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Stainless Steel Alloys
from First-principles Theory

L. Vitos, H. L. Zhang, N. Al-Zoubi, S. Lu, J.-O. Nilsson, S. Hertzman, G. Nilson, B. Johansson

Gaining an accurate description of materials obviously requires the most advanced atomic-scale techniques from
both experimental and theoretical areas. In spite of the vast number of available techniques, however, the

experimental study of the atomic-scale properties and phenomena even in simple solids is rather difficult. In
steels the challenges become more complex due to the interplay between the structural, chemical and magnetic

effects. On the other hand, advanced computational methods based on density functional theory ensure a proper
platform for studying the fundamental properties of steel materials from first-principles. Our group at the Royal
Institute of Technology in Stockholm has an international position in developing and applying computational

codes for such applications. Using our ab initio tools, we have presented an insight to the electronic and
magnetic structure, and micromechanical properties of austenitic stainless steel alloys. In the present

contribution, we review the most important developments within the ab initio quantum-mechanics-aided steel
design with special emphasis on the role of magnetism on the fundamental properties of alloy steels.

INTRODUCTION

Today we are experiencing revolutionary changes taking place
within ab initio computational steel design. Twenty years ago, the
first-principles description of the thermodynamic properties of
elemental iron was still on the borderline of atomistic simula-
tions. However, in 2010, the Materials Research Society Fall mee-
ting in Boston hosted for the first time a symposium focusing
entirely on Steel and Ab initio [1]. In early 2011, the first test
flights with aircrafts employing special steel alloys developed
by integrated computational design based on first-principles
quantum theory took place (G. B. Olson, Ref. [1]). These and nu-
merous other application oriented activities taking place at in-
dustrial or academic sectors are paired by a clear scientific
interest reflected by the number of publications on ab initio steel

research, which has increased from null to about one thousand
within the last two decades (Fig. 1). The list of the most active
places boosting these changes is headed by Royal Institute of Te-
chnology Stockholm and includes reputable institutes such as
Northwestern University, Belgian Nuclear Research Center, Uni-
versity Lille, Princeton University, or Delft University of Te-
chnology. Our research group at the Royal Institute of
Technology in Stockholm has an internationally recognized po-
sition in developing and applying ab initio computational codes
for steel related applications.
Steels are mainly composed of iron and carbon. Other alloying
elements are introduced in order to achieve some specific pro-
perties. The stainless steels are alloy steels containing more than
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12 percent Cr. Chromium forms a passive film on the surface,
which makes these alloys resistant against corrosion in various
chemical environments [2]. Austenitic stainless steels, the lar-
gest sub-category of stainless steels, comprise a significant
amount of substitutional Ni as well. At low temperatures, these
alloys exhibit a rich variety of magnetic structures as a function
of chemical composition, ranging from ferromagnetic phase to
spin-glass and antiferromagnetic alignments. At ambient con-
ditions, Ni changes the ferromagnetic α-Fe structure of Fe-Cr
steel to the metastable paramagnetic γ-Fe structure. Today au-
stenitic stainless steels dominate the steel applications, where
excellent mechanical properties in combination with high cor-
rosion resistance are required. The austenitic grades represent
the primary choice also when non-magnetic properties are con-
cerned.
By mechanical properties one means the behavior of materials
under external load. They are of key importance both in fabri-
cation processes and use. The behavior of materials is usually
described in terms of stress or force per unit area and strain or
displacement per unit distance. On the basis of stress and strain
relations, one can distinguish elastic and plastic regimes. At
small stress, the displacement and applied force obey the Hoo-
ke’s law and the specimen returns to its original shape on un-
loading. Beyond the so called elastic limit, upon strain release
the material is left with a permanent shape. Within the elastic
regime, the elastic constants play the principal role in descri-
bing the stress-strain relation, whereas in the plastic regime the
deformation induced increase in strength describes the resi-
stance of material to permanent deformations. Plastic deforma-
tions are facilitated by dislocation motion and can occur at stress
levels far below those required for dislocation-free crystals. Ten-
sile strength may be related to the yield stress separating the
elastic and plastic regions, above which a substantial disloca-
tion activity develops. In an ideal crystal, dislocations can move
easily because they experience only the weak periodic lattice
potential. In real crystals, however, the motion of dislocations is
impeded by obstacles, leading to an elevation of the yield
strength. In particular, in solid-solutions the yield stress is de-
composed into the Peierls stress needed to move a dislocation
in the crystal potential and the solid-solution strengthening con-
tribution due to dislocation pinning by the randomly distribu-
ted solute atoms. The Peierls stress of pure metals is found to be
approximately proportional to the shear modulus [3]. Disloca-
tion pinning by random obstacles is controlled by the size and
elastic misfit parameters [4]. The misfit parameters, in turn, can
be derived from the composition dependent elastic properties of
bulk solids. The effect of alloying elements on the elastic moduli
of Fe and Fe-based alloys was studied by Speich and coworkers
[5] and Ghosh and Olson [6]. Many of those measurements, ho-
wever, were performed on multiphase samples, and thus the ob-
tained elastic parameters correspond to a mixed microstructure
rather than to a well defined crystal structure and hence give
no information about the solid-solution strengthening mecha-
nism within a particular phase.
The formation energies of two-dimensional defects are also im-
portant in describing the mechanical characteristics of solids.
An important planar defect is the stacking fault in close-packed
lattices. In these structures, the dislocations may split into ener-
getically more favorable partial dislocations having Burgers vec-
tors smaller than a unit lattice translation. The partial
dislocations are bound together and move as a unit across the
slip plane. In the ribbon connecting the partials the original
ideal stacking of close-packed lattice is faulted. The energy as-
sociated with this miss-packing is the stacking-fault energy
(SFE). The equilibrium separation of the partial dislocations is

determined by the balance of the repulsive interaction and the
stacking fault energy. Generally, larger stacking fault energy cor-
responds to smaller distance between the partials. During the
dislocation movement, the partials must re-combine in order to
overcome the obstacles (e.g. solute atoms). The resistance of ma-
terials to plastic deformation decreases with increasing SFE and
hence in order to increase their strength the SFE should be lo-
wered. In solid-solutions, the stacking fault energy may be va-
ried, whereby wider or narrower dislocations can be produced
and the mechanical properties can be altered accordingly. In
practice, SFE is controlled by alloying elements towards desired
properties such as strength or work hardening rate. Although,
the stacking fault energy in steels has been determined from ex-
periments [7], it should be mentioned that it is difficult to mea-
sure precisely and large inaccuracies are associated with the
available experimental values (see Table I).
In the present work, we review some of our recent results [7,10-
16] obtained for Fe-based alloys forming the basis of stainless
steels. For those readers who are familiar with density functio-
nal methods and atomistic computer simulations, in Section 1
we provide a brief overview of the employed first-principles
quantum mechanical tool. The theoretical results are presented
and discussed in the second chapter. Here we cover two main
topics: stacking faults and elastic properties. At the end, we
bring forward some fresh theoretical data on a closely related
topic: alloying induced softening or hardening against tetragonal
distortions.

FIRST-PRINCIPLES APPROACH
Computational method
Today there are a large number of first-principles computatio-
nal tools available which can in principle be employed to study
the fundamental properties of Fe-based systems. When it
comes to the Fe-based solid solutions and especially to para-
magnetic austenitic stainless steel alloys, the number of suita-
ble first-principles tools is very limited. Our ability to reach an
ab initio atomistic level approach in the case of such complex
systems has become possible by the Exact Muffin-Tin Orbitals
(EMTO) method. The EMTO method [17-19] is an improved
screened Korringa-Kohn-Rostoker method for solving the one-
electron equations within density functional theory [20]. In
the EMTO approach, the one-electron potential is represented
by large overlapping muffin-tin potential spheres. By using
overlapping spheres, one describes more accurately the cry-
stal potential, when compared to the conventional non-over-
lapping muffin-tin approach. The method is based on the
Green’s function and full charge density techniques [21]. The
problem of disorder is treated within the coherent-potential ap-
proximation (CPA) [22,23].
In the present applications, the total charge density was obtai-
ned from self-consistent calculations based on the local density
approximation for the exchange-correlation potential and the
total energy was evaluated within the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation for the exchange-cor-
relation functional [24]. The paramagnetic state of Fe alloys was
simulated by the so-called disordered local moments (DLM)
model [25]. Within the DLM picture, a pseudo-binary parama-
gnetic Fe1-xMx alloy (M may stand for a group of atoms) is mo-
deled as a quaternary (Fe↑Fe↓)1-x(M↑M↓)x alloy with equal
amount of spin-up (↑) and spin-down (↓) alloy components. In
this way, the CPA Green’s function corresponds to a random mix-
ture of spin-up and spin-down atoms, and thus will automati-
cally ensure a spin-neutral effective medium for the magnetic
impurities. Therefore, even though formally the DLM calcula-
tions are performed at 0 K, the effect of the loss of the net ma-
gnetic moment above the Curie temperature on the total energy
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is properly captured. The size of the disordered local magnetic
moments on each atom is determined fully self-consistently wi-
thout any constraint. The main approximation within this static
DLM model is the neglect of the longitudinal spin fluctuations
present in the paramagnetic state. Going beyond this simple
CPA-based approach to describe the paramagnetic state requires
taking into account the magnetic excitations as well as the
thermo-elastic-magnetic coupling. Further details of the self-con-
sistent total energy calculations presented in this contribution
can be found in Refs. [7, 10-16].
During the last decade, the EMTO method was employed in the
theoretical study of the properties of random Fe-based alloys
[7,10-16,19], simple and transition metal alloys [19,26-28], and
Hume-Rothery systems [19,23,26,29], as well as complex oxides
[19,30,31]. All these applications demonstrate that the EMTO ap-
proach in combination with the CPA is an efficient tool for de-
scribing the alloying effects on the atomic-scale properties of
random substitutional solid solutions. Its particular strength is
that in contrast to previous CPA implementations, it is suitable
to study properties and processes involving anisotropic lattice di-
stortions or low symmetry structures. However, since the EMTO
method is based on the optimized overlapping muffin-tin po-
tential approach (that is, it uses certain shape approximation for
the Kohn-Sham potential) special care must be taken when ap-
plying to open or multicomponent systems. Furthermore, owing
to the single-site approximation, this method has some limita-
tions for systems with substantial charge transfer between alloy
components or when the short range order and local lattice re-
laxation effects become important. In order to control the above
problems, each application must be preceded by a series of test
calculations to find the best numerical parameters for the pro-
blem in question. This assumes well educated users who are also
familiar within the complex world of the computational first-
principles materials science.

Bulk parameters
The elastic properties of single crystals are described by the ele-
ments cij of the elasticity tensor. There are three independent
elastic constants for a cubic lattice: c11, c12, and c44, and they are
connected to the tetragonal shear modulus c’ ≡ (c11–c12)/2 and
the bulk modulus B = (c11+2c12)/3. Dynamical (mechanical) sta-
bility requires that c44 > 0, c’ > 0, B > 0. The cubic elastic con-
stants of the paramagnetic fcc Fe1-xMx (M = Cr or Co) random
alloys were calculated as a function of the chemical composition
for 0≤x≤0.1. At each concentration x the theoretical equilibrium
lattice parameter a(x) and bulk modulus B(x) were derived from
an exponential Morse type function fitted to the ab initio total
energies calculated for seven different atomic volumes (Wigner-
Seitz radius, w). The two cubic shear moduli c’(x) and c44(x) were
computed using the volume-conserving orthorhombic and mo-

noclinic deformations and the polycrystalline elastic moduli
were obtained by the Voigt-Reuss-Hill averaging method [19].
The total energies along the Bain path for the paramagnetic Fe-
Cr and Fe-Cr-Ni alloys were computed for 2.60 Bohr ≤ w ≤ 2.75
Bohr and 0.9 ≤ c/a ≤ 1.55 (c/a stands for the tetragonal axial
ratio). For each system, we performed calculations for seven dif-
ferent w and 14 different c/a ratios.
The most common stacking fault in an fcc crystal, the so-called
intrinsic staking fault, may be viewed as a missing (111) layer
from an otherwise perfect lattice. The excess free energy ∆F per
unit interface area (A2D) defines the fault energy γ. Within the
axial interaction model [7], taking into account interactions bet-
ween layers up to the third nearest neighbors, ∆F can be obtai-
ned from the free energies of the hexagonal close packed (hcp),
double hcp (dhcp) and fcc lattices as ∆F = Fhcp + 2Fdhcp – 3Ffcc.
The temperature (T) dependent magnetic moment µ(T), repre-
senting the set of local magnetic moments, was determined from
the minimum of the free energy F(T,µ) = E(T,µ) – T[Smag(µ) +
Sel(T)] calculated at the theoretical equilibrium volume. The elec-
tronic energy E(T,µ) and entropy Sel(T) were obtained from spin-
constrained calculations, using the finite-temperature Fermi
distribution. The magnetic entropy was estimated using the
mean-field expression Smag(µ) = kB log(1+ µ) (kB is the Bol-
tzmann constant) valid for completely disordered localized mo-
ments. The phonon contribution to ∆F was neglected, which was
estimated to introduce an error ~2 mJ/m2 in γ [10].

WHAT FIRST-PRINCIPLES THEORY PROVIDES
Stacking fault energy
Using our first-principles methods, we have determined the SFE
of Fe-Cr-Ni alloys as a function of temperature and chemical com-
position (Fig. 2). For a few selected compositions, the theoretical
predictions are compared to the experimental data in Table I.
For a more detailed comparison between the theoretical and the
available experimental stacking fault energy data, including the
strong temperature dependence of the SFE, the reader is refer-
red to Refs. [7,10,11].
For the considered composition interval and for temperature
of 300 K (Fig. 2a), the total stacking fault energy of austeni-
tic steels varies between -10 mJ/m2 corresponding approxi-
mately to Fe0.66Cr0.26Ni0.08, and ~50 mJ/m2 corresponding to
Fe0.66Cr0.14Ni0.20. That is, at 300 K the Cr-rich and Ni-poor alloys
are unstable against the fcc-to-hcp martensitic transformation.
Nickel is found to increase the stacking fault energy. However,
its effect strongly depends on the amount of Cr. Namely, at low
Cr content (less than 16-18 %), Ni has negligible effect on SFE in
alloys containing more than ~12 % Ni. At large Cr content, on the
other hand, Ni has a pronounced increasing effect on the SFE. It
should be pointed out that Cr has a weak but clear nonlinear ef-
fect on the SFE for alloys containing more than ~18 % Ni.

FIG. 2
Calculated stacking fault
energy (γγ) of paramagnetic
fcc Fe-Cr-Ni alloys plotted
as a function of Ni and Cr
contents for 300 K (left
panel) and 0 K (right panel). 

Energia di stacking fault
calcolata (γ) per leghe
paramagnetiche fcc Fe-Cr-Ni,
tracciata in funzione dei
contenuti di Ni e Cr a 300 K
(sinistra) e 0 K (destra). 
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From Fig. 2a, one would conclude that in general with increa-
sing Ni content in paramagnetic Fe-Cr-Ni alloys the width of the
ribbon connecting the partial dislocations decreases so that the
partials can more easily recombine and thus the resistance of
the alloy against plastic deformation decreases. At the same
time, Cr is predicted to enhance the strength of the alloy at low
Ni content and have negligible effect at large Ni content. Howe-
ver, the above trends show strong temperature dependence. On
the right panel of Fig. 2, we show the calculated SFE at 0 K. The
overall effect of Ni at 0 K is similar to that from Fig. 2a, but Cr
is found to decrease the SFE at any Ni content. We will show
below that the reason behind this change is the behavior of the
local magnetic moment with alloying. 
We find that the above chemical effects of alloying additions are
accompanied by major magnetic effects, which in fact stabilize
the most common industrial alloy steels at normal service tem-
peratures. Note that according to Fig. 2b, all Fe-Cr-Ni alloys en-
compassing less than ~11-17 % Ni (depending on Cr content)
have negative SFE at 0 K. At 300 K, only alloys within a small
compositional range have still negative SFE and they are located
in the low-Ni-high-Cr part of the map from Fig. 2a. Within the
present model, the temperature part of the SFE corresponds
mainly to the magnetic entropy contribution to the SFE. Since
the local magnetic moments in the double hexagonal structure
are calculated to be close to those within the fcc structure, the

Cr Ni theory experiment

15 14 40.1 46±7
17 13 30.9 23±5
17 20 38.8 31±5
19 10 11.7 7.2±1.5, 25±2.5, 16.4±1.1
22 13 18.4 18±4
26 20 42.0 40±5

TAB. I Comparison between the calculated and
experimental [7] stacking fault energies for six
selected alloys. Compositions are given in atomic
percent and SFE in mJ/m2.

Confronto fra le energie di stacking fault (SFE) calculate
e sperimentali [7] per sei leghe selezionate. Le
composizioni sono date in percentuali atomiche e SFE
in mJ/m2.

magnetic fluctuation part of the SFE reduces to γmag = – T[Shcp –
Sfcc]/A2D (where S stands for the magnetic plus electronic en-
tropy and A2D is the interface area). �γmag is plotted in Fig. 3a for
300 K. We can observe that γmag exhibits a strongly nonlinear
composition dependence, especially for low-Ni alloys (as a fun-
ction of Cr content) and for high-Cr alloys (as a function of Ni
content). Because at 300 K the leading term in the entropy is
the magnetic contribution, the above trends are direct conse-
quences of the composition dependence of the magnetic mo-
ments for the fcc and hcp phases [11].
We illustrate the change of the local magnetic moments in the
case of Fe0.68Cr0.20Ni0.12 and Fe0.60Cr0.20Ni0.20 alloys. According to
the axial interaction model [11], the stacking fault energy is com-
puted from the total energies of the double hexagonal, hcp and
fcc lattices. In these calculations, the atomic volume is assumed
to be constant and equal to that of the parent fcc lattice. Howe-
ver, in real alloys due to the vanishing local magnetic moments
in the hcp environment, the hcp lattice prefers a smaller equili-
brium volume than that of the fcc lattice. Due to the in-plane lat-
tice constraint volume relaxation can be realized only along the
direction perpendicular to the stacking fault plane. To mimic
this situation, in our calculations we relaxed the c lattice con-
stant of the hcp lattice while keeping the in-plane lattice con-
stant a fixed to afcc

(111). The calculated total energies are shown in
Fig. 3b (left axis) as a function of c/a. In alloys containing 12 %
Ni, the hexagonal lattice is nonmagnetic (the local magnetic mo-
ments vanish within the hcp phase, see Fig. 3b right axis and
also Fig.2 from Ref. [11]) and thus there should be a large vo-
lume relaxation relative to the volume of the fcc lattice. This is
reflected by the very small equilibrium c/a≈1.57 obtained for
hcp Fe0.68Cr0.20Ni0.12 and the large γmag calculated for this alloy
(Fig. 3a). When the Ni content is increased to 20 %, the hcp lat-
tice becomes weakly magnetic (small local magnetic moments
appear on Fe sites, see Fig. 3b right axis and also Fig.2 from Ref.
[11]). Therefore, the equilibrium volume of hcp Fe0.60Cr0.20Ni0.20

should be close to that of the fcc phase. Indeed, the calculated
equilibrium c/a≈1.62 for hcp Fe0.60Cr0.20Ni0.20 is very close to
the ideal one (~1.63), meaning that in this alloy no substantial
volume relaxation takes place around the stacking fault. In con-
sequence, the magnetic fluctuation contribution to the stacking
fault energy of Fe0.60Cr0.20Ni0.20 alloys becomes very small (Fig.
3a). 
The results summarized in Figs. 2 and 3 clearly demonstrate the
importance of the disordered local moments for the stacking

FIG. 3
a) magnetic fluctuation
contribution to the
stacking fault energy
(�mag) of fcc Fe-Cr-Ni
alloys calculated for 300 K.
b) total energy (left axis)
and local magnetic
moment (right axis) for the
hcp Fe-Cr-Ni alloys as a
function of hexagonal
lattice parameter c/a
keeping the in-plane lattice
constant a fixed to that of
the fcc lattice (afcc(111)).
Notice the different orientations of the Ni and Cr axes on Fig. 2 and Fig. 3a.

a) contributo della fluttuazione magnetica all’energia di stacking fault (�mag) di leghe  fcc Fe-Cr-Ni calcolato a 300 K. b) energia totale
(asse sinistro) e momento magnetico locale (asse destro) per le leghe hcp Fe-Cr-Ni in funzione del parametro del reticolo esagonale
c/a, mantenendo la costante a del reticolo planare fissa rispetto a quella del  reticolo fcc (afcc(111)). Si noti il diverso orientamento
degli assi Ni e Cr riportati nelle Fig. 2 e Fig. 3a.
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FIG. 4
Calculated stacking fault
energy maps of Fe-Cr-Ni-
Mn (a) and Fe-Cr-Ni-Co (b)
alloys plotted as a function
of composition for T = 300
K.

Mappe dell’energia di
stacking fault calcolata per
leghe Fe-Cr-Ni-Mn (a) e Fe-Cr-
Ni-Co (b) tracciate in funzione
della composizione per T =
300 K.

fault energies of steels. For the magnetic contribution to the free
energy one may employ models which are more advanced than
the mean-field approximation used here (e.g., model, which can
take into account the longitudinal spin fluctuations). However,
this will not change the general conclusion that local magnetic
moments have a marked contribution to the energetic of the stac-
king faults. Any mechanism (alloying, temperature or strong ma-
gnetic field) that can alter the magnetic structure of these alloys
is predicted to have large impact on the stacking fault energies
and thus on the strength of the paramagnetic Fe-Cr-Ni alloys. 
One important implication of the above finding is that the same
alloying element can cause totally opposite changes in the SFE
of alloys with different host composition, indicating that in prac-
tice no universal composition equations for the SFE can be esta-
blished. To illustrate this effect, in Fig. 4 we show the theoretical
room-temperature SFE maps for Fe-Cr-Ni-Mn and Fe-Cr-Ni-Co al-
loys as a function of composition [32]. It is found that Mn de-
creases the SFE in alloys with less than 16 at.% Ni, beyond which
the SFE slightly rises with Mn. On the other hand, Co always
tends to decrease the SFE and the decreasing effect is enhanced
in high-Ni alloys. Cobalt is known as a useful alloying element
in improving the steel resistance against galling. Enhanced gal-
ling effect, in turn, is thought to be associated with enhanced
ductility [34]. According to our study (Fig. 4b), Co decreases the
SFE and thus decreases the ductility of austenitic stainless ste-
els. This might explain why Co acts as an efficient anti-galling
alloying ingredient.

Elastic parameters
The elastic constants are intrinsic properties of a particular cry-
stal structure and thus their alloying and magnetic state depen-
dence may be weaker than that experienced in the case of
stacking fault energies. Indeed, our former calculation [12,13]

for the polycrystalline elastic moduli (derived from single crystal
elastic constants) of paramagnetic fcc Fe-Cr-Ni alloys show weak
composition dependence (Fig. 5). Nevertheless, as we will show
below, these bulk parameters also exhibit magnetic state de-
pendence and mechanism changing the local magnetic moments
within the paramagnetic phase are expected to alter the elastic
properties of Fe-Cr-Ni alloys.
We demonstrate the magnetic state dependence of the elastic
constants of austenitic stainless steel alloys in the case of
Fe0.70Cr0.15Ni0.15 alloy by calculating the two single crystal shear
elastic constants (c’ and c44) as a function of local magnetic mo-
ment on Fe sites (µFe). The accuracy of our theoretical tool for
this particular alloy was established in Ref. [33]. The theoretical
equilibrium bulk parameters and the elastic constants for
Fe0.70Cr0.15Ni0.15 are compared with the available experimental
data in Table II. We find ~3.0% mean absolute relative deviation
between the theoretical and experimental [35] single-crystal ela-
stic constants. As a matter of fact, this error is much smaller
than that obtained for ferromagnetic bcc Fe [15]. The conspi-
cuously better accuracy achieved for Fe-Cr-Ni compared to Fe
may be ascribed to the fact that theory gives a highly accurate
equation of state for paramagnetic Fe-Cr-Ni: the relative errors
in the equilibrium atomic radius and bulk modulus being 0.4%
and 1.1%, respectively.
Figure 6a displays the c’ and c44 elastic constants as a function
of �µFe for spin-constrained calculations (solid lines) and for fully
self-consistent calculations (single symbols at �µFe = 1.63 µB cor-
responding to the self-consistent result). The fact that the fully
self-consistent and the spin-constrained results are relatively
close to each other is due to the fact that upon lattice distortion
the local magnetic moments do not change significantly. This is
illustrated in Fig. 6b, where we plotted the local magnetic mo-
ment on Fe atoms for the paramagnetic Fe0.80Cr0.15Ni0.05 alloy as

FIG. 5
Calculated elastic
parameters of austenitic
stainless steels. The maps
show the bulk modulus (a)
and shear modulus (b) of
paramagnetic Fe–Cr–Ni
alloys as a function of the
Cr and Ni concentrations
(balance Fe).

Parametri elastici calcolati
per acciai inossidabili
austenitici. Le mappe
mostrano il modulo di
compressibilità (a) e il modulo
di taglio (b) delle leghe paramagnetiche Fe–Cr–Ni in funzione delle concentrazioni di Cr e Ni (Fe a bilanciare).
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a function of volume (Wigner-Seitz radius, w) and tetragonal lat-
tice constant ratio c/a. The theoretical equilibrium w for the fcc
phase is 2.66 Bohr, and for the body centred cubic (bcc) phase
is 2.68 Bohr. We recall that the fcc structure has c/a ≈ 1.41 and
the c’ elastic constant is proportional with the curvature of the
total energy versus c/a (for fixed volume). It is interesting to note
that the local magnetic moments slightly increase upon tetra-
gonal lattice distortion in the fcc phase (c/a≈1.41) and decrease
in the bcc phase (c/a=1.0). 
Returning to Fig. 6a, we observe that both elastic constants
strongly depend on the local magnetic moment. The effect is so-
mewhat more pronounced for the tetragonal elastic constant.
From a polynomial fit to the data from Fig. 6a, for the slopes of
the elastic constants versus magnetic moment we obtain
δc’/δµ�≈�−22.5 GPa/µB and δc44/δµ�≈−19.5 GPa/µB. Hence, 0.1µB

change in the local magnetic moment results in ~2 GPa change
in the elastic constants, representing ~6% for c’ and ~2% for c44.
This is an important effect, especially taking into account that
we are dealing with a system well above its magnetic transition
temperature. We suggest that by manipulating the magnetism,
e.g., via chemical composition, chemical ordering, external field,
or temperature, one is able to tailor the thermo-elastic properties
of austenitic stainless steels. We have demonstrated the above ef-
fect in the case of the temperature dependence of the single-cry-
stal elastic constants of paramagnetic Fe-Cr-Ni alloys [33]. In
particular, we have shown that spin fluctuation in paramagne-
tic Fe-Cr-Ni alloys can account for 63% of δc’/δT and 28% for
δc44/δT as compared to the experimental measurements [35].
So far we considered concentrated random alloys and investiga-

ted the impact of magnetism on their bulk parameters. One may
ask what happens in dilute alloys, how the elastic constants and
the corresponding elastic and size misfit parameters (and thus
the solid solution hardening effects) are influenced by the ma-
gnetic state. In order to answer this question one should per-
form a series of self-consistent total energy calculation for
paramagnetic and ferromagnetic alloys and extract the magne-
tic state dependence of the elastic properties. In lack of such
data, in Fig. 7 we compare the single crystal and polycrystalline
elastic parameters of Fe-Cr and Fe-Co alloys calculated for fcc
and bcc phases as a function of composition. In these calcula-
tions the bcc phase was assumed to be ferromagnetic and the
fcc phase paramagnetic. See Refs. [14-16] for a detailed compa-
rison between the theoretical and experimental elastic parame-
ters for binary Fe-based alloys.
We find that the paramagnetic fcc alloys have significantly smal-
ler tetragonal elastic constant c’ than the ferromagnetic bcc al-
loys. At the same time, c44 is larger in the fcc phase than in the
bcc one. Alloying has a rather small effect on the scale from Fig.
7 (upper panel). Therefore, we can conclude that the ferroma-
gnetic bcc Fe-based alloys are more isotropic than the parama-
gnetic fcc counterparts, and this difference to a large extent is
due to the soft tetragonal mode in the paramagnetic fcc phase. 
All polycrystalline elastic moduli are smaller in the fcc phase
compared to the bcc phase because of  the rather small c’ in the
fcc phase, However, the compositional changes are rather im-
portant when comparing the fcc and bcc elastic moduli. The bulk
modulus B, shear modulus G, and Young’s modulus E of the pa-
ramagnetic fcc Fe increase slightly as a function of Co content.

w0 B c11 c12 c’ c44

theory 2.66 162.23 203.86 141.42 31.22 133.20
error 0.4 1.1 -2.5 4.0 -14.5 2.5
experiment 2.65 159-162 207-211 135-137 35-38 130

TAB. II
Theoretical and
experimental [35]
equilibrium Wigner-Seitz
radius (w0, in Bohr), bulk
modulus (B, in GPa), and
single-crystal elastic
constants (cij, in GPa) of paramagnetic fcc Fe0.70Cr0.15Ni0.15 alloy. The numbers from the second row are the relative deviations
(in %) between the theoretical and the mean experimental values.

Equilibrio teorico e sperimentale [35] del raggio Wigner-Seitz (w0, in Bohr), del modulo di compressibilità (B, in GPa), e delle costanti
elastiche dei monocristalli (cij, in GPa) della lega paramagnetica fcc Fe0.70Cr0.15Ni0.15. Le cifre della seconda riga sono le deviazioni
relative (in %) fra i valori teorici e i valori medi sperimentali.

FIG. 6
a): Single-crystal elastic
constants of paramagnetic
fcc Fe0.70Cr0.15Ni0.15 alloy as
a function of the local
magnetic moment on the Fe
atoms. Note that c’ has
been multiplied by three in
order to match its scale to
that of c44. Shown are also
the floating spin results
obtained at the equilibrium
magnetic moment �µµFe =
1.63�µµB (separate circle and
square). All calculations were performed at paramagnetic volume (w=2.66 Bohr). b): local magnetic moments on Fe atoms of
paramagnetic Fe0.80Cr0.15Ni0.05 alloy as a function of Wigner-Seitz radius w and tetragonal lattice parameter ratio c/a.

a): Costanti elastiche di monocristalli della lega paramagnetica fcc Fe0.70Cr0.15Ni0.15 in funzione del  momento magnetico locale sugli
atomi di Fe. Si noti che c’ è stata moltiplicata per 3 per far corrispondere la scala a quella di c44. Vengono mostrati anche i risultati di
floating spin ottenuti al momento magnetico locale �µFe = 1.63�µB (cerchio e quadrato separati). Tutti I calcoli sono stati eseguiti al
volume paramagnetico (w=2.66 Bohr). b): momenti magnetici locali sugli atomi di Fe della lega paramagnetica Fe0.80Cr0.15Ni0.05 in
funzione di raggio Wigner-Seitz w e rapporto del parametro del reticolo tetragonale c/a.
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FIG. 7
Single crystal and
polycrystalline elastic
parameters of
paramagnetic fcc Fe-Cr and
Fe-Co alloys (red circles)
and of ferromagnetic bcc
Fe-Cr and Fe-Co alloys
(green squares) plotted as
a function of Co or Cr
content. The superscripts f

and b stand for the fcc and
bcc phases, respectively.
Shown are the two single
crystal shear elastic
constants c’ and c44, the
bulk modulus B, the shear
modulus G and the Young’s
modulus E. For
ferromagnetic bcc Fe-Cr
the available experimental
polycrystalline elastic
parameters [5] are also
shown (brown triangles). 

Parametri elastici di cristallo
singolo e policristallini di
leghe paramagnetiche fcc Fe-
Cr e Fe-Co (cerchi rossi) e di
leghe ferromagnetiche bcc
Fe-Cr e Fe-Co (quadrati verdi)
tracciati in funzione del
contenuto di Co o Cr. Gli apici
f e b corrispondono
rispettivamente alle fasi fcc e
bcc. Sono mostrate le due
costanti elastiche di taglio dei
due monocristalli c’ e c44, il
modulo di compressibilità B, il
modulo di taglio G e il modulo
di Young E. Sono mostrati
anche (triangoli marroni) i
parametri elastici
policristallini [5] sperimentali
disponibili per la lega
ferromagnetica bcc Fe-Cr. 

In the fcc phase, both Co and Cr show relatively small impact
on the elastic parameters and the alloying effects are more pro-
nounced in the ferromagnetic bcc phase. However, in order to
see where this stronger effect comes from, one should carry out
similar calculations for the paramagnetic bcc alloys to be able to
exclude the effect of crystal lattice from the above comparison. 

Bain path of paramagnetic Fe-Cr and Fe-Cr-Ni alloys
The transformation mechanism between the bcc and the fcc pha-
ses of Fe-based alloys is of key importance for the properties of
alloy steels. This is a typical diffusionless structural change be-
longing to the group of the so called martensitic transformations.
Several homogeneous paths have been suggested for describing
the bcc-fcc transformation. In particular, the Bain path is obtai-
ned by expanding the bcc lattice along one of the cubic axes (c)

and contracting along the two others (a). Upon lattice deforma-
tion the crystal symmetry remains tetragonal and the unit cell
is body centered tetragonal (bct). The tetragonality of the lattice
is described by the c/a ratio. When c/a is 1 the bct lattice cor-
responds to the bcc one, whereas when c/a reaches √2 the bct
lattice turns into the fcc one. The Bain path is an appropriate
model for studying the energetics of the bcc-fcc martensitic tran-
sformation. Furthermore, monitoring the alloying-induced sof-
tening or hardening of Fe-based alloys against tetragonal
distortions [36] is of key importance for understanding the in-
terstitial driven martensitic transformations in alloy steels.
In Fig. 8, we present the calculated total energy maps for Fe-Cr
and Fe-Cr-Ni alloys along with the Bain path. The energy map for
Fe0.90Cr0.10 (Fig. 8a) shows that at the equilibrium volume the
close-packed fcc structure is marginally more stable than the
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bcc modification, the energy differences between the fcc and the
bcc structures being ∆E ≡ Efcc – Ebcc = -0.021 mRy. There is a
clear energy barrier, a saddle point between the bcc and fcc local
minima. Approximating the energy barrier by the total energy
calculated for c/a =1.2 and w = 2.675 Bohr, for Fe0.9Cr0.1 we ob-
tain ∆Ef ≡ E1.2 – Efcc = 1.019 mRy (barrier relative to the fcc struc-
ture) or ∆Eb ≡ E1.2 – Ebcc = 0.998 mRy (barrier relative to the bcc
structure). Obviously ∆Eb – ∆Ef = ∆E. 
Since in the present calculations no temperature effects are
taken into account (except the chemical and magnetic random-
ness in the total energy) the total energy difference ∆E between
the fcc and bcc structures should be interpreted with precau-
tion and should not be associated with the phase stability of Fe-
Cr alloys. Nevertheless, we can make our conclusions more
robust and identify the primary chemical effects on the phase
stability by considering the Fe0.90Cr0.10 as reference and focus
on the total energy of Fe0.85Cr0.1M0.05 (M stands for Cr and Ni)
expressed relative to that calculated for Fe0.90Cr0.10. The corre-
sponding relative fcc-bcc energy difference is denoted by ∆E(M)
and the relative energy barriers by ∆Ef(M) or ∆Eb(M). According
to this definition, for instance vanishing ∆E(M) and ∆Ef/b(M)
mean that 5 % alloying addition M produces negligible effect on
the corresponding energy differences of Fe0.9Cr0.1. 
Next, we illustrate the effect of adding 5% Cr and Ni on the Bain
path of the paramagnetic Fe-Cr alloy. We find that adding 5 % Cr
to the Fe0.9Cr0.1 alloy increases the fcc-bcc total energy difference
by ∆E(Cr) = 0.443 mRy (Fig. 8b). In other words, the chemical ef-
fect of Cr is to stabilize the bcc phase relative to the fcc one. Al-
loying changes the energy barrier between the bcc and fcc
structures as well. We obtain that 5 % Cr addition to Fe0.9Cr0.1

alters the barrier by ∆Ef(Cr) = -0.118 mRy or ∆Eb(Cr) = 0.325
mRy. That is, the energy minimum around the fcc phase beco-
mes shallower and that around the bcc phase deeper by alloying
with Cr. In terms of mechanical stability of alloys, the above al-
loying effect of Cr corresponds to mechanically less (more) sta-
ble fcc (bcc) phase. This is in line with the observation that Cr
decreases the tetragonal elastic constant of paramagnetic fcc
Fe0.9Cr0.1.

FIG. 8 Total energy contours (in mRy) for (a) Fe0.9Cr0.1, (b) Fe0.85Cr0.15 and (c) Fe0.85Cr0.1Ni0.05 alloys as a function of the
tetragonal lattice ratio (c/a) and the Wigner-Seitz radius (w). For each alloy, the energies are plotted relative to the
minimum of the corresponding bcc (c/a = (c/a)bcc = 1) total energy. 

Profili dell’energia totale (in mRy) per leghe (a) Fe0.9Cr0.1, (b) Fe0.85Cr0.15 e (c) Fe0.85Cr0.1Ni0.05 in funzione del rapporto del
reticolo tetragonale (c/a) e del raggio di Wigner-Seitz (w). Per ogni lega sono tracciate le energie relative al minimo della
corrispondente energia tolale bcc (c/a = (c/a)bcc = 1). 

Nickel is calculated to have pronounced effects on the Bain path
of paramagnetic Fe-Cr alloys (Fig. 8c). Adding 5 % Ni to Fe0.9Cr0.1

yields ∆E(Ni) = -0.300 mRy and changes the energy barrier by
∆Ef(Ni) = 0.045 mRy per atom or ∆Eb(Ni) = -0.255 mRy per atom
relative to that of Fe0.9Cr0.1. It is interesting to contrast the above
trends for the energy barrier with those calculated for the elastic
constants of paramagnetic fcc Fe alloys. In particular, Ni is pre-
dicted to decrease the tetragonal elastic constant of fcc Fe. Thus
we may conclude that the trends in the elastic constants are not
sufficient to predict the changes in the energy barrier upon al-
loying.

CONCLUSIONS
Magneto-elastic phenomena in magnetic materials and, in par-
ticular, in alloy steels have been known for a long time. However,
the magnetic effects on the stacking fault energies and elastic
constants of magnetic materials in their paramagnetic state have
been less well documented. In this work, using first-principles
computational methods, we have investigated the atomic-scale
chemical, magnetic and structural effects behind the stacking
fault energies and elastic properties of paramagnetic Fe-Cr-Ni
alloys. We have demonstrated that in this important class of
“nonmagnetic” engineering materials, magnetism gives a major
contribution to the fundamental bulk properties. 
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