. The radial coor-
dinate of a point some multiple 𝑚 of the skin depth 𝛿 below 
the surface is 𝑅𝑠𝑘𝑖𝑛 = 𝑅 − 𝑚𝛿 . The condition for a 
subsquare to be selected as a filament is then simply ex-
pressed by 𝑅𝑠𝑘𝑖𝑛 ≤ 𝑟 ≤ 𝑅.  
Now we are free to define a reasonable number of filaments 

per skin depth, 𝑛, without the storage requirements explod-
ing. To ensure a reasonable precision at low 휁, we introduce 
a third and last parameter defining the problem size, name-
ly, the minimum number 𝑁𝑚𝑖𝑛 of 𝑁 to be taken in any case. 
By assigning numbers to the three parameters 𝑚 , 𝑛 , and 
𝑁𝑚𝑖𝑛 , the equivalent number of filaments can be computed.  
The question now was: How large should these three pa-
rameters be? There was no way to calculate them before-
hand. All we could do was to start with some values, and 
then to gradually increase them one by one and see how the 
plots of the results in function of 𝜅 and 휁 evolved. We start-
ed with the parameter set (𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (1,2,20), which 
led to matrices of size 5′120 × 5′120  at 휁 = 100. Fig. 1 
shows the resulting curves of the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 in function 
of 휁 for 𝜅 = 2.05, 3.0, and 10.0. One clearly sees how the 
ratio decreases from unity at DC with increasing 휁 , the 
stronger so the closer the wires. In the finite filament meth-
od, a result for each of the two physical quantities 𝐿1, which 
is the partial self-inductance of one of the wires, and 𝑀12, 
which is the mutual inductance between the wires, can be 
extracted (from equation (6.75) in [3]). Based on 𝐿1  and 
𝑀12 , the final inductance of the transmission line is then 
calculated as  
 

𝐿 = 2(𝐿1 − 𝑀12) .                           (10) 
 
At DC and/or large wire distances, 𝐿1  equals 𝐿1𝑠𝑘𝑖𝑛 , and 
𝑀12  equals 𝑀12𝑠𝑘𝑖𝑛 , so that 𝐿/𝐿𝑠𝑘𝑖𝑛 = 1. When the wires 
move closer together and the wire radius or the frequency is 
increased, both inductances decrease and both mutual in-
ductances increase, so that the differences (4) and (10) both 
decrease. But because of the changing current distribution 
due to the proximity effect, 𝑀12  increases faster than 
𝑀12𝑠𝑘𝑖𝑛, so that the difference (10) decreases faster than (4). 
Therefore, the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 sinks, see Fig. 1.  
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Figure 1: The ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 computed with the parameter set 

(𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (1,2,20) in function of 휁 for 𝜅 =
10.0, 3.0, and 2.05, in this order from top to bot-
tom.  

 
But the curves in Fig. 1 are not smooth. They exhibit kinks 
and other deviations due to lacking numerical precision. 
The insufficient precision is also revealed by the fact that 
the curve for 𝜅 = 10.0 significantly deviates from its ideal 
course, which would be a horizontal line close to unity.  
It turned out that we needed to increase the three parameters 
(𝑚, 𝑛, 𝑁𝑚𝑖𝑛) up to the values (4,5,80) before the curves of 
𝐿/𝐿𝑠𝑘𝑖𝑛  in function of 휁  got smooth. Despite our size-
reducing method, we had to deploy the computations to the 
external computing cloud EC2 by Amazon®, which used 
Intel® Xeon processors operating at 2.3 GHz and having up 
to 256 GByte RAM. The machines were designed for paral-
lel processing. The access from within the programming 
language MATLAB® was provided by The MathWorks® 
company via the MATLAB Cloud Center using the 
MATLAB Parallel Computing Toolbox. Since we were the 
first Swiss customers using the MATLAB Cloud Center 
[15], we profited from special support from The Math-
Works company teams in Switzerland and England. Even 
so, in our case the parallel processing didn’t speed up the 
calculations. Despite the large RAM available, we were 
forced to restrict the computations with the parameter set 
(𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (4,5,80)  to only 휁 ≤ 40 . At 휁 = 40  the 
calculations required two complex-valued matrices of size 
48′936 × 48′936 using 38 GByte of RAM each, two real-
valued matrices of the same size using 19 GByte each, and 
three complex-valued matrices of size 24′468 × 24′468 
using 9.5 GByte  each, requiring a total of at least 
142.5 GByte of RAM. The calculations for the parameter 
set (𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (4,5,80) for all 16 𝜅-values and for all 
휁 ≤ 40 alone ran for five days and five hours! The compu-
tations for 휁 > 40 were done using the relaxed parameter 
set (𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (4,3,60). At 휁 = 100 this led to matri-
ces of size 45′184 × 45′184. By means of applying a glid-
ing mean between the results obtained with (𝑚, 𝑛, 𝑁𝑚𝑖𝑛) =
(4,5,80) and those obtained with (𝑚, 𝑛, 𝑁𝑚𝑖𝑛) = (4,3,60), 
we got very smooth curves over the whole range of 𝜅 and 휁, 
see section 3.  

3. Results and discussion 

With the final parameter sets described in section 2, we 
obtained results which can be expected to be reasonably 
precise and which are smooth. Fig. 2 shows the final curves 
of the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛  in function of 휁  for 𝜅 = 2.05, 3.0, and 
10.0. They are very smooth, and the curve for 𝜅 = 10.0 is a 
horizontal line close to unity, as it should be.  
 

 
Figure 2: The final ratio 𝐿/𝐿𝑠𝑘𝑖𝑛  in function of 휁  for 𝜅 =

10.0, 3.0, and 2.05, in this order from top to bot-
tom.  

 
The results clearly demonstrate the importance of taking the 
proximity effect into account. Fig. 2 shows that for very 
close wires, 𝜅 = 2.05, i.e. with a gap of 1/20 of a radius 
between the wires, at 휁 = 100 the inductance decreases to 
34 % of the value it would have without proximity effect. 
In other words, the inductance calculated considering skin 
effect only is (1 − 0.34)/0.34 ∙ 100 % ≅ 194 % too large! 
And even down to much lower 휁 at around 휁 = 10 the error 
is still close to 100 %!  
At the relative interaxial wire distance 𝜅 = 3, i.e. with a gap 
of one radius between the wires, neglecting the proximity 
effect leads to an inductance which is still about 14 % too 
large. The error remains above 10 % for 휁 down to 휁 = 10.  
To keep the error in neglecting the proximity effect below 

1 %, the gap between the wires must encompass at least 

three wire diameters. Equivalently, the interaxial wire dis-

tance must be at least four wire diameters, or 𝜅 ≥ 8.  
Fig. 3 is a pseudo 3D plot of the complete data for all 𝜅 and 
휁. The surface representing the data is very smooth.  
It is easy to calculate the current distribution in the finite 
filament method ([3], equation (6.73)). Since we have found 
no figures of the current distribution with proximity effect 
in the literature, it may be helpful to illustrate it with some 
examples. Figures 4 – 7 show the current distribution nor-
malized to the maximum current when the wires are far 
apart (upper part of the figures, 𝜅 = 10, i.e. with a gap of 4 
wire diameters), and close together (lower part of the fig-
ures, 𝜅 = 2.05, i.e. with a gap of 1/40 wire diameter), at 
four values 휁 = 0.05, 1.0, 5.0 , and  40.0. The magnitude 
of the current is coded by brightness and color: The scale 
starts from black for vanishing or non-existing current, 



29 
 

continuing via brown, dark red, bright red, orange, and 
yellow up to white for the strongest current.  
 

 
Figure 3: Pseudo 3D plot of the final ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 in func-

tion of the dimensionless parameters 𝜅 and 휁.  
 
Fig. 4 with 휁 = 0.05  (corresponding to 42.5 Hz  for 𝑅 =
0.5 mm) represents the DC case. The current distribution is 
uniform both when the wires are far apart and when they are 
close together: No skin nor proximity effect manifests itself. 
Fig. 5 shows the normalized current distribution at low 휁 =
1.0 (17 kHz for 𝑅 = 0.5 mm). The current distribution is 
mostly uniform. There is no skin effect visible at both wire 
distances, i.e. there is no radial gradient in the current dis-
tribution, except in the horizontal direction where the cur-
rent is slightly stronger on those sides of the wires facing 
each other. This horizontal gradient is a manifestation of the 
proximity effect, which already starts to become visible 
when the wires are far apart. When they move close togeth-
er, the effect increases. Fig. 6 depicts the situation at mod-
erately high 휁 = 5.0 (425 kHz for 𝑅 = 0.5 mm). Now the 
skin effect is clearly visible: There is a distinctive radial 
gradient from the center towards the surface in all directions 
in the wires. Already when the wires are far apart, the cur-
rent distribution is clearly asymmetric due to the proximity 
effect, which tends to concentrate the current towards the 
near sides of the wires. At close distance the proximity 
effect strongly increases. The current on the far sides of the 
wires nearly vanishes. Fig. 7 shows the current distribution 
at high 휁 = 40 (27 MHz for 𝑅 = 0.5 mm). The effects are 
now dramatically more pronounced. At close distance the 
current is exclusively limited to those regions of the wires 
with the smallest inter-wire distance. Hence, the mutual 
inductance increases strongly. Due to equation (10) the total 
inductance decreases dramatically.  
 

 
 

 
Figure 4: Normalized current distribution at 휁 = 0.05.  
 

 
 

 
Figure 5: Normalized current distribution at 휁 = 1.0.  
 

 
 

 
Figure 6: Normalized current distribution at 휁 = 5.0.  
 

 
 

 
Figure 7: Normalized current distribution at 휁 = 40.0.  

4. Analytical approximation 

Plots of the internal inductance of single wires with skin 
effect, normalized to the DC value, in function of 휁 ([12], 
Fig. 2, where a similar parameter 𝑥 was used instead of 휁) 
resemble those of the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 of a two-wire transmis-
sion line with proximity effect, see Fig. 2. This suggests 
that a generalized form of the type of function used there 
([12], equations (38) and (57)) might also be applied here. 
But in [12] it depended only on 휁, whereas here it must also 
depend on 𝜅. One way to generalize it to a two-dimensional 
function is by making its constants functions of 𝜅. Owing to 
the relation between the internal inductance and the GMD 
([12], equation (12)), we must essentially take the negative 
logarithm of the expression in curly braces of ([12], equa-
tion (57)) to transform it to the internal inductance. Since 
we deal with a normalized inductance (𝐿/𝐿𝑠𝑘𝑖𝑛), the factor 
𝑔1 of ([12], equation (57)) is irrelevant here. So is the addi-
tive constant, which just defined the boundary condition for 
휁 = 0 there. To get the total inductance, we must add a term 
that does not depend on frequency, and, hence, neither on 휁. 
But it is expected to depend on 𝜅 . This is the summand 
𝑔1(𝜅) in the bracket of equation (11). The constant factor 
𝑔2  of 휁  in ([12], equation (57)) is now a function of 𝜅 , 
𝑔2(𝜅). The exponent of 휁, which was 4 in [12], must now 
also be made a function of 𝜅. We designate it by 𝑔3(𝜅). The 
4th square root of [12] is identical to a power function of 



30 
 

exponent 0.25. It may be left constant, but its value must be 
modified. We have found its optimum value to be 0.3660 
by means of a non-linear fit. Further, we have changed the 
constant 1 prior to the minus sign of ([12], equation (57)) to 
the value 2 in the large parenthesis of equation (11). The 
reason is that for 휁 = 0, the logarithm of the large parenthe-
sis becomes exactly 0, leaving the summand 𝑔1(𝜅) in the 
bracket. This makes it very easy to guarantee that the ratio 
𝐿/𝐿𝑠𝑘𝑖𝑛  is exactly unity for 휁 = 0 for all 𝜅, as it must be: 
We simply divide the bracket of equation (11) by 𝑔1(𝜅). 
This explains the whole appearance of our fit function for 
the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛, which now reads  
 

𝐿

𝐿𝑠𝑘𝑖𝑛

(𝜅, 휁) ≅
1

𝑔1(𝜅)
[𝑔1(𝜅)

− log (2

−
1

{1 + [𝑔2(𝜅) ∙ 휁]𝑔3(𝜅)}0.3660
)] .      (11) 

 
Now, the problem consisted in finding the analytical func-
tions 𝑔𝑖(𝜅), 𝑖 = 1,2,3. To this end, for each of the 16 values 
of 𝜅 enumerated in section 2, we solved an optimizing prob-
lem to minimize the maximum deviation of equation (11) in 
function of 휁 from our reference data of 𝐿/𝐿𝑠𝑘𝑖𝑛  described 
in section 2. The solution of each of these 16 problems was 
a triple of values 𝑔𝑖(𝜅), 𝑖 = 1,2,3 in equation (11) for each 
value of 𝜅. Thus, we obtained three smooth curves 𝑔𝑖(𝜅), 
each one given at 16 sampling points 𝜅. Fitting these three 
curves, in turn, led to the following functions of 𝜅, which 
are defined for 𝜅 > 2 and were tested for 𝜅 ≥ 2.05,  

𝑔1(𝜅) =
1

2
𝜅2.5 − 2 ,                                      (12) 

𝑔2(𝜅) =
1

16
log(𝜅 − 2) + 0.5143 ,            (13) 

𝑔3(𝜅) =
1

3
log(𝜅 − 2) + 3.0532 .              (14) 

The occurrence of the argument (𝜅 − 2)  is well justified 
because the lower physical limit of κ is exactly 2. Equations 
(11) – (14) define our analytical approximation. Of course, 
it can not only be applied to two-wire transmission lines, 
but also to rectangular coils of closely spaced cylindrical 
wires, as is done in section 5. In any case, with the help of 
this analytical approximation, calculating the total induct-
ance with proximity effect is easy:  
 

1. Calculate the normalized interaxial distance 𝜅 ac-
cording to equation (1).  

2. Calculate 휁 according to equations (2) and (3) with 
𝜎  depending on the conductor material and tem-
perature. For copper use equation (15), 𝜎 = 1/𝜌. 

3. Evaluate the functions 𝑔𝑖(𝜅) , 𝑖 = 1,2,3  given in 
equations (12) – (14).  

4. Insert these values and 휁 from step 2 into function 
(11) to get the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛.  

5. Calculate the inductance with skin effect only, 
𝐿𝑠𝑘𝑖𝑛 , in function of the length 𝑙 with the help of 
equations (4) – (7).  

6. Multiply the ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 from step 4 by 𝐿𝑠𝑘𝑖𝑛  to 
get the total inductance 𝐿 of the transmission line.  

 

Example (𝑡𝐶 = 20 ℃. All other quantities are in SI-units):  
𝑅 = 0.5 ∙ 10−3 m , 𝑑 = 1.025 ∙ 10−3 m, 𝑓 = 2.72 ∙ 105 Hz , 
(i.e. 𝜅 = 2.05, 휁 = 4.0) yields 𝑔1 = 1.0085, 𝑔2 = 0.3271, 
𝑔3 = 2.0546 , and 𝐿/𝐿𝑠𝑘𝑖𝑛 ≅ 0.7336  (reference result: 
𝐿/𝐿𝑠𝑘𝑖𝑛 = 0.7168, deviation: 2.3 %). For 𝑙 = 0.5 m we get 
𝐿𝑠𝑘𝑖𝑛 = 1.678 ∙ 10−7 H, yielding 𝐿 = 1.231 ∙ 10−7 H.  
 
To verify the approximation, we computed its maximum 
deviation from our reference data. The result was 3.0 %. It 
occurred at 𝜅 = 2.05 and 휁 = 90. For 𝜅 ≥ 3 the maximum 
deviation dropped to 0.4 %. Fig. 8 depicts a pseudo 3D plot 
of the percentaged relative deviation of the analytical ap-
proximation from the reference data for all 𝜅  and 휁 . It 
shows that for 𝜅 ≥ 3 the deviation is very small. 
  

 
Figure 8: Pseudo 3D plot of the relative deviation of the 

analytical approximation from the reference data 
in percent.  

5. Comparison with measurements 

In this section we compare inductances calculated by means 
of the analytical approximation with results from measure-
ments reported in the literature and from our own measure-
ments.  
Kennelly et al. presented results of precision measurements 
of the total inductance of four very large rectangular loop 
coils, all the same length 𝑙 = 27 m, but of different and 
much smaller widths 𝑑. They were composed of four cylin-
drical copper wires of diameter 1.168 cm . The measure-
ments were taken at various frequencies ([5], Table IV). In 
two of the coils the longer wires were sufficiently close 
together to be suitable for us to investigate the proximity 
effect, with gaps of 0.3 mm and 8 mm, respectively, corre-
sponding to interaxial distances 𝑑 = 1.198 cm  and 𝑑 =
1.968 cm, respectively. Since the length 𝑙 of both coils was 
more than 1′000  times larger than the width 𝑑 , the two 
wires of axial length 𝑑  forming the shorter sides of the 
rectangular coil could be neglected in calculating the in-
ductance. Hence, we could regard the coils as two-wire 
transmission lines of length 𝑙  and interaxial distances 𝑑 , 
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corresponding to 𝜅 = 2.0514 and 𝜅 = 3.3699, respective-
ly. The specific resistance 𝜌 of copper in Ωm between 0 ℃ 
and 27 ℃  in function of the temperature 𝑡𝐶  in ℃  can be 
well approximated by the polynomial  
 

𝜌 = 10−8(2 ∙ 10−6 ∙ 𝑡𝐶
2 + 0.00671 ∙ 𝑡𝐶 + 1.543) .   (15) 

 
It reproduces the tabulated values at 0 ℃, 20 ℃, and 25 ℃ 
exactly, and at 27 ℃  the deviation is +0.036 % ([11], 𝑇 =
273 K, 293 K, 298 K, 300 K ). The measurements for 𝜅 =
2.0514 were taken at temperatures 𝑡𝐶 = 21.1 ℃, 21.4 ℃,  
21.5 ℃,  21.5 ℃ , 21.2 ℃ , 21.0 ℃,   20.9 ℃ , 21.0 ℃ , and 
21.1 ℃. They didn’t fit into Table 1. They were considered 
in the calculations via 𝜎 = 1/𝜌 and equations (2), (3), and 
(15). For 𝜅 = 3.3699, no temperatures were given for the 
first three measurements ([5], Table IV, gap = 8 mm). We 
assumed them to be equal to the temperature of the 4th 
measurement, 𝑡𝐶 = 16.3 ℃ . The temperatures for the re-
maining measurements, starting from the 5th, were 𝑡𝐶 =
16.5 ℃,  16.9 ℃ , 17.2 ℃ , 17.8 ℃ , 18.0 ℃ , 18.3 ℃ , and 
18.4 ℃. They didn’t fit into Table 2. Tables 1 and 2 show 
the results of our calculations based on equations (11) – 
(14) compared to those of Kennelly’s measurements. The 
consideration of the temperature changed the deviations in 
both Tables by only 0.1 % compared to calculations with 
the temperature fixed to 20 ℃.  
 

Table 1: The ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 by equation (11) of a two-wire 
transmission line at 𝜅 = 2.0514, the measured 
(𝐿𝑒𝑥𝑝) and calculated (𝐿𝑐𝑎𝑙𝑐) total inductances at 
various frequencies 𝑓 and parameters 휁, and the 
relative deviation of 𝐿𝑐𝑎𝑙𝑐  from 𝐿𝑒𝑥𝑝.  

𝑓 
[Hz] 

휁 
[–] 

𝐿
/𝐿𝑠𝑘𝑖𝑛 

𝐿𝑒𝑥𝑝 
[μH] 

𝐿𝑐𝑎𝑙𝑐  
[μH] 

Dev. 
[%] 

60 0.6923 0.9836 10.379 10.278 -1.0 
236 1.3722 0.9400 9.851 9.740 -1.1 
740 2.4294 0.8506 8.143 8.378 2.9 

1000 2.8241 0.8178 7.594 7.859 3.5 
1473 3.4296 0.7716 6.889 7.177 4.2 
2038 4.0357 0.7311 6.374 6.634 4.1 
3058 4.9445 0.6808 5.805 6.016 3.6 
3918 5.5957 0.6511 5.558 5.674 2.1 
5170 6.4265 0.6196 5.297 5.323 0.5 

 

 
The maximum deviation in Table 1 is 4.2 %. In Table 2 it is 
only 1.1 %, reflecting the higher accuracy of the analytic 
approximation for 𝜅 ≥ 3. But Kennelly’s measurements are 
limited to moderately high 휁 < 7, whereas the largest devia-
tion from the reference data occurred at the considerably 
higher 휁 = 90. So, one might suspect to find larger devia-
tions at higher 휁 and at small normalized distances 𝜅 < 3.  
To find out we conducted our own measurements at high 
frequencies. For this purpose we had two two-wire trans-
mission lines fabricated by a tinsmith. Each of them con-
sisted of two cylindrical copper rods of diameter ∅ =
20.0 mm and equal overall length 𝑙𝑡𝑜𝑡  mounted in parallel 
to form the two wires of the transmission line. One end was 
kept electrically open, and the other was short-circuited. On 

the open side and in the middle, the long parallel wires were 
supported by a thin hard rubber disk for increased stability 
and uniform interaxial distance 𝑑.  
 

Table 2: The ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 by equation (11) of a two-wire 
transmission line at 𝜅 = 3.3699, the measured 
(𝐿𝑒𝑥𝑝) and calculated (𝐿𝑐𝑎𝑙𝑐) total inductances at 
various frequencies 𝑓 and parameters 휁, and the 
relative deviation of 𝐿𝑐𝑎𝑙𝑐  from 𝐿𝑒𝑥𝑝.  

𝑓 
[Hz] 

휁 
[–] 

𝐿
/𝐿𝑠𝑘𝑖𝑛 

𝐿𝑒𝑥𝑝 
[μH] 

𝐿𝑐𝑎𝑙𝑐  
[μH] 

Dev. 
[%] 

60 0.6991 0.9981 15.894 15.777 -0.7 
239 1.3953 0.9871 15.602 15.511 -0.6 
671 2.3379 0.9659 14.793 14.745 -0.3 

1068 2.9495 0.9556 14.350 14.237 -0.8 
1509 3.5046 0.9489 14.007 13.880 -0.9 
1991 4.0223 0.9442 13.782 13.631 -1.1 
1988 4.0168 0.9443 13.722 13.633 -0.6 
2486 4.4863 0.9410 13.560 13.458 -0.7 
3028 4.9492 0.9384 13.301 13.319 0.1 
3880 5.5990 0.9355 13.284 13.163 -0.9 
4900 6.2908 0.9332 13.127 13.034 -0.7 

 

 
The short-circuit was realized by a short piece of the same 
type of rod. It was welded to the parallel long rods at a right 
angle by means of 45 °-slants in both the short rod and the 
long ones, see Fig. 9. The first transmission line had a gap 
between the long wires of nominal 4 mm, leading to a nom-
inal interaxial distance 𝑑 =  2.4 cm, and an overall length 
𝑙𝑡𝑜𝑡 = 60.2 cm. The interaxial distance is given by  
 

𝑑 = 𝑔𝑎𝑝 + 2𝑅 , 
 
where 𝑅 = 1.00 cm . The second transmission line had a 
gap of nominal 8 mm, leading to a nominal interaxial dis-
tance of 𝑑 =  2.8 cm, and an overall length 𝑙𝑡𝑜𝑡 = 62.45 cm. 
The effective electric length of the lines was  
 

𝑙 = 𝑙𝑡𝑜𝑡 − 𝑅 
 
(𝑙 is the length from the open end to the axis of the shorting 
wire). Thus, we had 𝑙 = 59.2 cm and 𝑙 = 61.45 cm, respec-
tively.  
Calculations showed that a deviation of 1 %  in the gap 
between the long wires would result in a deviation in the 
inductance of less than 0.5 %. So, we specified a deviation 
of roughly 1 % in the gap for the attention of the tinsmith. 
This was checked on the delivered product with a caliper of 
0.01 mm resolution at six positions evenly distributed along 
the whole length of the transmission line several times, and 
a mean value was determined for each position. The results 
for the first transmission line were 3.91, 3.81, 3.83, 3.86, 
3.86, and 3.86 mm, respectively. The mean value was 3.86 
mm, and the relative standard deviation was 0.9 %. This 
resulted in 𝑑 = 2.386 cm , and equation (1) yielded 𝜅 =
2.386. For the second transmission line, the results of the 
gap measurements were 8.04, 7.83, 7.80, 7.80, 7.85, and 
7.95 mm, respectively.  
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Figure 9: The short-circuited end of the second two-wire 
transmission line with the slanted welding areas. 
The gap between the wires is nominally 8 mm, 
as can be estimated from the grid on the graph 
paper of spacing 5 mm.  

 
The mean value amounted to 7.88  mm, and the relative 
standard deviation was 1.2 % . This resulted in 𝑑 =
2.788 cm , and equation (1) yielded 𝜅 = 2.788 . Conse-
quently, the tinsmith could just about achieve the specified 
precision of around 1 %.  
Before doing the measurements, the contacting surfaces 
were freed from any oxide layer by immersing them in 
citric acid for a few hours. The temperature was 26 ℃. The 
specific resistance of copper was calculated according to 
equation (15) and found to be 𝜌 = 1.719 ∙ 10−8 Ωm. The 
resulting specific conductance 𝜎 = 1/𝜌  was then used in 
equation (3).  
For these transmission lines, the shorting wire could not be 
neglected anymore in calculating the inductance, as was 
possible for Kennelly’s coils. We had to take the inductance 
𝐿𝑑  of the shorting wire of axial length 𝑑  into account by 
subtracting it from the measured raw inductance 𝐿exp 𝑟𝑎𝑤 to 
get the measured inductance 𝐿𝑒𝑥𝑝 of the two-wire transmis-
sion line itself:  
 

𝐿𝑒𝑥𝑝 = 𝐿exp 𝑟𝑎𝑤 − 𝐿𝑑  .                        (16) 
 
The reason for simply subtracting 𝐿𝑑 was that the shorting 
wire was oriented at a right angle to the long parallel wires, 
so that the mutual inductance between the shorting wire and 
the long parallel ones vanished.  
The inductance of the shorting wire could not simply be 
calculated with the help of equation (5) by substituting 𝑑 for 
𝑙 , because the requirement 𝑙 ≫ 𝑅  did not hold anymore 
(𝑑/𝑅 ≅ 2.4  for the shorting wire, compared to 𝑙/𝑅 ≅ 60 
for the long parallel wires). Equation (5) is a variant of 
Wien’s formula for arbitrary frequency: It neglects the 
arithmetic mean square distance AMSD and the arithmetic 
mean distance AMD of the cross section [14]. For ratios 
𝑙/𝑅 as small as 2.4, Wien’s formula leads to a large error in 
the order of −30 %  at DC ([14], Fig. 4). In the high-
frequency limit, the error even rises to −44 %. For such 

small ratios 𝑙/𝑅, a more precise formula for the inductance 
of the shorting wire must be used, namely ([14], equation 
(33))  
 

𝐿𝑑 =
𝜇0

2𝜋
[𝑑 ∙ log (√𝑑2 + 𝐴𝑀𝑆𝐷2 + 𝑑) − 𝑑 ∙ log 𝐺𝑀𝐷 

            −√𝑑2 + 𝐴𝑀𝑆𝐷2 + 𝐴𝑀𝐷] ,        (17) 
 
where we have substituted 𝑑 for 𝑙. At high frequencies the 
inductance can be well approximated by its high frequency 
limit. It is obtained by substituting the high-frequency limits 
for the mean distances in equation (17), which are  
 

𝐺𝑀𝐷 = 𝑅 , 
 

𝐴𝑀𝑆𝐷 = √2 𝑅 , 
 

𝐴𝑀𝐷 =
4

𝜋
 𝑅 

 
([14], equations (21), (24), and (26), respectively). 𝐿𝑑 calcu-
lated this way neither depends on temperature, nor on fre-
quency. We got 𝐿𝑑 = 4.8 nH (𝜅 = 2.386) and 𝐿𝑑 = 6.2 nH 
(𝜅 = 2.788), respectively.  
The measurements of 𝐿exp 𝑟𝑎𝑤  were performed with an 
Agilent® 4294A Precision Impedance Analyzer with a 
42941A Impedance Probe. According to Fig. 10-6 in the 
user manual, the accuracy of this set-up for inductances 
around 150 nH was 3 % at 20 kHz and 1 % at 10 MHz. For 
measuring such small impedances (i.e. (0.4 + 19.4𝑖) mΩ at 
20 kHz for 𝜅 = 2.386), it was important to use a massive 
piece of copper for the shorting calibration. We used a cir-
cular disk of diameter 30 mm  and thickness 12 mm . Its 
contacting surface had also been cleaned with citric acid 
prior to calibration. The values 𝐿exp 𝑟𝑎𝑤  were corrected for 
𝐿𝑑 by means of equation (16) with the values for 𝐿𝑑 given 
above.  
The results are presented in Table 3 for 𝜅 = 2.386  and 
Table 4 for 𝜅 = 2.788. Assuming the standard temperature 
of 20 ℃  instead of 26 ℃  would change the deviations in 
both Tables by less than 0.1 %.  
The limit 휁 = 100 in the reference data was clearly exceed-
ed in most of the measurements. But even so, the results 
from the analytical approximation remained precise. In 
more usual wires, i.e. in ones of smaller diameter than in 
our experiment, like e.g. ∅ = 1 mm, 휁 = 479 corresponds 
to a frequency of 4 GHz.  
Tables 3 and 4 confirm the validity of our approximation 
also for large 휁 . The maximum deviation of 2.4 %  from 
Table 4 lies below the one of 4.2 % from Table 1. Thus, our 
initial apprehension that at higher 휁  there might be larger 
deviations has been dispelled.  
Furthermore, Fig. 10 demonstrates that the two-dimensional 
function defined by equations (11) – (14) even extrapolates 
smoothly and plausibly up to infinity in both 𝜅 and 휁.  
Nevertheless, the measured results 𝐿𝑒𝑥𝑝 in Tables 3 and 4 
seem to contradict a continuous decrease of the inductance 
for high enough frequencies, since, in contrast to the calcu-
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lated values 𝐿𝑐𝑎𝑙𝑐 , the measured ones 𝐿𝑒𝑥𝑝 seem to increase 
again slightly but continuously beyond 3 − 5 MHz.  
 
Table 3: The ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 by equation (11) of a two-wire 

transmission line at 𝜅 = 2.386 , the measured 
(𝐿𝑒𝑥𝑝 ) and analytically approximated (𝐿𝑐𝑎𝑙𝑐 ) in-
ductance at various frequencies 𝑓 and parameters 
휁, and the relative deviation of 𝐿𝑐𝑎𝑙𝑐  from 𝐿𝑒𝑥𝑝.  

𝑓 
[MHz] 

휁 
[–] 

𝐿
/𝐿𝑠𝑘𝑖𝑛 

𝐿𝑒𝑥𝑝 
[nH] 

𝐿𝑐𝑎𝑙𝑐  
[nH] 

Dev. 
[%] 

0.02 21.433 0.7327 149.7 148.0 -1.1 
0.05 33.888 0.7245 146.3 144.9 -0.9 

0.075 41.505 0.7220 143.9 143.9 0.0 
0.1 47.925 0.7205 143.7 143.3 -0.2 
0.2 67.777 0.7176 143.5 142.2 -0.9 
0.5 107.16 0.7151 141.8 141.3 -0.3 
1.0 151.55 0.7138 141.0 140.8 -0.1 
2.0 214.33 0.7129 140.6 140.5 -0.1 
3.0 262.50 0.7126 140.4 140.3 0.0 
5.0 338.88 0.7122 140.2 140.2 0.0 
7.0 400.97 0.7120 140.6 140.1 -0.3 
8.0 428.66 0.7119 140.8 140.1 -0.5 
9.0 454.66 0.7118 141.0 140.0 -0.7 

10.0 479.25 0.7118 141.2 140.0 -0.8 
 
Table 4: The ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 by equation (11) of a two-wire 

transmission line at 𝜅 = 2.788 , the measured 
(𝐿𝑒𝑥𝑝 ) and analytically approximated (𝐿𝑐𝑎𝑙𝑐 ) in-
ductance at various frequencies 𝑓 and parameters 
휁, and the relative deviation of 𝐿𝑐𝑎𝑙𝑐  from 𝐿𝑒𝑥𝑝.  

𝑓 
[MHz] 

휁 
[–] 

𝐿
/𝐿𝑠𝑘𝑖𝑛 

𝐿𝑒𝑥𝑝 
[nH] 

𝐿𝑐𝑎𝑙𝑐  
[nH] 

Dev. 
[%] 

0.02 21.433 0.8542 215.2 210.8 -2.1 
0.05 33.888 0.8508 211.9 208.1 -1.8 

0.075 41.505 0.8498 210.4 207.3 -1.5 
0.1 47.925 0.8491 209.3 206.8 -1.2 
0.2 67.777 0.8480 208.7 205.9 -1.3 
0.5 107.16 0.8471 207.7 205.1 -1.2 
1.0 151.55 0.8466 207.0 204.7 -1.1 
2.0 214.33 0.8463 206.8 204.4 -1.1 
3.0 262.50 0.8462 206.7 204.3 -1.1 
5.0 338.88 0.8460 206.9 204.2 -1.3 
7.0 400.97 0.8460 207.5 204.1 -1.6 
8.0 428.66 0.8459 207.9 204.1 -1.8 
9.0 454.66 0.8459 208.4 204.1 -2.1 

10.0 479.25 0.8459 209.0 204.1 -2.4 
 
We suspected that this might be the effect of a measuring 
artifact caused by a resonance somewhere far beyond 
10 MHz. Indeed, letting the Impedance Analyzer scan be-
yond 10 MHz  revealed that the measured inductance 
seemed to continue rising with ever increasing slope, finally 
culminating in a maximum at the resonance frequency. In 
the first transmission line (𝜅 = 2.386), the resonance was 
observed at 81.3 MHz, and in the second one (𝜅 = 2.788) 
at 79.9 MHz. Knowing the capacitance allows to calculate 
the resonance frequency 𝑓𝑟𝑒𝑠 = 1/(2𝜋√𝐿𝑡𝑜𝑡𝐶), compare it 

to the measured values and maybe confirm that the artifact 
was indeed due to LC resonance.  
 

 
 

Figure 10: Pseudo 3D plot of the analytically approximated 
ratio 𝐿/𝐿𝑠𝑘𝑖𝑛 for very large 𝜅 and 휁.  

 
We had to add the inductance 𝐿𝑑 of the shorting wire to 𝐿 
because the measurements were always done on shorted 
transmission lines: 𝐿𝑡𝑜𝑡 = 𝐿 + 𝐿𝑑 . The capacitance of two 
parallel cylinders in the vacuum is given by ([16], equation 
(12.42), thereby correcting a typing error)  
 

𝐶 =
𝜋휀0𝑙

log (
𝑑

2𝑅
+ √(

𝑑
2𝑅

)
2

− 1)

  ,                 (18) 

 
where 휀0 ≈ 8.8542 ∙ 10−12 As/(Vm) is the vacuum permit-
tivity. For the first transmission line (𝜅 = 2.386) this yield-
ed 𝐶 = 26.9 pF . Together with an inductance 𝐿𝑡𝑜𝑡 =
(140 + 4.8) 𝑛𝐻  the calculated resonance frequency was 
𝑓𝑟𝑒𝑠 = 80.6 MHz . For the second transmission line ( 𝜅 =
2.788 ) we got 𝐶 = 19.8 pF , 𝐿𝑡𝑜𝑡 = (204 + 6.2) nH , and 
𝑓𝑟𝑒𝑠 = 78.0 MHz . The calculated resonance frequencies 
agreed to −0.9 % and −2.4 %, respectively, with the meas-
ured ones. This confirmed the suspected nature of the reso-
nance.  
Using equation (5) for calculating 𝐿𝑑  or, equivalently, ne-
glecting the AMSD and AMD in equation (17), would yield 
𝐿𝑑 = 2.7 nH  ( 𝜅 = 2.386 ) and 𝐿𝑑 = 4.0 nH  ( 𝜅 = 2.788 ), 
respectively. The inductances would be 44 % and 35 % too 
small, respectively. Consequently, the deviations in Table 3 
would all worsen by 1.39 − 1.50 %, and those in Table 4 
by 0.99 − 1.04 %. Equation (17) for calculating the induct-
ance of short wires as published earlier ([14], equation (33)) 
was never tested experimentally. Our result of consistent 
worsening of 𝐿𝑐𝑎𝑙𝑐  when 𝐿𝑑  is not calculated according to 
the full equation (17) represents a first tentative and indirect 
experimental confirmation of this equation.  
By the way, equations (11) – (14) for 𝐿 and equation (18) 
for 𝐶 allow to compute the precise wave impedance of two-
wire transmission lines, even in function of the frequency, 
via the equation 𝑍𝑤𝑎𝑣𝑒 = √𝐿/𝐶.  
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6. Conclusions 

It seems that not much information is available on the in-
ductance of cylindrical two-wire transmission lines in the 
literature, and that its calculation requires extensive numeri-
cal computations.  
In this paper we have produced systematic data of the in-
ductance of cylindrical two-wire transmission lines with 
proximity effect at various wire distances and frequencies 
by means of the finite filament method. To achieve suffi-
cient accuracy, very large systems of linear equations had to 
be solved. As a result, we were forced to deploy the calcula-
tions to an external computer with very large RAM.  
We have shown that the proximity effect cannot be neglect-
ed in inductance calculations unless the interaxial distance 
between the wires amounts to at least four wire diameters. 
We have further presented figures of the current distribution 
in various representative situations, and we have discussed 
them in detail.  
The main aim of the paper has been to develop a simple but 
precise analytical approximation for the inductance of cy-
lindrical two-wire transmission lines and rectangular coils 
of closely spaced cylindrical wires of any size taking the 
proximity effect into account. To this end we have used our 
data of numerically computed inductances as a reference for 
constructing a two-dimensional fit with elementary func-
tions. The comparison of the inductances obtained from the 
analytical approximation with measured results has con-
firmed its precision up to very high frequencies (휁 = 480 or 
𝑓 =  4 𝐺𝐻𝑧 for wires of ∅ = 1 mm). Our analytical approx-
imation dramatically reduces both the time and storage 
capacity needed to calculate the inductance of two-wire 
transmission lines considering the proximity effect. For all 
768  parameter combinations of our reference data, the 
reduction is from one week on an Intel Xeon processor 
operating at 2.3 GHz with 256 GByte RAM in the Amazon 
EC2 cloud to 0.01 seconds and a few kByte on a usual PC.  
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