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Abstract

The polarization and magnetization degrees of freedom are
included in the general treatment of the electromagnetic
field in matter, and their governing equations are given.

Particular cases of solutions are discussed for polarizable,
non-magnetic matter, including quasi-static fields, surface
plasmons, propagation, zero-point fluctuations of the eigen-
modes, especially for a semi-infinite homogeneous body
(half-space). The van der Waals-London-Casimir force act-

ing between a neutral nano-particle and a half-space is com-
puted and the response of this electromagnetically coupled
system to an external field is given, with relevance for the

surface enhanced Raman scattering.

1.

With usual notations the Maxwell equations in matter read

Introduction. General theory

divD = 47mpg , divB =0,
1)

10B

9, curlH = 19D

curlE = S0 T 4%jo ,

where E is the electric field,D is the electric displace-
ment, B is the magnetic induction an#l is the mag-
netic field; py is the external charge density ajgis the
external current density (obeying the continuity equation
Opo /0t + divjo = 0). We have two independent Maxwell
equations (1) (Faraday’s and Maxwell-Ampere’s equations)
and four unknowns. In order to have a solution we in-
troduce the quasi-phenomenological dielectric functon
and magnetic permeabilify, usually for the Fourier trans-
forms. Apart from being unsatisfactory at the fundamental
level, this procedure produce appreciable difficulties, espe-
cially with the finite size, inhomogeneous bodies.

Matter is polarizabld,e. it consists of more-or-less mo-
bile chargeg, with massn and concentration (e.g, elec-
trons), which move against a neutralizing background of
quasi-rigid charges-q (e.g, ions). A small displacement
field u(t, r), which is a function of the timé and position
r, generates an imbalanée = —ndivu in the density of
these charges, a charge dengity= —nqgdivu and a cor-
responding current densify= nqu. It is easy to see that
the polarization isP = nqu (density of the dipole mo-

D = E + 47P. The displacement field obeys an equation
of motion, which usually is Newton’s equation

(2)

w, is a characteristic fequencg.g, for bound charges) and

~ is a small damping coefficient. The magnetic term of
the Lorentz force is usually absent in equation (2) (and the
equation is non-relativistic), since the velocity of charges
in matter is small, on one hand, and, on the other, the dis-
placementu is sufficiently small to limit ourselves to linear
terms only. This is the well-known Drude-Lorentz (plasma)
model of polarizable matter.[1]-[3] The point is that the
equation of motion (2) provides a third equation for the four
unknownsE, u, B andH. It can be generalized in various
ways,e.g.by including external fields.

Matter is also magnetizable. The continuity equation
allows of a “magnetic” currerjt= ¢ - curiM; as it is well-
known the magnetizatioM obeys the equation of motion
of the angular momentum[4, 5]

q

dM

o 1 3

dt 2mec 3)
The magnetic induction is now representedBas= H +
47M. The “magnetic” current given above or the subse-
guent relationship betwedB andH are two well-known

equivalent ways of introducing magnetization in Maxwell
equations.[5]-[9] We have now four equations:

mu = qE—mwgufm'yl'l ;

x B .

curlB = —198 " curlH = curl(B — 47M) =
(4)
-1t s

and equations (2) and (3) and four unknowRs:u, B and

M. These equations can provide the basis for treating the
electromagnetic field in matter. Except for the important
case of ferromagnetic (and related) matter, the usual matter
is non-magnetic, so we may leave asMeand putB = H.

For the usual case of polarizable non-magnetic matter,
we can find the plasmon and polariton eigenmodes, espe-
cially for infinite or semi-infinite (half-space) matter.[10,
11] We can thereby describe the propagation of electromag-
netic field in matter, as well as the interaction of the electro-
magnetic field with finite-size bodies, both in the near-field
(sub-wavelength, quasi-static) regime and the wave (radia-

ments) and the electric displacement is now represented astion) zone. This can be done in complex situations, where
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various fields are present for bodies with various shapes, a survives, andur!E = 0; which means that we may neglect

subject of high interest for nano-plasmonics.[12] The plas-
mon and, respectively polariton eigenmodes are given by

O =wp = /w2 w2, D(K)~/w +2K?,

Q3(K) ~weeK/(wr + cK)
®)
wherew, = (4mng®/m)'/? is the plasma wavevector and
K is the wavevector. For a half-space we get a surface
plasmon-polariton mode

02 — 242K
T B4++VB2—4Ac2k? (©)
A=22+w?, B=uwl+wl+27k?

for c’k? > w?, wherek is the wavevector parallel with the
surface; it goes from. (ck = w,) t0 \/w? + w2 /2 (k —
00). This mode is localized with respect to the direction
perpendicular to the surface.

The zero-point energy (vacuum fluctuations) of the po-
larization eigenmodes leads to molecular forces like van
der Waals-London-Casimir forces acting between macro-
scopic bodies.[13] The behaviour of the polarization eigen-
modes in non-inertial motions may lead to interesting new
effects.[14] The electromagnetic coupling between nano-
structures can also be treated by this method, leading to

plasmon transfer and resonances, or to electromagnetic

forces with a resonant character.[15] The scattering of
the electromagnetic waves by small particles or inhomo-
geneities, including the rough surface of a semi-infinite
solid,[16] is also amenable to such a treatment.

2. Quasi-static fields

We write again the Maxwell equations in (non-magnetic,
H = B) matter, with an explicit introduction of the polar-
izationP:

divE = 4mwpg — dndivP | divH =0

_ 1 OH
CUTZE—*Ew, (7)
_10E | 4n 0P | 4m: .
curlH = c Ot + c Ot + ¢ J0 5

the fields satisfy wave equations with sources (including
polarization charges-divP and current®P /dt); as it is
well known, it is convenient to introduce the potentiAls
and®, sucha¥ = —(1/¢)0A /0t — grad®, H = curlA;
these potentials satisfy the wave equations with sources,
providing the Lorenz gaugévA +(1/¢)0®/0t = 0is sat-
isfied. We assume the quasi-static situatian,we assume
that the time variation is slow, such as to have: < 1/1,
andv/c < 1, wherew is the frequency, is the dimension

of the bodies and is the velocity of the charges. Then,
it is easy to see that from all the Maxwell equations only
Gauss's equation

divE = 4wpg — dwdivP (8)
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A and keep onlyp, such a¥l = —grad®. This can also be
seen directly from Kirchhoff’s solutions of the wave equa-
tions for potentials. This is the quasi-static approximation
(or even static, when there is not a time dependence); it is
also termed the sub-wavelength or near-field regime. It is
relevant for externgby # 0 (or other external causes pro-
ducing polarization charges). If thigy = 0 and no other
external causes producing polarization charges are present,
it is the next approximation which is relevant, correspond-
ing to jo, with divjo = 0 and, of course A # 0 and
® = 0. The former case is also called electrostatics (or
guasi-electrostatics), the latter is magnetostatics, though,
allowing for slow time dependence, they are both quasi-
static.

Itis convenient to work with an external (slowly varying
in time) electric fieldE, instead of the external charge den-
sity po (a slow external magnetic field can also be present).
With usual notations, the equation of motion (2) for the dis-
placement can be written as

mi = q(Ep + E) — mw?u — myua | 9
or, using the temporal Fourier transforms,
(@ —wlt+iwy)u=—L(Eo+E),  (10)
m

whereE is the internal (polarization) electric field, given by

divE = 4wp = —4rndivP = —4mngdivu ; (12)

we note thap = —divP = —ngdivu denotes now the in-
ternal (polarization) charge density. This equation can eas-
ily be solved:E = —47P = —4mngu within this approx-
imation (up to an irrelevanturl), so that the equation of
motion (10) reads

(w?

— wf — wﬁ +iwy)u = —iEo ; (12)
m

this is the well-kown polarizabilityy(w),

1 p—

u 2 2 4 g0y
—WE — Wy Fwy

L @B s (13)

q
7EEOO\)2 ng

we can see the presence of the plasmon eigenmode with
frequency, /w2 + w2.

It is worth noting that for a point external charge
divEq = 4mqod(r), the field isEq = gor/r® and the dis-
placementis given by

r
P =nqu=aw)gp 3 ; (14)
the displacement acquires a maximum value near the exter-
nal point charge and decreases like2. We note that, in
principle, knowing the displacement (polarization) for an
external point charge we can get the displacement (polar-
ization) for an external charge of any shape.

The result obtained above is valid for an infinite piece
of matter. As it is well known, for finite-size bodies, the



relationship betweel® and E is E = —47fP, where f
is the (de-) polarizing factor; the polarizability is modified
according to

2
— w 1
a(w) - ﬁ wszgfwngiw'y
(15)
2
— aw) = —=2 L

4 wz—fwf—wg-ﬁ-iwv '

Indeed, the presence of the surface of a finite-size body, as

well as the boundary conditions (including, especially, the
continuity conditions for the circular variables), lead to a
charge density different from = —divP = —ngdivu.
For instance, for a semi-infinite body with a plane surface
we getf = 1/2, for the lowest mode of a sphefe= 1/3,

etc.

It is worth deriving explicitly the relationship between
the polarizabilitya and the dielectric functios; indeed,
according to their definitions, we hale= x(E; + E) =
aEy, wherey = (¢ — 1)/4x is the electric susceptibility;
making use ol = —47 fP = —4xn faE(, we get imme-
diatelydra = (¢ —1)/(1 — f + fe). For spheref = 1/3
and this relationship is the well-known Clausius-Mossotti
(or Lorenz-Lorentz) relation.[5]-[9],[17]

3. Surface plasmons

Let us suppose a half-space with a plane surface-at0,
extending over the region> 0.! Equation of motion (10)
is preserved,; it is convenient to write it as

2

(w? —w? +iwy) (u, u.) (Eo+E), z>0, (16)

4
o m
whereu is the in-plane displacement vector (parallel to
the surface) and., is the z-component of the displace-
ment (perpendicular to the surface). The displacement
field reads nowu, u,)0(z), wheref(z) = 1 for z > 0,

6(z) = 0 for z < 0 is the step function; the charge density
is p = —ngdiv[(u, u,)0(z)], which can be written as

p = —ngdiol(u, u)6(2)]
17)
= —ng[div(u, u,)]0(z) — nqu.(z = 0)d(z) ,

whered(z) is Dirac’s delta function. We can see that there
is a “volume” charge density-ng[div(u, u.)]|0(z), which
generates the “volume” fiel®€, = —4mwng(u, u,)f(z)
(equal to—47P, whereP = ng(u.u)0(z) is the polar-
ization) and there is an additional “surface” charge den-
sity ps = —ngqu,(z = 0)d(z), corresponding to a surface
charge density.qu.(z = 0). The “volume” charge corre-
sponds to “volume” plasmons, with freque 2+ w?.

For usual external fields the “volume” charge density does
not buid up inside the body, so we may leave it aside. We

1The half-space does not fulfill rigourously the conditions of quasi-
static fields, because of their infinite extension.
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are left with the “surface” charge density and the equation
for the internal (polarization) electric field

divE = 4mp,

—4mnqu,(z = 0)d(2) ; (18)

the equation of motion reads
(w? —w? +iwy)(u, u,) = —i(onLES) , 2>0: (19
m
it remains to solve Gauss’s equation (18) for the surface

field.
This is a typical problem for finite-size bodies in the

guasi-static approximation. UsinB; = —grad®,, it
amounts to solving the Poisson equation
AD; = dmnqu,(z = 0)0(z) (20)

for the surface term. Equation (20) is also the Green func-
tion’s equation for the laplacian (with &source The
standard way of tackling such equations consists in using
a complete expansion in orthogonal eigenfunctions corre-
sponding to the free coordinates. In the present case this
is a Fourier expansion along the y-coordinates, with the
wavevectork. Leaving aside the irrelevant arguments, we
get

¢, Ko, =4 (z =0)d(2) (21)
—_— — s =4mnqu,(z = zZ),
dz2 4
with the solution
@, = 2=z =0) ki (22)

k

we get the surface field
E; = 2mng <%, sgn(z)> u.(z = 0)e *=l . (23)

We denote the in-plane vectors by the subsdfiphe equa-
tion of motion (19) splits into two equations

2

(W? —w? 4+ iwy)u = —LEq—

—%wguz(z = 0)%6"“2 , 2>0,

(24)
(7 — w2+ iwy)us = — & Hout
tywiu.(z=0)e % 2>0.
From the second equation we get
q EOZ z2=0
ux(2=0)=——— 2(1 2) - (25)
mw® —wg — zwp + wy
and )
Us = = ey
w? Ey.(2=0) k (26)

2In time-dependent problems equation (20) is replaced by the
Helmholtz equation for the Green function, of the ford® +
(w2/c?)® = const - §(r).



while from the first equation (24) we get

- _9q__ 1 |
U.H - m w2 —w2+iwy
] @27)
. % Eo:(2=0) k—kz
EOH 3 wz—wf—%wi-ﬁ—iw'y k€ :

It is convenient to introduce the “surface” polarizability

2

(W) =22 1 (28)
ag(w) = —=— -
8T w? — w2 — %wg + dwry
beside the “volume” polarizability
w? 1
=--L 29
a(w) 4 w? — w2 — w2 +iwy (29)
(and recall the susceptibility
w? 1
=--L ; 30
x(w) Ir? —o? ) (30)
the displacements can then be written as
Uz = n%]x(w)-
. [E()z —Aras(w)Eo:(z = O)e‘kz] ,
(31)

u) = ox(w)-
- [Boj + 4mio(w)Eoz(z = 0)%67"52} .

First, we note the occurrence of an additonal, surface eigen-
mode with frequency /w? + w7 /2; it is the surface plas-

mon. Next, we note the polarizatidd = ng(u, u,) (for

z > 0) and check the relationship = x(E; + Eo), by us-

ing equations (23), (26) and (27), as well as the continuity at
the surface of the tangential components of the internal (po-
larization) electric fieldE, and the transverse components
of the electric displacemed = E; + 47P. In addition

for usual quasi-static external fields we have the conditions
divEy = 0 andcurlEq = 0, which lead, for Fourier trans-
forms, toEg = Eo(z = 0)e™** , as well as tar; = —iu,.
Consequently, from equations (26) and (27), we can also
write the response as

1
2 _

C

q

mw? —w

Ey , (32)

(u, u,) = %Wf, + fwy
as expected.

By using the method described here we can treat a se-
rie of interesting situations within the quasi-static approxi-
mation, like a point charge or a point dipole placed in the
vicinity of a half-space, or any other external field acting
upon a half-space, or two half-spaces separated by a gap,
a slab, etc. In all these situations we expect a resonance
arising from the surface plasmons.

34

4. Half-space

The half-space can be given a full electromagnetic
solution.[10, 11],[13] For a semi-infinite (homogeneous)
body (half-space) extending over the regior d we take
the polarization as

P = ng(u, u.)f(z — d) , (33)
wheref(z) = 0 for = < 0 andf(z) = 1 for z > 0 is the
step function. The polarization charge and current densities
are given by
d

Uz
0z

p = —ng(divu 4+ £2)0(z — d) — nqu.(d)é(z — d) ,
j=mnq(h, u,)0(z —d) .
(34)
We use Fourier decompositions of the type

1 ) )
u(r, z;t) = %Z/dwu(k,z;w)e_’”t“kr ,  (35)
k

whereR = (r, z), and may omit ocassionally the argu-
mentsk, w, writing simply u(z), or u. The electromag-
netic potentials given by

B(R, 1) = [ dR/ZRRR]/0

[R—R’| ’
(36)
(R ,t—|R—R’|/c)
AR, ) =1 [dR' |R|—R’\ |
include the “retarded” Coulomb potential

¢! ?IR=R'| /IR _ R/|, for which we use the well-known
decomposition

wherel = w/c andk = VA2 — k2. It is more convenient

to compute first the vector potential and then derive the
scalar potentia® from the gauge equatiafivA — i \d =

0. The calculations are straightforward and we get the
Fourier tranforms of the potentials

ei/\|R7R’| i

1 . N /
_ dk= ik(r—r") u-i|z—z |
R-R| 2« ¢ ¢ ’

K

(37)

Pk, z;w) == 2 [ dz'kuet ==

*%% I dz/uzem|zle| ;

(38)

Ak, z;w) = % f;o dz'(u, uz)emlz_zll

(where we have left aside the factoy; it is restored in
the final formulae). In order to compute the electric field
(E = iAA — grad®) it is convenient to refer the in-plane
vectors {.e., vectors parallel with the surface of the half-
space) to the vectols andk; = e, x k, wheree, is the
unit vector along the-direction; for instance, we write

k,
u=1uy— +’U,2—

i k (39)



and a similar representation for the electric field parallel
with the surface of the half-space. We get the electric field

B = 27ik fdoo dz’ulem|zle|f

27k 0

Kk Oz

fdoo dz/uzein|z—z/| ,

Ey = % fdoo dZ/U2€m|Z_Z/| ; (40)

2wk O

EZ = Kk Oz f;o dZ/ulede|27Z,|+

+—27T,ik2 fdoo dz’uzem|zfz,| —4mu,f(z —d) .

Making use of equations (40), we can check easily the
equalities

ikEy + 222 = —4m (ikuy + 2% 0(z — d)
(41)
—dnu,(z = d)d(z — d)
which is an expression of Gauss’s law, and
E
k% +in?E. = —AmiNu0(z —d) ,  (42)
z

which reflects Faraday’s and Maxwell-Ampere’s equations.
From equation (41), we can check the transversality condi-
tion divE = 0 for the electric field outside the half-space
(z < d).

We use now the equation of motion (2) (with= 0) for
E5 given by equation (40) and for the combinatiohs; +
Ou/0z andkdu, /0z + ix?u, in the regionz > d. Taking
into account thatlivEq = 0 andkdEy; /0z + ik?Ep, = 0
(for a plane wave) we get

aaf =0, k% +ikPu, =0, (43)
or
04 4 Pu=0, (44)
where \2,,2
K? = K2 — = Z}Q (45)

We emphasize that theas of equation (44) is vanishing
only for a transverse external field. The components

of the displacement field are given iy, = A 5’7,
whereA, , are constants, while, = —(k/x’) A e’ * (we
restrict ourselves to outgoing waves, > 0). The total
electric field inside the half-space is given by the equation
of motion (2):

= —ﬂ(u)2 —w?)u

(46)

for = > d. We can see that the field propagates in the
half-space with a modified wavevectef, according to
the Ewald-Oseen extinction theorem.[18]-[20] The modi-
fied wavevectok’ given by equation (45) can also be writ-

ten as
2

K2 = 5‘2—2 k2, (47)
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where

w2

- (48)

— (2
we

e=1-—
w2

is the dielectric function (as given by equation (16), for in-
stance). We can check the well-known polaritonic disper-
sion relationew? = 2K'2, whereK’' = (k, /) is the
wavevector.

The amplitudes4; > can be derived from the original
equation (2) and the field equations (40) (for> d). We
get

1 2 _rr' +k> i(n’fn)d ikz _ g
A 1Wp K/ (k' f'i) € - mE01 ’
(49)
1 2_ )2 i(k'—k)d ikz _ 4
QAgwp K(K,in)e € = mE02 .

The (polarization) electric field, both inside and outside
the half-space, can be computed from equations (40). We
get

B, = 747rnqA1 we gin'z_
—27anA1 nz{;ﬁ—kﬁ) i(ﬁ/—n)deinz Lz > d )
2 2 .,
By, = 747rnqA2ww;£w‘em z_
(50)
—2mngAy—A—— el —R)dginz o5 g

I{(Ii/ /{)

2 2 .
E, = 4mngA, 716(“;,;:)0)61” 4
P

+27anA1 k(rr'+k%) 1(/{ 7n)d Kz

kK (K — l<a)

, 2>d .

for z > d. Itis worth noting that the polarization electric
field, as given by equations (50), includes both the external
field ~ e*** (with opposite sign) and the displacement field
u ~ e %, This can be checked easily by using equations
(49) and (50). The (polarization) electric field outside the
half-space (in the region < d) is given by

E = _QFHquT‘H:)

.ei(ﬁ/+ﬁ)de—iﬁz L2 < d ,

(51)

Es

2
= —2mnqAs m .

.ei(li/Jrli)defiliZ ,z<d
andE, = (k/k)E; for z < d. We can see that it is the
field reflected by the half-space (-~ —x). Making use of
equations (49) and (51) we get also the total electric field
E; = E + E outside the half-space and the magnetic field
H = curlA both inside and outside the half-space. The
amplitudes4; » can be viewed either as being determined
by the external field&, (andH,) through equations (49),

or as free parameters. In the latter case equations (49) are
not valid anymore, but the (polarization) electric and mag-
netic fields (given, for instance, by equations (50), (51))



hold. We can check also that all the fields are continuous
at the surface: = d, except forE, and E;,, which exhibit

a discontinuity £;,(z = d~) = eE. (2 = dT)), as ex-
pected. In particular, the surface plasmon-polariton mode
given by equation (6) is obtained from the vanishing de-
nominatorkx’ + k2 of the response (equations (49)) for
bothx andx’ purely imaginary, which means that both the
incident and the refracted waves are localized at the surface
and propagates only along the surface.

Having known the electromagnetic solution for a half-
space we can derive the Fresnel formulae for reflection and
refraction coefficients.[10, 11] Similarly, we can treat two
half-spaces, a slab (or a two dimensional sheet). In particu-
lar we can derive the van der Waals-London-Casimir force
for such electromagnetically coupled bodies,[13] or we can
treat other interesting situations, like the presence of the in-
homogeneities, rough surfaces,[16] etc. Here, we present
a very interesting situation concerning a point-dipole and a
half-space.

5. Point dipole and half-space

A point dipole placed at the origin has a charge density and
a current density given by

p = —noqu[(w,w:)gradl6(R) ,
(52)
j = noqu(w,w;)6(R) ,

wheren is its density of chargeg (with massm), v is

the (volume) of the dipolew is the displacement field in
the z, y-plane andw, is the z-component of the displace-
ment field; the displacement field depends only on the time.

These charge and current densities introduced in equations

(36) give the electromagnetic potentials; the vector poten-
tial is
eiAR

Ao = —idnoqu(w,w,)

7 (53)

(temporal Fourier transform), wheve = w/c; the scalar
potential is conveniently obtained from the Lorenz gauge
di’UAQ — APy = 0:

iAR
Dy = —noqu[(w,w,)grad] 7

(54)

The electric field can be calculated froBy = iAAy —
grad®y. We represent the spherical wave by

ei)\R i dk ezkr ik|z| (55)
R 2« ’
whereR = (r,z) ands = VA2 — k2; then we select the

k-component by using", = [4/(27)?] [ dk, whereA is
the in-plane (¢, y)-plane) area; it is convenient to use the
projections of the electric field ok (Ey;) andk, (Fo2),
wherek is perpendicular t& and has the same magnitude

36

k. We get

ik z|
3

Ey =

2minoqu [
A

kwy — kw,sgn(z)le

AZ

2mingqu | 71026

ik|z|
A )

Ego =
(56)

2Tnogu

EOZ = A

[%wz — ikwysgn(z) — 2w, 6(z)]e™I#! ;

we can check that this field is transverdév, = 0).

From the calculations for a half-space described before
we know the displacement field, » = Al_ygei"”vlz, u, =
—(k/K")A €= for z > d, where

)\2w2
K =4/K2 — A2e — k2 (57)
w
and the coefficientsl, , are given by
sA1W2 K’??,;ff:) i(r' —m)dginz —
= %Em )
(58)
1A2wp H(K/\ 5 ei(nl—ﬁ)deiﬁz —

q
EEOQ )

wyp being the plasma frequency for the half-space (equations
(49)). The field reflected by the half-space (equations (51))
is given by

E.q = —27rnqA1Tan).

ei(n’+n)d67inz L2 < d ,
(59)
E,9 = —2mnqgAs g -m)'

.ei(n/-ﬁ-n)de—inz L2 < d

andE,, = (k/k)E; for z < d, wheren is the density of

charges in the half-space. By using equations (58) we can

express this reflected field by means of the fiBlgl and,

by using equations (56), we can express it in terms of the

displacemenW = (w,w.). The reflected field plays the

role of an external field in the equation of motion of the

dipole displacement field[21]
(W~ W)W = —LE,(r = (60)

m
wherew is a characteristic frequency of the point dipole;
we get

ZUJ2 v
(W — W)W = =2
zk{i(: i ;,’;g (kw1 — kw,)(¥ + 2e, )+ (61)

A2(k'—kK)

+ k(K +K)

Wo % }eQiﬁd ,



where wp,y = (/4mneg?/m. Here we usek =

k(cos ¢, sinyp) andk; = k(—siny, cosp) and integrate

over the angleo. We get the equations =
0
(@2 — wi)w = 2.
k(k —kK) (kK" —k?) N (k' =kK) 2ikd
’ fdk -k |: (K +k)(kr'+k2) k(K +K) :| we ’
(62)
.2
(@2 — . =~
3 (k' —r) (kK —k?) 2ikd .
f dk - k ) (T Ry Wae ; P .

w is an in-plane component of the displacement, the same OQ—» <
equation holds for the other component. These equations d

can also be written as
iwiov
8T

2

(2 — B =

fdk k [ng{;j://) + ):((:/::)) we2ird , L
. (63) Figure 1: External field, point dipole and a half-space
pro’lj
T Tam

2

(w? —wdw, =

. 1.3 _ke—k' 2ikd .
Jdk -k Al w=e ;

it is easy to see that these equations give the eigenfrequen-Finally, we get the force
cies of the coupled point dipole and half-space.

We notice first that the dipole volumeshould be much
smaller than any relevant scale; this means that the solution
w should lie neatvy and therhs of equations (63) should 7 3hw§0v ego—1 1
be treated as a small perturbation. Next, we notice that for T 3271wy g0+ 1 7
large distanced the main contribution to the integrals come
from small values ofs, i.e. from k near); this implies
d)\o = dwg/c > 1 and small frequencies, in comparison
with w., wy; the main contribution comes in this case from  Making use ofe = 1 — w?/(w? — w?), we note that one
small values ofk; this is the retarded case; it is easy to obtains an appreciable enhancement of this force for the
see that equations (63) have not solutions in this case: the characteristic frequeney, of the point dipole approaching
waves are damped, except for some discrete values of the the frequency Jw? + w2 /2 of the surface plasmon.
distanced; in general, the two bodies do not couple to each
other in this case. For small distaneé&dw,/c < 1), the
main contribution to the integrals comes from large values
of k, such asx ~ k' ~ ik; the first equation (63) can be
written approximately

(67)

6. Response of a point dipole and a half-space

iWiwe—1 [ We consider a point dipole induced by an external field,

w? — Wi~ 2 / dk - ik2e=2d | (64) placed in the vicinity of a half-space. The equation of mo-

8m e+1 tion (60) acquires now an additional term, arising from the

this is the non-retarded case. We get easily the solution contribution of the external field. We take a monochromatic

w2v gg—1 1 plane wave of the form

64mwy o + 1 d3

wheresy = £(wo); hence, the zero-point enerdy? /2 -

leads to the van der Waals-London force (for a point dipole Eo(t,r,2) = Ege ™ el (Krt2) (68)
coupled to a half-space); we should take into account the

multiplicity 2 for the transverse oscillations and the contri-

bution of thez-component, whose eigenfrequency is given

Q” >~ Wy — (65)

by as an external (radiation) field. The calculations described
W2 oeqn—1 1 above can easily be repeated in this case. We limit ourselves
Q, ~ 00 66 - :
z = Wo— Pmwoeo+1 &3 (66) here to give the result (in the reference frame formed by the

37



vectorsK, K| andK:

.
2 _ 2 — Mo, .
(W* —wp)wr = —F-ws
X X en—rK' /\2(5/—5) 2ikd
fdk k |:KEI€+I€/ k(K +K) e +

2rq |eK.—K. 2iK.d

+7 |:EKZ+K;e 1:| E()ﬂ%(.d*ﬂ) y

(w? — wd)ws = %U@
bk w2 4 SRR e
+2 {—ﬁig e — 1} Ep2d(w — Q) ,
(e =~ [ dh R et

*% [%ezﬂ@d + 1} Ep0(w—9Q) ,

(69)
whereK, = /e?/c2 — K2. As before, the main contri-
butions to the integrals in equations (69) comes from large
values ofk; in addition, we are interested in small distances,

such ag? -4 ~ 1, We get easily

cosT .
V€ cosi+cosT

(w? — Qﬁ)wl =—
~%E015(w — Q) ,

cos 1

(W? — Q)wy =

I 7cosi+\/gcosr.
(70)
'%E@Q(S(w — Q) ,
(w2 - Qg)wz == \/E(\:{)gsciisciosr.

AT B d(w - Q)

wherei is the incidence angle; is the refraction angle
(sinr/sini = 1/4/e) andQ, 2. are given by equations
(65) and (66).

The displacement field 2 . given by equations (70)

7. Discussion

First, in the analysis made above we have considered a point
dipole,i.e. a dipole whose dimensions are much smaller in
comparison with both distances of interest and the radiation
wavelength. A molecule or a nano-particle may fulfill such
requirements. Second, we consider an external electromag-
netic radiation field (usually a plane wave) which acts upon
a molecule or a nano-particle. In these circumstances, there
occur optical transitions, driven by matrix elements of the
electric dipole, such that the dipole is in fact an induced
dipole. Usually, these transitions are coupled with vibra-
tion and rotation degrees of freedom, leading to a dipole
radiation which exhibits additional frequencies beside the
main, driving frequency of the external field. This is the
well-known Raman effect.[27, 28] For large molecules or
nanoparticles (but sufficiently small for being treated as
point dipoles) the transitions imply the classical motion of
the particle densityi,e. the classical motion of the electric
polarization; therefore, a classical model for Raman scat-
tering is justified and often employed. It is based on clas-
sical equations of motion of the displacement fi$lg like
equation (60), where the characteristic frequengigsre

the eigenfrequencies of the coupled polarization-rotation or
polarization-vibration motion, which are effective in Ra-
man scattering.

Now, let us assume that such a dipole is placed in the
vicinity of a polarizable half-space (semi-infinite solid), as
shown in Fig. 1. In this case, there happen two distinct
things. First, the external radiation field (the electric field
E, given by equation (68)) gets reflected and refracted, ac-
cording to the Fresnel formulae, as given above in equations
(49)-(51). This is a standard situation, so we may leave it
aside with respect of what we are interested in here. We re-
tain only the fact that the reflected external field acts upon
the dipole, as described by the external-force term in equa-
tions (69) and (70). At the same time, the induced dipole
generates its own field, as given by equations (56), which
acts as a second external field for the half-space; this field
polarizes the half-space, which in turn generates a second
reflected field, which acts upon the dipole. This is described
both in equation (60) and the subsequent equations, and in
equations (69). It is essential to realize that this second
field depends on the degrees of motion of the dipbée,
it is generated by the diplacement fieW, as shown in

represents the response of the induced point dipole placed equations (56). Consequently, its effect upon the motion

in the vicinity of a half-space to an external radiation field;
multiplied by ngqv it gives the induced dipole moment.

of the dipolar displacemenf fiel®V is a shift in the eigen-
frequenciessy, which become the “renormalized” frequen-

Equations (70) answer the question regarding the effect of a cies given by equations (65) and (66). These frequencies

semi-infinite solid placed in the vicinity of a small, neutral
nano-particle which can acquire an induced dipole moment
under the action of a radiation field. This is the typical prob-
lem in the surface enhanced Raman scattering.[22]-[26] We

account for the presence of the half-space; they may bring
the dipole responség. the displacement fie8V and the
dipole field which governs the Raman scattering, close to
resonance, depending on the nature of the dipole (charac-

can see that the induced dipole may be enhanced apprecia-teristic frequencyvy, plasma frequncw,,), the nature of

bly for frequencies close to the resonance frequerijies

We can compare this effect with the absence of the semi-
infinite solid, which is obtained by putting = 1 (in this
case? . reduce tauy).
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the semi-infinite solid (dielectric functios) and the (rel-

atively small) distance of the dipole to the surface of the

semi-infinite solid (equations (65), (66) and (70)).

In order to be specific, we give here the field generated



by the dipole in the vicinity of the semi-infinite solid, as
computed above. This field is given by equations (53) and
(54). We limit ourselves to the near-field zone, so we re-
tain only the scalar potentidl,, with A = 0; at the same
time we assume normal incidenés. we puti = r = 0

in equations (70) (the general case of oblique incidence can
be treated similarly). In this case, there exist only the trans-
verse displacement = (wi, w2) (w, = 0), which we
take from equations (70) and introduce in equation (54).
By straightforward calculations we get easily

1 w2y , g .1
P (R.1) = X 0 —iQ2t N
o(R,?) 2n(l+Ve) @ —QF Borr) R
(71)
where
-1 1
PO LA 1) e S B 2

647TCLJ() E(WQ) +1 d3
(according to equation (65)). It is worth noting thain
equation (71) i = £(Q).

First, we note that the field given by equation (71) is
a typical dipolar field (the electric fiel. = —grad®, is
proportional to[EoR? — (EqR)?]/R°). Second, we see
that the field amplitude in equation (71) is modified by the
denominatoﬂz-ﬂﬁ. For (2 close tof2; we get a resonant
behaviour which may account for the enhancement of the
Raman effect. The shift in frequency, as given by equation
(72), can be either positive or negative, depending on the
sign ofe(wp) — 1; it is governed mainly by the ratio/d.

The above results, based on equations (70), are valid
for a propagating wave. For a damped regime, we must use
equation (60) and the field given by equation (23). The cal-
culations are straightforward and we get the damped field
of the semi-infinite solid at the position of the dipole

ES’!'(r = 072 = wa) =
(73)
=872 (B, 1) o (V) Ep. e K= Kd5(w — Q) |

wherea,(Q) is the surface polarizability given by equation
(28). This field enters equations of motion (60) or (70). It
is worth noting that it is vanishing faEy, = 0 (e.g, ans-
wave, or normal incidence). We can write now the equation
of motion for the displacement fieNV, which gives access

to the response of the dipole placed in the vicinity of a semi-
infinite solid, in the damped regime. We limit ourselves to
the z-component; for an incidence angleve get

(w2 . Qg)wz _ 7% (1 + 4ﬁias(ﬂ>ei%dcosﬁ7%dsinﬁ) .

‘Epsinf-6(w—9Q) .
(74)
Beside the resonance for the shifted frequefigy it is
worth noting here the occurrence of the surface polariz-
ability «5(£2) given by equation (28), which has a pole for

w =, /w2 + w2/2 (surface plasmon frequency) We can see

that the response of the dipole can be much enhanced by [9]

the presence of the surface plasmons, a typical feature of
the surface enhanced Raman scattering.
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8. Conclusions

The electromagnetic field in matter is described by a new
method which includes explicitly the polarization and mag-
netization degrees of freedom. The Maxwell equations are
supplemented by the equations of motion of the polariza-
tion and magnetization, thus making possible a full so-
lution. The method is applied to quasi-static fields and
the plasmon response of a semi-infinite polarizable (non-
magnetic) solid with a plane surface (half-space). The sur-
face plasmons are highlighted and the surface polarizability
is introduced. The electromagnetically coupled system of
a neutral, polarizable nano-particle (induced point dipole)
and a half-space is solved in the general situation, and the
eigenfrequencies and eigenmodes of the zero-point (vac-
uum) fluctuations are obtained. The van der Waals-London-
Casimir force is computed for this system, as well as its
response to an external radiation field, which is the typical
problem for the surface enhanced Raman scattering.
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