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Motivating Questions

How many regular convex polytopes are there in each
dimension?
How can we prove this?
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Regular Convex Polygons

Definition
A polygon is a closed and connected shaped bounded by a finite
number of lines.

Polygons

Not Polygons
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Regular Convex Polygons

Definition
A regular convex polygon is a polygon that is equilateral,
equiangular, and whose interior forms a convex set.

Regular Convex Polygons

Not Regular Convex Polygons
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Regular Convex Polygons
Important things to notice:

All sides are the same lengths
The interior angles are all congruent
They can be represented by a Schläfli symbol

This is of the form {p} where p represents the number of sides
It is unique

{3} {4} {5} {6} {7}

(we can keep going!)

There are infinitely many!

Brittany Johnson Western Oregon University Classifying Regular Polytopes in Dimension 4 and Beyond



Introduction
Polygons, Polyhedra, Polychora

Higher Dimension Polytopes

Polygons
Polyhedra
Polychora

Regular Convex Polygons
Important things to notice:

All sides are the same lengths

The interior angles are all congruent
They can be represented by a Schläfli symbol
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This is of the form {p} where p represents the number of sides
It is unique

{3} {4} {5} {6} {7}

(we can keep going!)

There are infinitely many!

Brittany Johnson Western Oregon University Classifying Regular Polytopes in Dimension 4 and Beyond



Introduction
Polygons, Polyhedra, Polychora

Higher Dimension Polytopes

Polygons
Polyhedra
Polychora

Regular Convex Polygons
Important things to notice:

All sides are the same lengths
The interior angles are all congruent
They can be represented by a Schläfli symbol
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Regular Convex Polyhedra

QUESTION: What is the 3-dimensional analog of the
2-dimensional regular convex polygons?

ANSWER: The regular convex polyhedra, or the Platonic solids
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Regular Convex Polyhedra (The Platonic Solids)

Square

All sides are the same
lengths
Interior angles are
congruent

Cube

All faces are congruent

Notice that the faces are a
regular polygon!

Angles formed by faces are
congruent
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{ p , q }

{ 4 , 3 }

{4}

Square facet

{3}

Triangle vertex figure
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Regular Convex Polyhedra (The Platonic Solids)

Definition
An n-polytope’s facets are the type of (n − 1)-polytopes that bound it.

Definition
The vertex figure of an n-polytope is the (n − 1)-dimensional convex
hull formed by connecting the center of each of the (n− 2)-elements that
are incident on a given vertex.
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Regular Convex Polyhedra (The Platonic Solids)

Theorem
For a regular convex polyhedron {p, q}, qφ < 2π where φ is the
interior angle of a regular p-gon.

In other words, the sum of the interior angles that meet at a given
vertex must be less than 2π.
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Regular Convex Polyhedra (The Platonic Solids)

Theorem
There are exactly 5 Platonic Solids.

Proof (Outline):
The Platonic Solids have a Schläfli symbol of the form {p, q}.
Recall that p, q ≥ 3.
We then follow the following steps:

1 Pick a value for p ≥ 3
2 Find the interior angle φ of a regular p-gon
3 Find the values for q ≥ 3 that satisfy qφ < 2π

This will tell us which combinations of p and q will give us Platonic
solids.
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Regular Convex Polyhedra (The Platonic Solids)

Example:

1 Suppose p = 3
2 The interior angle of a regular 3-gon (i.e. an

equilateral triangle) is φ = π
3 . This means that

we’re looking for q that satisfy q
(

π
3

)
< 2π.

3
(
π

3

)
= π < 2π

4
(
π

3

)
= 1.3π < 2π

5
(
π

3

)
= 1.6π < 2π

6
(
π

3

)
= 2π

3 q( π
3 ) < 2π is satisfied by q ∈ {3, 4, 5}

φ = π
3

This means that
{3, 3}
{3, 4}
{3, 5}

are all Platonic solids!
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If we do this for p = 4, we get that q can only be 3.

If we do this for p = 5, we get that q can only be 3.

If we do this for p ≥ 6, we don’t get any q ≥ 3 that work (this is
because the interior angle of these polygons is so large).

Therefore there are exactly five Platonic solids, given by

{3, 3} {3, 4} {3, 5} {4, 3} {5, 3}
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Brittany Johnson Western Oregon University Classifying Regular Polytopes in Dimension 4 and Beyond



Introduction
Polygons, Polyhedra, Polychora

Higher Dimension Polytopes

Polygons
Polyhedra
Polychora

Regular Convex Polyhedra (The Platonic Solids)

If we do this for p = 4, we get that q can only be 3.

If we do this for p = 5, we get that q can only be 3.
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If we do this for p = 4, we get that q can only be 3.

If we do this for p = 5, we get that q can only be 3.

If we do this for p ≥ 6, we don’t get any q ≥ 3 that work (this is
because the interior angle of these polygons is so large).

Therefore there are exactly five Platonic solids, given by

{3, 3} {3, 4} {3, 5} {4, 3} {5, 3}
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Name of Solid Faces Schläfli symbol

tetrahedron 4 {3, 3}

octahedron 8 {3, 4}

icosahedron 20 {3, 5}

cube 6 {4, 3}

dodecahedron 12 {5, 3}

tetrahedron octahedron icosahedron cube dodecahedron
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Square

Bounded by
lines

All sides are
congruent

Interior angles
are congruent

Cube

Bounded by regular
polygons

All faces are congruent

Angles formed by faces
are congruent

Tesseract

Bounded by regular
polyhedra

All cells are congruent

Angles formed by cells
are congruent
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Regular Convex Polychora

Brittany Johnson Western Oregon University Classifying Regular Polytopes in Dimension 4 and Beyond



Introduction
Polygons, Polyhedra, Polychora

Higher Dimension Polytopes
References

Higher Dimension Polytopes

Polytopes become increasingly difficult to visualize in higher
dimensions

Regular convex polytopes of higher dimensions follow all of
the same rules and patterns!

An n-polytope is bounded by (n − 1)-polytopes
The facets and vertex figures must each be regular and
congruent
The angles formed by the facets must be congruent
The can be represented by a Schläfli symbol

There are only three regular convex polytopes in each
dimension n ≥ 5
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Future Work

Properties of n-polytopes (n ≥ 4)
Practical uses for this information
Star polytopes
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Thank you for coming!
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