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Abstract equality £&=w is satisfied only in the special case where the

. . . magnetic field varies linearly with time.
In the literature of Electromagnetism, the elective g y

force of a “circuit” is often defined as work done a unit
charge during a complete tour of the latter aratinedcircuit.
We explain why this statement cannot be generaljparded
as true, although it is indeed true in certain $engases.
Several examples are used to illustrate thesegoint

2. Thegeneral definitions of emf and work per
unit charge

Consider a region of space in which an electromiagne
(e/m) field exists. In the most general sense,@dogedpath

C (or loop) within this region will be called &circuit”
(whether or not the whole or parts @fconsist of material
objects such as wires, resistors, capacitors, rizdfeetc.).
We arbitrarily assign a positive direction of traversing the

1. Introduction

In a recent paper [1] the authors suggested a pgdaag
approach to thelectromotive forcdemf) of a “circuit”,
fundamental concept of Electromagnetism. Rathem tha loop C, and we consider an elementt of C oriented in the
defining the emf in arad hocmanner for each particular positive direction (Fig. 1).

electrodynamic system, this approach begins withnttost

general definition of the emf and then specializesertain

cases of physical interest, thus recovering theili@mex-

g dl
pressions for the emf.
Among the various examples treated in [1, ¢hse of a
simple battery-resistor circuit was of particularterest +
since, in this case, the emf was shown to be efudhe C
work, per unit chargedone by the source (battery) for a

complete tour around the circuit. Now, in the htiere of

Electrodynamics the emf is oftefefinedas work per unit Figure 1: An oriented loop representing a circuit.

charge. As we explain in this paper, this is nategally true _ -

except for special cases, such as the aforemeadtiome Imagine now a test chargglocated at the position of
In Section 2, we give the general definitafrthe emf., dl, and letF be the force om at timet. This force is ex-

and, separately, that of the work per unit chavgejone by  erted by the e/m field itself, as well as, possitily addi-
the agencies responsible for the generation angepration  tional energy sourcege.g., batteries or some external me-
of a current flow in the circuit. We then state trecessary  chanical action) that may contribute to the genienaand
conditions in order for the equalif=w to hold. We stress  preservation of a current flow around the Ic@pTheforce

that, by their very definitions] andw aredifferentconcepts.  per unit chargeat the position ofl| at timet, is

Thus, the equatiofi=w suggests the possible equality of the

valuesof two physical quantities, not the conceptuahtite
fication of these quantities!

Section 3 reviews the case of a circuit cstitgj of a
battery connected to a resistive wire, in whichecalse . ) )
equality&=w is indeed valid. Note that-]c is mdependent of,, since the elec-tromagnetlc

In Sec. 4, we study the problem of a wire ingv force onq is proportional to the charge;ln particular, msve
through a static magnetic field. A particular stton where  ing the sign ofg will have no effect onf (although it will
the equality€=w is valid is treated in Sec. 5. change the direction df ).

Finally, Sec. 6 examines the case of acstaty wire In general, neither the shape nor the siz@ isfrequired
inside a time-varying magnetic field. It is showmat the  to remain fixed. Moreover, the loop may be in motiela-
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tive to an external inertial observer. Thus, fdo@p of (pos-

sibly) variable shape, size or position in space,will use

the notatiorC(t) to indicate the state of the curve at time
We now define theslectromotive force(emf) of the

circuit C at timet as the line integral of alongC, taken in
thepositivesense o€C:

f(F,t)-dl

(t)

5@:@

C

)

(wherer is the position vector ofll relative to the origin

of our coordinate system). Note that the sign ef &imf is
dependent upon our choice of the positive direatibaircu-

lation of C: by changing this convention, the sign &fis
reversed.

As mentioned above, the force (per unit cepagefined
in (1) can be attributed to two factors: the intéian of g
with the e/m field itself and the action grdue to any addi-
tional energy sources. Eventually, this latter riatgion is
electromagnetién nature even when it originates from some
external mechanical action. We write:

f=fnt o

®3)

where f,_is the force due to the e/m field arfg, is the

applied forcedue to an additional energy source. We note
that the force (3) does not include aegistive(dissipative)
forces that oppose a charge flow alddgit only contains
forces that may contribute to the generation aedgrvation
of such a flow in the circuit.

Now, suppose we alloasingle charge to make a full
trip around the circui€ under the action of the force (3). In

doing so, the charge describes a cu@/ein space(not
necessarily a closed one!) relative to an externeitial

observer. Letdl’ be an element of’ representing an in-

finitesimal displacement af in space, in timet. We define
the work per unit chargdor this complete tour around the
circuit by the integral:

w= [ fdf (4)

For astationarycircuit of fixed shape,C’ coincides with the
closed curveC and (4) reduces to

( fixed C) (5)

w=¢ f-dl
It should be noted carefully that the intédga is evalu-
atedat a fixed time,twhile in the integrals (4) and (5) time
is allowed to flow! In general, the value wfdepends on the
time to and the poinP, at whichq starts its round trip o@.
Thus, there is a certain ambiguity in the defimtiaf work
per unit charge. On the other hand, the ambigusty t0
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speak) with respect to the emf is related to theeddence
of the latter on timé.

The question now is: can the emf be equaklueto the
work per unit charge, despite the fact that thesentties

are defined differently? For the equalifyw to hold, both&
and w must be defined unambiguously. Thésmust be

constant independent of timed€/dt=0) while w must not

depend on the initial tim& or the initial pointP, of the
round trip ofg on C. These requirements amecessary con-

ditionsin order for the equalit§=w to be meaningful.

In the following sections we illustrate theiskeas by
means of several examples. As will be seen, thsfaetion
of the above-mentioned conditions is the exceptather
than the rule!

3. Aresistivewireconnected to a battery

Consider a circuit consisting of an ideal batterg.( one
with no internal resistance) connected to a metiat wf
total resistanc® (Fig. 2). As shown in [1] (see also [2]), the
emf of the circuitin the direction of the currens equal to
the voltageV of the battery. Moreover, the emf in this case
represents the work, per unit charge, done by thecse
(battery). Let us review the proof of these stateine
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Figure 2: A battery connected to a resistive wire.

A (conventionally positijemoving chargej is subject to
two forces around the circui€: an electrostatic force

F,=qE at every point ofC and a forceF,  inside the

battery, the latter force carryirggfrom the negative pola
to the positive pold through the sourceAccording to (3),
the total force per unit charge is

f=f+f,=E+f,.

The emf in the direction of the current (i.e., ctawmolock-
wise), at any time, is

gzécf-&
:¢c Eal+¢c

-[[7.-d

—

f o.dl
app

(6)



where we have used the facts tq‘}act E. al =0 for an elec-

trostatic field and that the action of the sourneyads limited
to the region between the poles of the battery.

Now, in a steady-state situatidn=(constant) the charge
g moves at constant speed along the circuit. Thisnm¢hat
the total force om in the direction of the pat@ is zero. In

the interior of the wire, the electrostatic forBe=qE is

counterbalanced by the resistive forcegodue to the colli-
sions of the charge with the positive ions of thetah (as
mentioned previously, this latter force doexd contribute to
the emf). In the interior of the (ideal) batterypowever,
where there is no resistance, the electrostatiefonust be

counterbalanced by the opposing force exerted hgy th

source. Thus, in the section of the circuit betwaemdb,
f_=—f,=-E.By(6), then, we have:

app

g=-["E-di=y-v =V @)

whereV, andV, are the electrostatic potentialsatndb,
respectively. We note that the emf is constantirmet as
expected in a steady-state situation.

Next, we want to find the work per unit charfpr a
complete tour around the circuit. To this end, Weva a
single charge go make a full trip aroun®€ and we use
expression (5) (since the wire is stationary andfixéd
shape). In applying this relation, time is assunmetiow as
g moves alongC. Given that the situation is static (time-
independent), however, time is not really an issinee it
doesn’t matter at what moment the charge will gassny
given point ofC. Thus, the integration in (5) will yield the
same result (7) as the integration in (6), degpi¢efact that,
in the latter case, time was assurfigdd We conclude that

the equalityw=£ is valid in this case: the erdbesrepresent
work per unit charge.

4. Movingwireinside a static magnetic field

Consider a wireC moving in thexy-plane. The shape and/or
size of the wire need not remain fixed during itstion. A

static magnetic fieldB(F) is present in the region of space
where the wire is moving. For simplicity, we assuthat
this field is normal to the plane of the wire arickdtedinto
the page.

In Fig. 3, the-axis is normal to the plane of the wire and
directed towards the reader. We cdl an infinitesimal
normal vector representing an element of the plaméace

bounded by the wire (this vector is direciatb the plane,
consistently with the chosen clockwise directiontravers-

ing the loopC ). If 0, is the unit vector on theaxis, then

da=-(da U and B=-B(F){,, where B(F) =| B(F) |.
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Figure 3: A wireC moving inside a static magnetic
field.

Consider an elementl of the wire, located at a point

with position vector relative to the origin of our inertial
frame of reference. Calb (') the velocity of this element

relative to our frame. Let| be a ¢onventionally positiJe
charge passing by the considered point at tirfiéais charge

executes a composite motion, having a velocityalong
the wire and acquiring an extra velocity(f') due to the
motion of the wire itself. The total velocity gfrelative to
usisv,, =0, +0.
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Figure 4: Balance of forces per unit charge.

The balance of forces acting qnis shown in the dia-
gram of Fig. 4. Theanagnetic forceon q is normal to the

charge’s total velocity and equal t&, =q(5,,xB) .

Hence, the magnetic force per unit Charge?nis: Dy X B.

Its component along the wire (i.e., in the directaf (?I) is

counterbalanced by thessistive forcef , which opposes

the motion ofg alongC (this force, as mentioned previously,
doesnot contribute to the emf). However, the component of
the magnetic forcaormal to the wire will tend to make the
wire move “backwards” (in a direction opposing thesired
motion of the wire) unless it is counterbalanced doyne
external mechanical action (e.g., our hand, which pulls the
wire forward). Now, the charggtakes a share of this action
by means of some force transferred to it by thecttire of
the wire. This force (which will be called applied forcé
must benormal to the wire (in order to counterbalance the
normal component of the magnetic force). We derbée



applied force per unit charge l:)&lpp. Although this force

originates from an external mechanical actiors delivered
to g through arelectromagnetidnteraction with the crystal
lattice of the wire (not to be confused with thesiséve
force, whose role is different!).

According to (3), the total force contribgito the emf

of the circuitis f = Fm + Fapp. By (2), the emf at timeis

£ =¢

c(t)

i Td

m app

The second integral vanishes since the appliec fraor-
mal to the wire element at every point@f The integral of
the magnetic force is equal to

$. (6% B)-dl = (5,xB)-dl + § @xB)- ql.

The first integral on the right vanishes, as canséen by
inspecting Fig. 4. Thus, we finally have:

£0 = ¢, [6(NxBM]-dl (®)

As shown analytically in [1, 2], the emf®fis equal to
d

EM)=-—0,(t) 9)
dt

where we have introduced theagnetic fluxhroughC,

o (1) = jsmé(r)-cﬁz jw B(7) da (10)

[By St) we denoteany open surface bounded Byat timet;
e.g., the plane surface enclosed by the wire.]

Now, letC' be the path ofy in space relative to the
external observer, for a full trip af around the wire (in
general,C’' will be anopen curve). According to (4), the
work done per unit charge for this trip is

w= J.c, f.dl+ IC, f-dl .

The first integral vanishes (cf. Fig. 4), while fie second
one we notice that

dl = f_.dl+f_.d’"=f_.dl

fapp ’ app’ app’ app

(since the applied force is normal to the wire edatmeve-
rywhere; see Fig. 4). Thus we finally have:

w= jc, f-dl (1B)

with
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dl =, dlI"=f, - odt

(1b)

app

where dI” = 5 dt is the infinitesimal displacement of the
wire element in timelt.

5. An example: Mation insidea uniform
magnetic field

Consider a metal bamlf) of lengthh, sliding parallel to
itself with constant speed on two parallel rails that form
part of a U-shaped wire, as shown in Fig. Sumform mag-

netic field B , pointing into the page, fills the entire region.

hre b )
Oda B
— p=const
B 1di
d a X
O —>| X
0z

Figure 5: A metal barap) sliding on two parallel rails
that form part of a U-shaped wire.

A circuitC(t) of variable size is formed by the rectangu-
lar loop @bcdg. The field and the surface element are writ-

ten, respectively, aB=-B{, (where B=|B|= const)

and da=(da) y (note that the direction of traversing the
loop C is now counterclockwise).

The general diagram of Fig. 4, representirggialance
of forces, reduces to the one shown in Fig. 6. Nio& this
latter diagram concerns only theoving part @b) of the
circuit, since it is in this part only that the oeity o and

the applied force?app are nonzero.

Figure 6: Balance of forces per unit charge.

The emf of the circuit at tintds, according to (8),

£0 =9, ©xB)-dl



_ .[bUBdl _ qude _ UBh. 6. Stationary wireinside atime-varying

magnetic field
Alternatively, the magnetic flux throughis Our final example concerns stationary wire C inside a
time-varying  magnetic field of the form
®_(t)= jsm B(F)- da= —js(o Bda= — ng) da B(F,t)=—B(F,t)d, (where B(F,t)=|B (F,t)]), as shown
in Fig. 7.
= -Bhx
(wherex is the momentary position of the bar at titheso y

that Dc \4‘

d dx
Et)=—— (t) =Bh— = Bhv .
dt dt

di ®da
®B(F,t)
We note that the emf is constant (time-independent) r
Next, we want to use (11) to evaluate thekwmar unit C
charge for a complete tour of a charge aroGndince the
applied force is nonzero only on the sectiab) (of C, the 0z X

path of integrationC’ (which is a straight line, given that
the charge moves at constant velocity in spacd)awilre-
spond to the motion of the charge along the metalonly,
i.e., froma to b. (Since the bar is being displaced in space
while the charge is traveling along it, the li@é will notbe
parallel to the bar.) According to (11),

Figure 7: A stationary wireC inside a time-varying
magnetic field.

As is well known [1-7], the presence of adirarying

magnetic field implies the presence of an eledteicd E as
well, such that

w= [ f,,-dl' with . B
e VxE=-— (12)
wp Al =F - dl"=f_dl"=f__odt ot

(cf. Fig. 6). Now, the role of the applied forcetiscounter- ~ AS discussed in [1], the emf of the circuit at titie given

balance thex-component of the magnetic force in order that by
the bar may move at constant speed irxttigection. Thus,

= - d
fopp = fnCOSO = v, B co® = Bu, ® <j50 (r,t) it @) (13)
and where
f,pp U dt=Boo_dt= Bo dl ®,(t) = [ B(F,1)-da= [ B(F 1) da (14)

(sincevc dt represents an elementary displacenutrdf the is the magnetic flux throug@ at this time.
charge along the metal bar in tii§. We finally have: On the other hand, the work per unit chaogeaffull trip

X . around C is given by (5): W:CJ‘D f.-dl , where
w=["Bodli=Bv[ di=Bvh. oL ) c
2 a f=f,=E+(v,xB), sothat

We note that, in this specific example, the valtithe work _ _
per unit charge is equal to that of the emf, bbtisé quanti- w= q‘> E-dl+ q‘> (6, B)- dI .
ties being constant and unambiguously defined. Woisld ¢ ¢
not have been the case, however, if the magnetic Vel

nonuniform As is easy to see (cf. Fig. 7), the second integaaishes,

thus we are left with

w=¢_E- dl (15)
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The similarity of the integrals in (13) aritb] is decep-
tivel The integral in (13) is evaluated a fixed time,twhile
in (15) time is allowed to flow as the charge moaksgC.
Is it, nevertheless, possible that tr@uesof these integrals
coincide? As mentioned at the end of Sec. 2, assace
condition for this to be the case is that the tmgrations

yield time-independent results. In order théatbe time-
independent (but nonzero), the magnetic flux (1#)us the
magnetic field itself — must increalirearly with time. On
the other hand, the integration (15) far will be time-
independent if so is the electric field. By (12)en, the
magnetic field must be linearly dependent on timvajch
brings us back to the previous condition.

As an example, assume that the magnetic ifsetif the
form

B=-B,tl, (B = cons).

A possible solution of (12) foE is, in cylindrical coordi-
nates,

[We assume that these solutions are valid in adigniegion
of space (e.g., in the interior of a solenoid whagis coin-
cides with thez-axis) so thap is finite in the region of inter-
est.] Now, consider a circular wife of radiusR, centered at

the origin of thexy-plane. Then, given that| :—(dl)ﬁ(p ,

B

Olt 2
5 g)cdl =-B,7R".

5:qSCE-cT|:—

Alternatively,

®,=[ Bda= Bz R 1,

sothat€=- d®_/dt= - Bz R . We anticipate that, due

to the time constancy of the electric field, thensaresult
will be found for the workw by using (15).

7. Concludingremarks

No single, universally accepted definition of thefeseems
to exist in the literature of Electromagnetism. Teinition
given in this article (as well as in [1]) comessdao those
of [2] and [3]. In particular, by using an examgienilar to
that of Sec. 5 in this paper, Griffiths [2] makeslear dis-
tinction between the concepts of emf and work peit u
charge. In [4] and [5] (as well as in humerous ptfext-
books) the emf is identified with work per unit che, in
general, while in [6] and [7] it is defined as as#d line
integral of the non-conservative part of the eledteld that
accompanies a time-varying magnetic flux.
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The balance of forces and the origin of worla con-
ducting circuit moving through a magnetic field ameely
discussed in [2, 8, 9]. An interesting approacthtorelation
between work and emf, utilizing the concept ofuaftwork,
is described in [10].

Of course, the list of references cited abmvdy no
means exhaustive. It only serves to illustratediversity of
ideas concerning the concept of the emf. The sidxlén-
herent in this concept make it an interesting stttpé study
for both the researcher and the advanced studenassical
Electrodynamics.
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