
Graph Nim

1. Introduction

Nim is a well-known two-player impartial com-
binatorial game. Various versions of playing Nim
on graphs have been investigated. We investigate
a new version of Nim called Graph Nim. Given a
graph with n vertices and multiple edges, players
take turns removing edges until there are no edges
left. Players have to choose a vertex and remove at
least one edge incident to the chosen vertex. The
player that removes the last edge or edges wins
the game. In this paper, we give the solution for
certain game boards of Graph Nim, compare the
game of Graph Nim to another impartial combi-
natorial game, and discuss open problems.

2. Impartial Combinatorial Games.

An impartial combinatorial game has several
features that set it apart from other games, specif-
ically [5]:

1. There are two players that alternate moves;

2. There are no elements of chance - for example,
no rolling dice or distributing cards;

3. There is perfect information - all possible
moves are known to both players;

4. The game must end and there are no draws;

5. The last move determines the winner - in nor-
mal play, the last player to move wins the
game.

Examples of games that are not impartial com-
binatorial games are Go, since the last person to
move is not necessarily the winner, Backgammon,
since there is an element of chance (rolling the
dice), Tic-Tac-Toe, since it can end in a draw, and

Rock-Paper-Scissors, since the players do not al-
ternate moves. Impartial combinatorial games are
purely about strategy. In 1912 it was proven that
in an impartial combinatorial game one player has
a strategy to win the game [7].

Nim is one of the most common impartial com-
binatorial games. It is played with n piles of to-
kens with k1, k2, ..., kn tokens in each pile. The two
players take turns removing at least one token from
one selected pile. The player that removes the last
token or tokens wins the game. Although the ex-
act origin of Nim is unknown, it is reported to date
back to ancient times. Charles Bouton found the
solution to Nim in 1902 [1], and that result is con-
sidered to have given rise to combinatorial game
theory. The solution to Nim uses binary numbers
and is very interesting. We will not go over the
solution here, since it is not the solution to the
game we investigated. In [2] and [4], there is a
comprehensive solution to Nim.

Study of combinatorial games consists of find-
ing the winning and losing possibilities of players
from a given game position or game board. For
the purpose of this paper, we define a W-position
as a position in which the next player has a strat-
egy to win the game (so a winning position), an
L-position as a position in which the next player
will lose the game if the opponent plays optimally
(so a losing position) and a terminal position is a
position from which there are no more moves avail-
able. Notice that all game positions are either an
L-position or a W-position, so L-positions and W-
positions partition the set of all game positions for
a given game.

There are three characteristic properties of L-
positions and W-positions that are valid for all
impartial combinatorial games [4]. Proving that
these three properties hold is finding a solution to
the game. The three properties are:
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1. All terminal positions are L-positions.

2. From every W-position, there is at least one
move to an L-position.

3. From every L-position, every move is to a W-
position.

Another way to think about these three prop-
erties is:

1. If it is your turn and there are no more moves
to make, you just lost the game.

2. If you are in a winning position (W-position),
there is at least one move you can make
to hand your opponent a losing position (L-
position).

3. If you are in a losing position (L-position),
every move you make hands your opponent a
winning position (W-position).

3. Graph Nim

Here we introduce some necessary graph the-
ory definitions. For a comprehensive treatment of
graph theory see [6]. A graph G is a multi-triple
consisting of a vertex set V (G), an edge set E(G),
and a relation that associates each edge with two
vertices called its endpoints. When u and v are the
endpoints of an edge, they are adjacent. If vertex
v is an endpoint of edge e, then v and e are called
incident. Multiple edges are edges having the same
pair of endpoints, and a loop is an edge whose end-
points are equal. A cycle is a graph whose vertices
can be placed around a circle so that two vertices
are adjacent if and only if they appear consecu-
tively along the circle. Notationally, C3 and C4

are cycles of 3 vertices and 4 vertices respectively.

A variation of Nim, called Graph Nim, can be
played on graphs with multiple edges, but no loops.
This game is played by first choosing a vertex,
then removing at least one edge that is incident
to the chosen vertex. The players take turns until
all the edges have been removed, and the player
that removes the last edge or edges wins the game.

This version of Graph Nim was introduced at
a Research Experience for Teachers lead by Dr.
Michael Ferrara and Dr. Breeann Flesch at Uni-
versity of Colorado Denver in 2010. The teachers
proved Theorem 3.1, but the result never appeared
in print. Here we independently prove Theorem
3.1 and then prove other results about this game.
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Figure 1: An example of a game played on C3.

To understand the game better, let’s consider
an example of Graph Nim on a C3 with multiple
edges. This game is illustrated in Figure 1, and the
game starts with game board 1. Player 1 chooses
vertex A and removes two edges between A and B,
which leaves Player 2 with game board 2. Then
Player 2 chooses vertex A and removes one edge
between A and B and one edge between A and C.
Now Player 1 is working off of game board 3; player



1 chooses vertex C and removes two edges between
A and C and two edges between B and C. This
leaves Player 2 with game board 4. Next Player
2 chooses vertex B and removes one edge between
B and C. Examining game board 5, Player 1 sees
an opportunity to win the game. Player 1 chooses
vertex A and removes all of the remaining edges.
Thus Player 1 wins the game. Notice that Player
2 was left with a graph with no edges, game board
6, and that is the terminal position for this game.

We now present the solution to Graph Nim on
C3 with multiple edges.

3.1. Graph Nim on C3
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Figure 2: A C3 with multiple edges, where a, b, and
c are the number of edges as shown in the picture
above.

Theorem 3.1 In Graph Nim on C3 with multiple
edges, a position is an L-position if and only if
a = b = c such that a, b and c are the number of
edges as shown in Figure 2.

Proof: To prove this, we will show that all
three of the characteristic properties of L- and
W-positions hold. In Graph Nim a terminal
position is where a = b = c = 0, which implies
that the number of edges in a terminal position are
equal. Therefore, it is an L-position. This satisfies
the first characteristic property of L-positions and
W-positions.

Assume it is not true that a = b = c. Without
loss of generality, let a be the smallest. Then

either c − a or b − a is not zero, because either
a 6= c or b 6= a. Thus the move is to choose
vertex A and remove c− a edges between vertices
A and B and b − a edges between vertices A
and C. Now we have c − (c − a) = a edges
between A and B, and b − (b − a) = a edges
between A and C. Therefore, a = b = c, which
is an L-position. This satisfies the second char-
acteristic property of L-positions and W-positions.

Assume a = b = c. By the rules of the game, it
is necessary for the player to remove at least one
edge. Without loss of generality, choose vertex A.
If we remove an edge incident to A, either b 6= a
or c 6= a, which is an W-position. Thus satisfying
the third characteristic property of L-positions and
W-positions.

Now let us look back at the game that was
played in Figure 1. On game board 1, a = 3, b = 4
and c = 4, so Player 1 was in a winning position
(W-position). However, he/she did not know the
correct move to make to hand Player 2 a losing po-
sition (L-position). To figure out the correct move,
we look to the proof of Theorem 3.1. The small-
est of a, b and c is a = 3, so we choose vertex A
and remove b − a = 4 − 3 = 1 edge between A
and B and c− a = 4− 3 = 1 edge between A and
C. After removing these edges, it would be that
a = b = c = 3, which is an L-position.

To illustrate the last property, we can look at
game board 4 in Figure 1. On this game board
a = b = c = 1, so by Theorem 3.1 it is an L-
position. When Player 2 moves, he/she must re-
move at least one edge and can remove at most two
edges, regardless of which vertex is chosen. Either
way, this will leave the opponent with a way to win
the game by moving all of the remaining edges.

Similar to Graph Nim on C3, this game can
be played with larger graphs with more vertices.
Next, we will see the solution to Graph Nim played
on C4 with multiple edges.

3.2. Graph Nim on C4

Theorem 3.2 In a graph Nim on C4, a position
is an L-position if and only if a = c and b = d such
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Figure 3: A C4 with multiple edges, where a, b, c,
and d are the number of edges as shown in the
picture above.

that a, b, c and d are the number of edges as shown
in Figure 3.

Proof: In Graph Nim a terminal position is
where a = b = c = d = 0, which implies that a = c
and b = d. Thus it is an L-position, satisfying
the first characteristic property of L-positions and
W-positions.

Assume a 6= c or b 6= d. Without loss of
generality, let b > d and a ≥ c. Now we choose
vertex A then remove b− d edges between vertices
A and B and remove a− c edges between vertices
A and C. Now we get a = c and b = d, implying
it is an L-position. This satisfies the second char-
acteristic property of L-positions and W-positions.

Assume a = c and b = d. The players are re-
quired to at least one edge. Without loss of gener-
ality, choose vertex A and remove an edge or edges
incident to A. Thus we get a < c or b < d. There-
fore, it is an W-position, satisfying the third char-
acteristic property of L-positions and W-positions.

After proving these two results, we started to
look at Graph Nim on other game boards, for ex-
ample on C5. However, the results were not forth-
coming, so we decided to investigate other impar-
tial combinatorial games to try to inform our in-
vestigation. There are many other impartial com-
binatorial games that are variations of Nim. One
such game that we will now consider is called Cir-
cular Nim.

4. Circular Nim.

Circular Nim was introduced by Matthieu Du-
four and Silvia Heubach in 2013 [3]. In this alter-
ation of Nim, n stacks of tokens are arranged in
a circle. The two players take turns removing at
least one token from one or more of k consecutive
stacks. The game is denoted by CN(n, k) where
n is the number of stacks of tokens and k is the
number of consecutive stacks from which the play-
ers can remove tokens. The player that removes
the last token or tokens wins the game. When
k = 1, the game is just Nim, but when k > 1 the
solution to Nim does not apply.

A position in Circular Nim can be denoted
by a vector p = (p1, p2, p3, ..., pn) where pi rep-
resents the number of tokens in stack i . With the
use of legal moves, if the position p is moved to
p′= (p′1, p

′
2, ..., p

′
n), we call this p′ position to be

the option of p. This change in position can be
represented by the notation p→ p′ [3].

Figure 4 shows an example of a CN(5, 2),
where there are 5 stacks and you can remove from
up to 2 consecutive stacks. The game starts in po-
sition p = (5, 1, 6, 3, 2). Player 1 starts the game by
choosing stack 1 and 5 and removing 2 and 1 token,
respectively. This results in game board 2 in Fig-
ure 4, which is p = (3, 1, 6, 3, 1). Now player 2 re-
moves 2 tokens from stack 4 and 1 token from stack
5, resulting is position p = (3, 1, 6, 1, 0) depicted in
game board 3. Removing the token from stack 4
and 4 tokens from stack 3, Player 1 makes posi-
tion p = (3, 1, 2, 0, 0). Now Player 2 is faced with
game board 4 and chooses to remove the one token
in stack 2, resulting in position p = (3, 0, 2, 0, 0).
Player 1 removes all the tokens from stack 3, giv-
ing Player 2 game board 6 and a chance to win.
From here Player 2 will remove all three tokens
from stack 1 and win the game.

If k = 2, then Circular Nim is equivalent to
Graph Nim on Cn with multiple edges. We prove
this now.

Theorem 4.1 The game CN(n, 2) is equivalent
to Graph Nim on Cn with multiple edges.

Proof: In case of CN(n, 2), there are n stacks,
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Figure 4: An example of a game of CN(5, 2)

and the players can choose up to two consecu-
tive stacks from which they remove at least one
token. Let’s assume there are k1,k2,k3,...,kn to-
kens in stacks 1, 2, 3,...n respectively, so p =
(k1, k2, k3, ..., kn). For a Graph Nim on Cn, we
have n vertices that are connected to each other
by a number of edges. Let’s assume that there are
k1 edges connecting vertices N1 and N2, k2 edges
connecting vertices N2 and N3, k3 edges connect-
ing N3 and N4, continuing in this way until we
have kn edges connecting vertices Nn and N1. The
number of stacks in CN(n, 2) is equivalent to the

number of sets of edges in Cn. The number of to-
kens in each stack in CN(n, 2) is equivalent to the
size of the set of edges connecting the respective
vertices in the graph.

In CN(n, 2), without loss of generality, let’s
assume the player removes i tokens from stack
1 and j tokens from stack 2, where i ≤ k1 and
j ≤ k2. This implies we reach to a position p′ =
(k1 − i, k2 − j, k3, ..., kn). The equivalent move in
Graph Nim on Cn is where the player chooses ver-
tex N2, then removes i edges between vertices N1

and N2, and j edges between N2 and N3. This
leads to a position in Graph Nim on Cn where
there are k1−i edges connecting N1 and N2, k2−j
edges connecting vertices N2 and N3, k3 edges con-
necting N3 and N4, continuing in this way until we
have kn edges connecting vertices Nn and N1.

Thus the game boards and moves in CN(n, 2)
are equivalent to those in Graph Nim on Cn with
multiple edges, and the games are equivalent.

In [3] there are three results for Circular Nim
when k = 2, which are listed below. Notice that
the first two results are the same as Theorem 3.1
and 3.2.

Theorem 4.2 [3] For the game CN(3, 2), the set
of losing positions is L = {(a, a, a)|a ≥ 0}.

Theorem 4.3 [3] For the game CN(4, 2), the set
of losing positions is L = {(a, b, a, b)|a, b ≥ 0}.

Theorem 4.4 [3] The game CN(5, 2) has losing
positions L = {(a, b, c, d, b)|a + b = c + d and a is
the max(p)}.

The third result is equivalent to a result for
Graph Nim on C5. We use the proof in [3] to inform
the following result for Graph Nim on C5.

Theorem 4.5 In a Graph Nim on a C5, a posi-
tion is an L-position if and only if we can assign
a, b, c, d, e consecutively to the size of the edge sets
such that b = e, a + b = c + d and a is maximum
of {a, b, c, d, e}.

Proof: Unlike our other proofs a, b, c, d, and e
may move around in this proof, since a must be a
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Figure 5: An example of Graph Nim on C5, where
a, b, c, d and e are the number of edges as shown in
the picture above.

maximum of a, b, c, d and e. Notice that a may be
one of many maximum values.

In Graph Nim a terminal position is where
a = b = c = d = e = 0. This implies that b = e,
a + b = c + d = 0 and a is the maximum of
a, b, c, d and e. Therefore, it is an L-position, and
this satisfies the first characteristic property of
L-positions and W-positions.

Note that a position is an L-position if and
only if adding or removing one from every edge
set is also an L-position. For instance, the graph
in Figure 5 is an L-position. If we add an edge to
every edge set in the graph, we get a = 5, b = 3,
c = 4, d = 4, and e = 3. We still have b = e = 3,
a + b = c + d = 8 and a is a maximum. Similarly,
if we remove three edges from every edge set in
the graph, we get b = e = 0, a + b = c + d = 2
and a = 2 which is still a maximum of a, b, c, d
and e. Therefore, it can be generalized that a
position is an L-position if and only if removing
or adding the same amount of edges to each
edge set is also an L-position. This allows us to
assume that the minimum number of edges is zero.

Assume b 6= e or a + b 6= c + d or a is not a
maximum. The two cases that we will look into is
either the 0 is next to the largest set of edges or it
is not.

Case 1: Assume 0 is next to a maximum
size set of edges. Let the number of edges be 0
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Figure 6: A picture for the two cases in the proof
for Theorem 4.5

between A and B, w between B and C, which
is a maximum, x between C and D, y between
D and E and z between E and A (see Figure
6 Case 1). If w ≥ z + y, choose vertex C and
remove x edges between C and D and w− (z + y)
edges between B and C. Now, we have w = z + y
corresponds to a since w is the maximum. The
edge sets with 0 edges corresponds to b and e, y
and z correspond to c and d respectively. Thus
b = e, a + b = c + d and a is the maximum,
implying it is an L-position. If w < z + y, choose
vertex D, and remove x edges between C and D
and y− (w− z) edges between D and E. Now, we
have w corresponds to a since w is the maximum.
The edge sets with 0 edges corresponds to b and
e, w − z and z correspond to c and d respectively.
Thus b = e, a + b = c + d and a is the maxi-
mum of a, b, c, d and e, implying it is an L-position.

Case 2: Without loss of generality, assume the
number of edges between B and C is greater than
or equal to the number of edges between E and
A. Now assign assume there are 0 between A and
B, x + y between B and C, w between C and D,
z between D and E and y between E and A (see
Figure 6 Case 2). Also assume either w or z is
a maximum number of edges. If z ≥ x, choose
vertex D and remove w edges between C and D
and z− x edges between D and E. This leads to a
position where x + y corresponds to a since x + y
is the biggest. The edge sets with 0 edges corre-
sponds to b and e, x and y correspond to c and d
respectively. We now have b = e, a + b = c + d
and a is the biggest implying it is an L-position.



If z < x, choose vertex C and remove x− z edges
between B and C and w edges between C and D.
This results as y + z corresponding to a since it is
the maximum. The edge sets with 0 edges corre-
sponds to b and e, z and y correspond to c and d
respectively. We now have b = e, a + b = c + d
and a is the biggest, implying it is an L-position.
Therefore the two cases satisfy the second char-
acteristic property of L-positions and W-positions.

Assume b = e, a + b = c + d and a is the max-
imum as shown in Figure 5. By the rules of the
game, it is necessary for the player to remove at
least one edge. If we choose vertex A and remove
edges from a then a + b 6= c + d or if we remove
edges from e then b 6= e. If we choose vertex B and
remove edges from b then b 6= e or if we remove
edges from a then a + b 6= c + d. If we choose ver-
tex C and remove edges from c then a + b 6= c + d
or if we remove edges from b then b 6= e. If we
choose vertex D and remove edges from c or d then
a + b 6= c + d. If we choose vertex E and remove
edges from d then a + b 6= c + d or if we remove
edges from e then b 6= e. In other words, no matter
where we remove an edge or edges, we will create a
W-position. This satisfies the third characteristic
property of L-positions and W-positions.
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Figure 7: An example game board for Graph Nim
on C5.

Let us go over an example of how the proof of
Theorem 4.5 helps us make a move when playing
Graph Nim on C5. Figure 7 is an example game
board, and we must first determine whether this
position is an L- or W- position. For it to be an

L-position we must be able to assign a, b, c, d, e
consecutively to the size of the edge sets such
that b = e, a + b = c + d and a is maximum of
a, b, c, d, e. Since there are three edges between A
and B and between E and D, one of these two
edge sets must be assigned a. In the former case,
then b = 1 and e = 2, so b 6= e and it fails to meet
the criteria for being an L-position. If we assign a
to the edge set between E and D, then b = e = 2,
which is a good first step. However, then c = 3
and d = 1, and a + b 6= c + d, again failing the
criteria for being an L-position. Thus there is no
way to meet the criteria of being an L-position, so
the game board in Figure 7 must be a W-position.

This is good news if it is your turn, because
that means you are in a winning position. How-
ever, you must know the correct move to make to
give your opponent an L-position. This is where
we look to the proof of Theorem 4.5. Although
none of the edge sets are of size 0, like in the
proof, we can think of the minimum as being the
set of size 0. We can also see a minimum set of
edges is next to a maximum set of edges, so we
can use case 1 from the proof. Thus we choose
vertex E and remove one edge between A and E
and one edge between D and E. Here we have
that a = 3 is from A to B, and b = e = 1, which
is between B and C and between A and E. Now
c + d = 4 = a + b, so it meets the criteria for an
L-position.

Now your opponent will make a move, which
result in you again having a W-position. If you
can keep finding the correct move to give your op-
ponent an L-position, then you will eventually win
the game.

5. Conclusion

In this paper, we proved the solution for three
different Graph Nim game boards. We also proved
the equivalence of Graph Nim on Cn and certain
versions of Circular Nim, which is another impar-
tial combinatorial game. However, there are many
different graphs that could be used as game boards



for Graph Nim. For example, there is no known so-
lution for Graph Nim on C6 or K4. Thus there are
many open problems in this area. Moving forward,
we would like to investigate the solution to other
game boards in Graph Nim, eventually finding a
general solution.
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