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Abstract 
A phenomenon of virtual singular scattering with 
multiplicative effect has been revealed while studying 
electromagnetic wave multiple scattering on a dielectric 
scatterer embedded into a flat left handed material slab 
(Veselago’s lens) by the usual scattering operator (T-
matrix) technique. If both a scatterer and an observation 
point (receiver) approach the so-called near field zone of a 
source of electromagnetic waves, the scattering process 
becomes a singular one which is mathematically attributed 
to the spatial singularity of the free space Green function at 
the origin. Virtual singular scattering means that a scatterer 
is only virtually situated in the near field zone of a source, 
being, in fact, positioned in the far field zone. Such a 
situation is realized if the inner focus of Veselago’s lens 
approaches the position of a scatterer. Veselago’s lens 
transfers the singularity of the free space Green function by 
implementing the coordinate transformation which results 
in the formation of virtual sources inside and behind the 
slab and virtual scatterers (as a source of secondary waves) 
on both slab sides. Considering a line-like dielectric 
scatterer, we demonstrate that the scattering efficiency is 
proportional to the product of singular quasistatic parts of 
two empty space Green functions, which means a 
multiplicative quasistatic singularity of the Green function 
for a slab of inhomogeneous Veselago medium. The 
appearance of virtual scatterers outside the slab involves 
both the inside and outside lens focuses. This circumstance 
physically distinguishes the multiplicative effect from the 
well known superlensing effect utilizing only the outer lens 
focus. We show that small inhomogeneity contributes 
significantly into the scattered field in the regime similar to 
the well known Mie resonance scattering. 

1. Introduction 
Newly proposed transformation optics concept [1,2] 
assumes that the space for electromagnetic (EM) field can 
be bent in an almost arbitrary way (in the absence of 
gravity) by filling EM space with spatial transformation 
media. Transformation media would implement the 
coordinate transformation, squeezing the originally flat 
electromagnetic space and guiding the light along curved 
trajectories [3].  

 We define the abovementioned transformation media 
concept as “newly” because this idea is not new. The origin 
of the concept can be found in the general relativity stating 
that given a curved space-time with a metric tensor, 
Maxwell’s equations may be written as if they were valid in 
a flat-time in which there is an optical medium with a 
constitutive equation [4]. Answering the question with 
whom the idea that gravitation is equivalent to an optical 
medium originated, F. de Felice [4] wrote that perhaps 
A.Einstein was the first. Later on in 1923 Gordon [5,6] tried 
to describe dielectric media by an “effective metric” and 
suggested using a gravitational field to mimic a dielectric 
medium. Interestingly, in contrast to Gordon [5], Landau 
and Lifshitz [7] tried to use dielectric media to simulate a 
gravitational field. 
 In connection with mapping of EM fields in physical 
space to the electromagnetism of empty flat space, let note 
the paper [8] dating back to 1959 where the covariant 
Maxwell equations [9] in a non-inertial reference system 
were transformed to the usual three dimensional vector 
form for the particular problem of EM field study in a 
rotating system of reference. In this case the displacement 
vector D


 and the magnetic field vector B


 were expressed 

through the electric field vector E


and the magnetic flux 
vector H


 via the constitute equations 

( ) HvcED


×−= /1 , 

( ) EvcHB


×+= /1  
where v  was a local speed of rotating. The formulas were 
also obtained relating the electric field and the magnetic flux 
in a non-inertial and an inertial systems of reference. In 1960 
Plebanski [10] formulated the EM effect of the curved 
space-time or curved coordinates in concise constitutive 
equations for a general case. The constitutive equations [10] 
are obtained from the abovementioned ones by replacing the 
first terms in the right hand side of these equations with E


ε  

and H


µ , respectively, and by replacing the vector v  with 

ω− , where the symmetric matrices µε =  and vector ω  
are written in terms of the space-time metric tensor. Now 
after Pendry et al [1], media with such ε  and µ  and ω  are 
called the transformation media. The transformation media 
lead to modern metamaterials that include the so-called left-
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handed materials (LHMs), which demonstrate not only the 
superlensing effect but are able to avoid objects and flow 
around them, as it was demonstrated numerically [1] and 
analytically in terms of bistatic scattering [11]. A flat perfect 
LHM slab is commonly referred to as Veselago’s lens [12] 
in which both the permittivity ε  and the permeability µ  
are equal to minus one. The terms optical left- and right- 
handedness were introduced by Veselago [12] to distinguish 
LHMs, in which the wave vector, the electric and magnetic 
fields vectors of a wave form a left-handed orthogonal set 
from conventional right-handed media with the right-handed 
triple of the same vectors.  

The superlensing effect was demonstrated experimentally 
with a slab of silver [13] and perovskites [14]. Resonantly 
coupled plasmon polaritons propagating on both surfaces of 
the silver slab were identified to be responsible for the 
superlensing effect. The slab volume itself seems not so 
important. Schweizer et al [15] supposed that resonantly 
coupled frequency selective surfaces, e.g. stacks of multiple 
meander structures, might also cause subwavelength 
imaging. Geometrical parameters of the meander structures 
(corrugation and spacer between metal films) may be 
changeable to a large degree.  

 In this paper we present a phenomenon of virtual 
singular scattering of an electromagnetic wave on an 
inhomogeneity located in the volume of a left – handed 
material slab using a less known property of the left-handed 
material slab to transfer the singularity of the free space 
Green function through implementing coordinate 
transformation.  

We use the Green function approach [16] elaborated for a 
line source wave scattering by the line dielectric 
inhomogeneity inside the LHM slab. The central point of 
our method is a transformed integral equation for the Green 
function of an inhomogeneous LHM slab written in terms of 
the Green function for a homogeneous LHM slab and a 
volume scattering potential accounting for the dielectric 
inhomogeneity inside the slab. The solution to this 
transformed integral equation is presented with the aid of a 
scattering operator (T-matrix), which satisfies the Lippman-
Schwinger equation. The solution to the Green function for 
an inhomogeneous LHM slab is expressed by a scattering 
amplitude in the case of a linelike scatterer which is thin as 
compared with the free space wavelength. The scattering 
amplitude was evaluated through an exact solution to the 
Lippman - Schwinger equation via modeling the scattering 
potential of the linelike scatterer by a non-local separable 
potential. 

2. Scattering operator 
Let s-polarized monochromatic EM wave with the 

frequency ω  be incident from the background medium 

0Ω  with both permittivity and permeability equal to unity, 

0ε  = 0µ  = 1, onto an L  thick 2D inhomogeneous LHM 

slab (region 1Ω  bounded from two sides by the planes z  = 

0 and z  = L of the Cartesian coordinate system zyx ,, ). 
The electric field of the wave has only the y -component 

),( zxEy  = yGjic )/4( 2
0πωµ . Here operator 

denotations and the Gaussian systems of units are used; 
),( ρρ  ʹ′G  is the 2D Green function for the LHM slab, yj  

stands for the current density of the EM field source. The 
points ),( zx=ρ  and ),( zx ʹ′ʹ′=ʹ′ρ  are placed inside the 

regions aΩ  and bΩ , respectively, where indices ba, .= 
0,1. 

We describe LHM using the dielectric permittivity and 
the magnetic permeability which are both effective-medium 
parameters of artificial composite materials. In the case of 
natural substances, the magnetic permeability ceases to 
have any physical meaning already at relatively low 
frequency [17]. However, unlike natural substances, 
artificial composite materials involving substances with 
exceedingly large dielectric permittivity may nevertheless 
show a magnetic response which is incompatible with the 
Landau-Lifshitz argument [18]. 

An inhomogeneous LHM slab means a spatially regular 
LHM slab which possesses nonrandom inhomogeneities 
consisting of right-handed nonmagnetic material. The 
inhomogeneous slab has an inhomogeneous dielectric 
permittivity ),( zxε = ),(1 0 zxδεδε ++−  and 
homogeneous magnetic permeability µµµ ʹ′ʹ′+ʹ′= i  whose 
real part µ ʹ′ can be close to minus one and →ʹ′ʹ′µ  0. The 

homogeneous deviation 0δε  of the dielectric permittivity 
and the small imaginary part µ ʹ′ʹ′  of magnetic permeability 
both save the convergence of the Green function 

),()0( ρρ  ʹ′G  of a homogeneous slab for any receiver and 
source plane positions (see section 2.1). The nonrandom 
part ),( zxδε  accounts for inhomogeneities. Clearly, the 
limit 0),( →zxδε  corresponds to vanishing of 
inhomogeneities and, hence, the situation of a homogeneous 
LHM slab. 

The Green function ),( ρρ  ʹ′G  is naturally subdivided 

into four pieces [16] ),(, ρρ  ʹ′baG  depending on that in 

which region ba,Ω  is positioned, the source ρ ʹ′  and the 

receiver ρ  points. Physically 00G  describes wave radiation 
transmitted through and reflected from the slab, 10G  and 

01G  describe radiation incoming into and outgoing from the 
slab, respectively, and 11G  describes radiation propagated 
inside the slab. These four Green functions are linked to 
each other by the standard boundary conditions of the 
electric and magnetic field tangential component continuity 
to the slab boundaries.  

The extended boundary condition technique [19] allowed 
[16] to derive specific radiation conditions on the slab 
boundaries for the Green function 10G  of incoming 
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radiation and the integral equation for this Green function 
with an effective scattering potential followed by a 
continuous extension of 10G  from the slab boundaries to the 
slab outside region, which gives the Green function 00G . 
Similarly, specific radiation conditions on the slab 
boundaries can be derived for the Green function 11G  of 
propagating radiation together with the integral equation for 
this Green function with an effective scattering potential 
followed by a continuous extension of 11G  from the slab 
boundaries to the slab outside region, which gives the Green 
function 01G . 

Then we write down the Green function of an 
inhomogeneous LHM slab abG  in terms of the Green 

function of a homogeneous one )0(
abG . In particular, we 

have 

10
)0(

01
)0(

0000 GTGGG +=                 (1) 
where the scattering operator of the inhomogeneity 

),( ρρ  ʹ′T  obeys the Lippman - Schwinger equation 

TGVVT )0(
1111 +=                             (2) 

Here ),(1 zxV  = [ ]µδε ),(2
0 zxk−  is the inhomogeneous 

component of the effective volume scattering potential 
),(),( 10 zxVVzxV +=  which also has the 

homogeneous 0V  = 2
01

2
0 kk −  part; ck /0 ω=  and 

[ ] 2/1
0001 )1( µδε+−= kk  are the wave numbers in the 

free space and homogeneous LHM slab, respectively. The 
effective volume scattering potential ),( zxV  has the 1D 
Fourier transform with respect to the x -component of the 
spatial position vector  

),,(ˆ zqqV ʹ′  = ),,(0̂ zqqV ʹ′  + ),(1 zqqV ʹ′−  
with a singular potential of a homogeneous slab  

),,(0̂ zqqV ʹ′  = )(20 qqV ʹ′−πδ  + ),,( zqqVS ʹ′  
and a regular volume potential ),(1 zqqV ʹ′−  accounting for 
inhomogeneities. The singular surface part  

),,( zqqVS ʹ′  = 

[ ] )(2)()()1( qqLzzi q ʹ′−+−+−− πδηδηδγµ   

describes the effect of a magnetic permeability jump on the 
slab boundaries, 0→η ; 2/122

0 )( qkq −=γ  stands for the 

longitudinal wave number. 

2.1. Green function )0(
abG singularity transfer by 

homogeneous LHM slab 

In the case of a homogeneous slab (ε  = µ  = -1) the 
effective potential ),,(ˆ zqqV ʹ′  consists only of surface part 

),,( zqqVS ʹ′ which simplifies the abovementioned integral 

equations for the Green functions 10G  and 11G  to an 
algebraic and easily resolved form. The outgoing radiation 
Green function 01G  can be obtained on the basis of a 
reciprocity relation [16] ),()/1( , ρρµ  ʹ′baa G  = 

),()/1( , ρρµ ʹ′abb G . 

Figure 1 demonstrates that the Green function 

),()0( ρρ  ʹ′G  of perfect Veselago’s lens is simply obtained 

[2,16] from the empty space Green function )(0 ρρ  ʹ′−G  
by a spatial coordinate transformation from the physical z -
axis to the EM (empty) space z~  coordinate: zz =~  if 

0<z , zz −=~  if Lz <<0 , and Lzz 2~ −=  if 
Lz > . However, these relations are only valid for definite  

positions of receive and source planes. Otherwise, the 
Green function )0(G  in an angular spectrum representation 
is diverged due to the evanescent wave enhancement effect 
[20]. Really, Figure 1(a) schematically shows that incoming 

radiation Green function )0(
10G  coincides with the empty 

space Green function )0(
10G  = )2,(0 zLzxxG ʹ′+−ʹ′−  = 

)~~,(0 zzxxG ʹ′+−ʹ′−  and has the singularity at the inside 
focal plane zLz ʹ′−→ 2  under the conditions 

zLz ʹ′−> 2  and LzL 2<ʹ′< . The other three panels of 
Figure 1 (b,c,d) illustrate the properties of the transmitted 

radiation Green function (panel b) )0(
00G  = 

 
Figure 1: Singularity transfer by a homogeneous LHM slab 
from the right outside plane zz ʹ′= , LzL 2<ʹ′< , to the 
inside (a) and left outside (b) focal planes zLz ʹ′−→ 2 , 

zLz ʹ′−> 2  and )2( zLz ʹ′−−→ , )2( zLz ʹ′−−< , 
respectively; the singularity transfer from the inside plane 

zz ʹ′= , Lz <ʹ′<0  to the right (c) and left (d) outside focal 
planes zLz ʹ′−= 2 , zLz ʹ′−> 2  and zz ʹ′−→ , 

zz ʹ′−< , respectively. 
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)~~,(0 zzxxG ʹ′+−ʹ′−  with the singularity at the left 
outside focal plane )2( zLz ʹ′−−→  under the conditions 

)2( zLz ʹ′−−<  and LzL 2<ʹ′< ; the Green function of 
radiation outgoing from inside to the right outside slab 

region (panel c) )0(
01G  = )~~,(0 zzxxG ʹ′−ʹ′−−  with the 

singularity at the right outside focal plane zLz ʹ′−→ 2  
under the condition zLz ʹ′−> 2 ; and the Green function 
of radiation outgoing from inside to the left outside slab 

region (panel d) )0(
01G  = )~~,(0 zzxxG −ʹ′ʹ′−−  with the 

singularity at the left outside focal plane zz ʹ′−→  under 
the condition zz ʹ′−< . 

Figure 1(a), for example, can be treated as if source and 
receiver are situated in the positions zL ʹ′−2  and z ,  

respectively. Besides, note that the inside slab source image 
can be obtained on the outside region of the slab in the last 
two panels of Figure 1(c,d).  

3. Scattering amplitude 
Physically Eq.(1) evidently means that radiation created 

by, e.g., a point source on the right outside slab region and 
then transmitted through or reflected from the 
inhomogeneous LHM slab is the radiation incoming into the 
slab, scattered by that slab volume inhomogeneities and 
then outgoing from the slab. A detailed investigation of the 
outgoing radiation has been precluded by that the Green 
function 10G  for radiation incoming into an inhomogeneous 
slab is unknown. Therefore, assuming a weak scatterer 

constant potential to be δε201 kV = , we replace the 
unknown Green function 10G  in Eq.(1) with a known one 

)0(
10G  in a perfect Veselago’s lens that gives an 

approximate equation 
)0(

10
)0(

01
)0(

0000 GTGGG +≈                   (3) 
For definiteness we consider below the case of a small 

linelike inhomogeneity infinitely extended along the y -
axis (see black box in Figure 2) and whose rectangular cross 
section occupies a region in the xz -plane with the centre 
point 11, zx  and linear dimensions zx ΔΔ , . Assuming 
these dimensions to be smaller than the wavelength in the 
free space, 10 <<Δxk  and 10 <<Δzk , Eq.(3) reads 

),;,(),;,(~
),;,(),;,(

11
)0(

1011
)0(

01

)0(
0000

zxzxGzxzxGT

zxzxGzxzxG

ʹ′ʹ′+

ʹ′ʹ′≈ʹ′ʹ′
    (4) 

Here T~  denotes a scattering amplitude that is obtained by 
integrating the scattering operator Eq.(2) over all its four 
arguments. Physically Eq.(4) represents a multiplicative 
effect in the singularity transfer beyond the Born 
approximation written in [16] as 

)0(
10

)0(
011

)0(
0000 GGVGG +≈ . 

Figure 2(a) schematically demonstrates this effect. It is 
clear that the real source can be freely moved in the slab 
outside region LzL 2<ʹ′< . A current position of the real 
source defines current positions of the inner and outer slab 

 
Figure 2: (a) Multiplicative effect in singularity transfer from the right outside plane zz ʹ′=  at some position Lz 20 <ʹ′<  
to the left outside focal plane, )2( zLz ʹ′−−= , by LHM slab via linelike scatterer 1z . (b) At a definite position of the real 

source zʹ′ , the real zLz ʹ′−→ 21 , zLz ʹ′−> 21  and virtual )2(1 zLzz ʹ′−−<−< , )2( zLz ʹ′−−→  scatterers 

are radiated by singular quasistatic fields of inside zL ʹ′−2  and outside )2( zL ʹ′−− virtual sources, respectively, and 
receive is in the near field region of both outside virtual source and virtual scatterer.  
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focuses. At a definite position of the real source, the real 
and virtual scatterers are radiated by singular quasistatic 
fields of inside and outside virtual sources, respectively. 
Besides, a receiver is situated in the near field region of 
both outside virtual source and virtual scatterer (dotted lines 
in Figure 2(b)).  

4. Multiplicative effect in singularity transfer 

4.1. Transmission mode  

Let us introduce the physically important defocusing 
parameters zδ  and zʹ′δ  for the positions of receiver and 

source planes, respectively, relatively to the position 1z  of 

a linelike scatterer plane defined by 1zzz −−=δ  and 

zʹ′δ = zLz ʹ′+−21 . Supposing these defocusing 
parameters are much larger than the linelike scatterer cross- 

section dimensions, zδ >> zx ΔΔ ,  and zʹ′δ >> zx ΔΔ , , 
and an exact focusing with respect to the x  axis, 

1xxx =ʹ′= , Eq.(4) can be simplified as (Fig.3(a)) 

),0(),0(~
)2,0(),;,(

00

)0(
0000

zxGzxGT
zLzxGzxzxG

ʹ′==−

ʹ′+−−=≈ʹ′ʹ′

δδ
   (5) 

4.2. Reflected mode  

Simplification of Eq.(4) in the case of slab reflected 
radiation, with the receiver and source planes being placed 
both in the right Lz >  and Lz >ʹ′  outside region of the 
slab, is performed similarly to the case of transmitted 
radiation: the defocusing parameters are now defined by 

12 zLzz +−=δ  and 12 zLzz +−ʹ′=ʹ′δ  which gives 
(Fig.3(b)) 

),0(),0(~
),0(),;,(

00

)0(
0000

zxGzxGT
zzxGzxzxG

ʹ′==−

ʹ′−=≈ʹ′ʹ′

δδ
             (6) 

5. Exact scattering amplitude under resonance 
The last step is to demonstrate that a small 

inhomogeneity in the LHM slab can significantly contribute 
into the scattered field in the regime similar to the well 
known Mie resonance scattering. Following [21], let us 
replace the local scattering potential ),(1 zxV  in Eq.(2) with 
an auxiliary non-local separable scattering potential 

),(),()()(),( 11 zxzxfzzxxzxV ʹ′ʹ′→ʹ′−ʹ′− ξξδδ      (7) 
Here zxkf ΔΔ= εδ201  is the Born scattering amplitude 

[16] and the function ),( zxξ  is normalized to unity. The 
Lippman -Schwinger Eq.(2) with a separable potential is 
resolved exactly in accordance with the well known theory 
of potential scattering [22]. The corresponding solution for 
the scattering amplitude gives 

( )ξξ )0(
111

1

1
~

Gf
fT

−
=                         (8) 

where a bilinear form with a scalar product is in the 
denominator. 

The Green function )0(
11G  of radiation propagating inside 

a perfect planar LHM slab is presented by the divergent 
integral [16]. However this Green function has been 
numerically calculated [23] for a lossy slab with 

 
Figure 3: Multiplicative effect in singularity transfer by LHM slab from the right outside plane zz ʹ′=  to the left (a) and 
right (b) outside focal planes )2( zLz ʹ′−−→ , )2(1 zLzz ʹ′−−<−< , and 12 zLz −→ , 12 zLzz −>>ʹ′ , 

respectively, via linelike scatterer 1zz =  near inside focal plane zLz ʹ′−→ 21 , zLz ʹ′−> 21 . 
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εδε i+−= 1  and 
µδµ i+−= 1  where both εδ  and 

µδ  are small positive real numbers. We performed an 

analytical estimation of this Green function in the 
asymptotical limit 1−=ʹ′µ , →ʹ′ʹ′µ  0 and revealed a 
resonance property of the scattering amplitude (8) with its 
resonance value 

µ ʹ′ʹ′≈ ifT /~
1                                (9) 

under the resonance condition 

11ln
2/122

0 <<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ʹ′ʹ′
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ʹ′ʹ′
⎟
⎠

⎞
⎜
⎝

⎛ Δ≈Δ
δε
µ

µL
zzk              (10) 

where both dimensions of the scatterer cross section are 
equal to zx ΔΔ = . Fig.4 demonstrates that the resonance 
value of the scattering amplitude (9) may be not so small for 
inhomogeneity dimensions of practical interest. At the same 
time, the inset in Fig.4 proves that the resonance condition 
(10) is satisfied, i.e. that the scatterer cross section has to be 

smaller than the free space wavelength.  

6. Discussion 
Let us discuss the resolution of a linelike scatterer with 

respect to its depth extension in the LHM slab. Firstly note 
that the defocusing parameters zδ  and zʹ′δ  defined in the 
section 4 are supposed to be much larger than the linelike 

scatterer cross dimensions. Nevertheless, these defocusing 
parameters can be much less than the wave number in the 
background, 10 <<zk δ  and 10 <<ʹ′zk δ , until the linelike 
scatterer cross dimensions are also much less than the wave 
number, 10 <<Δzk  and 10 <<ʹ′Δzk .  

Consider in greater detail Eq.(6) for the Green function of 
inhomogeneous slab reflected radiation 

),;,(

),0(),;,(

11
)(

00

)0(
0000

zxzxG

zzxGzxzxG
R ʹ′+

ʹ′−=≈ʹ′ʹ′              (11) 

where the term ),0(),0(~
00

)(
00 zxGzxGTG R ʹ′==−= δδ  

takes the form  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ʹ′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≈ʹ′

zkzk
TzxzxG R

δδπ 00
211

)(
00

2ln2ln
)2(
1~),;,(  (12) 

in the quasistatic limit. We remind that the empty space 
Green function is proportional to the first type Hankel 
function of the zero order, )(0 ρ

G  = )()4/1( 0
1
)0( ρkHi , 

and asymptotically tends to the logarithm expression, 
)/2()2/1( 0ρπ kLn , in the quasistatic limit, 10 <<ρk .  

The term )(
00
RG  describes the contribution of a linelike 

scatterer into the Green function of the inhomogeneous 
LHM slab in the case of reflection from the slab. This term 
is proportional to the scattering amplitude of the scatterer 
and is the product of two Green functions' quasistatic 
singularities, provided the source and receiver points being 
focused on the scatterer with small defocusing parameters.  

A resolution of a linelike scatterer with respect to its 
depth extension is defined by the first logarithm in the right 
hand side of Eq.(12). Fig.5 gives illustration to Eq.(12) 
presenting the normalized quantity )(

00
RG  as a function of 

the defocusing parameter zδ  measured in the linelike 
scatterer thickness zΔ . 

7. Conclusions 
Wе describe а phenomenon of electromagnetic wave 

virtual singular scattering as if the wave virtual receiver and 
virtual source points were in the near zone of а scatterer. 
Such singular scattering can be realized in the case when the 
scatterer is positioned inside а left-handed material slab and 
the real source and real receiver points are placed at definite 
positions outside the slab.  

Let us stress that a phenomenon of virtual singular 
scattering is inherent exclusively in such artificial media 
which transfer the singularity of the free space Green 
function by implementing the coordinate transformation. 
Contrary, ‘ordinary’ singular scattering can be realized in 
natural media. The paper [24] gives interesting example for 
real (not virtual) singular scattering when a scatterer and an 
observation point (receive) both approach the so-called near 
field zone of a source of electromagnetic waves and the 
scattering process becomes singular via the spatial 
singularity of the free space Green function at the origin. In 
the paper [24] such real singular scattering situation is 
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Figure 4: Calculated resonance scattering amplitude (9) 
versus the normalized dimension of the linelike 
inhomogeneity with small constant value of the dielectric 
permittivity 1.0=δε  inside the LHM slab (black box in 
Figure 2) for the imaginary part of the inhomogeneity 
magnetic permeability 210−=ʹ′ʹ′µ  (solid curves), 310−  
(dashed curves) and the magnetic permeability real part 
equal to 1−=ʹ′µ . The inset visualizes the inequality (10).  
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realized in the framework of the moving ionospheric ridge 
employing to develop a method treating the inverse 
scattering problem for a buried inhomogeneous dielectric 
strip, based on ground field measurements. The real singular 
scattering situation is considered in [24] with the aid of total 
electric field evaluation inside the scatterer volume that 
forced to make restriction of Born approximation. In 
difference from [24], we apply a more productive technique 
of T- scattering operator of inhomogeneity obeying the 
Lippman - Schwinger equation to s-polarized electric wave 
field multiple scattering by a dielectric inhomogeneity 
placed inside a left handed material slab. This technique 
enables us to consider Mie resonances of inhomogeneity in 
situation of virtual (not real) singular scattering. 

As is known [25], light distribution near the focus of a 
right handed material lens is written in terms of Lommel's 
functions that are regular and non-singular. Contrary, the 
wave field near the inside focus of a perfect Veselago's lens 
is described by the Green function of empty space, with the 
virtual source point being placed in this inside focus. The 
wave field near an outside perfect Veselago' s lens focus 
also demonstrates a similar singular behaviour and can be 

described by the empty space Green function with a 
virtual source point placed in this outside focus. As a 
consequence, the result is the phenomenon of singular wave 
scattering by а weak and thin dielectric inhomogeneity as а 
linelike scatterer placed near the inside focus of Veselago's 
lens. In this case the linelike scatterer is radiated by a 
singular quasistatic field near the inner focus of Veselago's 
lens that enhances the effect of scattering. Besides, the 
scattered radiation outgoing from the left-handed material 

slab is enhanced in a similar singular manner near the 
outside focus of Veselago's lens. As a result, the effect of 
wave scattering by a linelike scatterer near the inside 
Veselago's lens focus appears to be proportional to the 
product of singular quasistatic parts of two empty space 
Green functions, which means а multiplicative quasistatic 
singularity of the Green function for an inhomogeneous left-
handed material slab. 

Modelling the linelike scatterer by a non-local separable 
scattering potential reveals a resonance property of the 
scattering amplitude related to the singular behaviour of the 
Green function for waves propagating inside a perfect left-
handed material slab. 

Finally, note that the positions of the inside and outside 
focuses of a flat slab of homogeneous left handed material 
(perfect Veselago' s lens) are defined by the positions of a 
real source and a real receiver points and a slab thickness. 
Therefore for a given small inhomogeneity inside a left-
handed material slab such positions of real source and real 
receiver points can be found which gives rise to a visible 
image of the inhomogeneity due to the described 
phenomenon of singular scattering.  

The latter statement has at least two conclusions. First, the 
principle of non-contact tunneling near field optical 
microscopy with some features of tomography can be 
proposed using optical singularities produced by a Veselago 
like medium, in a manner as if an optical antenna of a near 
field scanning microscope would be able to penetrate inside 
a tested surface [26]. Indeed, Veselago like medium allows 
the displaying of a set of near field images taken from 
different observation points of an object using any 
projection rendering system. Due to the phenomenon of 
electromagnetic wave virtual singular scattering, the 
brightness of an object image would be as high as if the 
source and receiver were both located in the near field zone 
of the object. Second, in the Introduction we note that left-
handed materials are currently considered as media which 
enable precise control over the flow of electromagnetic 
waves. Using these artificial materials, the first microwave 
cloaking has been achieved [27]. However, even an ideal 
perfect cloak (curved electromagnetic space) may be 
electromagnetically detected within its working band [28] on 
the basis of radiation (some kind of electromagnetic source) 
generated at the propagation of a fast-moving charged 
particle through the cloak. At the same time, perfect 
artificial material consisting of huge amounts of identical 
electrotechnical elements are rather an illusion in practice. 
Defects of such materials may function as the 
abovementioned current sources [28]. One sort of such 
defects, i.e. a dielectric inhomogeneity in a left handed 
material slab, has been considered in this paper. 
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