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Abstract 
Recently, there has been growing interest in dual-pol 
systems that transmit one polarization and receive two 
polarizations. Souyris et al. proposed a DP mode called 
compact polarimetry (CP) which is able to reduce the 
complexity, cost, mass, and data rate of a SAR system while 
attempting to maintain many capabilities of a fully 
polarimetric system. This paper provides a comparison of 
the information content of full quad-pol data and the pseudo 
quad-pol data derived from compact polarimetric SAR 
modes. A pseudo-covariance matrix can be reconstructed 
following Souyris’s approach and is shown to be similar to 
the full polarimetric (FP) covariance matrix. Both the 
polarimetric signatures based on the kennaugh matrix and 
the Freeman and Durden decomposition in the context of 
this compact polarimetry mode are explored. The Freeman 
and Durden decomposition is used in our study because of 
its direct relationship to the reflection symmetry. 
We illustrate our results by using the polarimetric SAR 
images of Algiers city in Algeria acquired by the 
RadarSAT2 in C-band.  

1. Introduction 
The polarimetric radar synthetic aperture radar (PolSAR) 
images are formed by radar echoes of various combinations 
of transmitting and receiving polarizations from scattering 
media [1]. Single polarimetric radar systems (SP) operate 
with single fixed polarization antenna for both 
electromagnetic wave transmission and reception, for 
example transmitting horizontally polarized radiation and 
receiving horizontal polarization. 

The full polarimetric SAR (FP-PolSAR) design 
architectures are built around the standard linear basis, i.e., 
horizontal (H) and vertical (V). On transmission, the radar 
interleaves pulses with H and V polarizations. On-receive, 
both polarizations are simultaneously and coherently 
recorded [1,2]. This quad-pol system produces the 
scattering matrix containing the four backscatter 
measurements (HH, HV, VH and VV) which allow much 
more information to be extracted from target scene. Indeed, 
FP mode has proven its increased potential compared to a 
single channel acquisition, but suffer from an increase in the 
pulse repetition frequency by a factor of two and an 
increase in the data rate by a factor of four over single 

polarization [3]. Their imaged swaths also are halved, 
resulting in reduced coverage and a degraded revisiting time 
[3]. The L-band PALSAR on board of the Japanese ALOS, 
for example, can only image 35-km swaths at incidence 
angles of less than 27° when operating in FP mode. 
Similarly, the Canadian Radarsat-2 offers a quad-
polarimetric mode over a wider range of incidence angles 
(20°–40°) but a swath width of only 25 km [4]. 

Recently, dual-mode partially polarimetric SAR systems 
(DP) have been proposed such us Envisat ASAR, the 
Japanese L-band PalSAR, the European X-band TerraSAR-
X, and the Canadian C-band RadarSAT 2, where one 
polarization (H or V) is transmitted, whereas two are 
received. These DPmodes collect only half of the full 
scattering matrix, either (HH, VH) or (VV, HV). This 
reduces both the data processing requirements and the 
information content of the polarimetric imagery. The 
acquired data set has the same coverage as for the single 
transmit polarization, but provides added information due to 
the two independent channels on-receive. From a mission 
standpoint, the DP imaging modes collect a wider swath 
width, and hence greater area coverage, as compared to 
quad-pol (FP) imagery. However, the per-pixel information 
content is less for DP imagery than for quad-pol imagery, 
which tends to favor quad-pol data collection [5]. 

Other system configurations have been also proposed 
and called compact polarimetry [6,7]. In these polarimetric 
configurations, only one transmit/receive cycle is required 
instead of two in a quad-pol system, reducing the pulse 
repetition frequency and data rates by a factor of two for a 
given swath width. Souyris et al. [6] introduced the π/4 
compact polarimetric mode, in which the transmitted 
polarization is the superposition of linear horizontal and 
vertical polarizations H+V, resulting in a linear polarization 
oriented at 45° with respect to the horizontal. The radar 
receives returns in horizontal and vertical polarizations. 
Another hybrid DP mode is the circular transmit, linear 
receive (CTLR) mode [7]. As the name suggests either a left 
or right circularly-polarized signal is transmitted and both H 
and V polarizations are coherently received. The 
polarimetric models employed assume both reflection 
symmetric scattering, and a relationship between the linear 
coherence and the cross-polarization ratio to construct a full 
reflection symmetric polarization matrix from the 2×2 
covariance data [6]. An equivalent covariance or coherency 
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matrix may be reconstructed to produce the so-called 
pseudo quad-pol data that accurately reproduces the full 
quad-pol data. 

The compact polarimetry was proposed to assess 
various architecture designs that could be implemented on 
low-cost/low-mass. In that context, the comparison between 
FP versus DP is a subject of most importance. 

This paper provides a comparison of the information 
content of full quad-pol data and the pseudo quad-pol data 
derived from compact polarimetric SAR modes. A pseudo-
covariance matrix can be reconstructed following Souyris’s 
approach and is shown to be similar to the full polarimetric 
(FP) covariance matrix. Both the polarimetric signatures 
based on the kennaugh matrix and the Freeman and Durden 
decomposition in the context of this compact polarimetry 
mode are explored. The Freeman and Durden decomposition 
is used in our study because of its direct relationship to the 
reflection symmetry. 

We illustrate our results by using the polarimetric SAR 
images of Algiers city in Algeria acquired by the 
RadarSAT2 in C-band.  

2. Data used 
The study area is located in the west of the city of 

Algiers which is the capital of Algeria. It consists mainly of 
urban areas, agriculture fields and sea. The data was 
acquired on 11th April 2009 by RADARSAT2 in a fully 
polarimetric mode in C-band. Table 1 gives more 
information about the acquisition and Fig. 1 shows the RGB 
image of the test site. 

 

3. Full polarimetry theory 
The fundamental quantities measured by a polarimetric 
SAR are the scattering matrix elements 푆 , where t and r 
are the transmit and receive polarizations, respectively. The 
scattering matrix representation as defined in the linear (H, 
V) basis is [8]: 

푆 = 푆 푆
푆 푆                                             (1) 

Rewriting this matrix in the equivalent vector in the 
Lexicographic basis yields: 

푘⃗ = 푆 √2푆 푆                                  (2) 

Where the superscript T indicates, the transpose operator. 
The scattering vector in the Pauli basis is given as: 

             푘 ⃗ =
√

[푆 + 푆 푆 − 푆 2푆 ]          (3) 

For multilook processed 3x3 positive semi-definite 
hermitian coherency and covariance matrices: 

〈[푇]〉 = 〈푘 ⃗푘⃗
∗
〉                                                               (4) 

〈[퐶]〉 = 〈푘⃗푘⃗∗ 〉                                                                   (5) 

Where the superscript *T denotes the conjugate transpose 
operator. The symbol < > indicates ensemble averaging. The 
coherency matrix is related to the covariance matrix as [8]: 

[퐶] =
1
2

1 1 0
0 0 √2
1 −1 0

[푇]
1 0 1
1 0 −1
0 √2 0

 

    =
|푆 | √2(푆 푆∗ ) 푆 푆∗

√2(푆 푆∗ ) 2|푆 | √2(푆 푆∗ )
푆 푆∗ √2(푆 푆∗ ) |푆 |

   (5) 

In the case of a target characterized by reflection 
symmetry [9], the following relations hold: 

       〈푆 푆∗ 〉 = 〈푆 푆∗ 〉 = 0                                          (6) 

Equations (5) can then be written as: 

[퐶] =
|푆 | 0 푆 푆∗

0 2|푆 | 0
푆 푆∗ 0 |푆 |

                   (7) 

Table 1: Polarimetric data characteristics 
Frequency C-Band  (5.3 GHz) 
Polarization HH, HV, VH, VV (Single Look 

Complex) 
Resolution  11x9 m (azimuth) * (distance) 
Swath width 25 km 
Mode Fine Quad-Pol 
Date of acquisition April 11th   2009 
Time of acquisition 10 :54 pm GMT  
Orbit Ascending, Ref : DT14 
Incidence angle 38.34-39.81° 

 
Figure 1: The RGB image of the polarimetric data of the 
test site (Red:HH, Green:HV and Blue:VV). 
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4. Compact polarimetry theory 
Compact polarimetry is a technique that allows construction 
of pseudo quad-pol information from dual-polarization SAR 
data. 

If a single polarization is transmitted, whereas the two 
canonical orthogonal linear polarizations (H and V) are 
received, the 2-D measurement vector (or observable) 푘⃗  is 
the projection of the full backscattering matrix 푆  on the 
transmit polarization state. The relation between 푘⃗  and 푆 
is given by [3]: 

                     푘⃗ = 푆 퐽⃗                                                  (8) 

Where 퐽⃗ , represents the transmitted Jones vector. Table 2 
provides examples of Jones vectors for canonical 
polarization states. 
 

Table 2: Jones vector for canonical polarization states 
 Polarization cases 

H V RC LC 
 퐽⃗   1

0  0
1  1

√2
1
−푖  

1
√2

1
푖  

 (휓, 휒) (0°, 0°) (90°, 0°) (푢푛푑, 45°) (푢푛푑,−45°)
In this table (휓, 휒)  stands for orientation and ellipticity 
angles, RC and LC for Right and Left circular respectively. 
Und means undefined 

The scattering vectors 푘⃗  for the π/4, dual circular 
polarimetric (DCP), and right circular transmit, linear 
(horizontal and vertical) receive or hybrid (CTLR) modes are 
given in Table 3 [5]. 
 

Table 3: Compact polarimetry modes 
Mode  Trans/Recep  푘⃗  
π/4 45°/(H,V) [푆 + 푆 푆 + 푆 ] /√2 
DCP RC/(RC,LC) [푆 푆 ] =

[푆 − 푆 + 푖2푆 푖(푆 + 푆 )] /
2   

CTLR  RC/(H,V) [푆 − 푖푆 −푖푆 + 푆 ] /√2 
In this table, 45° stands for linear polarization with a 
45°inclination. 
 

Fig. 2 shows the different configurations of the CP 
modes. 

The two vectors 푘⃗  and 푘⃗  are related by the 
following equation [10]. 

                                 푘⃗ =
√

1 −푖
1 푖 푘⃗               (9)     

The two vectors have equivalent polarimetric 
information. This case is important because it means that the 
analysis of the data from these two modes should generally 
lead to the same results. 

The measured compact polarimetric vector 푘⃗  and its 
corresponding covariance matrix 퐶  are given by: 

                   푘⃗ = [퐶푃 퐶푃 ]                                    (10)            

                  퐶 = 〈푘⃗ 푘⃗∗ 〉 = 퐶 퐶
퐶 퐶                     (11) 

 

 
Figure 2: The three configurations of the compact 
polarimetry (a) π/4 , (b) CTLR and (c) DCP. 

 
 
Where 퐶 = 〈|퐶푃 | 〉 , 퐶 = 퐶 ∗ = 〈퐶푃 ∗ 퐶푃 ∗〉  and 
퐶 = 〈|퐶푃 | 〉 . 퐶 , is Hermitian and provides four 
measurements, two real diagonal terms and the real and 
imaginary parts of one of the off-diagonal terms. 

The relevant 2x2 Hermitian covariance matrices become: 

퐶 = 〈푘⃗ 푘⃗∗ 〉 =

    
〈|푆 | 〉 〈푆 푆∗ 〉
〈푆 푆∗ 〉 〈|푆 | 〉 + 〈|푆 | 〉 1 1

1 1 +

 2ℜ(〈푆 푆∗ 〉) 〈푆 푆∗ 〉 + 〈푆 푆∗ 〉
〈푆∗ 푆 〉 + 〈푆 푆∗ 〉 2ℜ(〈푆 푆∗ 〉)           (12) 

[퐶 ] = 〈푘⃗ 푘⃗
∗
〉

=
1
4

〈|푆 − 푆 | 〉 〈−푖(푆 − 푆 )(푆 + 푆 )∗〉
〈−푖(푆 + 푆 )(푆 − 푆 )∗〉 〈|푆 + 푆 | 〉   

+  4〈|푆 | 〉 0
0 0

+

 4〈ℑ((푆 − 푆 ). 푆∗ )〉 2〈(푆 + 푆 )∗〉
2〈(푆 + 푆 ).푆∗ 〉 0             (13) 

[퐶 ] = 〈푘⃗ 푘⃗
∗
〉 

=
1
2

〈|푆 | 〉 〈푖(푆 푆∗ )〉
〈−푖(푆 푆∗ )〉 〈|푆 | 〉 +

1
2
〈|푆 | 〉 1 −푖

푖 1  

+ −2ℑ(〈푆 푆∗ 〉) 〈푆 푆∗ 〉 + 〈푆 푆∗ 〉
〈푆∗ 푆 〉 + 〈푆 푆∗ 〉 2ℑ(〈푆 푆∗ 〉)       (14) 

The resulting compact polarimetry covariance matrices 
are expressed as a sum of three terms. The first term 
contains elements that depend only on 푆  and 푆 , the 
second term contains 〈|푆 | 〉 elements, and the last term 
consists only of co-polarization (co-pol) and cross-pol 
correlations. 
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We come up with an undetermined system of four 
equations (linked to the two real measurements 퐶 , 퐶  and 
the complex one 퐶 ) and six variables: 

 
H=〈|푆 | 〉,      푉 = 〈|푆 | 〉,     X= 〈|푆 | 〉,  
P=〈푆 푆∗ 〉,     〈푆 푆∗ 〉    and   〈푆 푆∗ 〉). 
 
Additional information is, therefore required to solve it. 

For this reason, two hypotheses related to the polarimetric 
behavior of the compact covariance matrix components have 
been introduced [6]. 

 The first one suppose reflection symmetry as stated 
in equation (6). 

 The second assumption relates the co-pol 
correlation coefficient to the relative magnitudes of 
the cross-pol and co-pol responses. 

                                        ≈ | |
                      (15) 

Where 휌 = 〈 ∗ 〉
〈| | 〉.〈| | 〉

 is the linear correlation 

between 푆   and 푆 . 
The assumption of reflection symmetry implies that the last 
term is null and the covariance matrices become: 

퐶 = 〈푘⃗ 푘⃗∗ 〉 =
1
2
〈|푆 | 〉 〈푆 푆∗ 〉
〈푆 푆∗ 〉 〈|푆 | 〉  

                               + 〈|푆 | 〉 1 1
1 1                               (16) 

[퐶 ] = 〈푘⃗ 푘⃗
∗
〉

=
1
4

〈|푆 − 푆 | 〉 〈−푖(푆 − 푆 )(푆 + 푆 )∗〉
〈−푖(푆 + 푆 )(푆 − 푆 )∗〉 〈|푆 + 푆 | 〉   

                              +  4〈|푆 | 〉 0
0 0

                               (17) 

[퐶 ] = 〈푘⃗ 푘⃗
∗
〉 

=
〈|푆 | 〉 〈푖(푆 푆∗ )〉

〈−푖(푆 푆∗ )〉 〈|푆 | 〉 + 〈|푆 | 〉 1 −푖
푖 1  (18) 

Here, each mode reduces to a system of four equations 
from the covariance matrix and five unknowns. For the π/4 
and CTLR modes, the unknowns are |푆 | , |푆 | , |푆 | , 
(푆 푆∗ )and (푆 푆∗ ), where the last unknown is complex. 
As stated in equation (17), the DCP mode depends on the 
Pauli basis coefficients (푆 − 푆 ) , (푆 + 푆 ) , and 푆 . 

The assumption of reflection symmetry implies that the 
last term is null and the covariance matrices become: 

           퐶 = 〈푘⃗ 푘⃗∗ 〉 =
〈|푆 | 〉 〈푆 푆∗ 〉
〈푆 푆∗ 〉 〈|푆 | 〉 + 

                      〈|푆 | 〉 1 1
1 1                                    (19) 

              [퐶 ] = 〈푘⃗ 푘⃗
∗
〉 = 

1
4

〈|푆 − 푆 | 〉 〈−푖(푆 − 푆 )(푆 + 푆 )∗〉
〈−푖(푆 + 푆 )(푆 − 푆 )∗〉 〈|푆 + 푆 | 〉   

      +  4〈|푆 | 〉 0
0 0

                                               (20) 

            [퐶 ] = 〈푘⃗ 푘⃗
∗
〉 

=
1
2

〈|푆 | 〉 〈푖(푆 푆∗ )〉
〈−푖(푆 푆∗ )〉 〈|푆 | 〉 +

1
2
〈|푆 | 〉 1 −푖

푖 1  

                                                                                    (21) 

5. Pseudo quad-pol reconstruction algorithm 
The construction of the pseudo quad-pol covariance matrices 
from the compact polarimetry modes is based on a pair of 
equations that are iteratively solved for 〈|푆 | 〉 [6]. 

5.1. π/4 mode solution 

For the π/4 mode, the solution of equations starts with the 
initial values of 〈|푆 | 〉  and the linear co-polarization 
coherence  휌 = 휌 . 

          휌( ) =                                                 (22)  

           〈|푆 | 〉( ) = ( )

( )
                        (23) 

and then iterates the following equations: 

            휌( ) =
〈| | 〉( )

〈| | 〉( ) ( 〈| | 〉( ))
 

                                                                                    (24) 

            〈|푆 | 〉( ) = ( )

( )
 

                                                                                  (25) 
Given a value for 〈|푆 | 〉 = 〈|푆 | 〉( ) (where n is the 

order of iteration), the pseudo quad-pol covariance matrix is 
then constructed by: 

           [퐶]  = 

           
퐶 − 〈|푆 | 〉 0 퐶 − 〈|푆 | 〉

0 2〈|푆 | 〉 0
(퐶 − 〈|푆 | 〉)∗ 0 퐶 − 〈|푆 | 〉

  

                                                                                    (26)      
The null components are the characteristic of the 

reflection symmetry assumption. 

5.2. DCP mode solution 

The iterative equations and pseudo quad-pol covariance 
matrix for the DCP mode are [5]: 

              휌( ) =
〈| | 〉( )

〈| | 〉( ) ( 〈| | 〉( ))
            (27) 

            〈|푆 | 〉( ) = ( )

( )
                   (28) 

            [퐶]  =      

       
퐶 − 〈|푆 | 〉 0 퐶 + 〈|푆 | 〉

0 2〈|푆 | 〉 0
(퐶 + 〈|푆 | 〉)∗ 0 퐶 − 〈|푆 | 〉

 (29) 
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〈|푆 | 〉 = 〈|푆 | 〉( ) . 

5.3. CTLR mode solution 

The construction of the pseudo quad-pol covariance matrices 
CTLR mode is similar to the previous mode. The iterative 
equations and pseudo quad-pol covariance matrix for the 
CTLR mode are [5]: 

           휌( ) =
〈| | 〉( )

〈| | 〉( ) ( 〈| | 〉( ))
            (30) 

            〈|푆 | 〉( ) = ( )

( )
                  (31) 

            [퐶]   

=
퐶 − 〈|푆 | 〉 0 푖퐶 + 〈|푆 | 〉

0 2〈|푆 | 〉 0
(푖퐶 + 〈|푆 | 〉)∗ 0 퐶 − 〈|푆 | 〉

 

                                                                                    (32) 
〈|푆 | 〉 = 〈|푆 | 〉( ). 

For all the three modes, it occurs that  휌( ) may become 
larger than one for certain pixels, or even that its 
denominator becomes the square root of a negative number. 
In both cases, we regularize by setting 휌( ) = 1  and  
〈|푆 | 〉( ) = 0 and then halt the iteration. 

Using CTLR mode would involve the same properties as 
those established hereafter with transmitted linear 
polarization [6]. The two vectors of CTLR and DCP modes 
have also equivalent polarimetric information, so they 
should generally lead to the same results. Therefore, we will 
limit our discussion in this paper to the π/4 mode.  

5.4. Modification of the compact polarimetry 
reconstruction algorithm 

The second assumption proposed by souyris et al. may not 
always hold [5]. Hence, an alternate method has been set out 
for approximating the value of X in order to derive better 
pseudo quad-pol representations. The construction 
algorithms employ for iteratively updating X:   

           〈|푆 | 〉( ) = (퐶 +퐶 ) ( )

( ( ) )
    (33) 

Where  푁 = (|푆 − 푆 | )/|푆 |  
The value of N is estimated from the resulting original 

reconstruction algorithm. 
To show the performance of the reconstructed algorithm, 

a full quad-pol data set was used to generate the CP mode, 
and then the corresponding pseudo quad-pol data sets were 
constructed via (21)-(33) equations. The datasets used to 
illustrate the CP mode are the RADARSAT2 C-band fully 
polarimetric images of the west region of the Algiers city 
and an agriculture field region situated in the south of the 
same town. It contains symmetric and non-symmetric 
scattering SAR targets. 

6. Linear co-polarization coherence |흆풉 풗| 
mapping 

6.1. Linear co-polarization coherence |흆풉 풗| mapping 

Fig. 3 displays the mapping of the degree of coherence 
|휌 = 휌 | for consecutive orders of estimation. The test is 
conducted on the same zone which is the west region of 
Algiers, with a 5X5 analysis window. Fig. 3.a displays the 
FP reference value. The first order estimate shown in Fig. 
3.b produces a “milky” impression, which alters the image 
contrast. However, the third estimated coherence shown in 
Fig. 3.c is qualitatively very close to the FP coherence.  
Fig. 3d displays the last estimate of the reconstructed degree 
coherence versus the actual degree of coherence. As 
expected, this figure shows very good reconstruction 
performances. 

6.2. Quantitative assessment 

For comparison, the original FP data are shown in Fig. 4a 
with H in red, X in green, and V in blue. The π/4 mode 
synthesized result is shown in Fig. 4b. We notice some 
differences between these two images, especially in the X 
intensity in some urban areas, which is noticeably lower for 
the CP mode. However, strong similarity does exist in 
polarimetric response of most of the rest of the test area.  

Fig. 5 shows scatter plots detailing how well the derived 
pseudo-quad-pol results fit the original quad-pol. It shows 
also the performance of the reconstruction algorithm. Most 
of the points of the scatter plot fall close the one-to-one line 
with small spread. A small systematic overestimation of the 
|푆 |  can be observed over this data. For every channel, an 
overall agreement is observed between the reconstructed and 
actual radiometric values. 

6.3. Compact polarimetric signatures 

The concept of the polarization signature of a scatterer was 
used by Van zyl et al. [11] to graph the power of a return 
wave as a function of transmit and receive polarizations. The 
backscattering radar cross section is given by: 

           휎(휓, 휒) = 푆⃗[퐾]푆⃗                                       (34) 

Recall that t and r denote the received and the transmitted 
polarizations.  k is the transmitted wavenumber, ψ and χ are 
the orientation and the ellipticity angles. The first angle (ψ ) 
ranges between  0° to 180° and the second one (χ ) is 
defined between -45° to 45°. 
푆⃗  is the normalized Stokes vector defined as: 

           푆⃗ =

1
cos(2휓 ) sin (2휒 )
sin(2휓 ) cos (2휒 )

sin (2휒 )

                               (35) 

The subscript i denotes r or t. 
The elements of the Kennaugh matrix [K] can be calculated  
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from the coherency matrix [T] as follows [2] 

           푘 = 푡푟([푇]휂 )                                            (36) 

With 휂 = (−1) [퐴]휎 ⨂휎 [퐴]∗      

Where  [퐴] =
√

1 0 0 1
1 0 0 −1
0
0

1
푖

1
−푖

0
0

  and 훿 = 0 푖 ≠ 푗
1 푖 = 푗 

휎 , = (푖, 푗 = 0,1,2,3) are the four Pauli matrices given by 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
휎 = 1 0

0 1 ,  휎 = 1 0
0 −1 , 휎 = 0 1

1 0 ,  and 휎 =
0 −푖
푖 0  

The symbol   denotes the standard tensorial Kronecker 
matrix product. 

One collects coherent CP SAR imagery by transmitting a 
given polarized signal and then coherently receiving any 
pair of orthogonal polarizations. While the transmitted 
polarization is fixed, from the coherently received signals 
one may synthesize the response of any receive polarization. 
 
 

         
(a)                                                                                                 (b) 

 

                          
                         (c)                                                                                                   (d)  

Figure 3: Degree of coherence |휌 = 휌 |, (a) reference value of |휌 | inferred from FP.  (0=black, 1=white), (b)-(c) 
first- and second-order estimates of |휌 |, (d) reconstructed degree of coherence (3rd order estimates) versus actual 
degree of coherence (reference value   ) 
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Therefore, the received power, as a function of the ellipticity 
and orientation angles of the received polarization, 
completely characterizes the CP response. 

The two-dimensional surface plot of the received power 
as a function of polarization ellipticity and orientation 
provides a simple, graphical way to display this result. 
Plots of the CP response from a variety of scattering 
mechanisms, e.g. rough surface, dihedral, dipole, allow for 
an easy visual analysis of the CP information. The results for 
the selected subregions shown in Fig. 6 that consist 
primarily of  sea, grass field and urban structure are given in 
Fig. 7 and Fig. 8 where  the quad- and CP. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signatures of surface scattering and dihedral scattering 
representing three subregions were plotted and compared 
against each other.   
Of note in these figures is that employing the CP- and quad-
pol signatures yield essentially the same results. 

As shown in these figures, the urban targets have the 
double-bounce reflection properties and the sea and the 
grass fields have the surface scattering characteristics.  

6.4. Three component decomposition 

Freeman and Durden [12] introduced an unsupervised 
classification based on a three-component scattering model 
under the well-known reflection symmetry condition using  

         
  

                         (a)                                                                                                   (b)  
Figure  4: Full (a) RGB versus compact polarimetric (b) RGB color composit images,  (Red:H, Green:X, Blue:V) 

 
                          
Figure 5 : Reconstruction performance for H, V and X channels. Scatter plots of  (a)Hfp-HCP, (b) Vfp-Vcp and (c) Xfp-Xcp 
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Figure 6: The selected regions of interests to generate the 
polarimetric signatures in full and compact modes. The 
three outlined areas the urban (double-bounce scattering), 
grass (surface scattering), and sea (Bragg surface) regions 
over which the polarimetric signatures are examined. 
 
the covariance matrix. The components of the scattering 
matrix are analyzed to assign each pixel to one of three 
scattering categories of the model: surface, double-bounce 
scattering, and volume scattering. The mechanisms are a  
 

 
Figure 7: Co- and cross-polarimetric signatures using 
full polarimetric mode (a) urban region, (b) Agriculture 
field region, and (c) sea region. 

 
 
 

canopy scatter from a cloud of randomly oriented dipoles, 
even- or double-bounce scatter from a pair of orthogonal 
surfaces with different dielectric constants, and Bragg 
scatter from a moderately rough surface. 

The Freeman-Durden model for the scattering and 
covariance matrices are: 

 For the scattering processes for slightly rough 
surfaces 

           [푆] = 훽 0
0 1 ⟹ 〈[퐶]〉 =

|훽| 0 훽
0 0 0
훽∗ 0 1

       (37) 

The obtained covariance matrix terms are : 〈|푆 | 〉 = |훽| , 
〈|푆 | 〉 =1, 〈푆 푆∗ 〉 =  훽, 〈|푆 | 〉 = 0 and 〈푆 푆∗ 〉 =
〈푆 푆∗ 〉 =  0. 
Where 훽  is a parameter related to the relative dielectric 
constant of the surface and the local orientation angle. 

 For the double-bounce scattering 
The scattering matrix and the corresponding covariance 
matrix are: 

           [푆] = 훼 0
0 1 ⟹ 〈[퐶]〉 =

|훼| 0 훼
0 0 0
훼∗ 0 1

      (38) 

Where 훼  is related to tree trunk and ground reflection 
coefficients for horizontal and vertical polarizations. 

 For a cloud of identical particles with random  
orientations and very thin horizontal cylinders like needle 
scatterers, the volume scattering averaged covariance matrix 
is given by 
 

 
 
 

 
Figure 8: Co- and cross-polarimetric signatures using 
compact polarimetric mode (a) urban region, (b) 
Agriculture field region, and (c) sea region. 
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           〈[퐶]〉 =
1 0 1/3
0 2/3 0

1/3 0 1
                            (39) 

Finally, the covariance matrix of these models of the 
decomposition has the following form: 

           〈[퐶]〉 = 푓 〈[퐶]〉 + 푓 〈[퐶]〉 + 푓 〈[퐶]〉           (40) 

Where 푓 , 푓 , and  푓 , are the coefficients of the surface, 
double-bounce and volume scattering respectively. 
The model for the total backscatter is 

           〈[퐶]〉 =
퐶 0 퐶
0 0 0
퐶∗ 0 퐶

                                   (41) 

Where 퐶 = 푓 |훽| + 푓 |훼| + 푓 ,  

퐶 = 푓 훽 + 푓 훼 + 푓 , 퐶 = 푓 + 푓 + 푓  
Finally, we estimate the contribution of each scattering 
mechanism to the span 

           푠푝푎푛 = |푆 | + 2|푆 | + |푆 |  

                     = 푃 + 푃 + 푃                                        (42) 

With 푃 = 푓 (1 + |훽| ), 푃 = 푓 (1 + |훼| ) and 푃 = 푓  
 

Fig. 9a and 9b shows the result of applying the Freeman-
Durden decomposition to the polarimetric data. In each 
figure, the contributions of each of the three scattering 
mechanisms to the total power are shown for each pixel, 
with surface scatter colored blue, volume scatter green, and 
double-bounce red. The relative strength of each color in the 
resulting RGB images can be related to the relative strengths 
of the scattering mechanisms. 
The blue areas are dominated by single-bounce surface, or 
grass, backscatter whereas the red areas are dominated by 
double-bounce backscatter from man-made structures. The 
green areas are volume backscatter from forest canopy. The 
black linear patterns are the airport runways with low 
backscatter from their smooth surfaces. 
Double bounce scattering events can, however, originate 
from many natural situations. Among these situations are 
forest ground-trunk scattering interactions and scattering 
from abrupt, steep cliff. Man-made structures not aligned in 
the azimuth direction introduce higher cross-pol returns. 
This explains the observed strong volume scattering areas in 
green color which is defined by the strength of |푆 | . 
The agreement between the CP data and the FP data can be 
tested using a scatter plot which represents the comparison 
between them as shown in Fig. 10 The three CP- and FP-
components are seen to be hignly correlated. 

7. Conclusion 
In this study, we have investigated to what extent the CP 
mode permits to reconstruct the FP information from a single 
linear transmitted polarization and a reception of two 
orthogonal polarizations. However, the key property used to 
estimate the FP information is reflection symmetry, which  
 

 
 

 
                                         (a) 
 

 
                                        (b) 
Figure 9: Freeman-Durden image, the red channel is 푓 , 
the green channel is 푓 , and the blue channel is 푓  (a) 
RGB-full polarimetric image. (b) RGB-compact 
polarimetric image 

 
reveals a complete decorrelation of copolarized and cross-
polarized backscattering coefficients.  

We have investigated also the CP mode discriminating 
capability using polarimetric signatures which provide a 
complete, easy graphic means to analyze the scattering  
mechanism information in any mode. In particular, we 
showed that the CP signature plots compare well to their 
corresponding quad-pol.  

The Freeman-Durden decomposition based on the 
symmetry of the geophysical media is derived for the CP- 
and FP-mode. The results indicate that the generated  
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pseudo quad-pol compares well to the original quad-pol 
imagery.  

As a conclusion, a Compact polarimetry SAR  cannot be 
“as good as” a fully polarimetric system because an FP-SAR 
measures the 4x4 covariance scattering matrix of the scene, 
whereas a CP-SAR has access only to the 2x2 covariance 
matrix of the backscattered field. However, in many 
applications, the results enjoyed from a CP radar are 
equivalent to those from an FP radar. Consequently, 
Compact polarimetry showed promise of being able to 
reduce the complexity, cost, mass, and data rate of a SAR 
system while attempting to maintain many capabilities of a 
fully polarimetric system and it affords more target 
information than a single-pol system, while not suffering as 
much from the drawbacks of a quad-pol system. 
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Figure 10: (a)-(c) scatter plots of the reconstruction performance for odd ((풇풔) -(풇풔) ),  double((풇풅) -(풇풅) ) and 
volume scattering ((풇풗) -(풇풗) )parameters 
 


