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ABSTRACT. General formulae for double initial and caustic curves (reflected 
and transmitted) are obtained in the case of smooth contact of two cylindrical 
elastic bodies of arbitrary radii. Namely, based on the method of reflected and 
transmitted caustics, the conditions for the development of double initial and 
contact caustic curves are established as functions of six independent para-
meters, while easy-to-use closed-form expressions are given for obtaining the 
contact length. An experimental protocol is then implemented in the case a 
thin cylindrical transparent disc is compressed between the jaws of the Inter-
national Society for Rock Mechanics suggested device for the execution of the 
Brazilian-disc test. The experimental method of caustics can provide the con-
tact length quite accurately, even in the case of double curves which seem that 
are not always a consequence of a wide contact region. 
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INTRODUCTION 
 

he experimental method of caustics is now a more than fifty years old method. It is a powerful technique for the 
study of various issues related to the mechanical behaviour of elastic bodies. It is based on the high sensitivity of 
light in the slightest change taking place in the surfaces as well as within the thickness of an elastic plate. At first, 

in the case of an opaque highly polished elastic plate, recording the path of the impinging light after reflection on its 
distorted surface, significant results can be drawn regarding the response on externally applied loads and constrains in 
conjunction with the existence or not of geometrical discontinuities. The same is true in the case of a transparent highly 
polished elastic plate where one has to record the paths of the impinging light after reflection on both (front and rear) 
surfaces of the plate. In the case of the plane elastic problem the method was first introduced by Manogg [1–4] for the 
case of Transmitted Caustics and then it was broadened by Theocaris [5, 6] who included the method of Reflected 
Caustics, to be used soon after on numerus applications [7] keeping used uninterruptedly up to nowadays. In this context, 
a wide variety of problems has been confronted by the method of caustics, as, the description of the stress intensity in 
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elastostatic problems [8–10], the mechanical behaviour and crack propagation under dynamic loading conditions [11–17], 
the measurement of strain concentration in plasticity problems [18], the determination of the J-integral [19], the 
determination of stress-optical as well as elastic constants of materials [20–22], the location of the crack-tip position [23], 
the description of load distribution and the definition of the contact length in contact problems [24–29]. What is more, 
the method has been successfully applied to a wide range of materials, including birefringent ones [30], rock-like [31] and 
anisotropic ones [32–35], viscoelastic ones [36] and even composite [37] or graded ones [38]. In parallel, several studies 
have concerned with the improvement of the method of caustics [39–43] while an experiment on the method of Caustics 
for educational purposes was recently proposed by Younis [44].  
In the present study, further to a work of Theocaris and Stassinakis [26], general formulae for double initial curves and 
their corresponding reflected or/and transmitted caustic curves are provided in the case two cylindrical elastic bodies of 
arbitrary radii are compressed against each other in the absence of friction. In this direction and under the usual 
assumptions made in the method of caustics, the conditions for the development of double initial and contact caustic 
curves are established. As it is seen, the generation or not of double initial and caustic curves depends on six independent 
parameters which are related to the material properties, the relative dimensions of the two bodies in contact, as well as to 
the characteristics of the optical set-up. In light of those formulae, expressions for the contact length given in [26] are 
revisited and easy-to-use closed-form expressions are given for obtaining the contact length based on the well-known 
Muskhelishvili’s solution for the contact problem [45] particularised in [46]. Then an experimental protocol was implemented 
concerning a divergent laser light beam incident on a thin cylindrical specimen made of a transparent optically isotropic, 
linearly elastic material, squeezed between the curved jaws of the International Society for Rock Mechanics (ISRM) 
suggested device for the standardized Brazilian-disc test [47]. As it is shown, the experimental method of caustics can 
provide the contact length even in the case of double caustic curves (either reflected or transmitted) which seem that can 
occur not only in the case of wide contact regions, but also in the case of relatively small ones, under certain conditions 
concerning, among others, the optical set-up, thus satisfying the small contact length assumption in the theoretic solution 
employed. 
 
 
THEORETICAL CONSIDERATIONS 
 
The contact problem 

et a circular disc of radius R and thickness t be in equilibrium upon compressed against a curved jaw of arbitrary 
radius RJ (R≤RJ<∞), by an overall load Pframe. Assuming that both the disc and jaw are made of homogeneous, 
isotropic and linearly elastic materials and their cross-sections lie in the ζ=x+iy=reiθ plane, the expressions for 

Muskhelishvili’s complex potential Φ(ζ) for the disc, and the corresponding half contact length ℓ realized between the disc 
and the jaw, read in the Oxy coordinate system (Fig.1) as [45, 46]: 
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In Eqs. (1), ρ=R/RJ, κ is Muskhelishvili’s constant, equaling (3–ν)/(1+ν) for plane strain and (3–4ν) for plane stress, and  
μ=Ε/[2(1+ν)] is the shear modulus (with E and ν denoting Young’s modulus and Poisson’s ratio, respectively). 

 

 
 

Figure 1: The contact region (-ℓ, ℓ) and the definition of symbols. 
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The general formulae for the contact initial curves on the disc’s front and rear faces 
Consider the ordinary set-up of the experimental method of caustics shown in Fig.2. Red light, emitted from a He-Ne 
laser and refined and broadened by a pin-hole, impinges normally, after passing through two lenses L1 and L2 and a semi-
reflector, on the loaded disc. Assuming that the disc is transparent and has two well-polished faces, incident light will be 
reflected from both the front and rear faces of the disc and it will be transmitted through it as well. Then light reflected 
and transmitted from points on the disc faces of severe distortion, when received on two screens placed parallel to the 
disc, at the front and the rear of it, at distances Zo,f and Zo,t from its middle section respectively, forms the so-called 
reflected and transmitted caustics, which provide significant information about various characteristics about the elastic 
equilibrium of the disc.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The set-up of the experimental method of reflected and transmitted caustics. 
 

In this context, considering the coordinate systems OfXfYfZf, and OtXtYtZt on the front and the rear screens respectively 
(so that XfZf - and XtZt -planes be parallel to xz-plane, see Fig.2), assuming that the material of the disc is optically 
isotropic and that its thickness t is negligible with respect to the distances Zo,f and Zo,t, the parametric equations of reflected 
and transmitted caustics read as [26]: 
 

, , , , , , , , , , , , , ,4 ( ), 4 ( )f r t m f r t f r t f r t m f r t f r tX λ x C Φ y ζY Cζ λ Φ              (2) 
 
In Eqs. (2), indexes f and r refer to light reflections from the front and the rear disc’s faces while t refers to transmitted 
light; λm,f,r,t denotes the respective magnification factor for reflected and transmitted caustics, given as: 
 

 , ,
, , , ,,o f i o t i

m f m r m t o t i
i i

Z Z Z Z
λ λ λ Z Z

Z Z

 
           (3) 

 
with Zi being the distance between the focus point of lens L2 and the disc’s middle section (Fig.2) and + or – sign 
indicating a divergent or convergent incident light beam; when lens L2 is missing, λm,f= λm,r=λm,t=1. Moreover: 
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, , ,, 2 ,f o f f r o f r t o t tC Z t c C Z t c C Z t c             (4) 
 
where cf,r,t are the so-called stress-optical constants defined as: 
 

, ,
2
o

f r f t r f

ν η
c c k c c c c

E
            (5) 

 
with k>0 being obtained by the interferometric method and ηo denoting the air-refraction index, equaling approximately 
zero. Finally, ℜ is the real and ℑ the imaginary part, while prime indicates first derivative. In turn, zeroing of the Jacobian 
of the transformation of Eqs. (2), yields the radii of the so-called initial curves, i.e., the loci of points on the disc faces 
providing upon illumination the caustics, by solving the equation: 
 

4
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          (6) 

 
where double prime denotes the second derivative. From Eq.(6) it is clear that there are three kinds of initial curves, one 
on the front face of the disc, providing the reflected caustics from the front face of the disc, and two on the rear face of 
the disc providing the reflected and transmitted caustics from the rear face of the disc. Substituting in Eq.(6) for Φ(ζ) from 
Eqs.(1), and using the transformations i    1 2i

1 2e , e
θ θ
ζ rζ r , θ, θ1, θ2 ϵ[0, –π] (Fig.1), the radii ro,f,r,t of the initial 

curves, the one on the front (ro,f ) and the two (ro,r and ro,t ) on the rear face of the disc, are obtained as: 
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In Eq.(7), the absolute value of the ratio C,f,r,t/λm,f,r,t  has been considered to avoid the double sign ± on the right-hand side 
of Eq.(6); that absolute value suffices, also, the demand r1 and r2 be real positive numbers as well as the fact that  
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 will be a real positive number, too. However, ro,f,r,t, given by Eq.(7), may turn out to be a complex 

number, something that should be excluded from the solution, keeping only the real values for ro,f,r,t. In this context, the 
double sign before the internal square root, in complete correspondence with the superscript ± on the left-hand side of 
Eq.(7), ensures that all possible real values for ro,f,r,t will be taken into account.  

Namely, if θϵ[0, –π], 
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is a real positive quantity θϵ[0, –π] and the value , , ,o f r tr   for the plus sign before the internal square root in Eq.(7) should be 

chosen for ro,f,r,t, rejecting the value , , ,o f r tr   as a purely imaginary one (see Fig.4b, where it is seen that , , ,o f r tr   is lying com-

pletely in the imaginary plane). That is the classic case of a single initial (and in turn caustic) curve, sketched in Fig.3c (for 
the front initial curve). In Fig.3a, the variation of cos2θ= 21 sin 2θ  is also shown as the lower accepted limiting value 

for 
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 and ro,f,r,t partly 

“pass” in the imaginary plane (Fig.4) and they must be accordingly rejected as it is shown next for a double initial curve. 

Namely, if 
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Figure 3: (a) The case the internal square root in Eq.(7) assumes real positive values; (b) The relative accepted radius of the initial 
curve; (c) The corresponding single initial curve. 
 
either real or purely imaginary values, depending on the interval θ takes values in. Namely, considering the critical angle 
(measured from x-axis in the clockwise direction): 
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the quantity 
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 assumes real positive values for θ ϵ[0, –θo,f,r,t], (–π/2+θo,f,r,t, –π/2–θo,f,r,t] and       

(–π+θo,f,r,t, –π] while it becomes purely imaginary in the intervals (–θo,f,r,t, –π/2+θo,f,r,t] and (–π/2–θo,f,r,t, –π+θo,f,r,t] (Fig.4a). In 
turn, ro,f,r,t (Eq.(7)) assumes complex values in the intervals (–θo,f,r,t, –π/2+θo,f,r,t] and (–π/2–θo,f,r,t, –π+θo,f,r,t], purely imaginary 
ones in the interval (–π/2+θo,f,r,t, –π/2–θo,f,r,t] and real positive values in the intervals [0, –θo,f,r,t] and (–π+θo,f,r,t,, –π] (Fig.4b). 
Then in this context, since only a real-valued quantity can stand as the radius ro,f,r,t of the initial curve, it is seen that in that 
case the initial curve splits into two distinct curves (parts), defined in the intervals [0, –θo,f,r,t] and (–π+θo,f,r,t,, –π], respectively, 
where the imaginary parts of the aforementioned quantities are zero. These two parts are located around the end points of 
the contact length, symmetrically with respect to y-axis (Fig.4c). Namely, the right part is located around the point (+ℓ, 0) 
and is defined in the interval [0, –θo,f,r,t] while the left one is located around the point (–ℓ, 0) and is defined in the 

interval (–π+θo,f,r,t,, –π]. In addition, it should be noticed that both , , ,o f r tr   and , , ,o f r tr   are required to describe the radius ro,f,r,t 

of either part. Actually, considering for example the right part, it can be seen that it consists of two branches, viz., the 
outermost one and the innermost one, with respect to the origin. The radius of the outermost branch is described by the 

, , ,o f r tr  -value while that of the innermost one by the , , ,o f r tr  -value, and as θ varies in the clockwise direction within the 

interval [0, –θo,f,r,t] the two branches are formed simultaneously, tracing the right part of the initial curve following opposite 
directions to eventually meet at their single point in common. Namely, the outermost branch of the right part starts (for 
θ=0) from a point ζ of x-axis on the right side of the point (+ℓ, 0) while its innermost one starts simultaneously (for θ=0) 
from a point ζ of x-axis on the left side of the point (+ℓ, 0). Then, to each θ-value between 0 and –θo,f,r,t they correspond 

two points, as the pinpoints of the vectors , , ,o f r t
r  and , , ,o f r t

r , one on outermost branch and the second one on the inner-
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most part, respectively. These two points are all the time along the same line (defined by the θ-direction), in other words 

, , ,o f r t
r  and , , ,o f r t

r  are all the time collinear, but of different in general measure. Eventually, , , ,o f r t
r and , , ,o f r t

r mutually met 

(for θ=θo,f,r,t) at the point 
i i, , , , , ,

, , , , , , , , ,e e
θ θo f r t o f r t

o f r t o f r t o f r tζ r r   of the two branches in common, thus completing the form-

ation of the right part of the double initial curve; regarding the previous notation, i
, , , , , , , , , , , ,i e θo f r t o f r t o f r t o f r tζ x y r     is 

to denote the point ζ on the initial curve. The left part of the initial curve, i.e., that around the point (–ℓ, 0), is formed in a 
completely analogous manner. In this context, the parametric equations of the double caustic are defined in the intervals 
θϵ[0, –θo,f,r,t] and θϵ(–π+θo,f,r,t,  –π] as: 
 

, , , , , , , , , , , ,cos , sino f r t o f r t o f r t o f r tx r θ y r θ          (9) 
 
Obviously, the formulae of Eqs. (9) for a double initial curve are general by means that can also provide the case of a 

single curve, the radius ro,f,r,t of which is completely defined, θϵ[0, –π] by just considering the value , , ,o f r tr  only. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: (a) The case the internal square root in Eq.(7) attains imaginary values in some θ-intervals; (b) The relative values for the 
radius of the initial curve; (c) The corresponding double initial curve with the left and right part, and the two branches of each part. 
 
The role of various parameters in the generation of double initial curves 
From the previous paragraph, it is seen that the condition dictating the generation or not of a double initial curve is: 
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with Ff,r,t a dimensionless quantity. Assuming that the disc’s dimensions (R, t) are kept fixed, that its material’s Poisson 
ratio ν as well as the jaw’s material elastic properties (EJ, νJ) have a negligible influence on the generation of double curves, 
and that an average value for k (in the second of Eqs. (5)) has once and for all been chosen for a reasonably bounded 
range of materials checked, Eq.(10) is written respectively for the three initial curves, the one on the front and the two on 
the rear disc’s faces, as: 


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Under the above assumptions, it is seen that six independent parameters, namely, E, Pframe, RJ, Zo,f, Zo,t and Zi, entering 
Eqs. (11), influence the development of a double initial curve. The degree of their influence is shown in Fig.5, where the 
quantities Ff, Fr, and Ft are plotted (in juxtaposition) against each one of these six parameters. To draw this figure, a 
reference set-up has been considered as a basis, namely, that concerning a disc of R=5 cm, t=1cm, made of Poly-Methyl-
Meth-Acrylate (PMMA) (E=3.20 GPa, ν=0.38) with k=3.12 [48], squeezed between the ISRM’s curved steel jaws 
(RJ=1.5R, EJ=210 GPa, νJ=0.30) for the implementation of the Brazilian-disc test [47], by an overall load Pframe=15 kN. 
The disc was under plane stress- and the jaw under plane strain-conditions. In addition, it was assumed that Zo,f=1.5 m, 
Zo,t=0.7 m and Zi=1.0 m, with the second lens’ focus point located before the disc, i.e., a divergent incident light beam 
was considered (E, Pframe, RJ, Zo,f, Zo,t and Zi were put in bold for clarity). Then, in each of the plots from Fig.5(a-f), keeping 
four out of the five different independent parameters appearing each time in Ff, Fr and Ft, fixed and letting the fifth one 
vary within a reasonable interval, the variations of Ff (red color), Fr (blue color) and Ft (green color) are plotted.  
In this context, keeping Pframe, RJ, Zo,f, and Zi constant, equal to the respective values of the reference set-up, Fig.5a shows 
the variations of Ff, Fr and Ft against the modulus of elasticity E; the Ff,r,t=1 line is also shown as the critical value below 
which a double initial curve appears. Thus, for an E less than 1.25 GPa, then Ff is less than 1 and a double front initial 
curve occurs. For an E less than 0.4 GPa, then Ft is less than 1 and a double rear transmission initial curve is generated. 
Regarding the rear reflective initial curve, it is seen that only in the case of a material with very high compliance, i.e., with 
an E less than 0.02 GPa, a double initial curve appears. In Fig.5b, fixing E, RJ, Zo,f, and Zi, the variation of Ff, Fr and Ft 
versus Pframe is shown together with the limiting line Ff,r,t=1. Starting from the reflective and the transmitting initial curves 
on the disc’s rear face, it is seen that only an extraordinary Pframe could make them split into two parts while a Pframe of a 
value 38 kN upwards would result in a double front initial curve. In Fig.5c, fixing E, Pframe, Zo,f, and Zi, the variation of Ff, 
Fr and Ft is plotted versus RJ. It is definitely seen, for example, that for the chosen reference set-up values, i.e., for the 
ISRM’s jaw with RJ=1.5R=0.075 m, a double initial curve cannot happen, as in that case all three Ff, Fr and Ft values are 
bigger that 1; but as RJ decreases a double front initial curve appears for RJ=0.067 m, a double transmitting initial curve 
occurs for RJ=0.06 m while a double rear reflective curve is generated for RJ=0.054 m. In Fig.5d, fixing E, Pframe, RJ, Zo,f 
and Zo,t, the variation of Ff, Fr and Ft is plotted versus Zi. It is seen that for a value Zi=0.07 m downwards a double rear 
reflective initial curve appears, for a value Zi=0.19 m downwards a double transmission initial curve appears while for a 
value Zi=0.52 m downwards a double front initial curve occurs. 
In Fig.5e, fixing E, Pframe, RJ and Zi, the variation of Ff and Fr is plotted against Zo,f. As it is seen, placing the front 
reference screen at a distance Zo,f less than 0.6 m from the disc’s middle section, results always in a double front initial 
curve whereas a rather unmaterialized distance Zo,f, less than 0.07 m, is required to pump out a rear double reflective initial 
curve. Finally, in Fig.5f, fixing E, Pframe, RJ and Zi, the variation of Ft is plotted against Zo,t. It is seen that placing the rear 
reference screen at a distance Zo,t less than 0.18 m from the disc’s middle section, results always in a double rear initial 
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transmission curve. From the above results it becomes evident that the generation of a double initial curve is not only the 
result of an increased externally applied load; it can be also caused by other factors, influencing the experiment, like the 
material of the specimen and other parameters directly connected with the experimental/optical set-up. And it is 
concluded that even in the case of relatively small contact lengths, there could be double initial (and thus caustic) curves. 
Finally, it should be mentioned, that according to the above findings the development of a double rear reflective initial 
curve is positively more difficult to happen with respect to the two other kinds of initial curves.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a) The variation of Ff, Fr and Ft against E; (b) The variation of Ff, Fr and Ft against Pframe; (c) The variation of Ff, Fr and Ft 
against RJ; (d) The variation of Ff, Fr and Ft against Zi ; (e) The variation of Ff and Fr against Zo,f ; (f) The variation of Ft against Zo,t. 
 
The general formulae for reflected and transmitted contact caustics 
The parametric equations of single or double reflected and transmitted caustics, corresponding to the previously presented 
single or double initial curves, are obtained by substituting in Eqs. (2) for Φ(ζ) from Eqs. (1) and using the relations 

i i    1 2

1 2e , e
θ θ
ζ rζ r , θ, θ1, θ2 ϵ[0, –π] for i

, , , , , , e θo f r t o f r trζ ζ   on the initial curves ( , , ,o f r tr   given by Eq.(7)), as: 
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 
  

  

           

      
 





1 32 3
, , , 1, , , 2, , ,

, , , , , , , , , , , , ,
, ,

1 32 3
, , , 1

, , , , , , , , , , , , ,
, ,

1
cos 2 sin ,

2

1 1
sin 2 2 cos

m f r t f r t f r t
f r t m f r t o f r t f r t o f r t

f r t

m f r t
f r t m f r t o f r t f r t o f r t

f r t

λ θ θρ
X λ r θ C r θ

KR C

λ θρ ρ
Y λ r θ C r θ

KR KR C

         

, , , 2, , ,

2
f r t f r tθ

 (13) 

 

In Eqs. (13), , , ,j f r tθ , j=1, 2 are defined as (Fig.1): 
 

 
 

  
  

, , , , , ,
1, , , 2, , ,

, , , , , ,

sin sin
Arc tan , Arc tan

cos cos
o f r t o f r t

f r t f r t
o f r t o f r t

r θ r θ
θ θ

r θ r θ
      (14) 

 

(obviously, , , ,j f j r j tθ θ θ     because for each θ, , , ,o f o r o tr r r    ). Eqs. (13) complete the existing formulae of Theocaris 

and Stassinakis [26], providing all possible cases for reflected and transmitted caustics, viz., either double or single ones. 
As an example, the above formulae are applied to a hypothetical case resulting, on purpose, in only double curves. Namely, a 
circular disc of R=5 cm, t=1cm is considered, made of PMMA (E=3.20 GPa, ν=0.38) and with a k=2.5 (2nd of Eqs. (5)). 
The disc was squeezed between two curved jaws of RJ=1.3R, made of steel (EJ=210 GPa, νJ=0.30), by an overall load 
Pframe=30 kN. The disc was considered under plane stress conditions, while the jaws were considered under plane strain 
conditions. In addition, it was assumed that Zo,f =1.0 m and Zi =0.2 m (before the disc-a divergent impinging light beam) and 
that Zo,t =0.7 m. The double initial curves, due to Eqs. (9), are plotted for the above data in Fig.6, where the whole contact 
region is shown. As before, red, blue and green color indicates the front, rear and transmission initial curves. Actually, red, 
blue and green lines indicate the outermost branches of the left and right parts of the double initial curves, corresponding 

to the ,o fr -value of ro,f, while black lines indicate the innermost branches, corresponding to the ,o fr  -value of ro,f..  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The contact region with the double initial curves 
 

Accordingly, the double caustic curves, due to Eqs. (13), are plotted in Fig.7, following (in complete correspondence 
between color) the same coloring used for the respective initial curves. In addition, the spans D+f,r,t, D –f,r,t of the caustics as 
well as the elevations H+f,r,t and H–f,r,t, of their end points have been specified in Fig.7, required, as it will be shown next, 
for the estimation of the contact length.  
 
 
THE CONTACT LENGTH BY USING THE GENERAL CAUSTICS 
 

n light of the previous general formulae for the contact caustics, viz., Eqs. (7, 13, 14), Theocaris and Stassinakis’ [26] 
existing formulae for obtaining the contact length, realized between two cylindrical bodies in contact, are here 
completed by including the case of double caustics. In addition, closed-form formulae are provided for obtaining ℓ I 
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from the span  

 
 

Figure 7: The general case for double reflected and transmitted caustics. 
 
of a double or single caustic while two different ways are proposed to locate Xf,t -axis on the experimental caustics’ photos, 
necessary for the use of the existing linear formula [26] for obtaining ℓ from the elevation of caustic’s extreme points.  
 
Obtaining the contact length from the span of the general contact caustic curves 
Let us first consider the more general case of double caustics. In this context, the spans of the caustics, i.e., the distances 
D+f,r,t between the outermost ends E+f,r,t and L+f,r,t of the caustic curves and the distances D –f,r,t between the innermost 
ends E –f,r,t and L –f,r,t (Fig.7) are defined by the aid of the first of Eqs. (13), as: 
 

 
     
 
 




2 3

, ,
, , , , , , ,

, , ,

1
2 ( 0) 2 1 2 f r t

f r t f r t m f r t
m f r t

C ρ
D X θ λ

λ KR
 (15) 

 

 
                    


 

2 31 32 3
, , , , ,

, , , , , , , , ,
, , , , ,

1 1
2 ( 0) 2 2 1 2m f r t f r t

f r t f r t m f r t f r t
f r t m f r t

λ Cρ ρ
D X θ λ C

KR C λ KR
 (16) 

 
The superscripts + and – in the above formulae, are in accordance with the previous discussion and refer to the value 

, , ,o f r tr  and , , ,o f r tr   respectively, describing the radius of the corresponding double initial curve. In this context, the abscissas, 

, , ( 0)f r tX θ  and , , ( π)f r tX θ   , of E+f,r,t and L+f,r,t, correspond respectively to the outermost points i 0
, , , eo f r tr   and 

-i
, , , eo f r tr  of the relevant initial curve, while the abscissas, , , ( 0)f r tX θ   and , , ( π)f r tX   , of E –f,r,t and L –f,r,t, correspond 

respectively to the innermost points i 0
, , , eo f r tr   and -i

, , , eo f r tr   of the same initial curve. What is more, there will be in 

general two (slightly) different experimental values ℓ+D and ℓ–D for ℓ upon using Eqs. (15) and (16), need to be combined 
to yield the final experimental ℓD, i.e., the half contact length ℓ obtained from the span D. In this direction, solving Eq. 
(15) for ℓ, one can write the expression: 
  


 

            
 

2 3 2

, , , ,4 32
, , , , , ,

, , , , , ,

1
( ) 2 ( ) 0

2
f r t f r t

D f r t D f r t
m f r t m f r t

C Dρ

λ KR λ
 (17) 
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which agrees with the respective formula derived in [26] (after some minor revisions in [26], see [49], and few 
modifications introduced here for the sake of generality of the procedure proposed). In Eq.(17), the use of the notation 
ℓ+D,f,r,t, instead of simply writing ℓ, has been made to stress the distinction among ℓ+D,f, ℓ+D,r and ℓ+D,t (corresponding to 
D+f, D+r and D+t) when obtained experimentally. Actually, while in theory all three ℓ+D,f, ℓ+D,r and ℓ+D,t equal ℓ given by the 
second of Eqs. (1) thus fulfilling Eq.(17) by identity, in practice reasonable differences between the theoretically predicted 
and experimentally measured D+f, D+r and D+t lead inevitably (via Eq.(20), see below) to “experimental” values for ℓ+D,f, 
ℓ+D,r and ℓ+D,t, slightly different to each other and from the theoretical ℓ. Thus, in applying the experimental method of 
caustics to obtain ℓD there will be in general three different values for ℓD, viz., ℓ+D,f, ℓ+D,r and ℓ+D,t which should be 
properly combined to provide the experimental ℓD. Now setting: 
 

  3 2
, , , , ,( )D f r t f r tm  (18) 

 
Eq.(17) becomes: 
 

2 3 2

, , , ,3 2
, , , ,

, , , , , ,

1
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2
f r t f r t

f r t f r t
m f r t m f r t

C Dρ
m m

λ KR λ


 

            
 (19) 

 
Eq.(19) admits two complex and one real solution, the latter of which, upon inserted into Eq.(18), yields ℓ+D,f,r,t as:  
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 (20) 

 
According to the method of caustics, measuring the distance D+f,r,t on the experimental caustics’ photos and introducing 
that value in Eq.(20), will yield the half contact length ℓ+D,f,r,t in question. Of course, as it has already been mentioned, 
reasonable differences between the theoretical and the experimentally measured D+f,r,t, attributed to both theoretical 
approximations and experimental errors, will lead (via Eq.(20)) to slightly different values ℓ+D,f, ℓ+D,r and ℓ+D,t, in which 
case ℓ+D can be taken as the average value of the three experimental values ℓ+D,f, ℓ+D,r and ℓ+D,t: 
 

        , , ,( ) 3D D f D r D t  (21) 
 
In complete analogy with the previous case, solving Eq.(16) for ℓ, one takes: 
 



 

Ch. F. Markides, Frattura ed Integrità Strutturale, 50 (2019) 451-470; DOI: 10.3221/IGF-ESIS.50.38                                                                  
 

462 
 

 



        
   
   

         
   
   

 



2 3

, , , , , , , 4 32
, , , , , ,

, , , , , , , ,

4 3

, , , , , , , , ,2 3
, , ,

, , , , , , , , , , ,

1
( ) 2 1 2 ( )

1 1
2 1 2 ( ) 2

f r t f r t m f r t
D f r t D f r t

m f r t m f r t f r t

f r t m f r t f r t f r t
D f r t

m f r t f r t m f r t m f r t

C C λρ

λ KR λ C

C λ C Cρ ρ

λ KR C λ λ KR

  
         

2 2

, ,

, , ,

0
2

f r t

m f r t

D

λ

 (22) 

which, after setting:  
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Eq.(24) has one real solution which upon being introduced in Eq.(23) provides ℓ–D,f,r,t as: 
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 (25) 

and 
 

        , , ,( ) 3D D f D r D t  (26) 
 

Eventually, supposing that all D+f,r,t and D–f,r,t are measurable on caustics’ photos, the respective “experimental” ℓD will be 
obtained as the average value of ℓ+D and ℓ–D: 
 

    ( ) 2D D D  (27) 
 

Clearly, in case of simple caustics where only D+f,r,t, exists, the “experimental” ℓD will coincide with ℓ+D of Eq.(21). It 
should be mentioned however, that usually in practice it is not feasible to measure all of the D±f,r,t on caustic’s photos due 
to the partially overlapped reflected caustics (front and rear) and thus not all of the experimental ℓ±D,f,,r,t can be calculated 
from Eqs. (20, 25); in that case the final “experimental” ℓD will be the average value of those ℓ±D,f,,r,t that could be 
calculated.  
 
Obtaining the contact length from the elevations of the extreme points of the general contact caustic curves 
In the more general case of double caustics, the elevations H±f,r,t of the end points E±f,r,t, L±f,r,t of caustics (Fig.7), will be 
defined by the aid of the second of Eqs. (13), as: 
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Eq.(29) does not include ℓ and it cannot be used directly to obtain ℓ, however, it can be proven very useful in specifying 
the location of Xf,t -axes (see below) which is the basic requirement for measuring the elevations H+f,r,t in experimental 
caustic’s photos. Thus, in the case of double caustics, only Eq.(28) can be directly used to obtain ℓ (from only the 
elevations H+f,r,t). In this context, solving Eq.(28) for ℓ yields: 
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which with few inessential modifications (for the sake of generality) is the second formula obtained in [26] for determining 
ℓ. As previously, writing ℓH,f,r,t, instead of just ℓ (superscript + has now been omitted for obvious reasons), is to indicate 
that now ℓ is obtained from the elevations H+f,r,t and to stress the distinction that should be made among the experimental 
values ℓH,f, ℓH,r and ℓH,t with respect to each other and with respect to the theoretical ℓ of Eqs. (1), due to reasonable slight 
differences expected between theoretical and experimental H+f, H+r and H+t -values Thus, supposing that H+f, H+r and H+t 
have been measured on caustics’ photos then introducing these values in Eq.(30), ℓH,f, ℓH,r and ℓH,t are calculated; the final 
“experimental” ℓH will be their average value: 
 

     , , ,( ) 3H H f H r H t  (31) 
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Obviously, obtaining ℓH in the case of single caustics presents no difference from the case of double ones, since only the 
elevations H+f,r,t are used in both cases, that is, Eqs.(30,31) hold also true in the case of single caustics.  
In conclusion, having ℓD from Eq.(27) (see previous paragraph) and ℓH from Eq.(31), the final “experimental” ℓexp can be 
quite accurately defined as: 
 

   exp ( ) 2D H  (32) 
 

There of course remains the problem of specifying the Xf,t -axes positions on reflected and transmitted caustics’ photos in 
order that H+f,r,t can be measured.  
Specifying the position of Xf,t -axes on reflected and transmitted caustics’ photos 
To measure H+f,r, (required in Eq.(30) to obtain ℓH,f,r,t), locating the positions of Xf,t -axes on caustics’ photos is sine qua 
non. In this context, two ways are next proposed to locate Xf,t -axes. Namely, in the case of double caustics, it has been 
seen that Eq.(29) provides the elevations H–f,r,t of the innermost end points E–f,r,t or L–f,r,t (Fig.7) of the double caustics 
independently of ℓH,f,r,t,; actually, H –f,r,t depend only on the experimental set-up. Thus, detecting on caustics’ photos the 
innermost end points E–f,r,t (or L–f,r,t) of double caustics and then drawing from these points normally the respective ℓH,f,r,t -
independent elevations H –f,r,t, Xf,t -axes are automatically obtained on the photos independently of ℓH, and thus they can 
be safely considered as a basis in obtaining ℓH,f,r,t,. Indeed, having Xf,t -axes on caustics’ photos, measuring H+f,r,t and in turn 
obtaining ℓH,f,r,t, and ℓH from Eqs. (30) and (31) is a trivial procedure. Obviously, the higher the number of detectable 
points E–f,r,t (or/and L–f,r,t) on the photos is, the more accurate the location of Xf,t -axes on caustics’ photos will be. Clearly, 
that simple approach does not apply to single caustics since in that case there are no any innermost ends E–f,r,t or L–f,r,t. 
However, there is an alternative approach to specify Xf,t -axes on caustics’ photos graphically, at least in a first 
approximation, applicable to both cases (double and single caustics). Namely, it is seen that Xf,t -axes pass approximately 
from the intersection of the lines E+t L+f or E+f L+t with the vertical symmetry axes of caustics, i.e., the Yf,t -axes either in 
the case of double (Fig.8a) or single (Fig.8b) caustics.  

Figure 8: Obtaining graphically the Xft-axes, (a) in the case of double and (b) in the case of single caustics. 
 
Of course, the points L+f and E+f  are located on the front screen while the points E+t and L+t are located on the rear one; 
thus, in order that these points can be combined to form the above lines, the points E+t, L+t (E+f , L+f) from the rear 
(front) photos should be properly specified on the front (rear) photos containing the points E+f , L+f (E+t, L+t). For 
example, the equation of the line E+t L+f (in both cases of Fig.(8a,b), which is of the form Yf,t=αXf,t+β, with α the slope, 
and β the ordinate of the point the line E+t L+f intersects Yf,t -axis, is given as: 
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where 
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Usually, β is too small so that in a first approximation, it can be considered zero, in which case the line E+t L+f passes from 
the origin thus defining the Xf,t -axes. So having Xf,t -axes and any of the outermost end points E+f,r,t (or L+f,r,t ) on caustics’ 
photos, H+f,r,t can be directly measured and in turn ℓH is obtained by the aid of Eqs. (30) and (31). 
 
 
EXPERIMENTAL PROCEDURE 
 

 series of experiments were implemented to assess the efficiency of the previously provided general formulae and 
approach for obtaining the contact length in the case of double caustics. In this context, taking advantage of the 
previous analysis with regard to the conditions for the development of double curves, the imposed loading and 

features of the optical set-up were suitably chosen so that double caustics can occur, trying at the same time not to exceed 
the linearity limit of the material of the specimen. It is to be mentioned that the experimental protocol described below is 
only a first step of an ongoing research the complete results of which will be presented in a future work. 
 
The experimental arrangement 
The experimental set-up is shown in the sketch of Fig.2. It was consisted of a He-Ne laser tube emitting a narrow beam of 
red coherent light (of a wave length about 600 nm), refined and spread out as passing through a pin hole of 50 μm 
mounted before the output coupler of the laser. The outspread light is received by a first lens transforming it into a 
parallel wide coherent light beam that converges again as passing through the second lens. Moving the second lens back 
and forth its focus point may be located at the desired distance Zi in front of or behind the cylindrical specimen, resulting 
to a divergent or convergent incident light beam respectively and defining at one’s convenience the magnitude and sigh of 
the magnification factors λm,f,r,t (Eqs. (3)). A semi-reflector, placed between the second lens and the specimen at an angle 
45o with respect the specimen’s cross-section, facilitates receiving the reflected light on the front reference screen; in that 
case Zo,f  is the total distance: specimen’s middle cross-section – semi-reflector – front screen. Light passing through the 
transparent specimen is received on the rear reference screen, placed directly behind and parallel to the specimen’s middle 
cross-section at a distance Zo,r.  
The specimen was fixed within the jaws of the ISRM apparatus for the implementation of the Brazilian-disc test which 
was mounted at an electromechanical INSTRON 1125 loading frame of 50 kN capacity. The movable traverse of the 
loading frame moved downwards, at a rate of 0.1 mm/min, compressing the upper jaw of the ISRM apparatus, and in 
turn the cylindrical specimen. Normality of the loading axis was ensured by a semi-spherical head interposed between the 
traverse of the loading frame and the jaw bearing on its upper face a suitably perforated hollow cavity fitting the semi-
spherical head. The lower jaw was placed on a 50 kN compression load cell calibrated with a verified Wykeham Farrance 
compression ring of 10.62 N sensitivity. The cell exhibited a linear behavior for the whole loading range with a deviation 
less than 0.2% while the displacement rate was also calibrated by a High Mag micrometric calibrator, exhibiting also a 
linear behavior with a deviation less than 0.4%. 
Regarding the specimen, it was a cylinder of radius R=5 cm and thickness t=1 cm, made of PMMA with Young’s modulus 
E=3.20 GPa and a Poisson’s ratio ν=0.38. The specific values of the elastic constants of the material were determined 

A 
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through standardized uniaxial tests in rectangular specimens of dimensions (25x2x0.2) cm, of the same batch of the 
material, resulting to a stress-optical constant cf=1.19 x 10–7 m2/kN (first of Eqs. (5)). In addition, for the particular batch 
of the material, k was estimated equal to 1.50, resulting to a cr=1.79 x 10–7 m2/kN (second of Eqs. (5)).  
  
The experimental protocol 
In this first series of experiments the parameters of the experimental/optical set-up were properly chosen so that double 
transmitted and single reflected caustics will be obtained. The choice of receiving the transmitted double caustics instead 
of the reflected ones is to be attributed to the fact that the revealing for example of the double front reflected caustics 
would require a shorter distance Zi between the focus point of the second lens and the specimen or a high level of the 
externally applied load. In the first case, as the focus of the impinging divergent light is too close to the specimen, so that 
the area illuminated is very confined, quality of caustics is not very good with secondary optical phenomena, difficult to 
describe, shadowing in most of the experimental attempts undertaken the results. In the second case, the load would be 
required to obtain the double reflected front curves would be, unfortunately, for the particular material, too high to suffice 
the material would remain in its linearly elastic state, a crucial assumption in the deduction of the analytic formulae (see 
also the discussion in the concluding section). In this context, and for a k=1.5 for the particular batch of the material 
(second of Eqs. (5)), the following settings were made: Zo,f =1.0 m, Zo,t=0.2 and Zi=0.2 m. In addition, the load level was 
quasi-statically increased from zero up to Pframe=3 kN.  
During loading, a series of photos of caustics taken from both the front and rear screens were obtained (Fig.9). Namely, in 
Figs. 9(a1, a2), 9(b1, b2) and 9(c1, c2), the photos of reflected and transmitted caustics are shown for three specific 
loading levels, Pframe=1 kN, 2.5 kN and 3 kN, respectively. Then, by the aid of these experimental results and the previous 
analytic formulae, the contact length was obtained from the expressions involving the spans D±f,r,t of the caustics that were 
available/measurable on the photos of experimental caustics (the formulae involving the elevations H±f,r,t were not used 
here). Actually, the experimental results, viz., the distances D±f,r,t used for estimating the contact length, were exclusively 
pumped out of Figs. 9(b1) and 9(b2). In the other figures, apart from presenting the gradual evolution of caustics upon 
load increment, relevant information is given for clarity, as for example the dimensions of the 2- and 1-cent of euro coins 
attached to the front and rear screens, respectively, for the necessary measurements to be feasible.  
Namely, from Fig.9(b1) it is found that D+f =7 cm and D+r =8.5 cm, while from Fig.9(b2) it is seen that D+t =2.4 cm and 
D –t =0.3 cm. Then introducing the values measured, D+f =7 cm, D+r =8.5 cm and D+t =2.4 cm in Eq.(20), the 
experimental values for ℓ+D,f, ℓ+D,r and ℓ+D,t are calculated as ℓ+D,f =0.41 cm, ℓ+D,r =0.39 cm and ℓ+D,t =0.46 cm, respectively, 
whence by Eq.(21) one takes the experimental value ℓ+D=0.42 cm. On the other hand, introducing the value D –t =0.3 cm 
in Eq.(25), the experimental value for ℓ–D,t is calculated as ℓ–D,t =0.43, whence Eq.(26) obviously yields again ℓ–D =0.43 cm 
(since the transmitted caustic is here the only double one). Finally, combining ℓ+D=0.42 cm and ℓ–D =0.43 cm, Eq.(27) 
provides here the experimental value ℓD=0.425 cm for the half contact length, which is in a quite good agreement with the 
respective theoretical value ℓ=0.388 cm, provided by the second expression of Eqs. (1), for the particular data.  
 
 
CONCLUSIONS 

 
n the present paper, an effort was undertaken to describe the nature of double initial and caustic curves, generated in 
the contact region realized between two cylindrical bodies when compressed against each other, and then based on 
the above description to extend/complete existing formulae [26] for obtaining the contact length. As it is shown, 

single curves are actually a particular case of double ones with the latter corresponding to the whole range of possible 
solutions of Eq.(7) that provides the radius of the initial curve. Namely, Eq.(7) admits in general three solutions, a real, a 
complex and a purely imaginary one (Fig.4b), where of course only the real one can be justified to stand as the radius of 
the initial curve. It is seen that in that case the initial curve splits into two parts, the left and the right, each one of which 
further consists of two branches the outermost and the innermost (Fig.4c). In the limiting case where there is only a real 
solution to Eq.(7), the initial curve consists of one part with one branch, which is the usual case of single initial and in turn 
caustic curve. In the same direction, it was shown that under certain assumptions six independent parameters can be 
distinguished influencing the occurrence of double or single curves, viz., the load level, the material’s compliance and 
various features of the optical set-up. In this context, it was shown that is not always an extended contact length 
responsible for the appearance of double curves; for example, a small distance Zi between the focus point of the last (2nd) 
lens and the specimen or a small distance Zo,t between the specimen’s cross-section and the rear reference screen may 
lead to double curves even in the case of low load levels and small contact lengths. Namely, as it was seen from the 
experimental protocol, similar single and double curves exist simultaneously and it is up to the particular choice of the 
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characteristics of the optical set-up for which of them (double or single) will materialize, thus, a big value for Zo,t would 
reveal the single transmitted caustic while the small one adopted in the experiment revealed the double one (see also the 
relevant Fig.5f). Under the above conclusions, the existing formulae [26] for obtaining the contact length by the aid of the 
contact caustics are completed by including the case of double caustics, and it is shown that in the same way the spans 
D+f,r,t and elevations H+f,r,t, of single caustics are used to estimate the half contact length ℓ, the values D –f,r,t, and H–f,r,t (Fig. 
7) can be similarly used to obtain ℓ in the case of double caustics. In this context, the explicit expressions for both ℓ+D,f,r,t 
(Eq.(20)) and ℓ–D,f,r,t (Eq.(25)) are here given for the first time, i.e., the half contact length as obtained from the caustic 
curves’ spans D+f,r,t, in the case of either single or double caustics, and D –f,r,t, in the case of only double caustics, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Experimental caustics for obtaining the contact length: Front and rear single reflected caustics for (a1) Pframe=1 kN, (b1) 
Pframe=2.5 kN and (c1) Pframe=3 kN; Transmitted double caustics for (a2) Pframe=1 kN, (b2) Pframe=2.5 kN and (c2) Pframe=3 kN    
 
In addition, two ways for specifying the Xf,t -axes on experimental caustics’ photos are given, in the case of single and 
double curves, necessary for applying the existing linear formula [26] for obtaining ℓH,f,r,t, i.e., the half contact length ℓ 
through the respective elevations. 
To assess the formulae obtained for the general (double) caustics, an experimental protocol concerning transparent thin 
circular discs made of PMMA, squeezed in the ISRM’s apparatus for the standardized implementation of the Brazilian-
disc test, was carried out. Though it is obvious that the experiments conducted here could not cover the full range of the 
experimental investigation required for describing the whole subject and revealing all the features regarding the formation 
and exploitation of double caustics in praxis, at least they showed, at a very first stage, the efficiency of the method and 
the general formulae.   
It is to be mentioned, however, that caustics apart from being a highly sensitive and accurate method concerning the 
results drawn, it is also very sensitive regarding the preparation and implementation of the experiment, and should be used 
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with caution. For example, the photos of caustics in Figs. 9(c1) and 9(c2), though they seem more representative and 
perhaps more adequate than those of Figs. 9(b1) and 9(b2), are actually refer to the case the material has enter plasticity, in 
the contact region, so that any measurements should not be so simply used in obtaining the contact length (this is readily 
verified by unloading and reloading the specimen whence it is seen that the new contact caustics are by no means of an 
elastic nature). 
Finally, it should be noticed that the general formulae including double and single caustics obviously refer also to opaque 
materials as particular cases of the transparent ones, provided their faces are properly polished. The latter could be of 
crucial importance, especially for specimens made of marble [50] and natural building stones [51], the mechanical response 
of which is usually studied using the Brazilian-disc test (due to insuperable difficulties encountered in the implementation 
of direct uniaxial tension tests, caused due to the unique nature of such materials [52-56]) employing either traditional or 
innovative experimental techniques [57-60].    
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