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Abstract 
We study theoretically small arrays made of a periodic 
arrangement of sub-wavelength resonators. Each resonator 
is modeled as an electrical dipole and a magnetic dipole. 
The two dipole moments are driven by the same complex 
amplitude. We show that the relative strength of the two 
dipoles strongly depends on cell symmetry. First, under this 
approximation, the dispersion relation is extracted for an 
infinite size array. Second, the diagonalization of the mutual 
impedance between cells matrix provides a powerful way to 
deduce the resonant frequencies for a finite size array. 
These results are validated numerically. To that end, we 
simulate two arrays of 4 by 4 multigap split ring resonators. 
Finally, an experimental demonstration of a tunable antenna 
based on this study is presented. 

1. Introduction 
Behavior of electromagnetic waves in periodic medium in 
which the lattice is much smaller than the wavelength is a 
challenging field. Metamaterials are composite structures, 
which involve periodic arrays of sub wavelength inclusions. 
By designing the elementary cell and controlling some 
parameters like the permittivity and/or the permeability, 
metamaterials can make up global mediums with interesting 
properties, like a negative refractive index.[1] 
 
Most of the time, resonant cells of a metamaterial are 
designed to minimize the coupling between cells. 
Consequently, the metamaterial resonance is at same 
frequency that the one of the unitary cell. This condition is 
required to apply theory of homogenization. Nevertheless, 
coupling effect always occurs and its preponderance is only 
a question of relative strength with the self-resonance of the 
cell.  
 
The coupling in an array of half wavelength long rods that 
are only spaced by less a tenth of a wavelength have been 
studied in [2]. It has been shown that the coupling induces a 
strong splitting of the resonance frequencies. This 
phenomenon is analogous to Kronig-Penney potential wells 
in solid state physics [3].  
In this paper, we investigate the behavior of a finite array of 
split ring resonators (SRR) popularized by Pendry et al.[4]. 

We develop a magneto-electric dipolar theory to model the 
coupling effect between the resonators. Finally, we study 
the far-field radiation of the finite structure. 
 
Two types of array are studied. Both of them consist of 4 by 
4 multigap split ring resonators. For the first one, we use an 
asymmetric square SRR with 3 gaps at the center of 3 sides. 
For the second one, we use a symmetric square SRR with 4 
gaps at the center of the 4 sides. In Fig.1, a small loop 
placed above one SRR excites the 3-gap array. We clearly 
observe the splitting of the main resonance. This splitting 
results from the coupling effect between the resonators. 
When the small loop antenna is placed above the second 
structure, the splitting phenomenon remains but fewer 
resonances are observed (Fig.2).  

 
Figure 1:  (a) Reflection coefficient of a small loop antenna. 
The M1 to M7 gray level maps show the normal magnetic 
field at 7 resonant frequencies. (b) the 4 by 4 array of 3-
gaps SRR. In red, the small loop antenna. 

 
Figure 2 : Reflection coefficient of a small loop antenna of a 
4 by 4 array of 4-gaps SRR 
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2. A dipolar model 
We propose an original coupling model which is a 

generalization of the work published in [5][6]. Close the 
resonance frequency of an individual cell, the mode complex 
amplitude (e.g., the complex current) is the only degree of 
freedom of the cell. Moreover we assume that the current 
and charge distribution associated to the fundamental mode  
induces only an electrical and a magnetic dipole. Same 
approximation has been proposed with a Lagrangian 
approach in [7].The expression of the dipoles moments are 
given by the geometry of the elementary cell: 
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where d and S are the characteristic length and an effective 
surface of the electric and magnetic dipoles, respectively. 

 
 
 
 
 

 
Figure 3: The dipolar model for a 3-gap and an 4-gap SRR. 

 
Due to symmetry, the fundamental mode of a 4-gap 

SRR only generates a magnetic dipole. Indeed the structure 
geometry shows 3 symmetry planes: one horizontal and two 
vertical. Because the current and charge distribution are 
symmetric with respect to the horizontal plane but 
antisymmetric with respect the vertical ones, the electrical 
moment is null and the magnetic moment is vertical. 
Because, for the 3-gap SRR, one symmetry plane is broken, 
an electric dipoles disposed as shown in Fig.3 can appear. In 
other words, the electric dipoles introduced by the 4 gaps 
cancel by pairs for the full symmetric cell, which is not the 
case for the 3-gap cell. 

Near-field radiations of the electric and magnetic 
dipoles at a distance r are given in Eq.2. 
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With this approximation, an analytic expression of the 
coupling between two cells can be obtained. We choose to 
describe the coupling in terms of electrical impedance, i.e., 
the FEM induced on a cell when a current flows through 
another one. 
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The mutual coupling impedance describes the 

interactions between two cells. As for the self-impedance 
matrix Zs, it models the interaction of a cell on itself. 
Because, we deal with simple resonators, we assume that the 

electrical behavior of each resonator is well described by a 
RLC (resistance, inductance, capacitive) resonator. 

3. Currents determination  
The complex amplitudes of the intensity currents on 

each cell are deduced from the Kirchhoff”s voltage law 
applied on each cell. A set of N equations, where N is the 
number of cell is obtained: 
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where l and m give the column and raw number of the 
cell. The dispersion relation is deduced from (4) when N is 
very large. Limiting the coupling to the closest neighbors, an 
explicit and simple dispersion relation is worked out for a 3-
gap (see Fig.4(a)) and 4-gap arrays (see Fig.4(b)). From this 
relation, we can derive the span of the frequency splitting of 
the fundamental resonance. Those two curves reflect the 
magnetic and electric coupling for the first structure and the 
magnetic coupling for a second 
one.

 
Figure 4: Dispersion relations for two arrays of 3-gap cells 
(a) and of 4-gap cells (b). The dispersion relation is plotted 
on the 4 major axis of the Brillouin zone. The dashed lines 
show the minimum and maximum values. 

 
The slope of the dispersion relation of the array made of 

4-gap cells is negative (backward waves) because the 
magnetic coupling between two parallel loops is negative. 
The slope sign of the 3-gap dispersion relation is either 
positive or negative. Along the ΓX axis, the wave is vector 
is parallel to the electrical dipoles. The dispersion curve is 
therefore positive because the coupling of aligned dipoles is 
positive. Along the ΓX' axis, the wave vector is 
perpendicular and the coupling negative.   

For finite size system, the complex amplitude on each 
resonator is deduced from the inversion of the sum of the 
self Zs and mutual impedance matrices Zm. The self 
impedance matrix is proportional to the eye matrix times 

1/s s si L i C Rω ω+ + . The mutual impedance matrix is a N 
by N matrix with 0 on the diagonal elements. Thanks to 
these two matrices, Eq (4) can be rewritten in a concise way: 
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 where S and I are two vectors of N elements that contains 
the FEM induced by the source and the complex current 
intensity on each cell.  

 
We show that the resonances occurs when the imaginary 
part of the eigen-values of Zm+Zs are equal to zero. Because 
Zs is proportional to the eye matrix a resonance appears 
when the imaginary part of the self impedance is opposite in 
sign to the eigenvalues of Zm. For 4-gap structure, only one 
main resonance is observed because coupling effects are too 
weak to induce a mode splitting effect. This is due to the fact 
that the Q factor is too small compare to resolve the different 
modes. In other words, all modes are degenerated.  

Fig.5 shows the calculated resonant modes for the 3 gaps 
structure. As expected, we observe that frequency position 
and the amplitude of the modes depend on both the mutual 
and the self impedance of the resonators. The 3-gap SRR 
array is dominated by the electrical dipole coupling. This 
result is in complete accordance with [8]. 

 
Figure 5: Frequency dependence of : the self 
impedance versus frequency (dash-dotted line), the 
imaginary part of the eigen-values of the mutual 
impedance times minus one (continuous line) and the 
current of one particular cell (dashed line). These 
results are obtained with an array of 4 by 4 3-gap 
cells. 

4. A dynamic antenna tuning and beamforming 
The eigen-modes of finite size arrays are poor radiators 

because the spatial oscillations of the mode patterns are 
smaller than a wavelength and sub-wavelength modes hardly 
couple to propagative waves. However the Purcell’s effect 
can mitigate this limitation. Indeed, the strong resonance 
effect significantly enhances the radiated power and 
compensates for the impedance mismatch. 

The studied structure can thereby be used as an antenna 
emitting at these frequencies. With formalism presented 
above, the antenna pattern is simply worked out from the 
current distribution of the array. On Fig. 6, instead of tuning 
the fundamental frequency of the single cells, we electrically 
tune the resonance frequency of the cells thanks to 

semiconductor diodes which have a variable capacitance that 
is a function of the D.C. voltage applied on its terminals 
(varicaps). Fig. 7 shows the pattern of the radiated field for 
different D.C. voltages. The different patterns correspond to 
different eigen-modes.  

 
Figure 6: Measured reflection coefficient of a small 
loop antenna that is above a 4 by 4 array made of 3-
gap cells for different voltage applied on the varicap 
(see text). 

 
Thus, a strongly tunable directive antenna can be 

realized by adjusting the resonance frequency. The 
advantage of this antenna is to show a small form factor, a 
tunable radiation directivity and a good matching. The  far 
field polarization of this antenna is vertical, i.e., the 
polarization is linear and electric field is polarized in the 
plane substrate. Now, the goal of the future works is to 
adjust individually the resonance frequency on each cell in 
order to obtained a controlled directivity pattern.  

 
Figure 7: Measured radiation pattern of a small array of 3 
gaps SRR for different applied voltage on the Varicaps for 
the same frequency. 

5. Conclusions 
We have developed a model based on impedance formalism 
for infinite and finite size array made of resonant cell. An 
electric and a magnetic dipole associated to each cell model 
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the coupling between the fundamental modes of the 
resonators.  Based on this approach, the electromagnetic 
behavior of such a structure is explained. The 
electromagnetic coupling induces a frequency splitting of 
the fundamental mode of a single cell. The dispersion 
relation leads to an estimate frequency span of the modes. 
Diagonalization of the mutual impedance matrix explains 
why the fundamental mode is splitted into N modes where 
N is the number of cells of the array. Finally an application 
to an electronically tunable directive antenna is proposed. 
This small antenna shows good radiation efficiency and 
tunable bandwidth. 
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