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Abstract 
 

Nowadays, unique characteristics of surface 
electromagnetic waves, particularly, surface plasmons 
supported by a specially designed photonic crystal find 
numerous applications. We propose to exploit an evident 
analogy between such a photonic crystal and a structure 
with a sine-modulated refractive index. The light 
propagation inside the latter is described by the famous 
Mathieu’s differential equation. This application of the 
Mathieu’s equation can be useful for a design of multilayer 
structures, and also for fundamental understanding of 
electromagnetic phenomena in inhomogeneous media. 
 

1. Introduction 
Photonic crystals (PCs) are materials that possess a periodic 
modulation of their refractive indices (RIs) on the scale of 
the light wavelength [1]. Optical surface modes in one-
dimensional photonic crystals (multilayer dielectric 
mirrors) were extensively studied in the 1970s, both 
theoretically [2, 3] and experimentally [4]. Twenty years 
later, excitation of optical surface waves (SW) in photonic 
crystals in a Kretschmann-like configuration was first 
demonstrated [5]. These studies rapidly led to broad use of 
surface waves based on photonic crystals in ever-widening 
applications in the field of optical sensors [6-14]. This 
technique benefits much from its unique peculiarities, 
namely, the existence of both p- and s-polarized surface 
waves enables to discriminate surface and volume effects. 
Moreover, an electromagnetic field penetration depth into 
an external medium is significantly increased compared to 
surface plasmon polaritons (SPR)-based biosensors. 
Surface waves-based biosensors permit to study not only 
interactions between relatively thin layers of proteins (and 
other biomolecules), but also between such thick objects as 
bacteria, cells and cell organelles. A direct experimental 
comparison of the sensitivity of biosensors based either on 
surface plasmon polaritons or on photonic crystal surface 
waves (same as Bloch waves or Tamm states) may be 
found elsewhere [15]. The authors showed that a biosensor 
based on photonic crystal surface waves can demonstrate 
almost two times higher sensitivity that one based on 
surface plasmon polaritons. 

Quite an important particular application of photonic 
crystals is their use to support long-range surface plasmon 
polaritons existing in such structures as photonic crystal – 
thin metal layer – infinite dielectric [16] (of course, such 

electromagnetic waves exist only for p-polarized incident 
light [17]). These systems have much in common with 
well-known symmetric sandwich structures such as a thin 
metal layer between two infinite dielectrics, known to 
support long-range surface plasmons (from now on, when 
this cannot lead to a confusion, we will omit the word 
“polariton” and speak simply about plasmons) [18, 19]. For 
this case the photonic crystal can be characterized, for a 
certain wavelength, by the same refractive index as that of 
an infinite dielectric, thus forming a symmetric sandwich 
structure. Exploitation of such structures enabled to excite 
and use in practice surface plasmons in thin Pd [12, 20] and 
Co (to be submitted) layers as well as blue (at 405 nm) [21] 
and UV (at 375 nm; to be submitted) plasmons in thin gold 
layers. Note that if a photonic crystal is not exploited, for 
all these cases there are no reasons to speak about plasmons 
at all, because their propagation length is just in the order of 
a light wavelength.  

 
All these circumstances well underline the necessity 

of deep and physically transparent understanding of the 
details of plasmon propagation in the structures involving 
photonic crystals. Certainly, rather effective calculation 
methods, based essentially on multiple reflections inside the 
multilayer structure (Fresnel formulae), do exist and are 
successfully used; see e.g. Konopsky’s paper [22] which, in 
our opinion, is one of the best examples. Still we believe 
that these methods are rather formal and do not clearly 
reveal the physics of the phenomenon beyond. As a 
consequence, they are not indeed “intuition-friendly” and, 
correspondingly, their prediction potential without detailed 
calculations rests limiting. 

 
In this work, we use an evident analogy between a 

one-dimensional photonic crystal and a structure with a 
sine-modulated refractive index. The propagation of light 
inside the latter is described by the famous Mathieu’s 
differential equation, which extensive studies of many years 
had a considerable impact on the common knowledge, see 
e.g. a classic book [23] and numerous references therein. 
Strictly speaking, a photonic crystal (Fig. 1), which is a 
periodic sequence of dielectric layer pairs of thicknesses dL 
and dS with respectively large LLn ε=  and small 

SSn ε=  refractive indices, is not exactly a medium with 
a sine-modulated refractive index. Similar situation exists, 
for example, for electrons in crystals: planes of ions do 
create a periodic potential but do not create a sine potential. 
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Nevertheless, this circumstance does not make an 
application of the Mathieu’s equation for the corresponding 
problem meaningless. Rather the contrary, the same 
equation appears as the tool to tackle related problems. 
However, unfortunately the paradigm of the Mathieu’s 
equation and its application are not commonly used to 
describe problems related to excitation of optical modes. By 
the present study we aim to broad applications of this 
equation and introduce it to the area of investigation into 
photonic crystals. Briefly, the present article discusses 
application of the Mathieu’s differential equation to design 
a photonic crystal with a metal film supporting long-range 
surface modes.  

 
The article is divided into five chapters: first, we 

introduce the Mathieu’s equation and explain how an 
electromagnetic field distribution in periodic structures can 
be calculated by solving the equation. We emphasize on the 
requirements on its solutions which must be fulfilled to 
describe the surface modes. Second, we give numerical 
examples of photonic crystals with certain parameters. The 
given examples illustrate how to design a photonic crystal 
to excite surface waves at a desired wavelength. Next, 
solutions of the Mathieu’s equation are analyzed to 
demonstrate physical limits of the optical properties of the 
periodic structures for surface wave excitation. In 
conclusion, an analogy was drawn between surface waves 
and energy eigenstates for a quantum particle in a periodic 
potential. 

 

2. Mathieu’s equation 
Below we consider a system infinite dielectric – finite metal 
layer – infinite periodic dielectric structure with a sine 
profile of the refractive index (PC), see Fig. 1. Let the 
infinite dielectric has a dielectric constant 1ε  and metal – 

mε , while a dielectric constant of the periodic structure is 
given by )/2cos()( Lzz av πεεε Δ+= , where L is the period 
of the structure, and for the moment we identify an average 
dielectric constant with 2/)( SLav εεε += , 

avLSav εεεεε −=−=Δ  (Δε > 0). A finite-thickness layer 

characterized by the dielectric constant mε  should not be 
necessarily a metal; we will use this notation just to 
simplify the terminology. 

Based on the properties of surface plasmons, which 
are “transverse magnetic (TM) in nature” and on known 
properties of TM electromagnetic waves [24], one can write 
for the Hy - component of the magnetic field [19]: 

),exp()(0 xitizfeHH y βω −=
!!

   (1) 

 where ye
!

 is a unit vector along the y-axis (Fig. 1). For TM 
modes, if we know the Hy - component of the magnetic 
field, the electric field components can be evaluated from 
Maxwell’s equations [2, 19]: 

z
HiE y

x ∂

∂
=

εεω 0
, yz HE

εεω
β

0
−= .  (2) 

 

 
 

Figure 1. A schematic of the studied structure (not to scale): 
dielectric (z < 0) − metal (0 < z < h) − photonic crystal 
(z > h). The dielectric constants are 1ε , mε , Sε  and Lε , 
respectively; the last two correspond to the dielectic 
constants of the alternating layers of the photonic crystal 
with the period L. The bold red line depicts the electric field 
intensity distribution of a surface wave in the structure, the 
dashed line images the metal layer boundary. The surface 
wave propagates along the x-axis. 
 
The Hy - components of electromagnetic field inside the 
homogeneous media are given by solutions of appropriate 
wave equations, which in our case reduce to  
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where we introduce .)/2( 22
0

2 λπωε ==k  
The equations (2) and continuity of the tangential Hy-

field component at the interfaces 𝑧 = 0, 𝑧 = ℎ together 
with the continuity of the tangential Ex-field component at 
the interface 𝑧 = 0 yield the following solution of the wave 
equation: 
• Inside an infinite dielectric, 𝑧 < 0, zSezf 1)(1 =  
(this implies Re(S1)>0; exactly this form of a solution 
describes the surface wave, i.e. a wave localized at the 
interface),  
• Inside the metal, 0 < 𝑧 < ℎ, we have 
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• Inside the medium with a varying refractive index 
(PC), 𝑧 > ℎ,  
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where )(zP  is an appropriate solution of the Mathieu’s 
equation (see eq. (6) below). Here the exponential decay 
constant is given by  

.2,1
22

,1 kS mm εβ −=     (4) 
The solution of the Mathieu’s equation is chosen to 

exponentially decrease for +∞→z , and ,1)0( =P which 
ensures also the continuity of Hy on the interface 𝑧 = ℎ. 
The continuity of Ex at the interface 𝑧 = ℎ will be 
established later on when a solution of the Mathieu’s 
equation will be discussed. 
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Inside a medium with a varying refractive index (PC), 
the wave equation reduces to the Mathieu’s equation 

.0))/2cos(( 222
2

2

=Δ−−− yav
y HLzkk

dz

Hd
πεεβ  (5) 

With the variable change Lzu /π= , eq. (5) yields a 
standard form of the Mathieu’s equation [23] which will be 
in the main focus of the present study:  

.0))2cos(2(2

2

=−+ y
y Huqa

du

Hd
  (6) 

Here a and q are parameters given by 
,222222 −− +−= πεπβ LkLa av   (7) 

.
2
1 222 −Δ−= πε Lkq        (8) 

 

3. Surface electromagnetic waves 
To obtain surface waves in the studied structure, 

besides a requirement to satisfy the continuity of the Ex-
field component at 𝑧 = ℎ, a solution y(u) of the Mathieu’s 
equation should exponentially decrease for +∞→u . The 
exponentially decreasing solutions belong to the instability 
regions of (a, q)-chart of the Mathieu’s equation parameters 
(hatched areas on Fig. 2, adapted from Ref. 23), which are 
associated with photonic band gaps.  

 

 
Figure 2. The stability chart for the solutions of the 
Mathieu’s equation with the parameters (a, q). The solid 
lines correspond to characteristic curves, the hatched areas 
depict the instability regions, the empty areas – stability 
regions. The solutions marked by the points ‘1’ and ‘2’ are 
analyzed in the text. 
 

Let us now analyze the condition of the continuity of 
Ex-field component on the metal – PC interface. From now 
on we denote the variable as Lhzu /)( −= π  to place the 
interface at u=0. The aforementioned continuity condition 
reads:  
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where )0(3ε  is a local, just near the interface, value of the 
photonic crystal dielectric constant.  

It is natural to start further analysis of propagation 
modes in our system using an analogy to long-range surface 
plasmons in symmetric sandwich structures, in which a 
photonic crystal is replaced by a semi-infinite uniform 
dielectric with the dielectric constant 13 εε = . In a thin 
metal film with 0→h , the long-range surface plasmons 
exist if 𝑆! = 𝑆! = 0 [18, 19], which is necessary to ensure 
the continuity of the longitudinal electric field component 
at the interface. This means, see (3), that the propagation 
constant is given by k1εβ = , so that from (7) we obtain 
the photonic crystal period 

 .
2 1εε

λ

−
=

av

aL   (10) 

Next, the continuity condition (9) results in 0)0(' =y , and 

such a solution )(uy  can be constructed as follows. The 
Mathieu’s equation describing a magnetic field inside a 
periodic multilayer structure (photonic crystal) is given by 
eq. (6) which we rewrite as 

,0))2cos(2(2

2
=−+ yuqa

du
yd  (11) 

with the following relation between the parameters a and q: 

.
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1
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The exponentially decreasing solution of the equation (11) 
has the form of )()( ueuy uϕµ−= , where 0>µ  is a 
characteristic exponent and )(uϕ  is a π2 - or π - periodic 
function. The continuity condition of the magnetic field Hy 
at the interface u=0 requires that ;1)0( =ϕ  such a solution 
exists [23] and can be found. To find it, the easiest 
numerical method, called the “shooting method”, supposes 
to vary the value of b in the initial condition by =)0('  
while solving numerically the ordinary differential equation 
(11), and to analyze the behavior of the solution for large u: 
only one certain value of b corresponds to an exponentially 
decaying solution. If at certain value of u0 the derivative 

,0|)('
0
==uuuy  then all that we need to construct a solution 

which gives rise to surface waves, is to shift the variable u 
and consider the function )()( 0

)(
1

0 uuCeuy uu += +− ϕµ ; 
normalization constant C is so chosen that 1)0(1 =y . The 
function 

)/)(())sinh()(cosh()( 1
1

1
3 LhzyhS

S
ShSzf m
m

m
m −+= π

ε
ε

 then 

describes the Hy-component of the electromagnetic field 
inside the photonic crystal. 
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This simple consideration quite clearly demonstrates 
the physical meaning of a photonic crystal design 
supporting long-range surface plasmons. The expression 
(10) corresponds to an optimal selection of the thicknesses 
of the alternating layers constituting the photonic crystal, 
while the aforementioned shift of the initial value of the 
variable u is nothing else than the necessity to add an 
additional (of large or small refractive index) layer with the 
well-defined thickness to ensure such propagation [22]. 
Moreover, we clearly see also additional possibilities which 
appear for photonic crystal-based structures but are lacking 
for symmetric sandwich structures. For the case of photonic 
crystals, the condition S1=0 is not any more necessary: even 
without it, the boundary condition (9) which (again in the 
limit 0→h ) reads 

),0('
)0(

1
1

31

1 y
L

S π
εε

=   (13) 

still can be fulfilled. Remember that S1 is necessarily 
positive, hence we need 0)0('1 >y  at the interface: just 
after the metal – PC interface, the absolute value of 
electromagnetic field vector should increase (of course, for 
larger distances it will eventually decrease according to its 
exponential decay when ∞→u ). This corresponds to 
stronger localization and deeper penetration of the 
electromagnetic field inside transparent non-absorbing 
medium (photonic crystal) and consequently its weaker 
localization inside a lossy metal. As a result, a smaller 
fraction of the electromagnetic field energy is dissipated in 
the metal thus leading to even larger propagation distances 
of the surface waves (compare again with Ref. 22). Note, 

however, that if 01 ≠S , also 
12 εε

λ

−
≠

av

aL  but should 

be recalculated from eq. (7) with the given values of 1S  and 
a: this shows certain subtlety of the task to optimize 
corresponding structures. This case will be discussed in 
details elsewhere. 
 

4. Numerical examples 
In the previous sections we showed how the Mathieu’s 
equation can be applied to design a multilayer structure 
which supports long-range surface plasmons. Such surface 
modes can be excited in the structure which design and 
physical properties correspond to a pair of (a, q)-parameters 
lying in the unstable region on the stability chart (Fig. 2). 
These parameters, according to eq. (7), immediately define 
a pair of L, β values and also the S1, Sm values using eq. (4). 

As a starting point, we will study numerically the 
properties of the solutions in the first unstable region of 
negative q and positive a. We chose the parameter a close 
to 1 and parameter q such that the pair (a, q) is very close to 
the characteristic curve separating stability and instability 
regions (but, of course, still belongs to the instability 
region; see Fig. 2, point ‘1’). For such an (a, q)-pair, 
according to the known properties of the Mathieu’s 
equation, its vanishing at infinity solution is approximately 

given by ),()( 11 quceeuy uµ−≅ . Here the index µ  is much 
less than one (see Ref. 23 Fig. 11) and ce1(u, q) is the 
Mathieu function describing a π2 -periodic solution of the 
Mathieu’s equation for the pair (a, q) lying exactly on the 
corresponding characteristic curve. This curve, when a is 
slightly larger than one and q small, is described by the 
following expansion (eq. (17), of Ref. 23):  

).(36864/111536/64/8/1 65432 qOqqqqqa ++−−−+=
(14) 

The above )(1 uy  solution is clearly a complete 
analogue of the symmetric sandwich case, in which in the 
external medium, the magnetic field amplitude is described 
by zSCezf 3)(3

−=  with S3 very close to zero: both these 
solutions decrease away from the interface very slowly. The 
further the chosen (a, q)-pair from the characteristic curves 
on the chart is, the larger is the difference of our solution 
from one for the symmetric sandwich case: we may call 
these solutions “more unstable and less periodic”.  

 
Let us now illustrate the consideration given above by 

several numerical calculations corresponding to real 
photonic crystal structures. For the case S1=0, the equations 
(8) and (10) fix the ratio of the parameters 

.
2
1

1εε
ε
−

Δ
−=

ava
q

  (15) 

Suppose we would like to optimize a structure which 
supports the surface waves at the wavelength of 739 nm. 
We assume that nS =1.455, nL =2.076 (Ref. 22, such a 
photonic crystal has been quite successfully used to support 
long-range surface plasmons in Pd films [12, 20]) so that 

,2134.3=avε  0964.1=Δε  and 2477.0/ −=aq  using eq. 
(15). For the parameter a slightly larger than 1, this ratio 
defines 𝑞 = −0.333 and 𝑎 = 1.344 on the characteristic 
curve, and the optimal period of the photonic crystal L=288 
nm calculated from eq. (10). To approximately describe the 
electromagnetic field inside the photonic crystal, we can 
use the following q-expansion of the ce1(u,q) function (p. 
21 of Ref. 23): 

++++−= )3cos(...)
1928

1(
8

cos),(
2

1 uqqququce  

...)5cos(...)
1286

1(
192

22
+++++ uqqq (16) 

It is immediately clear that 0),0('1 =qce  hence this 
function exactly corresponds to the boundary condition we 
are looking for: the photonic crystal refractive index just at 
the interface is equal to nL. Analogically, for a slightly 
smaller than one belonging to the characteristic curve (Fig. 
2), the magnetic field inside a photonic crystal will be close 
to the function ),(1 quse  (see its q-expansion at p.13 of Ref. 
23). The continuity condition of 0),2/('1 =qse π  is 
fulfilled hence the refractive index of the photonic crystal 
right at the interface should be equal to avε . 

Now, we will look at those decreasing to zero 
solutions in the proximity of a = 1 which lie between two 
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characteristic curves (Fig. 3). We are interested in the 
question either for all values of a one may find such a 
solution y(u) which at certain points satisfies the condition 

0)('1 =uy , or there are such values of a that always 
0)('1 <uy . The latter would mean that no surface 

electromagnetic waves for such parameters a, q exist. 
Numerical results attest that in the close proximity of a = 1 
(i.e. for small q) between two characteristic curves, the 
solution and its derivative are almost periodic (Fig. 4, 
graphs 1-2). Similar situation occurs when q is approaching 
-6, so that the pair (a, q) again lies very close to the 
characteristic curve. The further the point on the chart from 
the characteristic curves is, the faster the solution is 
decreasing. This means that the derivative of such a 
decreasing solution is mainly negative, however the 
numerical results show that the derivative is positive at 
certain intervals (and, correspondingly, is equal to zero at 
some points, Fig. 4 graphs 3-5). We have checked a number 
of pairs (a, q) belonging to the line of 𝑞/𝑎 = −0.25 =
𝑐𝑜𝑛𝑠𝑡 (Fig. 3, Fig. 4 graph 1), and for all of them the points 
where 0)('1 =uy  were found.  

Next, we analyzed the points described by the ratio 
𝑞/𝑎 = −1.5 and lying deeper in the instability region. For 
all the chosen points on this line, we succeeded to find such 
initial conditions that the derivative was equal to zero at 
certain points. Moreover, the chosen points belonging to the 
lines 𝑎 = 1.1 = 𝑐𝑜𝑛𝑠𝑡, 𝑞 = 3 = 𝑐𝑜𝑛𝑠𝑡, and several other 
randomly chosen points were still suitable to find the 
solutions giving rise to the surface waves, though these 
points lie quite far away from the characteristic curves (Fig. 
3, Fig. 4 graphs 3-5). Summarizing, despite the analyzed 
points were chosen in different locations in the region of 
positive parameter a and negative q, we could not find any 
that would correspond to a decreasing at infinity solution 
with a derivative never equals to zero. 

Other instability regions of Mathieu equation which 
correspond to larger values of a, such as 
a=4, 9, etc. [23], also give rise to surface waves which can 
be considered quite similarly. These solutions are an 
analogue of larger order resonances in Fresnel reflection of 
light inside a PC (increase of the relative phase differences 
on nπ2 -values) and do not seem very interesting. 

 
Now let us note another possibility. The above 

analysis suggests that we should still be able to construct a 
photonic crystal supporting long-range plasmons even if an 
external medium is such that 1ε  is larger than avε . In such 
a case, from eq. (7) we see that 𝑎 < 0; still having at our 
disposal a certain finite value of εΔ  (and hence of q) we 
are able to find such a pair (a, q) that the derivative of the 
corresponding function 0)(' =uy  for some values of u. For 
this, we again should work not too far from the curve 
separating unstable region of 𝑎 < 0 and small q from a 
narrow stable region existing for larger values of q (see Fig. 
2 and Ref. 23). For this characteristic curve, under the 
condition of a negative a close to zero, we have (p. 15 of 
Ref. 23): 

).(2304/29128/72/ 8642 qOqqqa +−+−=  (17) 
 

 

 
Figure 3. The points of (a, q)-diagram corresponding to the 
analyzed solutions of the Mathieu’s equation in the 
instability region (hatched area). Depending on the solution 
behavior, it may describe surface modes (filled squares) or 
be inappropriate because of the impossibility to fulfill the 
continuity condition (empty squares). The black numbered 
empty circles denote (a, q)-pairs for which the solution and 
its derivative are plotted below (Fig. 4). The dashed black 
line corresponds to a = −2q (see explanation in the text).  
 
Let us illustrate this possibility taking the same wavelength 
of 739 nm and 𝑞 = −1. Then 𝑞/𝑎 = 2.184 (Fig. 2, point 
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‘2’) which gives 86.11 =n  and, the necessary period 

av

aL
εε

λ

−

−
=

12
=1092 nm. Under these (a, q)-parameters, 

the magnetic field component Hy inside the photonic crystal 
is approximately described by π - periodic function 

),(0 quce  which satisfies the condition 0),0('0 =qce  (p. 49 
of Ref. 23). 

In this part of the chart, we again tried to find (a, q)-
pairs that would correspond to such decaying solution for 
which always 0)('1 <uy , and we succeeded to find many 
of them. Indeed, we observed a tendency that for the 
majority of |𝑎| > |𝑞|, a solution that can describe surface 
modes was not found by varying the initial conditions. 

 

	
Figure 4. Solutions of the Mathieu’s equation plotted for different (a, q)-pairs depicted on Fig. 3. The solid blue line 
corresponds to the magnetic field Hy, the dashed black line – to its derivative H′y. A photonic crystal with certain (a, q)-
parameters can support surface waves if its solution is decreasing on the crystal scale and its derivative goes to zero to fulfill 
the continuity requirement. The inset images a zoomed region of the graph to show that the derivative does go to zero at certain 
points (graphs 1-4, 8) or never goes to zero (graphs 6, 7). 
 
 

What is the largest value of the external medium 
dielectric constant 1ε  achievable if Δε is limited by the 
material properties? To answer this question, we need to 
use instead of eq. (17) an asymptotic description of the 
same characteristic curve for large negative a values. This 
question is not completely trivial, but looking e.g., into 
Langer’s analysis [25] of the Mathieu’s equation solutions 
when at least one of the parameters a, q is large, we found 
an estimation of the type |)|(ln||2|2| qOqqa ++−=  
(see his eqs. (6.3) and (7.10) and note the difference in 
notation, Ω=Δ= qa 2, , in his paper), which attests that 

asymptotically 1)/|2(|lim −=−∞→ aqa , and also this is 

known that “no characteristic values exist when |2||| qa ≥ ” 
(p. 690). From this and eq. (15), we immediately infer that 
surface electromagnetic waves cannot be obtained if 

.1 Lεε >  This means that the external medium cannot have 
a refractive index higher than the largest refractive index of 
the periodic structure. At the same time, for any Lεε <1  
and large negative a, an appropriate photonic crystal 
supporting long-range plasmon propagation can be 
designed. However, for too small differences of refractive 
indices this requires large values of |a| and, consequently, 
large periods of the structure which might be impossible to 
realize in practice. 
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5. Conclusions and discussion 
In the present paper, the application of the Mathieu’s 
equation to excitation of surface waves in photonic crystals 
was presented. We have discussed a design of a multilayer 
structure coated with a thin metal film to support surface 
plasmons, and established the necessary requirements for 
the solutions of the Mathieu’s equation describing surface 
waves. First, such a solution must vanish at the infinity (or 
say, on the scale of the multilayer structure) which 
immediately defines that one should work in the instability 
regions of the Mathieu’s equation stability chart. Further, 
given by eq. (9) the continuity condition of the tangential 
electric field component across the interface has to be 
fulfilled.  

A limit of a thin metal film was considered. Here eq. 
(9) reduces to a simple condition that the decaying at 
infinity solution of the Mathieu’s equation should have a 
zero derivative at the interface. We have briefly analyzed 
for which pairs (a, q) belonging to the different instability 
regions on the Mathieu’s equation stability diagram this 
condition can be fulfilled, and for which cannot (Figs. 3, 4). 
Several examples of a real multilayer structure were given, 
and limits appearing for design of photonic crystal 
structures were discussed. These results constitute a base 
for further development of a similar approach, for example 
for the cases when the layer thicknesses dL and dS of the 
photonic crystal are different. Hill’s differential equation 

[23], sometimes named also “generalized Mathieu 
equation” is appropriate here.  

In conclusion, we would like to draw attention to an 
analogy of surface waves in a multilayer structure to a 
quantum particle in a periodic potential, which is also 
described by the Mathieu’s equation [26]. Essentially, the 
Mathieu’s equation, if we rewrite it as 

0))2cos(2(/ 22 =+−+− uyqadyud , can be seen as a 
particular case of the non-relativistic stationary Schrödinger 
equation. This equation (with a proper scaling) describes a 
quantum particle in a periodic potential 

)2cos()2cos(2)( 0 yVyqyV ==  with the total energy of 
the particle aE = . For a given potential value, there may 
be certain values of a (means En) for which bounded 
solutions (eigenstates) can be found. Such bounded 
solutions describe surface waves, which we are interested 
in, and they certainly have a zero derivative at 𝑦 = 0, 

0)0(' =u , due to the potential symmetry. Obviously, there 
is no eigenstates with the energies E smaller than the 
minimal potential value –V0 and therefore, no bounded 
solutions. This analogy is an excellent illustration of the 
problem of plasmon excitation: none of the Mathieu’s 
equations with a negative parameter a such that ||2 qa −<  
is suitable for the excitation of surface waves. Moreover, 
this reasoning explains well that for small negative a, 

surface waves cannot be excited for 1
2

>−
q
a , which is 

perfectly in line with the asymptotic behavior of the 
parameter a mentioned above. 
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