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Abstract 

The concurrent flow of gas with a mixture of oil and water is often observed in production tubing in the 

petroleum industry. Lack of physical understanding of the several phenomenological characteristics of three-phase 

flow can lead to unsatisfactory production rates or even oversizing of pipelines. Additional investigations to gain 

more insight and development of more accurate correlations for prediction of flow characteristics including 

pressure drop is necessary. In this study, an experimental study was conducted using air-water and air-water-oil 

mixtures in a 0.075m diameter pipe. Superficial gas and liquid velocities ranged from 0.03 to 0.13 m/s and 1.26 to 

41.58 m/s respectively. Slug flow was the main flow pattern observed. In addition, the transition from churn to 

annular flow and annular were also observed. Due to the homogeneous nature of the oil-water-air mixture, the 

three-phase flow was evaluated as a pseudo-two-phase mixture. An Artificial Neural Network (ANN) model 

developed for the prediction of two-phase and three-phase pressure drop performed better than all models 

considered during the evaluation. Generally, it was found that the accuracies for pressure drop were considered 

adequate. 
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1. Introduction 

Simultaneous flow of gas and oil-water mixtures are common in production equipment found in the chemical industry, 

pipelines in the petroleum industry and also in various installations in the food industry [1]. Water fraction in the liquid 

phase can be in excess of 90% in numerous cases in the transportation pipelines in the petroleum industry [2]. Water 

injection in the reservoir to enhance production as part of enhanced oil recovery processes [3] among other tangible reasons 

can generate this phenomenon. The resulting three-phase flow may influence flow characteristics [4]. 

The pressure gradient is an essential characteristic of multiphase flow and is well connected to the estimation of other 

critical flow hydrodynamic parameters of inducts including void fraction [1]. Proper prediction of the pressure gradient is 

critical to enhancing production tubing design in the oil industry. Therefore, accurate prediction of pressure gradient would 

lead to improved safety in operations and performance of equipment and also higher returns on investment. 

The effect of three-flow characteristics in conduits differs significantly from that of two-phase flow. Comparatively, 

research efforts aimed at predicting pressure gradient in conduits have focused more on two-phase flows despite the 

occurrence of three-phase flows in industry. Though research efforts have been made by several authors [1, 5-12], additional 

attention must be paid to the behavior and characteristics of three-phase flows in conduits through the contribution of data 
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obtained from experimental studies as these may have a direct impact on pumping requirements and hence profitability. 

Furthermore, continued validation of existing prediction models and methods is necessary to enhance confidence in their 

capabilities and identify flaws for improvement.  

Improving the accuracy of pressure gradient predictions remain a major thrust for multiphase flow research and 

correlation development for flow parameters. Inherent complexities associated with varied phase distributions and a wide 

range of fluid properties encountered during production operations present challenges to the development of accurate 

correlations for pressure gradient predictions [13]. In summary, machine learning techniques and ANN, in particular, have 

been employed by some researchers to provide alternative prediction solutions for two-phase flow parameters including 

liquid holdup, pressure gradient and gas void fraction with success [13-16], however, we note that their use for three-phase 

flows is not reported in the open literature. 

2. Previous Work  

[16] employed neural networks to predict holdup and flow pattern in pipes under various angles of inclinations. They 

developed neural network models based on experimental data limited to a 1.5-inch (38.1 mm) pipe and low operating 

pressures.  They utilized a Kohonen-type network to classify the four different correlations for flow patterns with all input 

data.  The resulting classifications from the output layer in binary form were used as data input to a three-layer 

backpropagation neural network for predicting holdup.  Holdup values predicted by the neural network had a coefficient of 

determination(R
2
) value of 0.945. This showed an improvement in prediction when compared with Mukherjee’s result of 

0.904.  

[17] presented two Artificial Neural Networks (ANN) models capable of identifying the flow regimes and also 

calculating liquid holdup in the horizontal and near horizontal gas-liquid multiphase flow respectively. The published 

experimental data employed consisted of 111 data points from Minami and Brill who utilized air-water as well as air-

kerosene mixtures and 88 data points from Abdul-Majeed who used air-kerosene for his experiment. Models were developed 

using a three-layer feedforward backprop neural network. Superficial gas and liquid velocities, pressure, temperature and 

fluid properties were used as inputs to the network. The outputs of the first and second networks were flowed regime and 

liquid holdup respectively. Their results showed that the developed models provide better predictions and have higher 

accuracy than the empirical correlations (developed specifically for these data groups). The developed flow regime model 

predicted the flow regime correctly for more than 97% of the data points. The ANN liquid holdup model outperformed 

published models in terms of the lowest standard deviation (8.544) and the highest correlation coefficient (0.9896). 

[13] obtained experimental data from Eaton (128 data points, water-natural gas; 110 data points, water-natural gas), 

Beggs (30 data points, water-air; 28 data points, water-air), Mukherjee (74 data points, kerosene-air; 57 data points, lube oil-

air), Minami and Brill (57 data points, kerosene-air; 54 data points, water-air), and Abdul-Majeed (89 data points, kerosene-

air) respectively and trained a Multi-Layer Perceptron (MLP) neural network with 7 input variables (pipe diameter, 

superficial velocity of liquid, superficial velocity of gas, viscosity, surface tension and no-slip liquid holdup) to predict liquid 

holdup for horizontal gas-liquid two-phase flows. The holdup values predicted by their neural network had a correlation 

coefficient (R) of 0.985 for all data sets. Evaluation of the ANN model showed a better performance than all models with 

which it was compared. 

Recently, [14-15] have applied ANN to predict void fraction data for gas-liquid flow in horizontal, upward and 

downward inclined pipes, the pressure gradient in horizontal oil-water separated flow and water holdup in vertical and 

inclined oil-water two-phase flow with success.  
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3. Methodology 

3.1.   Description of flow facility 

The experiment was implemented on a test rig capable of inclinations from 0-90° (Fig. 1) at the Gas Lift Innovation 

Centre, Yangtze University, China. For two-phase flow, the desired volume of oil was pumped into a mixing tank, and 

pressurized. After pressure stabilization and measurement, the liquid is mixed with compressed gas and introduced into the 

test section. The liquid returns to the mixing tank while the air is released into the atmosphere after the gas-liquid mixture 

has passed through the separator. For three-phase flow, liquid and water were pumped into the mixer, stirred continuously 

till a homogeneous mixture is achieved, mixed with gas and introduced into the test section. 

 
(a) Photo of the experimental rig in vertical position 
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Fig. 1 Experimental setup 
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The acrylic test section (Fig. 1) is a pipe of length 10.6 m and an ID of 0.075 m. The viewing section consists of an 

acrylic tube with a length of 7 m. Stainless steel pipes of lengths 1.1 m and 2.5 m respectively are fixed at each end of the 

acrylic tube. Pressure, temperature, and pressure differential sensors, as well as quick closing valves and other devices,  are 

installed on the pipe section. The distance between the two quick closing valves is 9.5 m. The distance between the 

differential pressure transducers is 8 m. The temperature of the two-phase and three-phase mixtures was determined using a 

type K thermocouple. Similar test section arrangement has been employed by [18-19] for their studies. Control of the devices, 

as well as data collection, is done directly online at an established control center. Details of the measuring equipment utilized 

for the experiment are presented in Table 1. Air constituted the gas phase while oil and an oil-water mixture respectively 

were used as the liquid phase. The fluid properties are presented in Table 2. 

Table 1 Details of the measuring equipment utilized for the equipment 

Equipment Parameter measured Measuring range Measurement error 

Rosemount 305 1S 

Pressure transducers 
Pressure 0-3.5 MPa 0.1%  

Type K thermocouple Temperature 0-90 ℃ 0.5%  
Endress+Hauser/80E50 Liquid flow rate 2-20 m

3
/h 0.3%  

Endress+Hauser/65F1H Gas flow rate 160-2000 m
3
/h 0.1%  

Table 2 Fluid properties used in the experiment 

Fluid 
Gas Liquid 

Air Oil Water 

Density (kg/m
3
)  1.205 820 1000 

Viscosity (mPa s) 0.0181 (20℃) 11 (20℃) 1 

Surface tension (N/m) - 0.0287 (20℃) 0.71 (20℃) 

Table 3 Range of experimental data obtained 

Superficial liquid velocity (m/s) 0.03 – 0.13 

Superficial gas velocity (m/s) 1.26 – 41.58 

Pressure (MPa) 0.01 – 0.07 

Temperature (℃) 13.63 – 28.66 

Pressure drop (kPa) 1.13 – 33.74 

Liquid holdup 0.034 - 0.434 

Water-cut (%) 0 - 90 

3.2.   Experimental procedure and measurement 

For this study, a constant liquid flow rate was maintained, while the gas flow rate was adjusted. When the system was 

deemed steady (approximately 10 minutes from the start of the experiment), the experimental flow pattern was observed and 

recorded. Except for liquid holdup, all other experimental data was recorded every 5 seconds for 3 minutes, and finally, the 

average value of each measurement parameter was obtained. Each complete test took approximately 20 minutes depending 

on the time required to reach steady-state. After the data recording was completed, the quick closing valve was closed 

trapping fluids flowing in the test section. The liquid holdups were measured by using a 9 m longitudinal pipe section. The 

quick closing valve has a response time is 0.3-0.5s. The trapped oil-water-air mixture was allowed to settle for 5 minutes and 

the pipe raised to facilitate draining of the liquid into a measuring cylinder. The liquid holdup was determined by calculating 

the volume of the liquid and dividing it by the volume of pipe-section. Flow patterns were visualized directly and also 

observed using a Canon Xtra NX4-S1 high-speed camera capable with a pixel resolution of 1024x1024 up to 3000 frames 

per second (fps). The maximum frame rate is 50,000 fps with a reduced resolution. Videos and pictures of the flow pattern 

were obtained and used for analysis during the study. The range of measurements taken during the experiments is presented 

in Table 4. 

Fully developed flow is a key required for multiphase studies. For this experiment, fully developed flow was observed 

with the camera located at L/D = 133. A survey of similar experiments indicates that fully developed flow patterns in vertical 
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pipes have been observed at lower L/D values by a number of researchers including. For slug flows, Taitel et al. [20] 

theoretically estimated minimum value of 50 for fully developed slug flow. [21] achieved a fully developed an annular flow 

with L/D=59-92. [22-24] demonstrated that an L/D=46 is sufficient for annular flow. [25] also showed that an L/D of 41 is 

sufficient for such experiments. It can be assumed, therefore, that this represents a sufficient flow development length for 

both slug and the annular flows observed in this study. 

4. Results and Discussions 

4.1.   Comparison with existing flow pattern maps 

Fig. 2 shows pictures of flow patterns observed at different conditions during the experiment. For both two-phase and 

three-phase flows, slug flow, the transition to annular flow, and annular flows were observed. However, slug flow 

constituted the main flow pattern observed. There were no apparent differences between the flow patterns observed for two-

phase and three and phase flows. 

 
(a) Slug flow at vsl=0.03 m/s, vsg=1.34 m/s, water-cut=60% 

  
(b) Transition to annular flow m/s, vsl=0.04, 

vsg=11.63m/s, water-cut=60% 

(c) Annular flow vsl=0.1m/s, vsg=38.63m/s, 

water-cut=60% 

Fig. 2 Flow patterns observed at various flow conditions during the experiment 

Three existing flow pattern maps were validated using the experimental data. To achieve this, the experimental data 

points corresponding to the flow regimes were superimposed on the flow pattern maps [20, 22, 26] (Fig. 3). It is observed 

that the map [20] captures the behavior of the two-phase and three-phase experimental flow patterns. Though the flow 

pattern map is developed based on data using air-water (1 mPa s) mixtures and a pipe diameter of 50 mm, both of which are 

lower than what was applied in the experiment, the observation agrees with proposed mechanisms for flow pattern transition. 

The  flow pattern map [26] incorporates the effects of flow rates, fluid properties, pipe configuration, and angle of inclination. 

It is found that the flow pattern map also agrees with both the experimental data. Considering that the efficacy of this flow 

pattern map is already proven, the current observation perhaps provides an indication of its efficiency for three-phase flow 

pattern prediction. When the experimental data is plotted on the Shell flow pattern map [22], it is observed that it fairly 

agrees with the two-phase flow data. A similar conclusion can be made when the three-phase data is imposed on it. The 

discrepancies can be attributed to the differences in pipe diameter, liquid and gas densities as well as liquid viscosities. The 

experimental data for phase densities and pipe diameter are lower than those employed for the development of the flow 

pattern map. 
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(a) Taitel et al. flow pattern map 

  

(c) Shell flow pattern map (b) Barnea flow pattern map 

Fig. 3 Comparison of experimental flow pattern data with existing flow pattern maps 

4.2.   Total pressure drop 

The total pressure drop was measured with a differential pressure transducer (DP cell). The separation distance between 

the DP cell was 8 m. The variation of total pressure drop with superficial gas velocity for 0% to 90% water-cut is presented 

in Fig. 4. Some slight differences were observed between two- and three-phase flows. High values of pressure drop in the 

three-phase flow were observed compared to that of two-phase air-oil flow. The total pressure gradient is composed of 

gravitational and friction pressure gradients. At low superficial phase velocities, compared to the that of the air-oil mixture 

density, higher water-cut introduces higher values of mixture density which increases the gravity component and hence the 

total pressure gradient [6, 27]. At vsl < 0.08 m/s, the total pressure gradient is observed to decrease with increasing 

superficial gas velocity. The observation can be explained by the fact that flow is gravity dominated as is the case in vertical 

pipes. An increase in superficial gas velocity promotes an increase in a void fraction, which in turn, reduces the mixture 

density as a consequence of decreases in liquid holdup [1]. Also, at low vsg values, the gas velocities are not high enough to 

generate high friction pressure drops, hence the total pressure drop decreases with increases in superficial gas velocity. All 

points within this range are observed to be in the slug flow regime. 

At vsl ≥ 0.08 m/s, it is observed that total pressure drop decreases to a minimum and then begins to increase again. 

Decreases in the gravitational pressure gradient (because of reduction in total liquid holdup) as well as in the friction 

pressure drop consequently leads to a cumulative decrease in total pressure drop (Fig. 4). The minimum point represents a 

condition where the frictional pressure drop overcomes the gravitational pressure drop as the superficial gas flow rate is 

increased. This point always terminates in slug flow and also marks the transition from slug flow to churn and then to 

annular flows where friction pressure drops are higher due to the cumulative effect of interfacial friction between gas and 
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liquid and also the liquid and the conduit wall. The observation has previously been reported by [28] whose experimental 

studies utilized liquids of high viscosities and a pipe ID of 50 mm observed and reported only one minimum.  In this study, 

only one minimum was observed in both two-phase and three-phase flows for the superficial gas velocity range studied. 

While this phenomenon is well-noted for two-phase gas-liquid flows, it is shown in this work that it can also be exhibited in 

the three-phase flows when the oil-water mixtures are homogeneously mixed. This provides credence to the approach which 

considers three-phase flow as pseudo-two-phase flows for multiphase flow analyses.  

For this study, superficial liquid velocity appeared to have some influence at visible at low vsl and vsg values, 

especially at 0% and 30% water-cut. However, it is observed that the phenomenon is inconsistent across all water-cuts. It is 

concluded, therefore, that the influence of superficial liquid velocity is negligible at low vsg and vsg values. 

  

(a) 0% water-cut (b) 30% water-cut 

  

(c) 60% water-cut (d) 90% water-cut 

Fig. 4 Variation of total pressure drop with superficial gas velocity 

When vsl < 0.08 m/s  and 5 m/s < vsg < 15 m/s, however, it is observed that increases in vsg values lead to increases in 

total pressure drop. This can mainly be because of the increased gravitational pressure drop. The intermittent flow is 

preferred in the production of oil and gas in vertical wells, especially when the gas lift is used because the minimum total 

pressure gradient occurs under intermittent-flow condition. Gas lift is preferred under intermittent-flow conditions because it 

reduces the liquid holdup, causing a reduction in gravitational- pressure and total pressure drops in the tubing and leading to 

a more stable flow. On the basis of this observation, it implies gas-lift can be applied to both the two-phase and three-phase 

flows within the viscosity ranges in this study but not at higher viscosities since they tend to shift the minimum pressure drop 

to higher values, leading to less favorable flow conditions. 

Finally, water-cut exerts some influence between two-phase and three-phase flows. As earlier stated, the differences in 

values of total pressure gradient can be attributable to differences in mixture density in the three-phase flow as a result of 

increasing water fraction which increases the hydrostatic pressure gradient and hence the total pressure gradient. 
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5. Description of ANN Model 

Artificial Neural Networks (ANN) consist of numerous simple interconnected elements known as neurons which mimic 

the functions of biological neurons. The neurons are organized in layers and tied together with weighted connections 

corresponding to human brain synapses [14]. ANNs are capable of learning, storing and recalling information based on a 

given training dataset and provide an unconventional approach for many engineering problems that are difficult to describe 

or solve using normal methods [29]. Other important benefits are reported by [14]. 

Artificial neural networks have an input layer, output layer and can have one or more hidden layers. Each layer contains 

a weight matrix (w) and a bias vector. The Feed Forward Back Propagation (FFBP) network is one of the common networks 

employed to model approximate function problems. The mechanism of operation employed by this network is adequately 

described by [14-15]. A three-layer MLP network has been mathematically proven to be capable to approximate all types of 

functions with no consideration of their complexities [30]. 

Transfer functions applied in neural networks include linear (purelin), hyperbolic tangent sigmoid (tansig), logarithmic 

sigmoid (logsig) and radial basis (radbas) transfer functions. The most popular of these applied to non-linear relationships 

are the tansig and logsig transfer functions which produce output values in the ranges of [-1,1] and [0,1] respectively. 

General forms of the functions are expressed in Eqs. (1) and (2) respectively [14-15]. 

Hyperbolic tangent sigmoid (tansig):  
j j

j j

s s

j s s
f

e e
S

e e









 (1) 

Logarithmic sigmoid (logsig):  
1

j j
j S S

f S
e e





 (2) 

where f(Sj) is the output of the node j and is also the element of the inputs to the nodes of the next layer. During training, the 

network “learns” and develops the relationship between the data provided using an algorithm to modify the weights based on 

the error between the actual values (also known as targets) and the predicted values until it generates the best relationship 

between inputs and outputs (targets) given. In the FFBP network, the fitting procedure from which the weights are 

determined is performed by employing the least - square minimization routine where the sum of the square of the errors 

between the actual and the predicted values are minimized [14-15]. 

In this study, MATLAB’s neural network toolbox was employed to design networks for the prediction of liquid 

holdup and pressure drop. A feed-forward with the back-propagation network architecture was selected and utilized. Though 

multiple hidden layers can be utilized for a chosen network one hidden layer is usually considered adequate for modeling 

non-linear and complex functions [31]. For this study, one hidden layer was adopted to obtain accurate predictions. To 

identify the optimal model, both tansig and logsig transfer functions were utilized in the hidden layer of the Feed Forward 

Back Propagation (FFBP) networks. Also, for both networks, a linear transfer function was utilized for the output layer 

neurons. A schematic representation of the ANN architecture for the proposed network, with 13 neurons, in the study is 

shown in Figure 5. Efforts were made to improve network performance by eliminating unnecessary input variables to placate 

the curse of dimensionality [32]. To this end, a 112-point data set was obtained from the multiphase flow database at the 

multiphase flow laboratory of Yangtze University as described in section 2.  

Using the data, commonly used dimensionless multiphase flow parameters including liquid number, gas velocity 

number, liquid velocity number, gas Reynolds number, liquid Reynolds number, liquid viscosity number, and mixture 

velocity Froude number were determined. Selection of input parameters was based on correlation coefficients and p-values 

when they were correlated with liquid holdup and pressure drop to determine their significance. Finally, the superficial gas 

velocity number, superficial gas Reynolds number, and mixture velocity Froude number were selected. To avoid numerical 
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overflows due to the application of very small or very large weights, input data was scaled to a range of [-1,1] [33]. The 

related expressions for the input parameters are as follows: the gas velocity number,Ngv=vsg(ρl/gσl)
0.25

, Superficial gas 

Reynolds number, ReSG=ρgvsgD/μg, and the Mixture velocity Froude number, Fr=vm/(gD)
0.25

; where vsg, vm, ρl, ρg, μg, g, σl, 

Drepresent superficial gas and mixture velocities, liquid and gas densities, gas viscosity, gravitational acceleration, surface 

tension, and pipe diameter respectively. 

 
Fig. 5 Schematic representation of the ANN architecture used in this study with 13 neurons for pressure drop 

The dividend algorithm was implemented to ensure that data input parameters were randomly divided into three sets: 

training, validation, and testing. The training data set is used for the development and adjustment of weights and biases of 

the network. The validation set is used to ensure the accuracy of and generalization of the network during the training phase 

while the testing set is used to evaluate the final performance of the trained network. For this study, 65% (73 data points) 

was used for training, 15% (17 data points) for validation and 20% (22 data points) for testing. 

The network was trained using the Levenberg-Marquardt (LM) algorithm which is recommended for the training of the 

type of neural network selected [34] and to evaluate the method of convergence. LM was adopted due to its capacity to train 

rapidly and efficiently and in addition increase the convergence speed of the ANN with MLP architectures [35]. Further, it 

was chosen because it is suited to training networks in which the performance index is calculated in Mean Squared Error 

(MSE) which was the case for this study.   

By default, the toolbox ensures that a number of neurons in the input and output layers is equal to the number of input 

and output parameters respectively. However, the number of neurons in the hidden layer differ based on the complexity of 

the problem. Choice of the optimal number of neurons is usually by a trial and error method. The optimal number of neurons 

for this study was estimated by minimizing the Mean Squared Error (MSE) of the testing data set based on the expression in 

Eq. (3). 
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where n is the number of data points, Y(Exp,m) is the experimental value and Y(Pred,m) is the predicted value obtained 

from the neural network model. It is noteworthy to point out that the optimal number of neurons in the hidden layer, as well 

as their related weights and biases, are not known at the developmental stage of the network and hence must be optimized. 

To achieve this, the training process for each network was performed 200 times for each number of neurons in the hidden 

layer. Eventually, the network with the best performance for testing data was selected as the optimal ANN model.  

The number of neurons for each network was varied from 1-20 with several runs performed for each network with the 

aim of preventing wrong selection of initial weights. Performance of the optimal model was evaluated with coefficient of 

correlation (R) and Mean Absolute Percent Error (AAPE) and the chi-square test defined in Eqs. (4) to (6). 
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Pr ,ed mY  in Eq. (5) is the average of the experimental values. 
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(6) 

Finally, for pressure drop, a logsig transfer function, 13 neurons in the hidden layer (3-13-1), an MSE of 3.34 and 

AAPE of 12.32 for the testing data was obtained as the optimum model with the best performance (Table 5). The expression 

for the pressure drop model is given as: 
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1 1
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(7) 

where xj=(x1,x2,x3,…xj)
T
 represents the input sample. In our case, the input sample consisted of values of gas velocity number, 

superficial gas Reynolds number, and mixture velocity Froude number as was used for the correlation. Pressure drop was the 

linear output of the hidden neurons and an output function used on the neurons.  J and N are the numbers of the input 

variables and hidden nodes respectively. w1i,j and w2i represent the hidden layer and the output layer weight matrices 

respectively. b1i and b2i represent the corresponding bias vectors. The values of the coefficients w1, w2, b1 and b2 are provided 

in Table 4. 

 
Fig. 6 Performance of the testing data for the networks using tansig and logsig transfer functions for  

different neuron configurations in the hidden layer for pressure drop 
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Performance of the testing data using the tansig and logsig transfer functions for different neuron configurations are 

presented in Fig. 6. Performance evaluation of selected ANN model for pressure drop for training, validation, testing, and all 

data sets are presented in Table 5. A chi-square test performed for the overall data for both liquid holdup and pressure 

yielded a result of 1.0 respectively indicating that statistically, there is no difference between the experimental and 

predictions of the ANN model. 

Table 4 Weights and biases for the ANN model for total pressure drop 

Input layer weight matrix 1 jw
 

Input layer bias vector Hidden layer weight vector Output layer bias vector 

1J   2J   3J   1b
 2w

 2b
 

4.78675 7.36309 5.72555 19.42174 -6.62567 6.12795 

-3.74608 -5.24535 1.86564 5.16499 2.94957 - 

5.74774 1.37953 -4.82578 -0.94082 3.24712 - 

-12.70850 13.64704 1.74692 0.35186 17.46855 - 

5.53657 -0.97388 0.56158 -3.19332 -0.277974 - 

-3.57842 -2.57294 -5.69732 3.76079 2.06571 - 

4.49847 3.39882 1.41166 -1.34967 -1.68959 - 

0.72446 -5.38652 -4.29988 -0.63222 2.87519 - 

-16.54361 -25.73575 35.38188 -8.68275 -19.70100 - 

4.28230 -1.55343 2.90164 2.25365 -7.39846 - 

-4.50234 2.76668 3.71641 -4.62954 0.15867 - 

-0.85869 6.11527 4.17686 9.60003 7.04933 - 

11.46532 7.23165 -11.31631 7.72461 -17.40596 - 

4.78676 7.36309 5.72555 19.42174 -6.62567  

From Table 5, it can be observed that model predictions were with low Mean Squared Errors (MSE) and Average 

Absolute Percent Errors (AAPE) respectively. Low MSE values were achieved for training and testing data sets respectively 

for pressure drop. Generally, the MSE values calculated for all the data sets are closer to zero indicating that the model is 

well fitted while the prediction errors are low. The results verify the success of the neural network to recognize the implicit 

relationship between input and output variables. 

Table 5 Performance evaluation of selected networks for total liquid holdup and total pressure drop 

Data Total Pressure Drop 

No. of data points Datasets R MSE AAPE 2  

73 Training 0.9785 1.25 7.19 - 

17 Validation 0.9531 2.81 10.48 - 

22 Testing 0.9629 3.34 12.32 - 

112 Overall 0.9629 2.61 8.70 1.0 

6. Comparison with Existing Pressure Gradient Prediction Models 

The pressure gradient predictions of six empirical (Beggs and Brill, Govier and Aziz, Duns and Ros, Hagedorn and 

Brown, Mukherjee and Brill, Gray) and two mechanistic (Ansari et al., Zhang et al.) models compared with the predictions 

of the ANN model. PIPESIM [36], a steady-state flow simulator is utilized to obtain a prediction of the selected models. 

Phase inversion defines the phenomenon which occurs when the continuous and dispersed phases invert spontaneously at 

certain flow conditions [1, 37]. This phenomenon influences pressure gradient prediction especially where liquid-liquid 

mixtures are involved [38]. To account for phase change in the three-phase flows, the correlation [39-40] were activated in 

the simulator. The correlation [40] determined the point of phase inversion while the correlation [39] determined the 

effective liquid mixture viscosity for each flow condition. The correlation [27] are expressed as: 
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(8) 

where c is the cut-off/100, μo, μw are the oil and water viscosities (cP). The correlation [39] calculates elevated emulsion 

viscosities on either side of the cut-off, using the formula: 
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where μc and Ø d represent the viscosity of the continuous phase and the volume fraction of the discontinuous phase. The 

results are assessed using statistical parameters AAPE and APE. The expression for APE is as follows: 
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(10) 

Results of the assessment are presented in Table 6. In addition, a pictorial assessment of models with the best 

predictions at each water-cut is presented in Fig. 7.  For two-phase flow, it is found that the predictions of all the models are 

satisfactory. However, the Beggs and Brill and Duns and Ros present the best and second-best performances of the models 

under consideration. Comparatively, the best performance is presented by the ANN model with very low AAPE and APE 

values of 11.46 and -5.78. The performance of the TUFFP model is reasonable.  

  

(a) 0% water-cut (b) 30% water-cut 

  

(c) 60% water-cut (d) 90% water-cut 

Fig. 7 Comparison of experimental data with total pressure drop predictions of selected models  

At 30% water-cut, it also observed that, with the exception of the Hagedorn and Brown’s model, all the models under-

predict the experimental data. The ANN presents the best performance, placing it ahead of all other models with low AAPE 

and APE values of 6.58 and 1.95. The Duns and Ros model comes second with comparatively low AAPE and APE values of 

13.27 and 9.15 respectively. This is followed by the Beggs and Brill (AAPE=29.26, APE=16.02) and the Govier and Aziz 

(AAPE=32.54, APE=4.76) models. Generally, predictions of the models at this water-cut are satisfactory. 
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For this experimental data, it is found that the empirical models perform better than their mechanistic counterparts at all 

conditions under consideration (Table 6). The performance of the mechanistic models not was expected. Though both 

considered models capture the dynamics of the flow differently, it seems that adopted closure models, some of which are 

derived from air-water two-phase flows and air-oil mixtures of lower viscosities, limit their performances. Improved closure 

relationships could greatly improve model predictions. The performance of the ANN was also expected because of its 

superior abilities at generating good expressions for even the most complex relationships. 

Table 6 Performance evaluation of all models for pressure drop at 0%, 30%, 60% and 90% water-cuts respectively 

 

Two-phase Three-phase 
Overall 

0% 30% 60% 90% 

AAPE APE AAPE APE AAPE APE AAPE APE AAPE APE 

Empirical 

BB 18.64 7.38 29.26 16.02 27.83 15.44 38.48 38.36 27.98 19.49 

DR 19.45 -1.87 13.27 9.15 16.39 12.21 33.06 33.06 20.01 13.76 

GA 34.73 -6.09 32.54 4.76 40.54 -0.42 35.12 22.45 34.76 5.92 

Gray 53.34 50.22 51.80 46.35 48.03 34.46 53.19 49.92 49.21 43.10 

HBR 45.36 3.95 49.16 -10.71 37.33 31.53 56.24 56.24 45.23 29.65 

MB 36.8 31.52 41.59 28.70 43.35 22.66 50.38 40.37 41.57 29.65 

Mechanistic 

ANS 52.68 18.98 60.54. 6.76 59.18 -0.32 51.24 27.00 53.41 12.63 

TUFFP 67.79 31.07 77.78 9.39 54.66 2.64 35.97 34.23 55.37 18.33 

ANN 11.46 -5.78 6.58 1.95 10.12 -6.37 7.37 2.09 8.70 -1.76 

* BB: Beggs and Brill, DR: Duns and Ros, GA: Govier and Aziz, Gray: Gray,  

HBR: Hagedorn and Brown, MB: Mukherjee and Brill, ANS: Ansari et al. 

When the water content is increased to 60%, it is found that all the models (both empirical and mechanistic) exhibit 

improved performances. Of the correlations under consideration, the Duns and Ros presents the lower prediction error 

(AAPE=16.39) and underprediction (APE=12.21). This is followed by the Beggs and Brill model (AAPE=27.83, 

APE=15.44), making it the second-best model at this water-cut. The best performance is presented by the ANN model with 

least prediction errors (AAPE=10.12, APE=-6.37). At 90% water-cut, the Beggs and Brill, Duns and Ros, Govier and Aziz, 

and the TUFFP models exhibit similar performances.  The others present similar performances; however, the predictions 

errors are slightly high. The results show that, comparatively, the ANN model presents the best performance at this water-cut. 

Over the entire dataset, the results of pressure drop predictions indicate that all considered models predict the three-

phase experimental data satisfactorily. The Duns and Ros model presents the second-best prediction (AAPE=20.01) while 

the ANN model presents the best prediction (AAPE=8.70). The TUFFP model presents the least overprediction and its errors 

are also observed to be satisfactory. It is important to note that the empirical models perform as creditably as their 

mechanistic counterparts. The results of the ANN model are not surprising considering that it exhibits the best performance 

consistently at all experimental conditions. 

Both empirical and mechanistic models predict the two-phase and three-phase flow data satisfactorily. This can be 

attributed to the close proximity of the character of the three-phase mixture to that of the two-phase mixture. In the case of 

Duns and Ros as well as Hagedorn and Brown, their performance can be attributed to the extensive data they obtained for 

correlation development.  The fluid properties and diameters employed for their study are also similar to those utilized in the 

current study. The performance of the Beggs and Brill, as well as Mukherjee and Brill models, are also satisfactory in both 

phases except at water-cut of 90% where they are possibly affected by the liquid properties of the experimental data. 

Considering that a good performance of the Beggs and Brill model is limited to water-cut below 10%, the results of the 

current evaluation is satisfactory. The ability of the Gray model to capture the dynamics of the flow can explain its 

performance at the various water-cuts under consideration. 
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7. Conclusions 

An experimental study was conducted using air-oil and air-water-oil mixtures in a 0.075-m diameter pipe. The 

superficial gas velocity ranged from 0.03 to 0.13 (superficial liquid Reynolds numbers between 160 to 4391) while the 

superficial liquid velocity ranged from 1.26 to 41.58 m/s (superficial gas Reynolds numbers between 6314 to 200734). In 

this study, the major flow characteristics studied are liquid holdup and pressure drop. It is observed that three-phase mixtures 

exhibit similar flow pattern characteristics like two-phase flows. This can be attributed to the fine oil-water mixture 

maintained used during the experiment as well as the close proximity of the fluid properties. For both two- and three-phase 

flows, liquid holdup and pressure drop are significantly influenced by superficial gas and liquid velocities. Differences in 

total pressure drop between two- and three-phase flows were observed. This can be attributed to variations in densities of the 

mixtures which influenced total pressure drop as water-cut was increased. The experimental data was compared to some 

existing models and scatter beyond the ±50% error band observed was mostly underpredictions. An ANN model was 

developed for the prediction of pressure drop. The results indicate that within the ranges of gas and liquid superficial 

velocities and fluid physical properties considered, the model performs better than all models considered during the 

evaluation. Utilization of the current experimental data, as well as the superior computation power of the network, could 

explain the sterling performance exhibited. This work has demonstrated the ability and reliability of ANN models to predict 

the pressure gradient of both two- and three-phase flows. Using existing models in PIPESIM steady-state flow simulator, 

predictions for pressure drop are obtained. Due to the homogeneous nature of the oil-water-air mixture, the three-phase flow 

is evaluated as a pseudo-two-phase mixture. Generally, it is found that the models predict total liquid holdup unsatisfactorily. 

However, the accuracies for pressure drop were considered adequate. 
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