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Abstract. This paper is devoted to introduce an extension 

to the Linear Combination of Configuration Fields 

(LCCF). This new numerical method was synthesized to 

compute the time profile of an electromagnetic source 

radiating  a specified electromagnetic field in all or part 

of the computational domain, for a specified duration. 

There is no theoretical limit for this duration; however the 

computational time grows significantly as this parameter 

is increased. Here, we extend this idea within the 

framework of transmission lines network. The main 

advantage of the proposed method over the time reversal 

method is the possibility to find a source, whatever the 

physically acceptable field specified, even in a lossy 

medium. The principle of the method is first validated 

numerically. Then we prospect the same ideas in a real-

data experiment which shows that the method is ready for 

real-life investigations. In that case, it is the impulse 

response of the line under test that is used to construct the 

matrix for the computation of the unknown source. Then, 

this source is injected into the network to check that it 

gives the desired signal at a point of the network. 

I. INTRODUCTION 

Research on inverse problems is both a wide and active 

domain of research that constitutes a subject in itself. 

Applied to electromagnetism, and more specifically to 

electromagnetic compatibility (EMC), an inverse problem 

consists in getting back to a set of parameters of the 

physical system, from the observation of data (in general 

electric or magnetic field, currents…) produced by that 

system. In the vast majority of cases, the parameters to be 

determined are linked to physical characteristics of the 

system: dielectric permittivity, conductivity, geometry of 

the diffracting objects… Less often, the authors have 

dedicated their researches to electromagnetic sources. 

 

However, the identification of radiating sources through 

near-field to far-field transformations [5,8], or for the 

determination of equivalent sources [6,7], is a field of 

research that gives rise to numerous studies and 

applications. Although those techniques are inherently 

frequency-domain, the need for time-domain results has 

pushed researchers to design mixed methods [19,20]. 

Another possibility for modeling problems by equivalent 

dipole is to use simplified analytical solutions (see [18], 

for example). Very few articles report source 

identification (field source or voltage source) in time 

domain. When it is the case, most of them use time 

reversal (TR) with possible enhancements. In [14], for 

example, the basic reversed-TLM method is improved in 

a second step by cancelling the divergent wave that 

occurs in TR numerical simulations. 

 In this paper, we are not concerned with existence or 

uniqueness of the solution to this inverse problem. The 

approach described here is pragmatic: should the 

proposed numerical method lead to a solution, then our 

only concern is to ensure that the identified source 

satisfies the fixed objectives, whether it be numerically or 

experimentally. 

To be more specific, in this article we are concerned with 

the resolution of the following problem: in a transmission 

line network, what voltage should we use from a 

specified emission point in order to get a specified 

voltage at another given point of the network, over a 

certain period of time? The proposed method applies to 

all types of transmission lines networks (coaxial cable, 

twisted pair, microstrip, etc...) as far as they have a linear 

behavior. 

After having treated this problem in a first part of the 

paper, we turn our attention to fault detection in 

networks. Although the two problems do not seem to be 

linked, in fact they can be efficiently used together. Since 

we are able to construct a source that creates a specified 

voltage at any point of the network, an interesting source 

would be one that amplifies any small changes in that 

network. Then, a comparison of the signal at a point of 

the network between the healthy and the faulty network 

can highlight any changes between the two. Here the 

point of comparison is not necessary the injection point.  

Our approach is rather different from the widely used 

reflectometry which consists in injecting a signal into the 

wiring network and analyzing the reflections at the 

injection point in order to detect and locate a fault. 

Several improvement of this basic technique have been 

made : use signal processing techniques and clustering 

[17], use testing signals that are network dependent [16], 

use time reversal [21] or more interestingly, solve an 

inverse problem from the measurements of the 

reflectometry response [15]. The reflectometry method 

and its refinements are generally good at detecting and 

locating hard faults but soft faults are still a challenge 

[22]. The method we propose is able to detect both soft 
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and hard faults; however it does not have the capability to 

locate them. 

 

The paper is organized as follows: in the next section, we 

briefly recall the principle of the linear combination of 

the configuration field in the context of electromagnetic 

source identification. Then, in section III, the same ideas 

are adapted to transmission lines problems. Numerical 

experiments of section IV show that the computed 

voltage source presents good properties for fault detection 

in a network. This finding is then corroborated by results 

of an experimental set up in section V. Finally, we draw 

some conclusions in section VI. 

II. THE BASIC LCCF (LINEAR COMBINATION 

OF CONFIGURATION FIELD) METHOD 

In [2], an original numerical method was introduced to 

get a temporal electromagnetic source that gives a 

specified electromagnetic field all over the domain, some 

time after the source starts emitting. Authors showed that 

the source could be obtained as a solution to a linear 

system and the method was tested on one and two-

dimensional problems. When the target field is a 

spatiotemporal focusing, comparisons with the time 

reversal (TR) method [10, 11] showed the superiority of 

the LCCF in terms of focusing and signal to noise ratio 

[1]. Furthermore, the LCCF is more general than the TR 

since it does not require the time reversibility of wave 

equations. Therefore it can deal with waves in lossy 

media. Another advantage of the LCCF in its basic 

version over the TR is the possibility offered by this 

method to obtain any spatially specified field more 

accurately (as far as it is physically acceptable) but still at 

a given instant of time. Typical results are shown on 

figure 1, for a 1D example, obtained after a source has 

emitted for a duration T=10
-8

s  (see [2] for more details). 

 

 
Fig.1: Comparison between the target electric field and 

the electric field obtained with the source computed with 

the LCCF method and the time reversal (TR) method. 

III. THE EXTENDED LCCF METHOD 

In this section, we develop an extension of the basic 

LCCF method [1,2] for which the source is built to obtain 

a specified field at a given point, but over a period of time 

instead of an instant of time. 
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III.1. Objectives and context 

The approach described in this paper is quite general and 

could be applied to many EMC problems, as long as the 

governing equations are linear. Furthermore, it is 

independent of the solver used to discretize the equations. 

However, for the purpose of clarity, here we do not 

present the method for general linear differential 

equations but we introduce it within the framework of 

current/voltage propagation in lossy transmission lines. In 

that case, the integration of Maxwell’s equations with 

usual simplifications leads to the so-called telegrapher 

equations [3] given by  
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where  tzvv ,  and  tzii ,  are the voltages and the 

currents, respectively, with    Ttz ,0,  . Ω is a 

general domain modeled within the framework of RLCG 

transmission lines (see [3] for details). R, L, C, G are the 

resistance, the inductance, the capacitance and the 

conductance, respectively, of the conductor per unit of 

length. The numerical resolution of (1) is performed 

using finite difference technique, with space 

discretization Δz  and time discretization Δt. 

 
We note,  Tnnn

ivu ,  a vector containing the value of 

the voltage and the current at the points of discretization 

of the domain Ω at time tntn  . We also note P , an 

operator that computes voltages and currents 1n
u  at time 

1nt  from voltages and currents at time nt , i.e. 

nn
Puu 1 . In practice, for a given set of equations (1), 

P is a matrix that only depends on the technique of 

discretization used (finite difference [9], finite volume 

[12], spectral method [13], …). The objective is to obtain 

an expression of one (or several) voltage source leading 

to a specified voltage at another point of the network 

a z  during a certain period of time. For that, we place 

a voltage (or current) source at point sz  that starts 

emitting a signal at time tptp  . We also note  

  tqpt qp   the instant of time from which we wish 

to force a specified voltage at point  az  . 

III.2. The principe of the method 

As a first step, a source creates a wave that propagates 

and gets reflected in the network Ω. That wave can be 

generated from any point of the network and take any 

form. The only purpose of this wave is to start the control 

process at point az  , with some non-zero values for 

the voltage and the current in the network. 
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As target voltage, we wish to obtain 0),( tv az  for 

 fpqp ttt  , . However, any other physically 

acceptable profile could equally be set. 

Let  kak tvb ,z , with  fpqpk  ,, , denote 

the value of the voltage v at point az  and at time 

tktk  produced by the initial source. 

We assume that the voltage source to be computed has 

the following form : 

        sttk

fp
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where   is the Dirac delta function and   tkk tt 1, 
1  is the 

indicatrix function defined by 
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Then, the unknowns of the problem are the coefficients 

ks of equation (2) above. Such an expression for the 

voltage source ensures that it is located at szz  . 

We assume that the domain Ω is discretized into a set of 

nv points for the voltage and nk points for the current. For 

some numerical methods, nv=nk but when a staggered 

grid is used, such as for the Finite Difference Time 

Domain (FDTD) method, nv≠nk. We also assume that the 

location of the voltage source to be determined 

corresponds to the index s of the vector u that contains 

the discrete values of the voltage and the current in the 

network. Denoting by  Ts 00 1 00 u  a vector from 

kv nn
R


 such that   lss l u , the discrete equivalent of 

equation (2) at time kt  can be written under the form of a 

vector as follows: 

  sk

Tk

i

k

v

Tk ts uSSS  ,)( ,  (3) 

with  fppk  ,, . 

In order to justify the expression above, we recall that in 

the absence of sources, we advance from the field u
n
 to 

the field u
n+1

 through the matrix P according to 
nn

Puu 1 . In the presence of a source at time tn+1, this 

expression has to be modified according to 

11   nnn
SPuu , 

where the discrete source takes the form (3). The term ∆t 

has been added with a view to keep unities consistent. 

The source starts emitting at time tp and therefore at this 

instant of time, we have 

sp

pp ts uSu   . 

At the next instant of time tp+1, the vector u
p+1

 will be 

updated according to 

spsp

ppp tsts uPuSPuu  
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11   

Proceeding like this until time   tkpt kp   this field 

will generate in the domain  , voltages and currents that 

can be computed by the formula 

.1
1 skps

k
ps

k
p

kp tststs uuPuPu  



   (4) 

Let a be the index corresponding to the location za of the 

voltage source for the vector u containing all the discrete 

values of the voltages and currents in the network. 

Writing equation (4) at point z = za, the unknown 

coefficients  Tkppp sss  ,,, 1   that should cancel both 

the voltage  kak tvb ,z  produced by the initial source 

and the voltage produced by the source (2)  should satisfy 

the equation 
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This equation can be written as a matrix-vector product 

 

bAs  ,    (6) 

with  Tfppp sss  ,,, 1 s  

and  Tfpqpqp bbb  ,,, 1 b . 

In order to build the matrix A , a pulse is sent at time 

tpt   at point szz  . Then we observe the voltage 

created at point azz   by this pulse between time 

  tqpt   and time   tfpt  . Those values 

constitute the first column of the matrix A . 

In general, the k
th

 column of matrix A  contains the 

values of the voltage v at point azz   created by a pulse 

sent at time   tkpt  1  at point szz   for t  

ranging from   tqpt 
 

to   tfpt  . On the 

other hand, the vector b  contains the values of the 

voltage v  at  point azz   obtained by the initial source  

for t  ranging from
 

  tqpt   to   tfpt  . 

The linear system is then solved in the least square sense 

since the matrix A  is not square, in general. The problem 

also requires some regularization. For the numerical 

examples of the next section, we use Tikhonov’s 

regularization [4]. Other regularization techniques, based 

on the singular value decomposition for example, could 

equally be used. However we found that Tikhonov’s 

regularization was efficient enough for our problem. 

 
 
 
                                                                                               11 



IV. NUMERICAL VALIDATION 

As a first experiment, we apply the LCCF method 

described in the previous section to the unshielded 

coaxial transmission line network shown on Figure 2. 

The left end of line 1 is matched and all the other load 

impedances of the network are open loads. Three-

dimensional coupling between the branches of the 

network by radiation are neglected. For all the numerical 

simulations, we use a home-made Finite-Difference Time 

Domain (FDTD) code to solve equations (1) for the 

voltages and the currents. However, since the proposed 

method is non-intrusive, any commercial software such 

as CST or HFSS could equally be used. 

 
Fig. 2 : Network topology used for the numerical 

simulations. 

The transmission lines are assumed to be lossless and 

they are characterized by distributed inductances

mHL /101 6  for all branches of the network. On the 

other hand, the distributed capacitance defined by 
2
,/i c iC L Z , where icZ ,  is the characteristic impedance 

of the line i , is line-dependant. The values, which were 

arbitrary chosen, are reported in Table 1.  

 

Table 1. Characteristics of the transmission lines 

Line 

number  
Length (m) icZ ,  ( Ω) 

1 0.09 50 

2 0.09 50 

3 0.10 30 

4 0.06 50 

5 0.10 50 

6 0.07 50 

7 0.06 50 

8 0.07 50 

As a first step, a voltage source is placed at a point zs 

located at 0.006m from the left extremity of line 1. This 

source emits a Gaussian signal of the form 

   





















 


2

0exp,


tt
tv sz , (7) 

with st 10
0 103   and 11108  . This source will 

generate a voltage at a point az  located m07.0  away 

from the left extremity of line 2, as shown on Figure 3. 

 

Fig. 3 : Voltage at point az  

For this simulation, the space and time discretization are  

mz 4101   and st 12101  , respectively. Those 

values are chosen to handle the maximum frequency in 

the network together with the CFL criterion that links the 

time step, the space discretization and the maximum 

wave speed in the network. Then, applying the LCCF 

method, we compute the form of the source that emits a 

signal at point zs to cancel the voltage at point za for the 

period of time between stt qp
91066000 

   and 

tt fp  9000 s9109  . For that, the source will start 

emitting at time tt p  3000 s9103   . Figure 4 shows 

the profile of the voltage source computed with the LCCF 

method. We note that this signal has a complex shape and 

could not be guessed from the start. 

 
Fig. 4 : Voltage source computed with the LCCF method 

to cancel the voltage at point az . 

Then, in a second simulation, this signal is injected into 

the network after the initial Gaussian signal (equation 

(7)). The voltage obtained at point az  for this new 

simulation is shown on Figure 5. We can clearly see the 

efficiency of the LCCF method since the voltage is zero 

on the interval  fpqp tt  , . Indeed, the average value of 

the voltage at point za on that interval is V910175.1  . 
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Fig. 5 : Voltage observed at point az  by the source 

voltage shown on Figure 4. 

Not surprisingly, the voltage source (Figure 4) has to start 

emitting before the voltage is canceled at point za. It also 

affects the voltage after time stt fp

91099000 

   

(compare Figure 3 with Figure 5). 

As a second numerical experiment, we introduce a local 

modification of the characteristic of one of the lines of 

the network. For example, we set HL 6101.1   for the 

RLCG cell located m06.0  away from the left extremity 

of the line number 3 (this represents a 10% variation of 

the initial value of the inductance). The change of 

impedance may model a fault in the network at that point, 

and the objective is to be able to detect this fault. To 

achieve this, the signal (7) to be generated by the source 

shown on Figure 4 is sent. The resulting voltage at point 

za is shown on Figure 6 for both the network without fault 

and the network with a fault on the inductance, for 

 fpqp ttt  ,  . 

 
Fig. 6: Voltage observed at point az  with and without 

defect. 

We can see a clear demarcation between the two curves. 

In order to quantify this difference, we can compute the 

average amplitude of the voltage on this interval and we 

find V510843.4  whereas it was V910175.1  without 

fault in the network. Therefore, a slight 10% modification 

of the inductance in one cell of length m4101   in the 

network, induces a considerable relative variation of the 

voltage at point za, for the particular source shown on 

Figure 4. Thus, the LCCF can also be efficiently used as 

fault detection, since it can produce sources that are very 

sensitive to small changes in the network. In the next 

section, we will see how the same ideas can be adapted in 

an experimental framework. However, before that, it is 

important to test the robustness of the LCCF method with 

respect to noise measurement. This test is performed 

numerically by adding noise to the columns of the matrix 

A appearing in equation (6). This noise can be modeled 

by a random variable added to each element of the matrix 

A. The random variables are assumed to follow a 

Gaussian law with zero mean and a standard deviation 

equal to 5% of the deterministic values appearing in the 

matrix A. 

 
Fig. 7: Voltage observed at point az  using a source 

computed from noisy measurements and non-noisy 

measurements. 

The source voltage computed with this new sample 

matrix is then re-injected into the network and the 

resulting voltage at point za is shown on Figure 7. 

Although the noise affects the voltage, its effect is still 

one order of magnitude below the effect of a fault in the 

network. Therefore, it should be possible to apply the 

LCCF method experimentally and this is what we do in 

the next section. 

V. EXPERIMENTAL RESULTS 

In order to experimentally validate the LCCF, we 

consider a network designed with coaxial cables. One end 

of the network is connected to an arbitrary waveform 

generator (AWG, Tektronix AFG 3021B) and another 

end is connected to a numerical oscilloscope (LeCroy 

WaveRunner 640Zi). 

The experimental set up is shown on Figure 8 and Figure 

9 gives a schematic representation of the network to be 

study. 
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Fig. 8: Picture of the experimental set up. From left to 

right: the arbitrary waveform generator, the coaxial 

cable and the numerical oscilloscope. 

 

 
Fig. 9: Details of the network configuration for the 

experimental test. 

Here, the purpose is to determine the profile of the 

voltage source that the AWG should generate in order to 

produce a specified voltage recorded by an oscilloscope 

at one end of the network. 

The procedure to apply the LCCF method remains the 

same as previously seen for the numerical simulations. 

First, the AWG generates a pulse in the network and the 

oscilloscope records the resulting voltage. This given 

voltage is used to build the matrix A. As objective, we 

choose a voltage with a Gaussian shape. Then, the 

requested source can be obtained by solving equation (6). 

Note that the only difference with the purely numerical 

procedure described in the previous sections resides in 

the construction of the matrix A, which is done from 

experimental data. However, only objectives of simple 

shapes are possible due to the very basic experimental 

hardware used here. Once computed, the voltage source 

is generated by the AWG and the resulting voltage at the 

other end of the network is recorded by the numerical 

oscilloscope. Figure 10 shows the recorded voltage (blue 

line) together with the objective voltage (red line). 

 

 
Fig. 10: Objective and result obtained  for the 

experimental setting. 

It clearly appears that the result matches very well with 

the objective over some period of time. With top-notch 

hardware, it is possible to generate higher frequency 

sources and obtaining more complex signals should be 

possible. However, one should bear in mind that only 

physically acceptable voltages can be obtained (i.e. they 

should satisfy equation (1)). Also, the number of possible 

reflections within the network grows with its size and one 

should expect to require a more complex source to 

produce the objective. On the other hand, it would be 

highly unrealistic to have a complex voltage that is 

different from the source for a simple matched line. 

We now introduce a modification in the transmission line 

network, which is assumed to model a fault, and we now 

test if the source computed by the LCCF method is able 

to produce a voltage that is significantly different from 

the objective. For that, we remove the short circuit 

located at the end of the 16m branch. Then, we inject the 

source previously computed in the modified network and 

we observe on Figure 11 that the voltage does not match 

the objective. 

 

 

 
Fig. 11: Response of the network with and without defect. 

For this example, the modification of the transmission 

line network was major, and any observable output would 

be significantly affected, even with sources not computed 

with the LCCF method. In a view of using more 

sophisticated AWG that can deal with higher frequencies, 

the experimental application of the LCCF method should 
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enable the detection of soft faults with a high sensitivity, 

as shown by the numerical experiments. 

VI. CONCLUSION 

In this article, an extension of the LCCF method to 

transmission lines problems was carried out. We showed 

that it is possible to construct a voltage source, which, 

injected at one point of the network, will produce a 

specified voltage in another point of the same network. 

Then, by observing that the obtained voltage is highly 

sensitive to the physical properties of the network, this 

technique can also be efficiently used to detect faults 

within a network. This idea was successfully tested 

experimentally. The LCCF method presented in this 

paper can easily be adapted to treat more complex 

problems: imposing a time domain voltage on more than 

one point or treating networks with highly complex 

topology, for example. 

Other EMC applications to this general method may be 

considered in the future. Amongst them, we can think of 

faults localization in a network or adapting 

voltages/currents in a network in order to satisfy some 

threshold limit. 
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