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Abstract 

The optimized hybrid artificial intelligence model is a potential tool to deal with construction engineering 

and management problems. Support vector machine (SVM) has achieved excellent performance in a wide 

variety of applications. Nevertheless, how to effectively reduce the training complexity for SVM is still a serious 

challenge. In this paper, a novel order-independent approach for instance selection, called the dynamic 

condensed nearest neighbor (DCNN) rule, is proposed to adaptively construct prototypes in the training dataset 

and to reduce the redundant or noisy instances in a classification process for the SVM. Furthermore, a hybrid 

model based on the genetic algorithm (GA) is proposed to simultaneously optimize the prototype construction 

and the SVM kernel parameters setting to enhance the classification accuracy. Several UCI benchmark datasets 

are considered to compare the proposed hybrid GA-DCNN-SVM approach with the previously published 

GA-based method. The experimental results illustrate that the proposed hybrid model outperforms the existing 

method and effectively improves the classification performance for the SVM. 

Keywords: Genetic Algorithm (GA), Dynamic Condensed Nearest Neighbor (DCNN), Support Vector Machine 

(SVM). 

1.  Introduction 

The support vector machine (SVM) was first proposed by Vapnik [1] and has been successful as a high performance 

classifier in several domains including data mining and the machine learning areas [2]. The decision boundary of SVM only 

depends on a small part of training instances. Therefore, if only instances near the boundary are selected, the training of 

SVM can be efficient and thus classification accuracy is kept. However, the performance of SVM is sensitive to how the 

kernel parameters are set [3]. As a result, the appropriate instance selection and kernel parameters setting must perform 

simultaneously to improve the SVM classifier. 

In the literature, several data reduction algorithms have been proposed that extract a consistent subset of the overall 

training set including Condensed Nearest Neighbor (CNN), Modified CNN (MCNN), Fast CNN (FCNN), and others [4-7]. 

These algorithms have been shown to achieve condensation ratios corresponding to a small percentage of the overall training 

set and to obtain the comparable classification accuracy. However, these papers merely focused on data reduction without 

dealing with features selection to reduce the irrelevant features for the classifier. 
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Feature selection algorithms may be widely categorized into two groups: the filter and the wrapper approaches [8-9]. 

The filter approaches select highly ranked features based on a statistical score as a preprocessing step. Wrapper approaches, 

on the contrary, directly use the induction algorithm to evaluate the feature subsets. They generally outperform filter methods 

in terms of classification accuracy, but are computationally more intensive. Huang and Wang [3] proposed a GA-based 

feature selection method that optimized both the feature selection and parameters setting for the SVM classifier. Based on 

the experimental results obtained, the authors claimed that the algorithm may work superior to the conventional grid search 

algorithm. However, they did not take into account the treatment of these redundant or noisy instances in a classification 

process. So far, to the best of our knowledge, there is no other research using an evolutionary algorithm to simultaneously 

deal with these three type problems, including essential training instances extraction, input features selection, and SVM 

parameters setting as mentioned above. 

In this paper, a new data reduction algorithm named dynamic CNN (DCNN) algorithm, which differs from the original 

CNN in its employments of the voting scheme, is proposed to adaptively construct prototypes with merged rate threshold. 

Second, the proposed GA-DCNN-SVM model hybridized the prototype construction, feature selection and kernel parameters 

optimization methods with genetic algorithm, exhibiting high efficiency in terms of classification accuracy for SVM. The 

rest of this paper is organized as follows. Section 2 describes the related works including the basic SVM, the CNN rule, and 

GA concepts. Section 3 details the research methodology, the prototype voting scheme, DCNN rule, and the proposed hybrid 

model in this study. Section 4 contains the experimental results from several UCI benchmark datasets and comparison with 

the GA-based previously published method. Finally, conclusions are given in section 5. 

2. Related Works 

2.1. Basic SVM Classifier 

SVM starts from a linear classifier and searches the optimal hyperplane with maximal margin. The main motivating 

criterion is to separate the various classes in the training set with a surface that maximizes the margin between them. It is an 

approximate implementation of the structural risk minimization induction principle that aims to minimize a bound on the 

generalization error of a model [2]. 

Given a training set of instance-label pairs ( , ), 1, 2,...,
i i

x y i m  where 
n

ix R  and { 1, 1}iy    . The 

generalized linear SVM finds an optimal separating hyperplane ( )f x w x b    by solving the following optimization 

problem: 
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(1) 

where C  is a penalty parameter on the training error, and i  is the non-negative slack variables. This optimization model 

can be solved using the Lagrangian method, which maximizes the same dual variables Lagrangian ( )DL   as Eq. (2) as in 

the separable case. 
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To solve the optimal hyperplane, a dual Lagrangian ( )DL   must be maximized with respect to non-negative 
i  

under the constrains 
1

0
m

i i

i

y


  and 0 i C  . The penalty parameter C  is a constant to be chosen by the user. A 

larger value of C  corresponds to assigning a higher penalty to the errors. After the optimal solution *

i  is obtained, the 

optimal hyperplane parameters 
*w  and 

*b  can be determined. The optimal decision hyperplane * *( , , )f x b can be 

written as: 

      * * * * * *

1

( , , )
m

i i i

i

f x b y x x b w x b 


         (3) 

Linear SVM can be generalized to non-linear SVM via a mapping function , which is also called the kernel function, 

and the training data can be linearly separated by applying the linear SVM formulation. The inner product 

( ( ) ( ))i jx x   is calculated by the kernel function ( , )i jk x x  for training data. By introducing the kernel function, the 

non-linear SVM (optimal hyperplane) has the following forms: 

       * * * * * *

1 1

( , , ) ( ) ( ) ( , )
m m

i i i i i i

i i

f x b y x x b y k x x b  
 

          (4) 

Though new kernel functions are being proposed by researchers, there are four basic kernels as follows: 

Linear:  ( , ) T

i j i jk x x x x  (5) 

Polynomial:  ( , ) ( ) , 0T d

i j i jk x x x x r     (6) 

Radial Basis Function:  2( , ) exp( || || ), 0i j i jk x x x x      (7) 

Sigmoid:  ( , ) tanh( )T

i j i jk x x x x r   (8) 

Radial basis function (RBF) is a common kernel function as Eq. (7). In order to improve SVM, the kernel parameter in 

the kernel function should be set appropriately. 

2.2. The Condensed Nearest Neighbor (CNN) Algorithm 

The nearest neighbor (NN) rule [10-11] assigns an unclassified sample to the same class as the nearest of the N stored 

labeled samples of the training set. The rule is simple, and with an unlimited number of instances, the risk in making an NN 

decision is never worse than twice the Bayes risk [12]. But, as all the labeled samples of the training set must be searched to 

classify a test sample, the NN method imposes large storage and computational requirements. In order to reduce the both 

storage space and computational time requirements, the Condensed Nearest Neighbor (CNN) rule first introduced by Hart [4] 

is that patterns in the training set may be very similar and some do not add extra information and thus may be discarded. In 

the CNN rule, prototype-subset ones aim to select a subset of the training set that classifies the remaining data correctly 

through the NN rule. Using a prototype subset, instead of the entire training set, to implement the NN rule has the additional 

advantage that it may guarantee better classification accuracy [6]. The concept of the CNN algorithm can be formalized as 

follow to determine a consistent subset of the original sample set. 
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The CNN algorithm uses two bins, called training set S with c-class and prototype subset P. Initially, randomly select 

one sample from S to P for each class c. Then, we pass one by one over the samples in S per epoch and classify each 

pattern ix S using P as the prototype set. During the scan, whenever a pattern ix is misclassified, it is transferred from S to 

P and the prototype subset is augmented; otherwise the pattern ix is called merged into P and still left in S. The algorithm 

terminates when no pattern is transferred during a complete pass of S and no new prototype is added to P. The procedure can 

be formalized as follows. 

Step 1: The first sample is randomly selected and copied from S to P for each class c. 

Step 2: Check each pattern ix S using P as the prototype subset. If all patterns have been merged into P, terminate the 

process; otherwise, go to Step 3. 

Step 3: For each class c, if there are any unmerged samples, randomly select one and add the pattern to P; otherwise, no new 

prototype is added to class c. Go to Step 2. 

2.3. Genetic Algorithm 

Genetic Algorithm (GA) is one of the most effective approaches for solving optimization problem. The basic principles 

of GA were first proposed by Holland [13] for the formal examination of the mechanisms of natural adaptation, since then, 

the algorithm has been modified to solve computational problems in research.  

The GA is a stochastic search method based on the mechanics of natural selection and the process of evolution. An 

implementation of a GA begins with a population of random chromosomes which can be represented by binary strings. The 

members of the population are usually strings which encode a candidate solution to the problem to be solved. Members of 

the population at each generation are evaluated, and chromosomes are selected for reproduction by calculating the fitness 

value. The better chromosomes have higher probability to be selected into the recombination pool using the roulette wheel or 

other tournament selection methods. After selection and reproduction operation, new population is generated by perturbing 

the current solutions via crossover and mutation. Crossover takes two individuals called parents and produces two new 

individuals called the offspring by swapping parts of the parents. This operator allows information exchange between 

candidate solutions and new solution regions in the search space to be explored. Mutation serves to prevent premature loss of 

population diversity by randomly sampling new points in the search space. The evolutionary process executes many 

generations until the termination condition is met or by finding an acceptable solution by some criterion. 

3. Methods 

The original CNN has been used to iteratively select some samples and ignores others that can be absorbed for data 

reduction algorithm. In this section, we extend this concept to propose the dynamic CNN approach, which differs from the 

CNN rule in its employment of a strong absorption criterion, to achieve consistency efficiently for classification problems. 

Some preliminary definitions are described as follows. Assume that we are given a dataset in which 

 ( , ), 1,2,...,i iS x y i m   is a set of m number of samples with well-defined class labels. 1 2( , ,..., )T

i i i iDx x x x  is 

the vector of dataset for the i-th sample describing in D-dimensional Euclidean space and 1 2{ , ,..., }i qy L c c c   is the 

class label associated with ix , where q is the number of classes. The distance between any two vectors ix  and jx  using 

the distance measure ( )d   is: 
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(9) 

3.1. The Prototype Voting Scheme (PVS) scheme 

Majority vote is one of the simplest and intuitive ensemble combination techniques. Consider the n samples, c-class 

dataset U from S, given an instance ix of U, the Nearest Neighbors’ Distance Vector (NNDV) of ix according to a distance d 

is: 

      
,1, ,2, , , , 1, , ,( ) ,i i c i c i j c i n c i n cNNDV x d d d d d

   
 (10) 

      , ,
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i n j n c q
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 

 
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(11) 

We pass one by one over all of the instances in U, the outputs of NNDV in U are first organized into a Decision 

Prototype Matrix (DPM) as shown in Fig. 1. The column for 
1, ,j cd  to 

, ,n j cd  represents the support from samples 1x  to 

nx  for the candidate point jx , and the row ,1,i cd  to , ,i n cd  is the NNDV of ix . The vote will then result in an 

ensemble decision for the candidate point x ,  and the   value is: 
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Fig. 1 Decision Prototype Matrix for the PVS scheme 

The candidate point with the highest total support is then chosen as the prototype. The pseudo code of the proposed 

Prototype Voting Scheme (PVS) algorithm is shown in Fig. 2. The CNN rule is randomly to select candidate point for the 

prototype construction process. The PVS algorithm differs from CNN, is order-independent and always returns the same 

consistent prototype subset from the original sample set. 

 

Fig. 2 Pseudo code of the PVS scheme 

The Prototype Voting Scheme (PVS) scheme 

Input: A training set U with c-class from S; 

Output: A prototype point  ; 

1  For all patterns
ix in U                         8  End For 

2  For each candidate jx in U                      9  End For 

3   If ( i jx x and  min ( , )i jd x x =True) Then         10  For each candidate jx in U 

4        1ijd  ;                               11  Summation of ijd to support value; 

5   Else                                      12   End For 

6        0ijd  ;                               13 Choose jx with the maximum support value ; 

7   End If                                     14 Return (  ); 

 

 

 

 

 



International Journal of Engineering and Technology Innovation, vol. 5, no. 4, 2015, pp. 220 - 232 

Copyright ©  TAETI 

225 

3.2. The Dynamic Condensed Nearest Neighbor (DCNN) rule 

As the CNN rule randomly chooses samples as prototypes and checks whether all samples have been fully merged into 

prototype subset, the PVS algorithm is used to improve the randomly select process in Prototype Construction stage and the 

adaptively merged rate coefficient m  for dynamically tuning the flexible criterion in Merge Detection process. Hence, it is 

called the Dynamic CNN (DCNN) algorithm. 

The DCNN rule has the following advantages. First, it incorporates simply voting scheme in prototype construction 

process to always return the same consistent training subset independent of the order in which the data is processed and can 

thus outperform the CNN rule. Second, the employment of the adaptively merged rate coefficient in the Merge Detection 

process is flexible to edit out noisy instances, to reduce the superfluous instances and makes the machine less sensitive to 

noises and outliners. The adaptively merged rate coefficient, denoted as [0,1]m  , is defined as the ratio of the number of 

instances merged into prototypes to the number of overall dataset and evaluated by Eq. (13). The number of instances 

merged into prototypes and the number of overall dataset are indicated by 
mergeN  and 

totalN , respectively. 

       100%
merge

m

total

N

N
    

(13) 

The proposed DCNN algorithm is described as follows. 

Step 1: Prototype Initiation: For each class c, adopts the PVS algorithm to select a c-sample as a new c-prototype.  

Step 2: Merge Detection: Detect whether all samples have been achieved the user defined merged rate threshold m . If so, 

terminate the process; otherwise, proceed to the Step 3. 

Step 3: Prototype Augmentation: For each c, if there are any un-merged c-samples, applies the PVS algorithm to construct a 

new c-prototype; otherwise, no new prototype is added to class c. Proceed to Step 2. 

Table 1 The numerical values of the prototype data points with five values of merged rate  

No. of data points 0.8m   0.85m   0.9m   0.95m   1.0m   

Class 1 (1) (5.5,1.3) (5.5,1.3) (5.5,1.3) (5.2,1.4) (5.2,1.4) 
Class 1 (2) (6.4,1.5) (5.6,1.5) (5.6,1.5) (5.5,1.3) (5.2,1.9) 

Class 1 (3) (6.9,1.5) (6.3,1.6) (5.6,1.8) (5.6,1.5) (5.5,1.3) 
Class 1 (4)  (6.4,1.5) (6.3,1.6) (5.6,1.8) (5.6,1.5) 

Class 1 (5)  (6.9,1.5) (6.4,1.5) (6.0,1.5) (5.6,1.8) 
Class 1 (6)  (7.0,1.8) (6.7,1.7) (6.3,1.6) (6.0,1.5) 

Class 1 (7)   (6.9,1.5) (6.4,1.5) (6.0,1.6) 

Class 1 (8)   (7.0,1.8) (6.7,1.7) (6.3,1.6) 
Class 1 (9)    (6.9,1.5) (6.4,1.5) 

Class 1(10)    (7.0,1.8) (6.7,1.7) 
Class 1(11)     (6.9,1.5) 

Class 1(12)     (7.0,1.8) 

Class 1(13)     (7.5,1.7) 
Class 2 (1) (5.4,1.6) (5.4,1.6) (5.4,1.6) (4.9,1.7) (4.9,1.7) 

Class 2 (2) (6.4,1.8) (5.8,1.9) (5.8,1.9) (5.4,1.6) (5.4,1.6) 
Class 2 (3) (7.3,1.8) (6.4,1.8) (6.2,1.9) (5.8,1.9) (5.8,1.9) 

Class 2 (4)  (6.9,1.9) (6.4,1.8) (5.9,1.7) (5.9,1.7) 
Class 2 (5)  (7.1,2.1) (6.9,1.9) (6.2,1.9) (6.1,1.8) 

Class 2 (6)  (7.3,1.8) (7.1,2.1) (6.4,1.8) (6.2,1.9) 

Class 2 (7)   (7.2,1.6) (6.9,1.9) (6.4,1.8) 
Class 2 (8)   (7.3,1.8) (7.1,2.1) (6.9,1.9) 

Class 2 (9)    (7.2,1.6) (7.1,2.1) 
Class 2(10)    (7.3,1.8) (7.2,1.6) 

Class 2(11)     (7.3,1.8) 

Class 2(12)     (7.4,1.9) 
Class 2(13)     (7.7,2.2) 
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In order to illustrate the behavior of the proposed DCNN algorithm, a set of data points in 2R  space is considered. 

The numerical values of the prototype data points with five merged rate value of m ( m =0.8, 0.85, 0.9, 0.95 and 1.0) using 

the proposed algorithm are listed in Table 1. The simulation results are shown in Fig. 3, where“◇” and“” denote the 

positive class and negative class respectively, the data points with“+” inner symbols are prototypes. The results show that 

the higher the value of m , the larger the number of prototypes, and vice versa. This property makes the DCNN algorithm 

flexible to tackle those training samples misclassified in the overlapped region or outliers on the different distributions of 

dataset. Thus, we can apply SVM to post-process the set of prototypes from DCNN, to improve the outlier sensitivity 

problem of the standard SVM and yield an effectively hybrid classifier. 

  
(a) The result of original dataset (b) The result of 0.8m   

  

(c) The result of 0.85m   (d) The result of 0.9m   

  

(e) The result of 0.95m   (f) The result of 1.0m   

Fig. 3 The simulation results 
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3.3. The GA-DCNN-SVM hybrid model 

This section detailed the proposed novel hybrid framework, which integrates the prototype construction, feature 

selection and parameter optimization for the SVM. The chromosome representation, fitness definition and system procedure 

for the proposed hybrid model are described as follows. 

3.3.1. Chromosome Representation 

This research used the RBF kernel function (defined by Eq. (7)) for the SVM classifier to implement our proposed 

method. The RBF kernel function requires that only two parameters, C and should be set. Using the adaptively merged 

rate for DCNN and the RBF kernel for SVM, the parameters
m , C ,   and features used as input attributes must be 

optimized simultaneously for our proposed GA-DCNN-SVM hybrid system. The chromosome therefore, is comprised of 

four parts,
m , C ,   and the features mask. Fig. 5 shows the chromosome representation of our design. 

1 2 0 1 2 0 1 2 0 1 2 0... , ... , ... , ...m m m

c c r r f fm m

c c c r r r f f f

n n n n n n n nb b b b b b b b b b b b
 

  

       
 
 

 

Fig. 4 Chromosome representation in 
m ,C , and features mask 

In Fig. 4, 
1 0

~m m

m
n

b b


 


 indicates the parameter value 

m
  and the bit string’s length is 

m

n
 , 1 0

~
c

c c

n
b b

  represents the 

parameter value C  and the bit string’s length is 
cn , 1 0

~
n

b b


 

  denotes the parameter value  and the bit string’s length 

is n
,  

1 0~
f

f f

nb b
 stands for the features mask and 

fn  is the number of features that varies from different datasets. 

Furthermore, we can choose different length for each 
m

n , 
cn  and n

 parameter according to the calculation precision 

required. 

The bit string 
1 2 0...l lb b b 

, where  0,1 , 0,1,..., 1ib i l   , representing the genotype format of the parameters 

m
 , C and  , should be transformed into phenotype z by Eq. (14). Note that the precision of representing parameter 

depends on the length of the bit string l  (such as 
m

n


, 
c

n and n


), and the minimum and maximum value min max[ , ]z z  

of the parameter is determined by the user. The features mask is Boolean that ‘1’ represents the feature is selected, and ‘0’ 

indicates the feature is not selected. 

     
1

max min
min

0

( )
2

2 1

l
i

il
i

z z
z z b






  


  (14) 

3.3.2. Fitness Definition 

Fitness function is the guide of GA’s operation to search for optimal solutions. For maximizing the classification 

accuracy and minimizing the number of selected features, the fitness function F is a weighted sum with Aw  for the 

classification accuracy weight and Fw  for the selected features as defined by Eq. (15). ccA is the SVM classification 

accuracy, 
i

f is the value of feature mask－‘1’ represents the feature i is selected and ‘0’ indicates that feature i is not 

selected, and 
f

n is the total number of features. Thus, for the chromosome with high classification accuracy and a small 

number of features produce a high fitness value.  

     
1

1

fn

A F i

i

F w Acc w f





 
     

 
  (15) 

Considering the tradeoff between the classification accuracy and selected feature number, the two weights Aw  and 

Fw  can be adjusted according to the preference of classifier designers. The weight accuracy can be tuned to a high value 

(such as 100%) if accuracy is the most important. 
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3.3.3. The proposed hybrid GA-DCNN-SVM algorithm 

Feature Selection
Yes

Prototype Construction (DCNN rule)

SVM Parameter Optimization

GA Operation

Dataset

Testing set Training set

Selected feature subset F

GA parameter : feature mask

Testing set with F Training set with F

Training SVM classifier

GA parameters : C and r

Learned SVM classifier

Fitness calculation

Optimized Ɵm,C,r and feature subset

Termination check ?
GA

operation

No

Yes

Data Preprocessing

Scaling

Prototype construction

by PVS algorithm

Merged rate coefficient

GA parameter : Ɵm

Merge detection check ?
Prototype

Augmentation

No

Yes

 
Fig. 5 The flowchart of the proposed hybrid GA-DCNN-SVM algorithm 

Fig. 5 shows the system architecture of our proposed hybrid model. Based on the chromosome representation and 

fitness definition mentioned above, detailed descriptions of the novel GA-DCNN-SVM procedure are illustrated as follows. 

Procedure GA-DCNN-SVM hybrid model 

Step 1: Data preparation 

Given a dataset S  is considered using the 10-fold cross-validation process to split the data into ten groups. Each 

group contains training and testing sets. The training and testing sets are represented as TRS and TES , respectively. 

Step 2: GA initialization and parameters setting 

Set the GA parameters including the number of iterations, population sizes, crossover rate, mutation rate, and weight for 

fitness calculation. Generate initial chromosomes comprised of the parameters including
m

 , C ,  , and feature mask. 

Step 3: Converting genotype to phenotype 

Convert each parameter (
m

 , C and  ) from its genotype into a phenotype. 
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Step 4: Prototype construction by using the DCNN algorithm 

    The DCNN algorithm computes a prototypes subset, denoted by P , from the training set TRS  according to the merged 

rate parameter 
m

  which is represented in the chromosome and calculated from Step 3. Once the prototypes subset P  is 

computed, the new training set 
'

TRS  is set to P . 

Step 5: Scaling 

    The purpose of feature scaling is to properly describe the interactions between feature attributes and to avoid attributes 

in greater numeric ranges dominating those in smaller numeric ranges [3, 14]. Attributewise normalization by Eq. (16) can 

be linearly scaled to the range [-1, +1] or [0, 1], where ( )j ia x  is the original attribute value of feature ix , ' ( )j ia x  is 

scaled value, max j  and min j  correspond to the maximum and minimum values for attribute ja  over all samples. 

      '
( ) min

( ) ,
max min

j i j

j i

j j

a x
a x i


 


 (16) 

Step 6: Selected features subset 

    Select input features for training set 
'

TRS  and testing set TES  according to the feature mask which is represented in 

the chromosome from Step 2, then the features subset can be determined. We denote the 
'

TRS  and TES  datasets with 

selected features as 
'

TRFS  and TEFS , respectively. 

Step 7: SVM model training and testing 

    Based on the parameters C  and   which are represented in the chromosome and calculated from Step 3, to train the 

SVM classifier on the training dataset 
'

TRFS , then the classification accuracy ccA  on the testing dataset TEFS  can be 

evaluated. 

Step 8: Fitness evaluation 

    For each chromosome, evaluate its fitness value by Eq. (15) when the classification accuracy 
cc

A  is obtained from 

previous step. The optimal fitness value will be stored to provide feedback on the evolution process of GA to find the 

increasing fitness of chromosome in the next generation. 

Step 9: Termination check 

    When the maximal evolutionary epoch is reached, the process ends; otherwise, go to the next step. 

Step 10: GA operation 

    In the evolution process, standard GA operators such as selection, crossover and mutation based on elitist strategy may 

be applied to search for better solutions.  

4. Experimental Results 

4.1. System Implementation Descriptions 

To verify the effectiveness of the proposed hybrid system, we tried several real benchmark data sets which are cited 

from the UCI Machine Learning Repository [15]. 
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Six real data sets are considered, namely, the Australian data set, the German data set, the Heart disease data set, the Iris 

data set, the Vehicle data set, and the Vowel data set. In the above datasets, Table 2 summarizes the number of numeric 

attributes, number of nominal attributes, number of classes, and number of instances. 

Table 2 Datasets from the UCI Machine Learning Repository 

Names Num. 

classes 

Num. 

instances 

Nominal 

features 

Numeric 

features 

Total 

features 

Australian 2 690 6 8 14 

German 2 1000 0 24 24 

Heart 2 270 7 6 13 

Iris 3 150 0 4 4 

Vehicle 4 940 0 18 18 

Vowel 11 990 3 10 13 
 

    The datasets considered are partitioned using the 10-fold cross validation. Each initial data set S , is randomly divided 

into ten disjoint sets of equal size T1, …, T10. We maintain the original class distribution (before partitioning) within each set 

when carrying out the partition process, and then conduct ten pairs of training and testing sets, ( i

TRS , i

TES ), i=1, …, 10. Ten 

trials were run for each data set, and the advantage of cross validation is that all of the testing sets were independent and the 

reliability of the results could be improved.  

    Our implementation platform was carried out on Matlab 2013, a mathematical development environment by extending 

the LIBSVM which is originally designed by Chang and Lin [16]. The GA-based previously published method by Huang [3], 

namely GA-SVM with non-DCNN version, for searching the best C ,  , and features subset. The existing GA-SVM with 

non-DCNN version method deals solely with feature selection and parameters optimization by means of genetic algorithm, 

and the treatment of these redundant or noisy instances in a classification process did not taken into account. Our proposed 

GA-DCNN-SVM hybrid model has been tested fairly extensively and compared with the non-DCNN version approach using 

three criteria, namely, the classification accuracy rate, the number of selected feature, and the non-parametric Wilcoxon 

signed rank test. In all of the experiments, 10-fold cross validation was used to estimate the classification accuracy of each 

learning algorithm. We report the empirical results in the following section. 

4.2. Results and Comparisons 

In computation works, we set GA parameters to the same values to compare the performance using the two different 

algorithms. The detail parameter setting for GA is as the following: population size 200, generation number 300, crossover 

rate 0.7, mutation rate 0.05, two point crossover, roulette wheel selection and the elitism replacement. The bit string’s length 

for each parameter m
n , cn , n  is configured as 20, and the value of fn  varies from different datasets described in 

Table 2. According to the fitness function defined by Eq. (15), set the accuracy’s weight 0.8Aw   and the feature’s weight 

0.2Fw   for all experiments. The termination criterion is that the generation number achieves generation 300, and the 

best chromosome is obtained when the termination criterion satisfies.  

    Taking the Heart disease dataset, for example, the classification accuracy ccA , number of selected features fn , and the 

best parameters 
m , C ,   for each fold using GA-DCNN-SVM algorithm and GA-SVM with non-DCNN approach are 

shown in Table 3. For the GA-DCNN-SVM method, average classification accuracy rate is 96.10%, and average number of 

features is 5.0. For the GA-SVM with non-DCNN approach, its average classification accuracy rate is 94.81%, and average 

number of features is 5.6. Table 4 shows the summary results for the average classification accuracy rate _ ccAvg A and the 

average number of selected features _ fAvg n  for the six UCI datasets using the two different approaches. In Table 4, the 

classification accuracy rate and number of features are represented as the form of ‘average  standard deviation’. It should 
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be mentioned that in the case of six UCI datasets, the _
cc

Avg A  always increased when the DCNN philosophy was 

employed. 

Table 3 Experimental results for Heart disease dataset comparison from GA-DCNN-SVM and GA-SVM algorithms 

GA-DCNN-SVM algorithm GA-SVM algorithm 

Fold# Acc nf Optimize m  Optimized C Optimized γ Acc nf Optimized C Optimized γ 

1 93.8 4 0.91762668 52.8991662 0.54895732 92.4 5 5.5801297 0.57708836 

2 98.2 6 0.95872936 162.8651756 0.02765115 98.1 7 60.2411283 0.01708658 

3 100.0 7 0.96772981 133.6631785 0.02488665 100.0 7 171.3113128 0.21574369 

4 94.6 4 0.92086954 26.9159661 0.10925755 92.6 4 95.2776294 0.05706643 

5 98.5 6 0.94607836 82.7895272 0.33687129 98.4 7 267.4913877 0.33562374 

6 93.7 4 0.91765053 165.9553541 0.18916658 92.6 6 53.6696245 0.07895168 

7 94.6 4 0.94782197 20.6576587 0.06485473 92.1 4 216.8613768 0.12075873 

8 97.6 6 0.92492187 9.7715546 0.08432751 97.5 6 170.5518422 0.45896385 

9 93.8 4 0.92642064 216.8693786 0.21982678 90.7 4 75.5779491 0.08705219 

10 96.2 5 0.93052900 88.8319034 0.46812314 93.7 6 83.6912762 0.11775911 

Average 96.10 5.0    94.81 5.6   

    To highlight the advantage, the non-parametric Wilcoxon signed rank test is used for all of the datasets. As shown in 

Table 4, the p-value for Iris is equal to 1.0, but other p-values are smaller than the statistical significance level of 0.05. Due 

to time considerations, the average execution time for GA-DCNN-SVM approach requires more computing time than the 

non-DCNN version. It is reasonable that the DCNN rule can achieve optimization merged rate for training data to improve 

SVM performance. Generally, compared with the GA-based with non-DCNN version algorithm, the proposed 

GA-DCNN-SVM hybrid approach has good classification accuracy performance with fewer features and it effectively 

improves the classification accuracy and has fewer input features for support vector machine. 

Table  4 Experimental results of GA-DCNN-SVM algorithm and GA-SVM method on six UCI datasets 

Name GA-DCNN-SVM GA-SVM 
p-value for 

Wilcoxon testing 

 _ ccAvg A  
_ fAvg n

 
_ ccAvg A

 
_ fAvg n

  

Australian 90.3±1.42 4.3±0.82 88.2±1.81 4.5±1.08 0.028
*
 

German 87.4±0.97 12.6±0.84 85.6±1.80 13.1±1.59 0.022
*
 

Heart 96.1±2.32 5.0±1.15 94.8±3.32 5.6±1.26 0.008
*
 

Iris 100±0 1±0 100±0 1±0 1.0 

Vehicle 85.9±1.85 8.6±0.97 84.0±2.40 9.7±1.70 0.007
*
 

Vowel 99.2±0.75 7.1±0.74 98.5±0.89 7.9±0.88 0.011
*
 

*Statistical significance level is 0.05. 

5. Conclusions 

In this work, an order-independent algorithm for data reduction, called the Dynamic Condensed Nearest Neighbor 

(DCNN) rule, is proposed to adaptively construct prototypes in the training dataset and to reduce the redundant or noisy 

instances in a classification process for the SVM. Furthermore, a hybrid model based on the genetic algorithm is proposed to 

simultaneously optimize the prototype construction, the feature selection, and the SVM kernel parameters setting for solving 

the classification problems. The experimental results illustrate that the proposed method is capable of producing good 

classification accuracy with a small number of features on several UCI repository of machine learning datasets. Generally, 

the proposed GA-DCNN-SVM hybrid approach outperforms the existing GA-based method without the DCNN scheme and 

improves the classification accuracy with fewer features for the SVM. Extending the proposed hybrid framework to other 
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learning tasks, such as SVM ensemble strategy constitutes a feasible approach and useful modification of the regular SVM, 

is other possible directions to pursue. 
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