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Abstract 
We present an analysis on wave propagation in 
superconducting circular waveguides. In order to account 
for the presence of quasiparticles in the intragap states of a 
superconductor, we employ the characteristic equation 
derived from the extended Mattis-Bardeen theory to 
compute the values of the complex conductivity. To 
calculate the attenuation in a circular waveguide, the 
tangential fields at the boundary of the wall are first 
matched with the electrical properties (which includes the 
complex conductivity) of the wall material. The matching of 
fields with the electrical properties results in a set of 
transcendental equations which is able to accurately 
describe the propagation constant of the fields. Our results 
show that although the attenuation in the superconducting 
waveguide above cutoff (but below the gap frequency) is 
finite, it is considerably lower than that in a normal 
waveguide. Above the gap frequency, however, the 
attenuation in the superconducting waveguide increases 
sharply. The attenuation eventually surpasses that in a 
normal waveguide. As frequency increases above the gap 
frequency, Cooper pairs break into quasiparticles. Hence, 
we attribute the sharp rise in attenuation to the increase in 
random collision of the quasiparticles with the lattice 
structure. 

1. Introduction 
Circular waveguides have been widely used in radio 
telescopes to channel signals to the receiver circuits. The 
front end receiver noise temperature is determined by a 
number of factors. These include the mixer noise 
temperature TM, the conversion loss Closs, the noise 
temperature of the first IF amplifier TF and the coupling 
efficiency between the IF port of the junction and the input 
port of the first IF amplifier ηIF. Walker et al. [1] have 
performed a comparison among different waveguide 
receivers. It was found that the deterioration in system 
performance is partly affected by the increase in conversion 
loss Closs. Since signals from distant sources are usually 
extremely faint, it is therefore important to ensure that the 
conversion loss Closs of the mixer circuit could be kept to its 
minimal. To minimize the loss of the signals, the 

availability of a highly efficient waveguide is certainly 
central to the development of the receiver circuit [2]. 

Most waveguides implemented in the receiver system 
are fabricated using copper. Due to the weak intensity of the 
signals, however, the attenuation level in standard metallic 
waveguides may actually cause significant degradation to 
the signals [3]. Superconductors are known to feature low 
loss. It is, therefore, interesting to perform an investigation 
on wave propagation in superconducting circular 
waveguides. 

In [4] and [5], analysis on the performance of 
superconducting circular waveguides has been performed 
based on Mattis-Bardeen theory. Since the equations are 
derived from Bardeen, Cooper and Schrieffer BCS weak 
coupling theory, it takes into account the presence of the 
gap energy. According to the BCS theory, the electronic 
states in the immediate vicinity of the Fermi energy EF have 
their energy pushed away from EF [6]. Hence, no 
quasiparticle state exists within the gap energy. Recent 
findings show, however, that this may not be true. 
Experimental measurements actually suggested that 
intragap states exist within the gap energy [7] – [11]. 

In [10] and [11], Noguchi et al. have modified Mattis-
Bardeen theory to account for the presence of the intragap 
states. Measurements on the surface resistance of the 
superconductor were found to agree with those computed 
using this extended Mattis-Bardeen theory. Since the new 
equations are able to give a more realistic behavior of a 
superconductor, we have applied them in [12] to analyze 
wave propagation in superconducting rectangular 
waveguides. Here, we extend further our approach to the 
case of a superconducting circular waveguide. We apply the 
complex conductivity of a superconductor, derived using 
the extended Mattis-Bardeen theory, onto the equations 
presented in [5] which calculate the attenuation constant of 
a circular waveguide. In order to present a complete 
scheme, we briefly outline the extended Mattis-Bardeen 
theory and the characteristic equations in [5] in the 
following sections. 

2. Superconducting complex conductivity 
Due to the existence of the gap energy 2∆(T) in a 
superconductor, the conductivity of the material is complex 
and can be expressed as  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Advanced Electromagnetics (E-Journal)

https://core.ac.uk/display/228839339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


35 
 

 21 σσσ j−= , (1) 

where σ1 and σ2 represent the quasiparticle and Cooper-pair 
currents in a superconductor, respectively [10]. 
In order to take into account the existence of the intragap 
states, Noguchi et al. suggested to express the gap energy as 
a complex variable, i.e. ∆ = ∆1 + j∆2, where ∆1 and ∆2 are 
real [10], [11]. Here, ∆1 can be expressed with the real gap 
energy given below [12, 13]  
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where )0(/)( 11

~

1 ΔΔ=Δ T , cTTT /
~
= , T is the 

operating temperature, Tc the critical temperature of the 
superconductor and γE = 1.781 is the Euler’s constant. 
By extending Mattis-Bardeen theory, the new complex 
conductivity σ is derived as follows [12]  
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where Er and Ei are, respectively, the real and imaginary 
parts of the complex quasiparticle excitation energy E and 
σn is the normal conductivity of the material at room 
temperature. The function,  

 
( )kTE

Ef
/exp1

1)(
+

= , (4) 

gives the Fermi-Dirac statistics, where k is the Boltzmann’s 
constant. 

Niobium Nb has been widely used in the fabrication of 
the Superconductor-Insulator-Superconductor SIS mixer in 
millimeter/submillimeter radio receivers. Here, we employ 
Nb as the wall material of the circular waveguide. The 
critical temperature Tc, energy gap at 0 K 2∆(0) and normal 
conductivity σn of Nb are, respectively, given as 9.2 K, 3.05 
meV and 1.57 × 107 S/m [13]. In an actual Nb film, the 
imaginary part of the energy gap ∆2 is found to be 10−4 of 
its real part ∆1 [9], [10].  

3. Propagation in a circular waveguide 
Fig. 1 depicts the structure of a circular waveguide. At the 
boundary of the waveguide where radius r = a, the 
tangential electric Et and magnetic Ht fields in the 
waveguide are related to the electrical properties of the wall 
material by [14] – [16]  

 
Figure 1: A circular waveguide. 
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where ω is the angular frequency, µ the permeability of the 
wall material and ε is the permittivity of free space. For a 
superconducting waveguide, the conductivity σ in (5) can be 
found by solving (3). By letting the determinant of the 
coefficients in (5) vanish; we obtain the following 
transcendental equation [5] 
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where Jn(χ) denotes the Bessel function of the first kind, 

Jn'(χ) its derivative, ( )222
zkka −=χ , n the order of the 

Bessel function, k the wavenumber in free space and kz is 
the wave propagation constant. The propagation constant kz 
= βz – jαz is a complex variable which comprises both the 
phase constant βz and attenuation constant αz. By extracting 
the imaginary part of kz, the attenuation constant αz can 
therefore be obtained.  

4. Results and discussion 
By numerically solving (6), the attenuation constant of a Nb 
circular waveguide with radius a = 8.1 mm, operating at 
both room temperature and under the critical temperature Tc 
at T = 4.2 K is calculated. Here, we have applied the Powell 
Hybrid root-searching algorithm to determine the roots of 
(6). To solve for the integrals in the complex gap energy ∆ 
and the complex conductivity σ, we have applied the 
algorithms in the SLATEC mathematical library. Fig. 2 
illustrates the overall attenuation of the dominant TE11 
mode from frequency f = 0 to 1.5 THz. It can be observed 
from the figure that the superconducting waveguide behaves 
differently at different range of frequencies. To analyze the 
behavior of the waveguide, we separate the attenuation into 
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3 parts, i.e. the attenuation at (i) frequency f below cutoff fc 
(f < fc), (ii) f above cutoff but below the gap frequency fg (fc 
< f < fg) and (iii) f above fg (f > fg). Fig. 3 depicts the 
attenuation of TE11 mode below the cutoff frequency fc; 
whereas, Figs. 4 to 6 depicts the attenuation above fc. As 
can be observed from the figures, at frequency f below 
cutoff fc, the attenuation in the superconducting waveguide 
is somewhat higher than that operating at normal state. On 
the other hand, when f increases above fc, the attenuation in 
the superconducting waveguide below the gap frequency fg 
decreases dramatically. As can be seen in Figs. 4 and 5, the 
attenuation in the superconducting waveguide turns out to 
be considerably lower than its other counterpart which is 
operating at room temperature. It is worthwhile noting that, 
although the attenuation we found here is low, it is finite. 
This is in contrast to the results shown in [4] and [5], where 
the attenuation above fc (but below fg) is found to be 
infinitesimal. Since [4] and [5] (which applied Mattis-
Bardeen theory) assume that quasiparticles do not exist in a 
superconductor, while our method accounts for their 
presence, it is apparent that the attenuation found here is 
contributed by the quasiparticles at the intragap states. 
Ideally, a lossless waveguide behaves like a high pass filter 
where signals below the cutoff frequency fc cease to 
propagate through the waveguide. Above fc however, the 
attenuation in the lossless waveguide decreases sharply, 
allowing signals to propagate with negligible loss. Hence, it 
can be clearly seen from Figs. 2 to 5 that a superconducting 
circular waveguide behaves closer to a lossless waveguide 
than a normal waveguide. During superconducting state, the 
density of quasiparticles in the material is low. These 
quasiparticles are mainly those in the intragap states within 
the gap energy. Hence, energy loss due to collisions with 
the lattice structure is very low as well. This allows the 
superconducting waveguide to behave closer to a perfect 
waveguide, which is ideally lossless.  

As the frequency f increases above the gap frequency fg, 
the photon energy exceeds the gap energy. With sufficient 
absorption of energy, Cooper pairs break into quasiparticles. 
Hence, the waveguide operating below the critical 
temperature Tc starts to lose its superconductivity. As can be 
clearly seen from Fig. 6, at f above fg, the attenuation in the 
waveguide at 4.2 K increases significantly. In fact, it 
surpasses that found in a normal waveguide. We attribute 
this phenomenon to the increase of random collision 
between the quasiparticles and the lattice structure at the 
wall, resulting in higher conduction loss in the waveguide. 
The results found in the superconducting circular 
waveguide agree with those of the superconducting 
rectangular waveguide. They, therefore, corroborate the 
findings in [12].  
 

 
Figure 2: Attenuation of TE11 mode at frequency 0 to 1.5 
THz in a Nb circular waveguide (with 8.1 mm radius), 
operating at 4.2 K (solid line) and room temperature 
(dotted line). 

 

 
Figure 3: Attenuation of TE11 mode below cutoff in a Nb 
circular waveguide (with 8.1 mm radius), operating at 4.2 K 
(solid line) and room temperature (dotted line). 
 

 
Figure 4: Attenuation of TE11 mode immediately above 
cutoff in a Nb circular waveguide (with 8.1 mm radius), 
operating at 4.2 K (solid line) and room temperature (dotted 
line).  
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Figure 5: Attenuation of TE11 mode above cutoff but below 
the gap frequency in a Nb circular waveguide (with 8.1 mm 
radius), operating at 4.2 K (solid line) and room temperature 
(dotted line). 
 

 
Figure 6: Attenuation of TE11 mode above the gap 
frequency in a Nb circular waveguide (with 8.1 mm 
radius), operating at 4.2 K (solid line) and room 
temperature (dotted line). 

 

 

5. Conclusion 
We have performed an analysis on superconducting circular 
waveguides based on the extended Mattis-Bardeen theory. 
In contrast with those found in literatures, our results show 
that the loss above cutoff in a superconducting waveguide is 
not infinitesimal. Although the loss turns out to be 
considerably lower than those in a normal waveguide, it is 
certainly finite. We attribute this phenomenon to the 
presence of quasiparticles in the intragap states within the 
gap energy. Above the gap energy, Cooper pairs break into 
quasiparticles. The waveguide operating below the critical 
temperature Tc loses its superconducting characteristics. 
Hence, the loss increases significantly. Our results show 
that the loss of the waveguide eventually surpasses those 
found in a normal waveguide.  
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