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Abstract

Any square matrix A can be decomposed into a sum of the diagonal (DA) and nilpotent (NA)
parts as A = DA + NA. The components DA and NA commute with each other and with A. For
many matrices A, B, if B commutes with A, then B is a polynomial in A; this holds for DA and
NA. Following a Herbert A. Medina preprint, this paper shows how to construct the polynomials
p(A) = NA and q(A) = DA. Further, the Jordan canonical form J is a conjugate QAQ−1 of A; this
paper demonstrates that the conjugation relating J and A also relates NA and NJ and DA and DJ ,
respectively.

1 Introduction

The contents of this paper are based on work one in a preprint by Herbert A. Medina [1]. We will
focus on proving one theorem, and the bulk of the paper will consist of various lemmas that support the
theorem. First, we introduce some basic definitions that will be used in the paper, all from [2], [4], or
[5]. Then, we will put forth some lemmas and a theorem that will be referenced within multiple parts
of the paper. The proofs for those may be found in the Appendix.

Definition 1.1 Basis A basis of a vector space V is a list of vectors in V that are linearly independent
and spans V .

Definition 1.2 Linear Map A linear map from V to W is a function T : V → W with the following
properties:

additivity T (u+ v) = Tu+ Tv for all u, v ∈ V ;

homogeneity T (λv) = λT (v) for all λ ∈ F and all v ∈ V .

Definition 1.3 Linear Operator The set of all linear maps such that V = W is called a linear operator
and denoted by L(V ).

Definition 1.4 Jordan Basis Suppose T ∈ L(V ). A basis of V is called a Jordan basis for T if with
respect to this basis T has a block diagonal matrixA1 0

. . .

0 Ap

 ,

where each Aj is an upper triangular matrix of the form

Aj =


λj 1 0

. . .
. . .

1
0 λj

 .

Definition 1.5 Diagonalizable An operator T ∈ L(V ) is diagonalizable if the operator has a diagonal
matrix with respect to some basis of V .
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Definition 1.6 Nilpotent An operator T ∈ L(V ) is called nilpotent if some positive power n of L
equals the zero operator.

Definition 1.7 Notation For a matrix A ∈Mn×n(C), ai∗ represents the ith row of A for all columns
1 through n. Also, a∗j represents the jth column of A for all rows 1 through n.

Definition 1.8 Polynomial A polynomial is defined as

p(x) =

n∑
k=0

akx
k = anx

n + an−1x
n−1 + · · ·+ a1x+ a0.

Definition 1.9 Inner Product An inner product on V is a function that takes each ordered pair (u, v)
of elements of V to a number 〈u, v〉 ∈ F that has the following properties:

positivity 〈v, v〉 ≥ 0 for all v ∈ V ;

definiteness 〈v, v〉 = 0 if and only if v = 0;

additivity in first slot 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V ;

homogeneity in first slot 〈λu, v〉 = λ〈u, v〉 for all λ ∈ F and all u, v ∈ V ;

conjugate symmetry 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

Definition 1.10 Simultaneously Diagonalizable Matrices A,B ∈Mn×n(C) are considered simulta-
neously diagonalizable if there exists an invertible matrix P such that PAP−1 and PBP−1 are diagonal.

Definition 1.11 Jordan Chevalley Decomposition A Jordan Chevalley decomposition is an expres-
sion of the sum of a linear operator x as

x = xss + xn

where xss is the semisimple part of x and xn is the nilpotent part of x. Furthermore, xss and xn
commute. If such a decomposition exists, it is unique.

Lemma 1.12 If A, B, C ∈Mn×n(C), then
(i) (A(B + C))ij = (AB)ij + (AC)ij
(ii) ((A+B)C)ij = (AC)ij + (BC)ij .

Lemma 1.13 If A, B ∈ Mn×n(C) and AB = BA, then Ap(B) = p(B)A where p is any polynomial of
B.

Lemma 1.14 If A and B are nilpotent matrices and commute, then A−B is also nilpotent.

Theorem 1.15 If A and B are n × n matrices, diagonalizable, and AB = BA, then A and B are
simultaneously diagonalizable.

These definitions, lemmas, and theorem provide context to the main theorem of this paper, which is the
following:
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Theorem 1.16 Let A ∈ Mn×n(C) and let A = DA + NA be a decomposition of A where DA is diago-
nalizable, NA is nilpotent and NADA = DANA. Then there exists polynomials p(x), q(x) ∈ P (C) such
that p(A) = NA and q(A) = DA. Moreover, NA and DA are unique.

The first step in proving Theorem 1.16 is showing the existence of a polynomial, which we shall do
by constructing said polynomial. We note that the polynomial we construct will only form the nilpotent
part of the matrix. However, we know that by the Jordan Chevalley decomposition A = DA − NA, it
follows that DA = A−NA. If we can find a polynomial such that p(A) = NA, then DA = A− p(A). So,
if we define q(A) = DA, then simply finding p(A) will show the existence of q(A).

2 Initial Statements

Many linear algebra texts attest that the matrix A as defined in Theorem 1.16 can also be expressed
in the form A = QJQ−1, where Q ∈M(C) is invertible and J is a Jordan canonical matrix [3]. For the
rest of this paper we shall represent a Jordan block J by:

J =



λi 1 0 · · · · · · 0
0 λi 1 · · · 0
...

. . .
. . .

...
0

λi 1
0 · · · 0 λi


.

It is possible that the Jordan block can be a 1× 1 with λi as the sole element of the matrix,
Multiple Jordan blocks can then form the Jordan canonical form. The Jordan canonical form is a

matrix that consists of individual Jordan blocks along the the main diagonal of the matrix and zeros in
all the other entries. Thus, we define the Jordan canonical form J as the following:

J =



J1
λ1

0 · · · 0

0
. . .

...
... Jm1

λ1

J1
λ2

. . .

Jm2

λ2

. . .

J1
λq

...
...

. . . 0
0 · · · · · · 0 J

mq
λq



.

where each Jjλi is an individual Jordan block. We define the individual Jordan blocks of a matrix J in

Jordan Canonical form as Jjλi , where λi is the diagonal value and j ∈ {1, 2, . . . ,mi} identifies the Jordan
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block with that value. We note that the j becomes vitally important when we have a Jordan canonical
matrix, as a Jordan canonical matrix can have multiple Jordan blocks with the same diagonal. We also
note that

Jjλi =



λi 1 0 · · · · · · 0
0 λi 1 · · · 0
...

. . .
. . .

...
0

λi 1
0 · · · 0 λi



=



λi 0 · · · 0

0
. . .

. . .
...

...
0

0 · · · 0 λi


︸ ︷︷ ︸

DJ

+



0 1 0 · · · 0
. . .

. . .
...

... 0 1
0 · · · 0


︸ ︷︷ ︸

NJ

Furthermore, this shows that J = DJ + NJ . Next, we will show that DJ and NJ commute and are
unique.

Lemma 2.1 For a Jordan matrix J , the diagonalizable and nilpotent parts, DJ and NJ respectively,
commute.

Proof : Consider ej = (0 · · · 0 1︸︷︷︸
jthposition

0 · · · 0). Thus, we can represent DJ and NJ as DJ =


λie1
λie2

...
λien


and NJ =

(
0 eT1 eT2 · · · eTn−1

)
. We find when multiplying the vectors that,

eje
T
i = δij =

{
1 j = i;

0 j 6= i.

Thus,

DJNJ =


λie1
λie2

...
λien

× (0 eT1 eT2 · · · eTn−1
)

=


0 λie1e

T
1 λie1e

T
2 λie1e

T
3 · · · λie1e

T
n−1

0 λie2e
T
1 λie2e

T
2 λie2e

T
3 · · · λie2e

T
n−1

...
...

...
...

...
0 λien−1e

T
1 λien−1e

T
2 λien−1e

T
3 · · · λien−1e

T
n−1

0 λiene
T
1 λiene

T
2 λiene

T
3 · · · λiene

T
n−1


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=


0 λi 0 · · · 0
0 0 λi · · · 0
...

. . .
. . .

...
0 0 0 · · · λi
0 0 0 · · · 0



Next, the other side. We have NJ =


e2

e3

...
en

0

 and DJ =
(
λie

T
1 λie

T
2 · · · λie

T
n

)
. Thus,

NJDJ =


e2

e3

...
en

0

×
(
λie

T
1 λie

T
2 · · · λie

T
n

)

=



λie2e
T
1 λie2e

T
2 λie2e

T
3 · · · λie2e

T
n

λie3e
T
1 λie3e

T
2 λie3e

T
3 · · · λie3e

T
n

...
...

...
...

...
λien−1e

T
1 λien−1e

T
2 λien−1e

T
3 · · · λien−1e

T
n

λiene
T
1 λiene

T
2 λiene

T
3 · · · λiene

T
n

0 0 0 · · · 0



=


0 λi 0 · · · 0
0 0 λi · · · 0
...

. . .
. . .

...
0 0 0 · · · λi
0 0 0 · · · 0


As we can see, DJNJ = NJDJ . �

Lemma 2.2 For a Jordan matrix J , the diagonalizable and nilpotent parts, DJ and NJ respectively,
are unique.

Proof : We proceed by contradiction. Suppose there exists D
′

J and N
′

J such that J = D
′

J +N
′

J . Since
J = DJ +NJ , we have

DJ +NJ = D
′

J +N
′

J =⇒ DJ −D
′

J = N
′

J −NJ . (1)

By Theorem 1.15 and since diagonal matrices commute we know there exists an invertible matrix P
such that PDJP

−1 and PD
′

JP
−1 are diagonal. So, we find that

PDJP
−1 − PD

′

JP
−1 = PN

′

JP
−1 − PNJP−1.

By Lemma 1.14, PN
′

JP
−1 − PNJP−1 is nilpotent. Therefore, PDJP

−1 − PD′JP−1 is diagonal and

nilpotent, PDJP
−1 − PD′JP−1 = 0, and hence DJ = D

′

J . Therefore, by (1), N
′

J = NJ . It follows that
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DJ and NJ are unique. �

Primarily the strategy for proving Theorem 1.16 will involve finding p(x), where p(x) is the polyno-
mial representation of NA, because that will make it simple to find q(x) = x− p(x) as we elaborated on
earlier. The first step is to actually search for the polynomial representation of NJ . Later, we will show
that NA = QNJQ

−1. We know that A = QJQ−1 and J = DJ +NJ , and will go from there. But first,
we begin by showing that p(x) exists.

3 Construction of the Polynomial

In order to construct the polynomial that represents the nilpotent part of the matrix J , we assess
the individual Jjλi for j ∈ {1, 2, . . . ,mi}. The final polynomial that represents NJ , which we call p(x), is
constructed as a sum of polynomials each corresponding to the unique λi, which we call pi(x). Since each
λi can have multiple Jordan blocks, it follows that the polynomial corresponding to an individual λi will
also involve multiple polynomials that will be computed into one larger all-encompassing polynomial.
These individual pieces will be called pi,h(x) where i identifies the λ that forms the main diagonal of the
Jordan block the polynomial is manipulating and h denotes which term of pi(x) it is.

In order to better visualize and understand the steps involved in this process, consider the following
example:

J =



2 1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 3 1 0 0 0 0
0 0 0 0 0 3 1 0 0 0
0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 3 1 0
0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 4


.

As we can see, there are four Jordan blocks. We shall set the first 4 × 4 block with the 2’s along the
diagonal as the centerpiece of the pi(x). If we consider the labeling process of the Jjλi , in the example
λi = 2, essentially. As a note, when referring to the general case for the polynomial, it will be labeled
p(x). The specific example will use p(J).

To start the general construction of pi(x), we first want to find pi,1(x). To begin, we focus on
eliminating the Jordan blocks pertaining to the other λr where r 6= i. In order to do this, we use the
factorization of the characteristic polynomial of the Jjλr . So, we will have q−1 factors of (x−λr)mr where
mr is the size of the largest Jordan block of λr and q is the number of unique λr. Within the context of
the example, that means we will have (J − 3)3(J − 4) as the first few factors of the construction. Note,
we shall use a ∼ to denote the association between the polynomial and its unfinished construction. Only
when the polynomial is complete can we use an equals sign. Thus,

pi,1(J) ∼ (J − 3)3(J − 4)

and we can create a general case for the first part of pi,1(x), where

pi,1(x) ∼ (x− λ2)m2 · · · (x− λr)mr .
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Doing those calculations gives us:

pi,1(J) ∼ (J − 3)3(J − 4) =



2 −7 9 −5 0 0 0 0 0 0
0 2 −7 9 0 0 0 0 0 0
0 0 2 −7 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


As was mentioned, we focus on the largest block of λi. The calculations for any smaller blocks of

λi would be affected by the calculations in the exact same way as the largest block, just applied to a
smaller matrix. This is proven by the following lemma.

Lemma 3.1 Same kth Diagonal Let A = (aij), B = (bij) be n × n upper triangular matrices such
that aij = akm and bij = bkm whenever j − i = k −m. The {aij |j − i = k −m}, {akm|j − i = k −m},
{bij |j − i = k−m}, and {bkm|j − i = k−m} form the diagonals of their respective matrices. Moreover,
the elements in the diagonals are constant. We then find that AB = (cij) also has the property that
cij = ckm whenever j− i = m−k. Further, if P = (pij), Q = (qij) are upper triangular m×m matrices,
such that m ≤ n and the kth diagonal of P is the same as the kth diagonal of A, just adjusted for the
size P and the kth diagonal of Q is the same as the kth diagonal of B, adjusted for the size of Q, then
the kth diagonal of (AB) = kth diagonal of (PQ).

First an example to hopefully make the lemma clearer: Let

A =


0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2
0 0 0 0 0 0

 and B =


0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0

 =⇒ AB = C =


0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.

Further, if we have A′ =


0 2 0 0
0 0 2 0
0 0 0 2
0 0 0 0

 and B′ =


0 0 3 0
0 0 0 3
0 0 0 0
0 0 0 0

 =⇒ A′B′ = C ′ =


0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0

.

Now, on to the proof.
Proof : Let A = (aij), B = (bij) be n × n upper triangular matrices. Let j ≥ i and m ≥ k with
j − i = m− k. Suppose that aij = akm and bij = bkm.

AB = cij =

j∑
r=i

airbrj

Note, since we set j− i = m−k, when r = j, we find that r− i = m−k when m = k+ r− i. Also, when
r is in the place of i, we find that j− r = m− k when k = r− j+m. It follows that air = ak(r−i+k) and
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brj = b(j−r+m)m. Therefore, by substitution

cij =

j∑
r=i

ak(r−i+k)b(r−j+m)j . (2)

Let s = r − i + k. When r = i, s = i − i + k = k; and when r = j, s = j − i + k = m − k + k = m,
since we previously noted that j − i = m− k. Also, since s = r − i+ k, we know r = s+ i− k. Hence,
r− j +m = s+ i− k− j +m = s− (j − i) + (m− k) = s. Thus we can substitute s in place of r in (2).
Therefore,

cij =

m∑
s=k

aksbsm = ckm. (3)

Equation (3) shows that the elements in the product matrix only depend on the values in the diago-
nal entries and not on the size of the matrix. This is because the kth diagonals are the same when
j − i = m− k, but that doesn’t not necessarily mean that m = j and i = k. �

Back to the example, since we want the nilpotent part of the matrix, to keep the diagonal as all
1’s, we will need to divide the polynomial by the product of each of the (λi− λr)mr . So, in the example
we multiply by 1/2. For the general case we have:

pi,1(x) ∼ (x− λ2)m2 · · · (x− λm)mr

(λi − λ2)m2(λi − λr)mr
.

Thus, we have:

pi,1(J) ∼ (J − 3)3(J − 4)

(2− 3)3(2− 4)
=



1 −7/2 9/2 −5/2 0 0 0 0 0 0
0 1 −7/2 9/2 0 0 0 0 0 0
0 0 1 −7/2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

Once that is done, all that is left is the 4 × 4 block that we are focusing on. We want to shift the
diagonal of 1’s into the superdiagonal. We do this by multiplying (x − λi), which is (J − 2) in the
example, by the prior construction of pi,1(x). Thus, the final polynomial is

pi,1(x) =
(x− λi)(x− λ1)m1 · · · (x− λr)mr

(λi − λ1)m1 · · · (λi − λr)mr
.
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And for the example we have:

pi,1(J) =
(J − 2)(J − 3)3(J − 4)

(2− 3)3(2− 4)
=



0 1 −7/2 9/2 0 0 0 0 0 0
0 0 1 −7/2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

However, doing this will create nonzero numbers in the entries above the diagonal. These nonzero
entries in the superdiagonals will be in constant, which makes it rather simple to get rid of them. We
use another polynomial to get rid of those numbers. Note that the current polynomial creates 1’s in the
diagonal. If we are able to shift that diagonal up, we then simply need to multiply it by the value we
want to subtract. To do so, this second polynomial we create will be subtracted from the first. Hence,
we begin to construct pi,2(x).

This second polynomial, called pi,2(x), will shift the Jordan block corresponding to λi up. So, we
begin construction by taking the first polynomial and multiplying by another (J − λi). This has the
effect of shifting the elements of the matrix up one diagonal. For the general case, we have:

pi,2(x) =
(x− λi)2(x− λ1)m1 · · · (x− λr)mr

(λi − λ1)m1 · · · (λi − λr)mr
.

And for the example we have:

pi,2(J) =
(J − 2)2(J − 3)3(J − 4)

(2− 3)3(2− 4)
=



0 0 1 −7/2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

We will prove this using the following lemma.

Lemma 3.2 Shifting Matrices Let N ∈Mn×n(C) such that N =


0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0 0

.

(i) For k ≥ 1,

(Nk)ij =

{
1 j − i = k;

0 otherwise.
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(ii.) Let A =

a11 · · · a1n
...

...
an1 · · · ann

 be any n× n matrix. Then NkA =



a(k+1)1 · · · a(k+1)n

...
...

an1 · · · ann
0 · · · 0
... · · ·

...
0 · · · 0


.

Proof of (i): Let N =


0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0 0

 be an n× n matrix. We proceed by induction on k.

Base Case: Let k = 1. We can see that by construction of N , the 1’s are in the positions where j− i = 1.
Thus, the statement holds for k = 1.
Induction Hypothesis: Assume that for k ≥ 1,

Nk
ij =

{
1 j − i = k;

0 otherwise.

We want to show that

Nk+1
ij =

{
1 j − i = k + 1;

0 otherwise.

We begin by noting that Nk+1 = NNk. Consider ej = (0 · · · 0 1︸︷︷︸
jthposition

0 · · · 0). Thus, we can represent

N and Nk as

N =


e2
e3
...
en
0


and

Nk =
(
0 · · · 0 eT1 eT2 · · · eTn−k.

)
When multiplying vectors eje

T
i , we find

eje
T
i = δij =

{
1 j = i;

0 j 6= i.

It follows that

Nk+1 = NNk =


e2
e3
...
en
0

×
(
0 · · · 0 eT1 eT2 · · · eTn−k

)
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=



0 · · · 0 e2e
T
1 e2e

T
2 e2e

T
3 · · · e2e

T
n−k

0 · · · 0 e3e
T
1 e3e

T
2 e3e

T
3 · · · e3e

T
n−k

...
...

...
...

...
...

0 · · · 0 en−ke
T
1 en−ke

T
2 en−ke

T
3 · · · en−ke

T
n−k

...
...

...
...

...
...

0 · · · 0 ene
T
1 ene

T
2 ene

T
3 · · · ene

T
n−k



=



0 · · · 0 0 1 0 · · · 0
0 · · · 0 0 0 1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 0 0 0 · · · 1
...

. . .
. . .

. . .
. . .

. . .

0 · · · 0 0 0 0 · · · 0


We find that

Nk+1 = NNk =
(
0 · · · 0 0︸︷︷︸

jthposition

eT1︸︷︷︸
(j+1)stcolumn

eT2 · · · eTn−k−1
)

.
Thus, the eTj in Nk, are in the eTj−1 column we find that NNk. Therefore, for Nk+1, k = j − 1− i and
k + 1 = j − i. In conclusion,

Nk
ij =

{
1 j − i = k;

0 otherwise.

holds for all k ≥ 1. �

Proof of (ii): Let A =

a11 · · · a1n
...

...
an1 · · · ann

 be any n× n matrix and

(Nk)ij =

{
1 j − i = k;

0 otherwise.

Representing Nk with the vectors we defined in the part (i), we have

Nk =



ek+1

ek+2

...
en
0
...
0


.

For readability, we also have
A =

(
a∗1 a∗2 · · · a∗n

)
.
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Note that ej = (0 · · · 0 1︸︷︷︸
jthposition

0 · · · 0) and a∗m =


a1m
a2m

...
anm

 . It follows that eja∗m = ajm.

Then,

NkA =



eK+1

ek+2

...
en
0
...
0


(
a∗1 a∗2 · · · a∗n

)

=



ek+1a∗1 ek+1a∗2 · · · ek+1a∗n
ek+2a∗1 ek+2a∗2 · · · ek+2a∗n

...
...

ena∗1 ena∗2 · · · ena∗n
0 · · · 0
... · · ·

...
0 · · · 0



=



a(k+1)1 · · · a(k+1)n

...
...

an1 · · · ann
0 · · · 0
... · · ·

...
0 · · · 0



In conclusion, NkA =



a(k+1)1 · · · a(k+1)n

...
...

an1 · · · ann
0 · · · 0
... · · ·

...
0 · · · 0


. �

Back to the example, we now have 1’s in the diagonal we want to get rid of. So, the next step
is to multiply the matrix by a number so that the constant diagonal of 1’s will be equal to the element
in the first upper diagonal of the first polynomial formed matrix. Note, we call these di(k) where the
i identifies which λi the polynomial is focusing on, and k the diagonal the di(k) is located in. In the
example, di(1) = −7/2. So, we multiply pi,2(x) by di(1) and then subtract that product from pi,1(x).
We continue this process for as many pi,h(x) are present.

Then, we would repeat this process for the rest of the Jjλi . Finally, we would add all the pi(x)
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together to get p(x). For the example, we eventually find that:

p1(J) =
(J − 2)(J − 3)3(J − 4) + (7/2)[(J − 2)2(J − 3)3(J − 4)] + (31/4)[(J − 2)3(J − 3)3(J − 4)]

(2− 3)3(2− 4)
.

Further, using the construction we find:

p2(J) =
(J − 3)(J − 2)4(J − 4)− (3)[(J − 3)2(J − 2)4(J − 4)]

(3− 2)4(3− 4)
.

Since the last Jordan block is a 1× 1, it doesn’t have any 1’s in the diagonal. Thus, p3(J) = 0.
In conclusion,

p(J) =
(J − 2)(J − 3)3(J − 4) + (7/2)[(J − 2)2(J − 3)3(J − 4)] + (31/4)[(J − 2)3(J − 3)3(J − 4)]

(2− 3)3(2− 4)

+
(J − 3)(J − 2)4(J − 4)− (3)[(J − 3)2(J − 2)4(J − 4)]

(3− 2)4(3− 4)
.

We currently do not have a generalized way of finding di(k). However, we do have a way of extrap-
olating that there exists a way to generalize them with the following lemma.

Lemma 3.3 Entries in Further Diagonals For each i, k,

(J iλ1
− λk)sk

(λ1 − λk)sk
=



1 bsk(1) bsk(2) · · · · · · bsk(m− 2) bsk(m− 1)
0 1 bsk(1) · · · · · · · · · bsk(m− 2)
...

. . .
. . .

...

1 bsk(1) bsk(2)
... 1 bsk(1)
0 · · · 0 1


where

bsk(j) =

{
(skj )

(λ1−λk)j j ≤ sk;

0 j > sk.

We shall also provide an example for this lemma. Referring back to the matrix used in the broad
explanation of how to form the polynomial p(x), we shall focus on the Jordan block J2 with the λk
corresponding to the 3’s in the diagonal of the 3× 3 block. So,

(J2 − 3I)3

(2− 3)3
=


1 −3 3 −1
0 1 −3 3
0 0 1 −3
0 0 0 1

 .

Hence,
(3
1)

(2−3)1 = −3,
(3
2)

(2−3)2 = 3, and
(3
3)

(2−3)3 = −1 as desired.

Proof : We argue by induction on sk.
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Base Case: Let sk = 1. Therefore, we consider the first
(Jiλ1

−λk)
(λ1−λk) . Note that

J iλ1
=



λ1 1 0 · · · 0

0
. . .

. . .
. . .

...
... 0

λ1 1
0 · · · 0 λ1

 .

Thus,

J iλ1
− λk =



λ1 − λk 1 0 · · · 0

0
. . .

. . .
. . .

...
... 0

λ1 − λk 1
0 · · · 0 λ1 − λk


Furthermore,

(J iλ1
− λk)

(λ1 − λk)
=



1 1
λ1−λk 0 · · · 0

0
. . .

. . .
. . .

...
... 0

1 1
λ1−λk

0 · · · 0 1


Since

(
1
1

)
= 1, we conclude that when sk = 1 the statement holds.

Induction Hypothesis: Assume the result for sk = `, where ` ≥ 1.

(J iλ1
− λk)`+1

(λ1 − λk)`+1
=


1 1

λ1−λk 0 . . . . . . 0

0 1 1
λ1−λk 0 . . . 0

...
. . .

. . .
. . .

...
1 1

λ1−λk
0 · · · 0 1

×


1 b`(1) b`(2) . . . . . . b`(m− 2) b`(m− 1)
0 1 b`(1) . . . . . . . . . b`(m− 2)
...

. . .
. . .

...
1 b`(1) b`(2)

1 b`(1)
0 · · · 0 1


The main diagonal of the resulting product is clear, as it still is a diagonal of 1′s. We find, that products

when not the diagonal, take the form of bl(n)+ bl(n−1)
λi−λk . Note that for j ≥ i, where j denotes the bl being

used and i is the size of the Jordan block of λi, the i,j component of the matrix for the case l = sk is
bl(j − i). Therefore, we have to show that the i,j component of the matrix resulting from the product
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of the above is bl+1(j − i). The i,j component in the product is 1 ∗ bl(j − i) + 1
λi−λk ∗ bl(j − i− 1). This

expression is computed in three cases:
( l
j−i)

(λ1−λk)j−i + 1
(λ1−λk)

( l+1
j−i−1)

(λ1−λk)j−i−1 =
(l+1
j−i)

(λ1−λk)j−i = bl+1(j − i) j − i ≤ l;

0 + 1
(λ1−λk)

( l+1
j−i−1)

(λ1−λk)j−i−1 =
(l+1
j−i)

(λ1−λk)j−i = bl+1(j − i) j − i ≤ l + 1;

0 = bl+1(j − i) j − i ≥ l + 2. �

To summarize, we have created a polynomial where:

pi,1(Jjλi) =



0 1 di(1) di(2) · · · · · · di(m− 2) di(m− 1)
0 0 1 di(1) · · · · · · · · · di(m− 2)
...

...
. . .

. . .
...

1 di(1) di(2)
...

... 1 di(1)
0 1

0 0 · · · · · · 0


and

pi,2(Jjλi) =



0 0 1 di(1) di(2) · · · · · · di(m− 2) di(m− 2)
0 0 0 1 di(1) · · · · · · · · · di(m− 3)
...

...
. . .

. . .
...

1 di(1)
...

... 1
0

0 0 · · · · · · 0


.

So, broadly speaking, the general case of the polynomial is the following:

pi,k(x) =
(x− λi)k(x− λ1)m1 · · · (x− λr)mr

(λi − λ1)m1 · · · (λi − λr)mr
.

Furthermore, we define p1(x) as

p1(x) = pi,1(x)− α1(2)pi,2(x)− α1(3)pi,3(x)− · · · − α1(m1 − 1)pi,(m1−1)(x)

where α1 is a function defined recursively by

α1(2) = d1(1)

α1(3) = −α1(2)d1(1) + d1(2)

...
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α1(n) = −α1(n− 1)d1(1)− α1(n− 2)d1(1)− · · · − −α1(2)d1(n− 1) + d1(n)

In conclusion, we let

p(x) =

q∑
k=1

pk(x).

So, we have constructed a polynomial representing the p(x) parts of the matrix. Note that since
J = DJ +NJ , we know DJ = J −NJ . Since p(J) = NJ , we also have shown the existence of q(J) which
would represent DJ .

To conclude Theorem 1.16, we want to show that DA = QDJQ
−1 and NA = QNJQ

−1. We use the
following two lemmas to do so:

Lemma 3.4 Let A ∈ Mn×n(C) and let J be its Jordan canonical form such that A = QJQ−1. Let
J = DJ + NJ be the Jordan Chevalley decomposition of J into the sum of its diagonal and nilpotent
parts. If p(x) is a polynomial such that such that p(J) = NJ , then p(A) = QNJQ

−1.

Proof : Let A ∈ Mn×n(C), where J is the Jordan canonical form. Assume A = QJQ−1 and that
J = DJ +NJ . Also, suppose there exists p(x) such that p(J) = NJ . So,

p(A) = p(QJQ−1).

We note by Lemma 1.12 that it follows that p(A) = Qp(J)Q−1. So, p(A) = QNJQ
−1 as desired. �

To make the final step to NA = QNJQ
−1, we have the following.

Lemma 3.5 Let A ∈ Mn×n(C) and let J be its Jordan canonical form such that A = QJQ−1.Let
J = DJ + NJ be J ’s Jordan Chevalley decomposition into the sum of a diagonal matrix DJ and a
nilpotent matrix NJ . Suppose that A = DA +NA is the Jordan Chevalley decomposition of A where DA

is diagonalizable, NA is nilpotent, and DANA = NADA. Then DA = QDJQ
−1 and NA = QNJQ

−1.

Proof : Let A ∈ Mn×n(C) and let J be its Jordan canonical form such that A = QJQ−1. Let J =
DJ + NJ be J ’s decomposition into the sum of a diagonal matrix DJ and a nilpotent matrix NJ .
Suppose that A = DA + NA is a decomposition of A where DA is diagonalizable, NA is nilpotent, and
DANA = NADA. By assumption and Lemma 1.12, we know that

A = QJQ−1 = Q(DJ +NJ)Q−1 = QDJQ
−1 +QNJQ

−1

By Lemma 3.4 we can say there exist polynomials p(x) and q(x) such that p(x) = QDJQ
−1 and

q(x) = QNJQ
−1. By Lemma 1.13, the fact that DA and NA commute with A, we conclude that DA

commutes with QDJQ
−1 and NA commutes with QNJQ

−1. By Lemma 1.15 we know there exists an
invertible matrix P such that PDAP

−1 and P (QDJQ
−1)P−1 are diagonal. So, we find that

PAP−1 = PDAP
−1 + PNAP

−1 = P (QDJQ
−1)P−1 + P (QNJQ

−1)P−1

From this we obtain the key relation

PDAP
−1 − P (QDJQ

−1)P−1 = P (QNJQ
−1)P−1 − PNAP−1
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Because QNJQ
−1 and NA commute, by Lemma 1.14, P (QNJQ

−1)P−1−PNAP−1 is nilpotent. Hence,
PDAP

−1 − P (QDJQ
−1)P−1 is both diagonal and nilpotent; therefore it must be zero. Therefore,

DA = QDJQ
−1 and NA = QNJQ

−1. �

Thus concludes the proof of Theorem 1.16. We have shown the existence of a polynomial repre-
sentation of NJ , then showed that NA = QNJQ

−1. We also know that Jordan-Chevalley decompositions
are unique, so DA and NA are unique. Therefore, we have proven Theorem 1.16.

A Appendix

Lemma 1.12 If A, B, and C ∈Mn×n(C), then
(i) (A(B + C))ij = (AB)ij + (AC)ij
(ii) ((A+B)C)ij = (AC)ij + (BC)ij

Proof : Let A, B, and C ∈ Mn×n(C). Let i, j ∈ Z such that 1 ≤ i, j ≤ n. Note, when multiplying
matrices, by the definition of the inner product,

(AB)ij = 〈Ai∗, B∗j〉

Thus, by matrix multiplication and additivity of the inner product:

(A(B + C))ij = 〈Ai∗, (B + C)∗j〉
= 〈Ai∗, B∗j〉+ 〈Ai∗, C∗j〉
= (AB)ij + (AC)ij

Hence, we have shown (i). Next, by matrix multiplication, conjugate symmetry, and additivity of the
inner product:

((A+B)C)ij = 〈(Ai∗ +Bi∗), C∗j〉

= 〈C∗j , (Ai∗ +Bi∗)〉

= 〈C∗j , Ai∗〉+ 〈C∗j , Bi∗〉
= 〈Ai∗, C∗j〉+ 〈Bi∗, C∗j〉
= (AC)ij + (BC)ij

Therefore, we have shown (ii). In conclusion, if A, B, and C ∈ Mn×n(C), then (A(B + C))ij =
(AB)ij + (AC)ij and ((A+B)C)ij = (AC)ij + (BC)ij . �

Lemma 1.13 If A, B ∈Mn×n(C) and AB = BA, then Ap(B) = p(B)A.
Proof : Let A, B ∈Mn×n(C). Suppose AB = BA. We know by the definition of a polynomial that

p(B) = c0 + c1B+ c2B
2 + ...+ cmB

m such that ci ∈ Z where i = 0, 1, 2, ...,m. Thus, by Lemma 1.1 and
AB = BA,

Ap(B) = A(c0 + c1B + c2B
2 + ...+ cmB

m)

= Ac0 +Ac1B +Ac2B
2 + ...+AcmB

m

= c0A+ c1AB + c2AB
2 + ...+ cmAB

m
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= c0A+ c1BA+ c2B
2A+ ...+ cmB

mA

= (c0 + c1B + c2B
2 + ...+ cmB

m)A

= p(B)A

Therefore, as desired when A, B ∈Mn×n(C) and AB = BA, then Ap(B) = p(B)A. �

Lemma 1.14 If A and B are nilpotent matrices and commute, then A−B is also nilpotent.
Proof : Let A,B ∈ Mn×n(C) and be nilpotent. By definition, ∃ n,m ∈ Z such that An = 0 and

Bm = 0. Without loss of generality, let n ≤ m. Let k = n+m− 1 and i = {1, 2, . . . , k − 1}.Thus, using
the binomial theorem, we find that (A−B)k = Ak+c1A

k−1B1+c2A
k−2B2+· · ·+cm−1Ak−(m−1)Bm−1+

cmA
k−mBm + cm+1A

k−(m+1)Bm+1 + · · ·+ ck−1A
1Bk−1 +Bk

where ci ∈ Z. Note that k − (m− 1) = n. By this fact and the assumption we can conclude that

cm−1A
k−(m−1)Bm−1 = 0

cmA
k−mBm = 0

cm+1A
k−(m+1)Bm+1 = 0.

Furthermore, it follows that every other term of (A−B)k is equal to 0. Hence, (A−B)k = 0. Therefore,
by definition, A−B is nilpotent. �

Theorem 1.15 If A and B are n × n matrices, diagonalizable, and AB = BA, then A and B are
simultaneously diagonalizable.

Proof : Let A, B ∈ Mn×n(C), be diagonalizable, and AB = BA. Let Eb be an eigenbasis of Cn
which is made of eigenvectors of B, which is invariant. Note that Eb is also invariant under A, since
if we have a vector v in Eb, then ABv = BAv = λAv. This implies that Av is also an eigenvector of
B. Essentially, A and B respect each other’s eigenspaces. We look at a restriction of A to Eb. This
restriction is a one-dimensional space, which implies that A must take all of the elements of Eb to a
scalar multiple of themselves. So, by our understanding of eigenvectors and basis, and that eigenbasis
are linearly independent, this implies that Eb is an eigenbasis of A. Note, that A can’t have more
eigenvectors because an eigenbasis is a spanning set and if A had more than it wouldn’t span the entire
space. Hence, Avi = λivi, where vi ∈ Eb. Set

X = (v1 · · · vn)

and

Λ = (v1 · · · vn)


λ1

λ2
. . .

λn

 .

So, we have XAX−1 = Λ. Also, since if vi ∈ Eb it is an eigenvector of B, we can conclude that XBX−1 =
Λ as well. Therefore, since A and B share an eigenbasis, they are simultaneously diagonalizable. �
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