札幌医学雑誌 $86(1-6)104 \sim 105(2017)$

研究論文紹介

Prolyl isomerase Pin1 promotes survival in *EGFR*-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype

Lab Invest. 2016 Apr; 96(4): 391-398. doi: 10.1038/labinvest.2015.155

<u>Sakuma Y</u>, Nishikiori H, Hirai S, Yamaguchi M, Yamada G, Watanabe A, Hasegawa T, Kojima T, Niki T, Takahashi H.

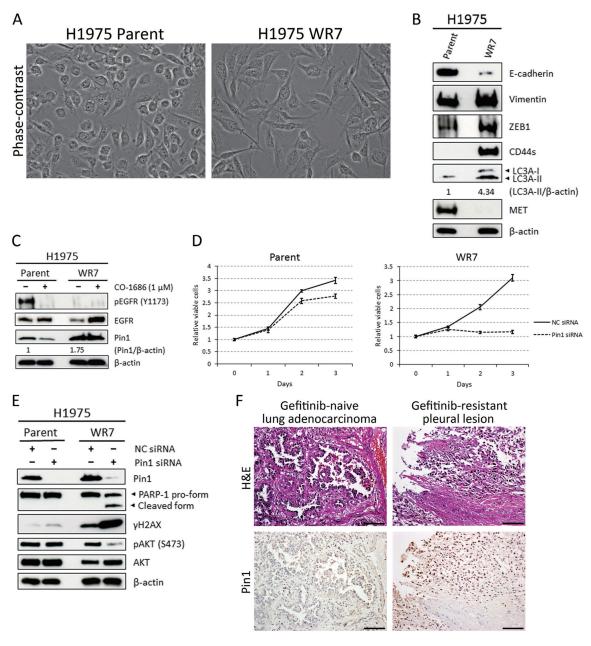
要旨 *EGFR* mutant 肺腺癌には逆説的ながら EGFR への依存性が低い癌細胞が含まれている. 本研究では, "EGFR 非依存性" *EGFR* mutant 肺腺癌には異性化酵素 Pin1 に強く依存するものが存在することを示した.

1. 研究の背景

日本人に生じる肺腺癌の約半数にepidermal growth factor receptor (EGFR) をコードする EGFR 遺伝子に機能獲得性変異が認められる. EGFR 変異 陽性 (EGFR mutant) 肺腺癌細胞は, 構成的に活性 化した EGFR 依存性に生存・増殖しており, EGFR mutant 肺腺癌の 70-80% は, EGFR tyrosine kinase inhibitors (TKIs) 治療に一旦は反応する. しかし当 初,第一世代あるいは第二世代 EGFR TKI 治療に高 感受性を示した腫瘍も一年前後でほぼ全例が薬剤抵抗 性を獲得する. その獲得耐性の最大の原因は第二の EGFR 変異 T790M であり、変異が一つの際は変異型 EGFR のキナーゼ活性を抑制できた第一(第二)世 代 TKI も 2 個目の変異 T790M が加わり、構造が変 化した変異型 EGFR のキナーゼ活性は抑制できない. しかし第二の変異 T790M を有する変異型 EGFR で さえも抑制可能な第三世代EGFR TKIの一つ osimertinib が近年,臨床で使用され始めた.では, 第三世代 TKI は EGFR mutant 肺腺癌を単剤で完治 させうるのか?残念ながら答えは"否"である. EGFR mutant 肺腺癌は EGFR への依存性が低い組 織型に表現型を変化させうるからである. EGFR 変異陽性でありながら"EGFR 非依存性"となりうる 機構としてepithelial to mesenchymal transition (EMT) が知られている. 本研究は, 第三世代 EGFR TKI耐性の新たな分子機構を解明することを目的と した.

2. 第三世代 EGFR TKI 耐性細胞の樹立

EGFR mutant 肺腺癌細胞株 H1975 には EGFR 遺伝子に L858R + T790M の変異が存在している。第三世代 EGFR TKI の一つ WZ4002 で治療された H1975 細胞 は数週間で早くも耐性を獲得する。WZ4002 resistant (WR) となった細胞をcloningし観察すると、WR7 細胞はその親株と比較してより長い突起を伸ばしていた (A). Western blot での上皮マーカー,間葉マーカーの発現パターンは、WR7 細胞が EMT を起こしていることを示している (B). 同時に WR7 細


胞では親株と比較して約4倍, autophagy マーカーLC3A-II が発現していた (B). WR7 細胞における autophagy の活性化は、以前に解析した別の EGFR mutant 肺腺癌細胞 HCC827 や HCC4006 から樹立された TKI 耐性細胞でも認められていたことから、普遍性をもった現象と想定される。H1975 WR7 細胞は別の第三世代 TKI である CO-1686 存在下でも増殖可能であったが(data not shown)、興味深いことに TKI 非存在下でも EGFR の自己リン酸化は確認できず、WR7 細胞では EGFR signal が殆ど流れていないと考えられた(C). 以上の実験結果から、H1975 WR7 細胞は EGFR への依存性が低く、それを代償するようにautophagyが活発に生じていると考えられた.

3. EGFR TKI 耐性に関与する新規の分子 Pin1

Pin1 は異性化酵素でありリン酸化された serine/ threonine kinase の立体構造を cis 体あるいは trans 体に変換する働きを持つ. 蛋白の立体構造はその機能 と密に関連することから、Pin1 は細胞内に数多く存 在する serine/threonine kinase の機能を調節してい ると考えられる. 先行する研究では、Pin1 は非腫瘍 性幹細胞や癌幹細胞の生存を促進するとされる. 今回, 我々が検索したところ Pin1 は親株よりも僅かながら 有意に多くWR7細胞で発現していることをRNA (data not shown), 蛋白レベルで確認した (C). ま た免疫蛍光染色を行うと、Pin1 は主として核に局在 していた (data not shown). 次いで Pin1 を siRNA 導入により抑制すると、親株には顕著な変化を認めな いものの、WR7細胞では増殖が顕著に抑制され(D), かつ apoptosis が生じた (E). Pin1 knockdown が親 株には殆ど影響を与えない一方、WR7細胞に apoptosis をもたらす詳細機序は不明ながら、WR7 細胞のみで AKT のリン酸化が抑制されていたことか ら(E), これが原因の一つと推定された.

4. EGFR TKI 耐性を獲得した肺腺癌組織における Pin1 発現解析

本学附属病院で治療された EGFR mutant 肺腺癌

- A) WR7 細胞は親株よりも長い突起を有する.
- B) WR7 細胞では、上皮マーカーの発現が減少し、間葉系マーカーと autophagy マーカーの発現上昇がみられる.
- C) WR7 細胞では、TKI 非存在下でも EGFR の自己リン酸化が検出できず、Pin1 の発現量が親株より多い。
- D) Pin1 の発現を抑制すると WR7 細胞では顕著に増殖が抑制される.
- E) Pin1 の発現が抑制された WR7 細胞では AKT が脱リン酸化し、apoptosis に陥っている.
- F) TKI 治療前の原発性肺腺癌は Pin1 陰性であるが、耐性獲得後の胸膜播種巣は EMT を起こし、Pin1 も発現している.

患者お一人のTKI治療前後の癌組織を解析したところ、治療前の原発性肺腺癌組織ではPin1は陰性であったが、耐性獲得後の胸膜播種巣ではPin1が核に発現していた(F).一例ながら、臨床検体でのPin1発現パターンは、H1975細胞を使用したin vitroの実験結果を裏付けるものであり、Pin1がEGFRTKI耐性に関与しうる新規の分子であることが示唆された.

5. 参考文献

 Sakuma Y, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Invest 2013; 93: 1137–1146. 2. Wei S, *et al.* Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med 2015; 21: 457–466.

佐久間 裕司

略歴

平成 10 年: 札幌医科大学医学部 卒業 平成 10 年: 札幌医科大学附属病院病理部

平成 13 年:自治医科大学病理学講座・附属病院病理診断部 平成 17 年:神奈川県立がんセンター臨床研究所・がん分子病態研究部門 平成 25 年:自治医科大学医学部病理学講座統合病理学部門 平成 26 年:札幌医科大学医学部附属フロンティア医学研究所・分子医学部門