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Electromagnetic field in matter. Surface enhanced Raman scattering
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Abstract

The polarization and magnetization degrees of freedom are
included in the general treatment of the electromagnetic
field in matter, and their governing equations are given.
Particular cases of solutions are discussed for polarizable,
non-magnetic matter, including quasi-static fields, surface
plasmons, propagation, zero-point fluctuations of the eigen-
modes, especially for a semi-infinite homogeneous body
(half-space). The van der Waals-London-Casimir force act-
ing between a neutral nano-particle and a half-space is com-
puted and the response of this electromagnetically coupled
system to an external field is given, with relevance for the
surface enhanced Raman scattering.

1. Introduction. General theory

With usual notations the Maxwell equations in matter read

divD = 4πρ0 , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlH = 1

c
∂D
∂t + 4π

c j0 ,
(1)

whereE is the electric field,D is the electric displace-
ment, B is the magnetic induction andH is the mag-
netic field; ρ0 is the external charge density andj0 is the
external current density (obeying the continuity equation
∂ρ0/∂t+ divj0 = 0). We have two independent Maxwell
equations (1) (Faraday’s and Maxwell-Ampere’s equations)
and four unknowns. In order to have a solution we in-
troduce the quasi-phenomenological dielectric functionε
and magnetic permeabilityµ, usually for the Fourier trans-
forms. Apart from being unsatisfactory at the fundamental
level, this procedure produce appreciable difficulties, espe-
cially with the finite size, inhomogeneous bodies.

Matter is polarizable,i.e. it consists of more-or-less mo-
bile chargesq, with massm and concentrationn (e.g., elec-
trons), which move against a neutralizing background of
quasi-rigid charges−q (e.g., ions). A small displacement
field u(t, r), which is a function of the timet and position
r, generates an imbalanceδn = −ndivu in the density of
these charges, a charge densityρ = −nqdivu and a cor-
responding current densityj = nqu̇. It is easy to see that
the polarization isP = nqu (density of the dipole mo-
ments) and the electric displacement is now represented as

D = E + 4πP. The displacement field obeys an equation
of motion, which usually is Newton’s equation

mü = qE−mω2
cu−mγu̇ ; (2)

ωc is a characteristic fequency (e.g., for bound charges) and
γ is a small damping coefficient. The magnetic term of
the Lorentz force is usually absent in equation (2) (and the
equation is non-relativistic), since the velocity of charges
in matter is small, on one hand, and, on the other, the dis-
placementu is sufficiently small to limit ourselves to linear
terms only. This is the well-known Drude-Lorentz (plasma)
model of polarizable matter.[1]-[3] The point is that the
equation of motion (2) provides a third equation for the four
unknowns:E, u, B andH. It can be generalized in various
ways,e.g.by including external fields.

Matter is also magnetizable. The continuity equation
allows of a “magnetic” currentj = c · curlM; as it is well-
known the magnetizationM obeys the equation of motion
of the angular momentum[4, 5]

dM

dt
=

q

2mc
M×B . (3)

The magnetic induction is now represented asB = H +
4πM. The “magnetic” current given above or the subse-
quent relationship betweenB andH are two well-known
equivalent ways of introducing magnetization in Maxwell
equations.[5]-[9] We have now four equations:

curlE = − 1
c
∂B
∂t , curlH = curl(B− 4πM) =

= 1
c
∂E
∂t + 4π

c nqu̇+ 4π
c j0

(4)

and equations (2) and (3) and four unknowns:E, u, B and
M. These equations can provide the basis for treating the
electromagnetic field in matter. Except for the important
case of ferromagnetic (and related) matter, the usual matter
is non-magnetic, so we may leave asideM and putB = H.

For the usual case of polarizable non-magnetic matter,
we can find the plasmon and polariton eigenmodes, espe-
cially for infinite or semi-infinite (half-space) matter.[10,
11] We can thereby describe the propagation of electromag-
netic field in matter, as well as the interaction of the electro-
magnetic field with finite-size bodies, both in the near-field
(sub-wavelength, quasi-static) regime and the wave (radia-
tion) zone. This can be done in complex situations, where
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various fields are present for bodies with various shapes, a
subject of high interest for nano-plasmonics.[12] The plas-
mon and, respectively polariton eigenmodes are given by

Ω1 = ωL =
√

ω2
c + ω2

p , Ω2(K) ≃
√

ω2
L + c2K2 ,

Ω3(K) ≃ ωccK/(ωL + cK) ,
(5)

whereωp = (4πnq2/m)1/2 is the plasma wavevector and
K is the wavevector. For a half-space we get a surface
plasmon-polariton mode

Ω2 = 2Ac2k2

B+
√
B2−4Ac2k2

A = 2ω2
c + ω2

p , B = ω2
c + ω2

p + 2c2k2
(6)

for c2k2 > ω2
c , wherek is the wavevector parallel with the

surface; it goes fromωc (ck = ωc) to
√

ω2
c + ω2

p/2 (k →
∞). This mode is localized with respect to the direction
perpendicular to the surface.

The zero-point energy (vacuum fluctuations) of the po-
larization eigenmodes leads to molecular forces like van
der Waals-London-Casimir forces acting between macro-
scopic bodies.[13] The behaviour of the polarization eigen-
modes in non-inertial motions may lead to interesting new
effects.[14] The electromagnetic coupling between nano-
structures can also be treated by this method, leading to
plasmon transfer and resonances, or to electromagnetic
forces with a resonant character.[15] The scattering of
the electromagnetic waves by small particles or inhomo-
geneities, including the rough surface of a semi-infinite
solid,[16] is also amenable to such a treatment.

2. Quasi-static fields

We write again the Maxwell equations in (non-magnetic,
H = B) matter, with an explicit introduction of the polar-
izationP:

divE = 4πρ0 − 4πdivP , divH = 0 ,

curlE = − 1
c
∂H
∂t ,

curlH = 1
c
∂E
∂t + 4π

c
∂P
∂t + 4π

c j0 ;

(7)

the fields satisfy wave equations with sources (including
polarization charges−divP and currents∂P/∂t); as it is
well known, it is convenient to introduce the potentialsA

andΦ, such asE = −(1/c)∂A/∂t− gradΦ, H = curlA;
these potentials satisfy the wave equations with sources,
providing the Lorenz gaugedivA+(1/c)∂Φ/∂t = 0 is sat-
isfied. We assume the quasi-static situation,i.e. we assume
that the time variation is slow, such as to haveω/c ≪ 1/l,
andv/c ≪ 1, whereω is the frequency,l is the dimension
of the bodies andv is the velocity of the charges. Then,
it is easy to see that from all the Maxwell equations only
Gauss’s equation

divE = 4πρ0 − 4πdivP (8)

survives, andcurlE = 0; which means that we may neglect
A and keep onlyΦ, such asE = −gradΦ. This can also be
seen directly from Kirchhoff’s solutions of the wave equa-
tions for potentials. This is the quasi-static approximation
(or even static, when there is not a time dependence); it is
also termed the sub-wavelength or near-field regime. It is
relevant for externalρ0 6= 0 (or other external causes pro-
ducing polarization charges). If thisρ0 = 0 and no other
external causes producing polarization charges are present,
it is the next approximation which is relevant, correspond-
ing to j0, with divj0 = 0 and, of course ,A 6= 0 and
Φ = 0. The former case is also called electrostatics (or
quasi-electrostatics), the latter is magnetostatics, though,
allowing for slow time dependence, they are both quasi-
static.

It is convenient to work with an external (slowly varying
in time) electric fieldE0 instead of the external charge den-
sity ρ0 (a slow external magnetic field can also be present).
With usual notations, the equation of motion (2) for the dis-
placementu can be written as

mü = q(E0 +E)−mω2
cu−mγu̇ , (9)

or, using the temporal Fourier transforms,

(ω2 − ω2
c + iωγ)u = − q

m
(E0 +E) , (10)

whereE is the internal (polarization) electric field, given by

divE = 4πρ = −4πdivP = −4πnqdivu ; (11)

we note thatρ = −divP = −nqdivu denotes now the in-
ternal (polarization) charge density. This equation can eas-
ily be solved:E = −4πP = −4πnqu within this approx-
imation (up to an irrelevantcurl), so that the equation of
motion (10) reads

(ω2 − ω2
c − ω2

p + iωγ)u = − q

m
E0 ; (12)

this is the well-kown polarizabilityα(ω),

u = − q

m
E0

1

ω2 − ω2
c − ω2

p + iωγ
=

1

nq
α(ω)E0 ; (13)

we can see the presence of the plasmon eigenmode with

frequency
√

ω2
c + ω2

p.

It is worth noting that for a point external charge
divE0 = 4πq0δ(r), the field isE0 = q0r/r

3 and the dis-
placement is given by

P = nqu = α(ω)q0
r

r3
; (14)

the displacement acquires a maximum value near the exter-
nal point charge and decreases like1/r2. We note that, in
principle, knowing the displacement (polarization) for an
external point charge we can get the displacement (polar-
ization) for an external charge of any shape.

The result obtained above is valid for an infinite piece
of matter. As it is well known, for finite-size bodies, the
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relationship betweenP and E is E = −4πfP, wheref
is the (de-) polarizing factor; the polarizability is modified
according to

α(ω) = −ω2

p

4π
1

ω2−ω2
c
−ω2

p
+iωγ →

→ α(ω) = −ω2

p

4π
1

ω2−fω2
c
−ω2

p
+iωγ .

(15)

Indeed, the presence of the surface of a finite-size body, as
well as the boundary conditions (including, especially, the
continuity conditions for the circular variables), lead to a
charge density different fromρ = −divP = −nqdivu.
For instance, for a semi-infinite body with a plane surface
we getf = 1/2, for the lowest mode of a spheref = 1/3,
etc.

It is worth deriving explicitly the relationship between
the polarizabilityα and the dielectric functionε; indeed,
according to their definitions, we haveP = χ(E0 + E) =
αE0, whereχ = (ε − 1)/4π is the electric susceptibility;
making use ofE = −4πfP = −4πfαE0, we get imme-
diately4πα = (ε− 1)/(1− f + fε). For spheref = 1/3
and this relationship is the well-known Clausius-Mossotti
(or Lorenz-Lorentz) relation.[5]-[9],[17]

3. Surface plasmons

Let us suppose a half-space with a plane surface atz = 0,
extending over the regionz > 0.1 Equation of motion (10)
is preserved; it is convenient to write it as

(ω2−ω2
c + iωγ)(u, uz) = − q

m
(E0+E) , z > 0 , (16)

whereu is the in-plane displacement vector (parallel to
the surface) anduz is the z-component of the displace-
ment (perpendicular to the surface). The displacement
field reads now(u, uz)θ(z), whereθ(z) = 1 for z > 0,
θ(z) = 0 for z < 0 is the step function; the charge density
is ρ = −nqdiv[(u, uz)θ(z)], which can be written as

ρ = −nqdiv[(u, uz)θ(z)] =

= −nq[div(u, uz)]θ(z)− nquz(z = 0)δ(z) ,
(17)

whereδ(z) is Dirac’s delta function. We can see that there
is a “volume” charge density−nq[div(u, uz)]θ(z), which
generates the “volume” fieldEv = −4πnq(u, uz)θ(z)
(equal to−4πP, whereP = nq(u. uz)θ(z) is the polar-
ization) and there is an additional “surface” charge den-
sity ρs = −nquz(z = 0)δ(z), corresponding to a surface
charge densitynquz(z = 0). The “volume” charge corre-

sponds to “volume” plasmons, with frequency
√

ω2
c + ω2

p.

For usual external fields the “volume” charge density does
not buid up inside the body, so we may leave it aside. We

1The half-space does not fulfill rigourously the conditions of quasi-
static fields, because of their infinite extension.

are left with the “surface” charge density and the equation
for the internal (polarization) electric field

divE = 4πρs = −4πnquz(z = 0)δ(z) ; (18)

the equation of motion reads

(ω2−ω2
c+iωγ)(u, uz) = − q

m
(E0+Es) , z > 0 ; (19)

it remains to solve Gauss’s equation (18) for the surface
field.

This is a typical problem for finite-size bodies in the
quasi-static approximation. UsingEs = −gradΦs, it
amounts to solving the Poisson equation

∆Φs = 4πnquz(z = 0)δ(z) (20)

for the surface term. Equation (20) is also the Green func-
tion’s equation for the laplacian (with aδ-source).2 The
standard way of tackling such equations consists in using
a complete expansion in orthogonal eigenfunctions corre-
sponding to the free coordinates. In the present case this
is a Fourier expansion along thex, y-coordinates, with the
wavevectork. Leaving aside the irrelevant arguments, we
get

d2Φs

dz2
− k2Φs = 4πnquz(z = 0)δ(z) , (21)

with the solution

Φs = −2πnquz(z = 0)

k
e−k|z| ; (22)

we get the surface field

Es = 2πnq

(

ik

k
, −sgn(z)

)

uz(z = 0)e−k|z| . (23)

We denote the in-plane vectors by the subscript‖; the equa-
tion of motion (19) splits into two equations

(ω2 − ω2
c + iωγ)u‖ = − q

mE0‖−

− i
2ω

2
puz(z = 0)kk e

−kz , z > 0 ,

(ω2 − ω2
c + iωγ)uz = − q

mE0z+

+ 1
2ω

2
puz(z = 0)e−kz , z > 0 .

(24)

From the second equation we get

uz(z = 0) = − q

m

E0z(z = 0)

ω2 − ω2
c − 1

2ω
2
p + iωγ

(25)

and
uz = − q

m
1

ω2−ω2
c
+iωγ ·

·
[

E0z +
ω2

p

2
E0z(z=0)

ω2−ω2
c
− 1

2
ω2

p
+iωγ

e−kz
]

;

(26)

2In time-dependent problems equation (20) is replaced by the
Helmholtz equation for the Green function, of the form∆Φ +
(ω2/c2)Φ = const · δ(r).
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while from the first equation (24) we get

u‖ = − q
m

1
ω2−ω2

c
+iωγ ·

·
[

E0‖ − i
ω2

p

2
E0z(z=0)

ω2−ω2
c
− 1

2
ω2

p
+iωγ

k
k e

−kz
]

.

(27)

It is convenient to introduce the “surface” polarizability

αs(ω) = −
ω2
p

8π

1

ω2 − ω2
c − 1

2ω
2
p + iωγ

(28)

beside the “volume” polarizability

α(ω) = −
ω2
p

4π

1

ω2 − ω2
p − ω2

c + iωγ
(29)

(and recall the susceptibility

χ(ω) = −
ω2
p

4π

1

ω2 − ω2
c

) ; (30)

the displacements can then be written as

uz = 1
nqχ(ω)·

·
[

E0z − 4παs(ω)E0z(z = 0)e−kz
]

,

u‖ = 1
nqχ(ω)·

·
[

E0‖ + 4πiαs(ω)E0z(z = 0)kk e
−kz

]

.

(31)

First, we note the occurrence of an additonal, surface eigen-

mode with frequency
√

ω2
c + ω2

p/2; it is the surface plas-

mon. Next, we note the polarizationP = nq(u, uz) (for
z > 0) and check the relationshipP = χ(Es +E0), by us-
ing equations (23), (26) and (27), as well as the continuity at
the surface of the tangential components of the internal (po-
larization) electric fieldEs and the transverse components
of the electric displacementD = Es + 4πP. In addition
for usual quasi-static external fields we have the conditions
divE0 = 0 andcurlE0 = 0, which lead, for Fourier trans-
forms, toE0 = E0(z = 0)e−kz , as well as tou1 = −iuz.
Consequently, from equations (26) and (27), we can also
write the response as

(u, uz) = − q

m

1

ω2 − ω2
c − 1

2ω
2
p + iωγ

E0 , (32)

as expected.
By using the method described here we can treat a se-

rie of interesting situations within the quasi-static approxi-
mation, like a point charge or a point dipole placed in the
vicinity of a half-space, or any other external field acting
upon a half-space, or two half-spaces separated by a gap,
a slab, etc. In all these situations we expect a resonance
arising from the surface plasmons.

4. Half-space

The half-space can be given a full electromagnetic
solution.[10, 11],[13] For a semi-infinite (homogeneous)
body (half-space) extending over the regionz > d we take
the polarization as

P = nq(u, uz)θ(z − d) , (33)

whereθ(z) = 0 for z < 0 andθ(z) = 1 for z > 0 is the
step function. The polarization charge and current densities
are given by

ρ = −nq(divu+ ∂uz

∂z )θ(z − d)− nquz(d)δ(z − d) ,

j = nq(u̇, u̇z)θ(z − d) .
(34)

We use Fourier decompositions of the type

u(r, z; t) =
1

2π

∑

k

∫

dωu(k, z;ω)e−iωt+ikr , (35)

whereR = (r, z), and may omit ocassionally the argu-
mentsk, ω, writing simply u(z), or u. The electromag-
netic potentials given by

Φ(R, t) =
∫

dR′ ρ(R
′,t−|R−R′|/c)
|R−R′| ,

A(R, t) = 1
c

∫

dR′ j(R
′,t−|R−R′|/c)
|R−R′|

(36)

include the “retarded” Coulomb potential

ei
ω

c
|R−R′|/ |R−R′|, for which we use the well-known

decomposition

eiλ|R−R′|
|R−R′| =

i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (37)

whereλ = ω/c andκ =
√
λ2 − k2. It is more convenient

to compute first the vector potentialA and then derive the
scalar potentialΦ from the gauge equationdivA− iλΦ =
0. The calculations are straightforward and we get the
Fourier tranforms of the potentials

Φ(k, z;ω) == 2π
κ

∫∞
d

dz′kueiκ|z−z′|−

− 2πi
κ

∂
∂z

∫∞
d dz′uze

iκ|z−z′| ,

A(k, z;ω) = 2πλ
κ

∫∞
d

dz′(u, uz)e
iκ|z−z′|

(38)

(where we have left aside the factornq; it is restored in
the final formulae). In order to compute the electric field
(E = iλA − gradΦ) it is convenient to refer the in-plane
vectors (i.e., vectors parallel with the surface of the half-
space) to the vectorsk andk⊥ = ez × k, whereez is the
unit vector along thez-direction; for instance, we write

u = u1
k

k
+ u2

k⊥
k

(39)
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and a similar representation for the electric field parallel
with the surface of the half-space. We get the electric field

E1 = 2πiκ
∫∞
d dz′u1e

iκ|z−z′|−

− 2πk
κ

∂
∂z

∫∞
d

dz′uze
iκ|z−z′| ,

E2 = 2πiλ2

κ

∫∞
d dz′u2e

iκ|z−z′| ,

Ez = − 2πk
κ

∂
∂z

∫∞
d

dz′u1e
iκ|z−z′|+

+ 2πik2

κ

∫∞
d dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(40)

Making use of equations (40), we can check easily the
equalities

ikE1 +
∂Ez

∂z = −4π
(

iku1 +
∂uz

∂z

)

θ(z − d)

−4πuz(z = d)δ(z − d) ,
(41)

which is an expression of Gauss’s law, and

k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (42)

which reflects Faraday’s and Maxwell-Ampere’s equations.
From equation (41), we can check the transversality condi-
tion divE = 0 for the electric field outside the half-space
(z < d).

We use now the equation of motion (2) (withγ = 0) for
E2 given by equation (40) and for the combinationsiku1+
∂uz/∂z andk∂u1/∂z+ iκ2uz in the regionz > d. Taking
into account thatdivE0 = 0 andk∂E01/∂z + iκ2E0z = 0
(for a plane wave) we get

iku1 +
∂uz

∂z
= 0 , k

∂u1

∂z
+ iκ′2uz = 0 , (43)

or
∂2u
∂z2 + κ′2u = 0 , (44)

where

κ′2 = κ2 −
λ2ω2

p

ω2 − ω2
c

. (45)

We emphasize that therhs of equation (44) is vanishing
only for a transverse external field. The componentsu1,2

of the displacement field are given byu1,2 = A1,2e
iκ′z,

whereA1,2 are constants, whileuz = −(k/κ′)A1e
iκ′z (we

restrict ourselves to outgoing waves,κ′ > 0). The total
electric field inside the half-space is given by the equation
of motion (2):

Et = −m

q
(ω2 − ω2

c)u (46)

for z > d. We can see that the field propagates in the
half-space with a modified wavevectorκ′, according to
the Ewald-Oseen extinction theorem.[18]-[20] The modi-
fied wavevectorκ′ given by equation (45) can also be writ-
ten as

κ′2 = ε
ω2

c2
− k2 , (47)

where

ε = 1−
ω2
p

ω2 − ω2
c

(48)

is the dielectric function (as given by equation (16), for in-
stance). We can check the well-known polaritonic disper-
sion relationεω2 = c2K

′2, whereK′ = (k, κ′) is the
wavevector.

The amplitudesA1,2 can be derived from the original
equation (2) and the field equations (40) (forz > d). We
get

1
2A1ω

2
p

κκ′+k2

κ′(κ′−κ)e
i(κ′−κ)deiκz = q

mE01 ,

1
2A2ω

2
p

λ2

κ(κ′−κ)e
i(κ′−κ)deiκz = q

mE02 .

(49)

The (polarization) electric field, both inside and outside
the half-space, can be computed from equations (40). We
get

E1 = −4πnqA1
ω2−ω2

c

ω2
p

eiκ
′z−

−2πnqA1
κκ′+k2

κ′(κ′−κ)e
i(κ′−κ)deiκz , z > d ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p

eiκ
′z−

−2πnqA2
λ2

κ(κ′−κ)e
i(κ′−κ)deiκz , z > d ,

Ez = 4πnqA1
k(ω2−ω2

c
)

κ′ω2
p

eiκ
′z+

+2πnqA1
k(κκ′+k2)
κκ′(κ′−κ) e

i(κ′−κ)deiκz , z > d .

(50)

for z > d. It is worth noting that the polarization electric
field, as given by equations (50), includes both the external
field∼ eiκz (with opposite sign) and the displacement field
u ∼ eiκ

′z . This can be checked easily by using equations
(49) and (50). The (polarization) electric field outside the
half-space (in the regionz < d) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ) ·

·ei(κ′+κ)de−iκz , z < d ,

E2 = −2πnqA2
λ2

κ(κ′+κ) ·

·ei(κ′+κ)de−iκz , z < d

(51)

andEz = (k/κ)E1 for z < d. We can see that it is the
field reflected by the half-space (κ → −κ). Making use of
equations (49) and (51) we get also the total electric field
Et = E+E0 outside the half-space and the magnetic field
H = curlA both inside and outside the half-space. The
amplitudesA1,2 can be viewed either as being determined
by the external fieldE0 (andH0) through equations (49),
or as free parameters. In the latter case equations (49) are
not valid anymore, but the (polarization) electric and mag-
netic fields (given, for instance, by equations (50), (51))
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hold. We can check also that all the fields are continuous
at the surfacez = d, except forEz andEtz , which exhibit
a discontinuity (Etz(z = d−) = εEtz(z = d+)), as ex-
pected. In particular, the surface plasmon-polariton mode
given by equation (6) is obtained from the vanishing de-
nominatorκκ′ + k2 of the response (equations (49)) for
bothκ andκ′ purely imaginary, which means that both the
incident and the refracted waves are localized at the surface
and propagates only along the surface.

Having known the electromagnetic solution for a half-
space we can derive the Fresnel formulae for reflection and
refraction coefficients.[10, 11] Similarly, we can treat two
half-spaces, a slab (or a two dimensional sheet). In particu-
lar we can derive the van der Waals-London-Casimir force
for such electromagnetically coupled bodies,[13] or we can
treat other interesting situations, like the presence of the in-
homogeneities, rough surfaces,[16] etc. Here, we present
a very interesting situation concerning a point-dipole and a
half-space.

5. Point dipole and half-space

A point dipole placed at the origin has a charge density and
a current density given by

ρ = −n0qv[(w, wz)grad]δ(R) ,

j = n0qv(ẇ, ẇz)δ(R) ,
(52)

wheren0 is its density of chargesq (with massm), v is
the (volume) of the dipole,w is the displacement field in
thex, y-plane andwz is thez-component of the displace-
ment field; the displacement field depends only on the time.
These charge and current densities introduced in equations
(36) give the electromagnetic potentials; the vector poten-
tial is

A0 = −iλn0qv(w, wz)
eiλR

R
(53)

(temporal Fourier transform), whereλ = ω/c; the scalar
potential is conveniently obtained from the Lorenz gauge
divA0 − iλΦ0 = 0:

Φ0 = −n0qv[(w, wz)grad]
eiλR

R
. (54)

The electric field can be calculated fromE0 = iλA0 −
gradΦ0. We represent the spherical wave by

eiλR

R
=

i

2π

∫

dk
1

κ
eikreiκ|z| , (55)

whereR = (r, z) andκ =
√
λ2 − k2; then, we select the

k-component by using
∑

k = [A/(2π)2]
∫

dk, whereA is
the in-plane ((x, y)-plane) area; it is convenient to use the
projections of the electric field onk (E01) andk⊥(E02),
wherek⊥ is perpendicular tok and has the same magnitude

k. We get

E01 = 2πin0qv
A [κw1 − kwzsgn(z)]e

iκ|z| ,

E02 = 2πin0qv
A · λ2

κ w2e
iκ|z| ,

E0z = 2πn0qv
A ·

[ ik
2

κ wz − ikw1sgn(z)− 2wzδ(z)]e
iκ|z| ;

(56)

we can check that this field is transverse (divE0 = 0).
From the calculations for a half-space described before

we know the displacement fieldu1,2 = A1,2e
iκ′z, uz =

−(k/κ′)A1e
iκ′z , for z > d, where

κ′ =

√

κ2 −
λ2ω2

p

ω2 − ω2
c

=
√

λ2ε− k2 (57)

and the coefficientsA1,2 are given by

1
2A1ω

2
p

κκ′+k2

κ′(κ′−κ)e
i(κ′−κ)deiκz =

= q
mE01 ,

1
2A2ω

2
p

λ2

κ(κ′−κ)e
i(κ′−κ)deiκz =

= q
mE02 ,

(58)

ωp being the plasma frequency for the half-space (equations
(49)). The field reflected by the half-space (equations (51))
is given by

Er1 = −2πnqA1
κκ′−k2

κ′(κ′+κ) ·

·ei(κ′+κ)de−iκz , z < d ,

Er2 = −2πnqA2
λ2

κ(κ′+κ) ·

·ei(κ′+κ)de−iκz , z < d

(59)

andErz = (k/κ)E1 for z < d, wheren is the density of
charges in the half-space. By using equations (58) we can
express this reflected field by means of the fieldE0 and,
by using equations (56), we can express it in terms of the
displacementW = (w, wz). The reflected field plays the
role of an external field in the equation of motion of the
dipole displacement field[21]

(ω2 − ω2
0)W = − q

m
Er(r = 0, z = 0;ω) , (60)

whereω0 is a characteristic frequency of the point dipole;
we get

(ω2 − ω2
0)W =

iω2

p0
v

A ·

∑

k{
(κ′−κ)(κκ′−k2)
(κ′+κ)(κκ′+k2) (κw1 − kwz)(

k
k + k

κez)+

+λ2(κ′−κ)
κ(κ′+κ) w2

k⊥

k }e2iκd ,

(61)
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where ωp0 =
√

4πn0q2/m. Here we usek =
k(cosϕ, sinϕ) andk⊥ = k(− sinϕ, cosϕ) and integrate
over the angleϕ. We get the equations

(ω2 − ω2
0)w =

iω2

p0
v

8π ·

·
∫

dk · k
[

κ(κ′−κ)(κκ′−k2)
(κ′+κ)(κκ′+k2) + λ2(κ′−κ)

κ(κ′+κ)

]

we2iκd ,

(ω2 − ω2
0)wz = − iω2

p0
v

4π ·

·
∫

dk · k3 (κ′−κ)(κκ′−k2)
κ(κ′+κ)(κκ′+k2)wze

2iκd ;

(62)

w is an in-plane component of the displacement, the same
equation holds for the other component. These equations
can also be written as

(ω2 − ω2
0)w =

iω2

p0
v

8π ·

·
∫

dk · k
[

κ(κε−κ′)
κε+κ′ + λ2(κ′−κ)

κ(κ′+κ)

]

we2iκd ,

(ω2 − ω2
0)wz = − iω2

p0
v

4π ·

·
∫

dk · k3 κε−κ′

κ(κε+κ′)wze
2iκd ;

(63)

it is easy to see that these equations give the eigenfrequen-
cies of the coupled point dipole and half-space.

We notice first that the dipole volumev should be much
smaller than any relevant scale; this means that the solution
ω should lie nearω0 and therhs of equations (63) should
be treated as a small perturbation. Next, we notice that for
large distancesd the main contribution to the integrals come
from small values ofκ, i.e. from k nearλ; this implies
dλ0 = dω0/c ≫ 1 and small frequenciesω0 in comparison
with ωc, ωp; the main contribution comes in this case from
small values ofk; this is the retarded case; it is easy to
see that equations (63) have not solutions in this case: the
waves are damped, except for some discrete values of the
distanced; in general, the two bodies do not couple to each
other in this case. For small distancesd (dω0/c ≪ 1), the
main contribution to the integrals comes from large values
of k, such asκ ≃ κ′ ≃ ik; the first equation (63) can be
written approximately

ω2 − ω2
0 ≃

iω2
p0v

8π

ε− 1

ε+ 1

∫

dk · ik2e−2kd ; (64)

this is the non-retarded case. We get easily the solution

Ω‖ ≃ ω0 −
ω2
p0v

64πω0

ε0 − 1

ε0 + 1
· 1

d3
, (65)

whereε0 = ε(ω0); hence, the zero-point energy~Ω‖/2
leads to the van der Waals-London force (for a point dipole
coupled to a half-space); we should take into account the
multiplicity 2 for the transverse oscillations and the contri-
bution of thez-component, whose eigenfrequency is given
by

Ωz ≃ ω0 −
ω2
p0v

32πω0

ε0 − 1

ε0 + 1
· 1

d3
. (66)

z

−→
E 0

−→
d

O

Figure 1: External field, point dipole and a half-space

Finally, we get the force

F = −
3~ω2

p0v

32πω0

ε0 − 1

ε0 + 1
· 1

d4
. (67)

Making use ofε = 1 − ω2
p/(ω

2 − ω2
c ), we note that one

obtains an appreciable enhancement of this force for the
characteristic frequencyω0 of the point dipole approaching

the frequency
√

ω2
c + ω2

p/2 of the surface plasmon.

6. Response of a point dipole and a half-space

We consider a point dipole induced by an external field,
placed in the vicinity of a half-space. The equation of mo-
tion (60) acquires now an additional term, arising from the
contribution of the external field. We take a monochromatic
plane wave of the form

E0(t, r, z) = E0e
−iΩtei(Kr+Kzz) (68)

as an external (radiation) field. The calculations described
above can easily be repeated in this case. We limit ourselves
here to give the result (in the reference frame formed by the
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vectorsK, K⊥ andKz:

(ω2 − ω2
0)w1 =

iω2

p0
v

8π w1·

·
∫

dk · k
[

κ εκ−κ′

εκ+κ′ +
λ2(κ′−κ)
κ(κ′+κ)

]

e2iκd+

+ 2πq
m

[

εKz−K′

z

εKz+K′
z

e2iKzd − 1
]

E01δ(ω − Ω) ,

(ω2 − ω2
0)w2 =

iω2

p0
v

8π w2·

·
∫

dk · k
[

κ εκ−κ′

εκ+κ′ +
λ2(κ′−κ)
κ(κ′+κ)

]

e2iκd+

+ 2πq
m

[

K′

z
−Kz

K′
z
+Kz

e2iKzd − 1
]

E02δ(ω − Ω) ,

(ω2 − ω2
0)wz = − iω2

p0
v

4π wz

∫

dk · k3 εκ−κ′

κ(εκ+κ′)e
2iκd−

− 2πq
m

[

εKz−K′

z

εKz+K′
z

e2iKzd + 1
]

E0zδ(ω − Ω) ,

(69)
whereK ′

z =
√

εΩ2/c2 −K2. As before, the main contri-
butions to the integrals in equations (69) comes from large
values ofk; in addition, we are interested in small distances,
such ase2iKzd ≃ 1. We get easily

(ω2 − Ω2
‖)w1 = − cos r√

ε cos i+cos r
·

· 4πqm E01δ(ω − Ω) ,

(ω2 − Ω2
‖)w2 = − cos i

cos i+
√
ε cos r

·

· 4πqm E02δ(ω − Ω) ,

(ω2 − Ω2
z)wz = −

√
ε cos i√

ε cos i+cos r
·

· 4πqm E0zδ(ω − Ω) ,

(70)

where i is the incidence angle,r is the refraction angle
(sin r/ sin i = 1/

√
ε) andΩ‖, Ωz are given by equations

(65) and (66).

The displacement fieldw1,2,z given by equations (70)
represents the response of the induced point dipole placed
in the vicinity of a half-space to an external radiation field;
multiplied by n0qv it gives the induced dipole moment.
Equations (70) answer the question regarding the effect of a
semi-infinite solid placed in the vicinity of a small, neutral
nano-particle which can acquire an induced dipole moment
under the action of a radiation field. This is the typical prob-
lem in the surface enhanced Raman scattering.[22]-[26] We
can see that the induced dipole may be enhanced apprecia-
bly for frequencies close to the resonance frequenciesΩ‖,z.
We can compare this effect with the absence of the semi-
infinite solid, which is obtained by puttingε = 1 (in this
caseΩ‖,z reduce toω0).

7. Discussion

First, in the analysis made above we have considered a point
dipole,i.e. a dipole whose dimensions are much smaller in
comparison with both distances of interest and the radiation
wavelength. A molecule or a nano-particle may fulfill such
requirements. Second, we consider an external electromag-
netic radiation field (usually a plane wave) which acts upon
a molecule or a nano-particle. In these circumstances, there
occur optical transitions, driven by matrix elements of the
electric dipole, such that the dipole is in fact an induced
dipole. Usually, these transitions are coupled with vibra-
tion and rotation degrees of freedom, leading to a dipole
radiation which exhibits additional frequencies beside the
main, driving frequency of the external field. This is the
well-known Raman effect.[27, 28] For large molecules or
nanoparticles (but sufficiently small for being treated as
point dipoles) the transitions imply the classical motion of
the particle density,i.e. the classical motion of the electric
polarization; therefore, a classical model for Raman scat-
tering is justified and often employed. It is based on clas-
sical equations of motion of the displacement fieldW, like
equation (60), where the characteristic frequenciesω0 are
the eigenfrequencies of the coupled polarization-rotation or
polarization-vibration motion, which are effective in Ra-
man scattering.

Now, let us assume that such a dipole is placed in the
vicinity of a polarizable half-space (semi-infinite solid), as
shown in Fig. 1. In this case, there happen two distinct
things. First, the external radiation field (the electric field
E0 given by equation (68)) gets reflected and refracted, ac-
cording to the Fresnel formulae, as given above in equations
(49)-(51). This is a standard situation, so we may leave it
aside with respect of what we are interested in here. We re-
tain only the fact that the reflected external field acts upon
the dipole, as described by the external-force term in equa-
tions (69) and (70). At the same time, the induced dipole
generates its own field, as given by equations (56), which
acts as a second external field for the half-space; this field
polarizes the half-space, which in turn generates a second
reflected field, which acts upon the dipole. This is described
both in equation (60) and the subsequent equations, and in
equations (69). It is essential to realize that this second
field depends on the degrees of motion of the dipole,i.e.
it is generated by the diplacement fieldW, as shown in
equations (56). Consequently, its effect upon the motion
of the dipolar displacemenf fieldW is a shift in the eigen-
frequenciesω0, which become the “renormalized” frequen-
cies given by equations (65) and (66). These frequencies
account for the presence of the half-space; they may bring
the dipole response,i.e. the displacement fiedW and the
dipole field which governs the Raman scattering, close to
resonance, depending on the nature of the dipole (charac-
teristic frequencyω0, plasma frequncyωp0), the nature of
the semi-infinite solid (dielectric functionε) and the (rel-
atively small) distance of the dipole to the surface of the
semi-infinite solid (equations (65), (66) and (70)).

In order to be specific, we give here the field generated
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by the dipole in the vicinity of the semi-infinite solid, as
computed above. This field is given by equations (53) and
(54). We limit ourselves to the near-field zone, so we re-
tain only the scalar potentialΦ0, with λ = 0; at the same
time we assume normal incidence,i.e. we puti = r = 0
in equations (70) (the general case of oblique incidence can
be treated similarly). In this case, there exist only the trans-
verse displacementw = (w1, w2) (wz = 0), which we
take from equations (70) and introduce in equation (54).
By straightforward calculations we get easily

Φ0(R, t) =
1

2π(1 +
√
ε)

·
ω2
p0v

Ω2 − Ω2
‖
e−iΩt(E0

∂

∂R
)
1

R
,

(71)
where

Ω‖ ≃ ω0 −
ω2
p0v

64πω0

ε(ω0)− 1

ε(ω0) + 1
· 1

d3
(72)

(according to equation (65)). It is worth noting thatε in
equation (71) isε = ε(Ω).

First, we note that the field given by equation (71) is
a typical dipolar field (the electric fieldE = −gradΦ0 is
proportional to[E0R

2 − (E0R)2]/R5). Second, we see
that the field amplitude in equation (71) is modified by the
denominatorΩ2-Ω2

‖. ForΩ close toΩ‖ we get a resonant
behaviour which may account for the enhancement of the
Raman effect. The shift in frequency, as given by equation
(72), can be either positive or negative, depending on the
sign ofε(ω0)− 1; it is governed mainly by the ratiov/d.

The above results, based on equations (70), are valid
for a propagating wave. For a damped regime, we must use
equation (60) and the field given by equation (23). The cal-
culations are straightforward and we get the damped field
of the semi-infinite solid at the position of the dipole

Esr(r = 0, z = 0;ω) =

= 8π2
(

iK
K , 1

)

αs(Ω)E0ze
iKzd−Kdδ(ω − Ω) ,

(73)

whereαs(Ω) is the surface polarizability given by equation
(28). This field enters equations of motion (60) or (70). It
is worth noting that it is vanishing forE0z = 0 (e.g., ans-
wave, or normal incidence). We can write now the equation
of motion for the displacement fieldW, which gives access
to the response of the dipole placed in the vicinity of a semi-
infinite solid, in the damped regime. We limit ourselves to
thez-component; for an incidence angleβ we get

(ω2 − Ω2
z)wz = − 2πq

m

(

1 + 4πiαs(Ω)e
iΩ
c
d cosβ−Ω

c
d sin β

)

·

·E0 sinβ · δ(ω − Ω) .
(74)

Beside the resonance for the shifted frequencyΩz, it is
worth noting here the occurrence of the surface polariz-
ability αs(Ω) given by equation (28), which has a pole for

ω =
√

ω2
c + ω2

p/2 (surface plasmon frequency) We can see

that the response of the dipole can be much enhanced by
the presence of the surface plasmons, a typical feature of
the surface enhanced Raman scattering.

8. Conclusions

The electromagnetic field in matter is described by a new
method which includes explicitly the polarization and mag-
netization degrees of freedom. The Maxwell equations are
supplemented by the equations of motion of the polariza-
tion and magnetization, thus making possible a full so-
lution. The method is applied to quasi-static fields and
the plasmon response of a semi-infinite polarizable (non-
magnetic) solid with a plane surface (half-space). The sur-
face plasmons are highlighted and the surface polarizability
is introduced. The electromagnetically coupled system of
a neutral, polarizable nano-particle (induced point dipole)
and a half-space is solved in the general situation, and the
eigenfrequencies and eigenmodes of the zero-point (vac-
uum) fluctuations are obtained. The van der Waals-London-
Casimir force is computed for this system, as well as its
response to an external radiation field, which is the typical
problem for the surface enhanced Raman scattering.
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