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Abstract

In many animal species including humans, numerous processes exhibit 24-hour (h) 
rhythms. The circadian clock regulates daily rhythms of behavior and physiology 
such as the sleep-wake cycle (activity /rest), autonomic nervous function, and 
neuroendocrine function. The mammalian master clock located in the supra-
chiasmatic nuclei (SCN) of the hypothalamus incorporates environmental infor-
mation and orchestrates peripheral clocks in other tissues and organs. Various 
characteristics of daily rhythms undergo age-dependent changes with respect to 
amplitude, entrained phase, free-running period (  ), and reentrainability. The 
mechanisms underlying aging of the circadian clock have not been fully understood. 
This review discusses current findings on age-related changes in daily rhythms of 
behavior and physiology.
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Age-related 

dian rhythm

changes in amplitude of circa-

 In rodent models, age-related declines in the 
amplitude of circadian rhythms have been 
found for a diverse range of physiological 
functions including the activity-rest cycle, 
body temperature rhythm, melatonin regula-
tion and sex hormone secretion. Among these, 
reduction in the amplitude of activity-rest 
rhythm is most remarkable. It is distinctly 
characterized by multiple phases and frag-
mentation of sleep-wake patterns, which may 
take the period of rest (sleep) during the active 

phase and activity (wake) during the rest 
phase (Davis and Viswanathan 1998, Labyak 
et al. 1998, Penev et al. 1997b, Scarbrough et 
al. 1997, Valentinuzzi et al. 1997, Wax 1975, 
Welsh et al. 1986). In humans, aging is ac-
companied by flattening of sleep-wake pat-
terns, characterized by a reduction of slow-
wave sleep (SWS), increased light sleep and 
increased napping during the day (Bliwise 
1994, Copinschi and Van 1995). In the 7/13 
sleep-wake paradigm, which involves ultra-

short cycles of  7-min sleep and  13-min wake, 
diurnal changes in sleep propensity within the 
day among elderly subjects has been found to 

decline (Haimov and Lavie 1997). This is 
accompanied by a reduction in the amplitude 
of physiological rhythms such as the neuro-
endocrine secretion of melatonin, gluco-
corticoid and thyroid stimulating hormone 

(which participate in the induction and main-
tenance of the sleep-wake cycle) and body 
temperature regulation (Campbell et al. 1989, 
Czeisler et al. 1992, Moe et al. 1991, van 

Coevorden et al.  1991). On the other hand, for 
elderly subjects who have undergone a strin-

gent health screening, it has been reported 
that the amplitude of circadian rhythm for 
their core body temperature (cBT) and mel-
atonin secretion was the same as that of young 

subjects in the control group under conditions 
where masking effects were strictly controlled 

(Monk et al. 1995, Zeitzer et al. 1999). This 
suggests that individual variability exists in 

amplitude of circadian rhythm of the elderly 
and its age-related changes, which may arise 
from genetic or environmental factors.
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Age-related changes in circadian phases and

entrainability

 As aging proceeds, entrained phases of acti-
vity-rest (sleep-wake) cycle for environmental 
light-dark conditions advance. In hamsters, 
the aged group begins activity during the dark 

period earlier than does the young control 
group. When the phase of the light-dark cycle 
is delayed, reentrainment speed for the acti-
vity-rest cycle and the sleep-wake cycle is 
slower in the aged group than in the young 
control group (Rosenberg et al. 1979, Zee et al. 
1992). When the phase of the dark-light cycle 
is advanced, however, reentraiment speed is
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faster in the aged group. It is speculated that 
this results from a shortening of the free-run-
ning period ( ) due to aging in hamsters. In 
contrast, in mice whose   becomes longer with 
age, a phase advance produces delayed 
reentrainment in the aged group (Valentinuzzi 
et al. 1997). In humans, aging causes the 
advanced timing of sleep-wake (Bliwise et al. 
1990, Carskadon et al. 1982, Cohen et al. 1983, 
Drennan et al. 1991, Monk et al. 1995). There 
is a strong tendency among elderly people 
toward morning-type preference. Individual's 
wakefulness level begins to drop early 
evening, and bedtime, sleep onset and wake 
time all become earlier (Figure 1). Women
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Diurnal preferences, sleep-wake timing and aging. 
(Upper panel) Left: Age-related changes  (n=1,814; mean  age= 39.2  ±16.9 
(SD)) in Horne-Ostberg morningness-eveningness questionnaire score 
(diurnal preferences, morning-type/evening-type index). Scores become 
higher with age, which indicates an increasing tendency toward the 
morning type  (F(1,1813)=941.1;  df  =1;  p<  0.001;  r  =0.585). Right: In the 
scores distribution, the mean score is  53.5±10.2 (SD). (Lower panel) 
Average bedtime and wake time of different age groups, with actual time 
points as values on the x-axis. White area indicates latency to sleep 
onset, and gray area indicates the period between sleep onset and wake 
time. Subjects were the same as those in the previous figure. Although 
sleep timing shows phase advance as aging proceeds, bedtime becomes 
earlier from age 60, which greatly increases the amount of time spent in 
bed. (Source of data: the author)
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have been found to show a stronger tendency 

in such behavior than do men (Campbell et al. 
1989, Reyner et al. 1995). In addition, 
tolerance for shift work and jet lag is reduced 
in elderly people (Gander et al. 1993, Harma et 

al. 1994, Hildebrandt and Stratmann 1979, 
Suvanto et al. 1990). The aberrant phase 
relationship between sleep timing and the 
circadian clock have been implicated as a 

physiological basis for decline in an individ-
ual's ability to maintain sleep (as manifested 
by sleep disruption and early waking). In this 
hypothesis, phases of the circadian clock are 
advanced with aging, which causes earlier 
circadian phases of the various physiological 

functions for sleep maintenance (or  wake-
fulness maintenance) with respect to sleep 
timing, and internal desynchronization. Con-
sequently, sleep disruption occurs easily 

toward the latter half of sleep due to a reduced 
urge for sleep and an increased urge for 
awakening.  Sleep efficiency has been thought 
to become low when the phase of cBT rhythm 
is artificially shifted forward with respect to 

the sleep-wake cycle by light exposure in the 
morning as observed in the elderly (Campbell 
and Dawson 1992).  However, several recent 
studies have provided counterevidence 
against this assumption.  These studies show 

that the phase advance of daily rhythm of cBT 
and melatonin secretion is the same as that of 
the sleep-wake cycle under conditions where 
masking effects such as sleep were minimized. 
It appears that there is no age-related 

alterttion in phase angle difference between 
circadian clock and sleep timing (Figure 2) 

(Duffy et al. 2002, Tozawa et al. 2003).

Age-related changes of  free-running period ( )

 In hamsters and rats,   of behavioral rhythm 

(Davis and Menaker 1980, Morin 1988, Morin 
1993, Penev et al. 1997a, Pittendrigh and Daan 
1974, Rosenberg et al. 1991, Viswanathan and 
Davis 1995, Zee et al. 1992) and the sleep-wake 
cycle (Van Gool et al. 1987) become shorter 

with age, whereas in mice    of activity rhythm 
becomes longer with age (Possidente et al. 
1995, Valentinuzzi et al. 1997). However, 
when age-related changes are evaluated 
throughout the entire life span in hamsters, 
some studies have reported that   does not 

change with age (Davis and Viswanathan 
1998).  In humans, age-related    changes also 
remain controversial.  Some groups have

Figure 2 Sleep timing relative to circadian clock phases 
and its age-related changes (adapted from the 
literature (Tozawa et al. 2003) with modifica-
tions). 
(Upper panel) 24—h variations of blood 
melatonin concentration and average sleep 
phases of young and elderly groups are 
shown side by side.  Values on the x-axis 
indicate actual time points (Lower panel). 
The mid-point of melatonin secretion (the 
median value between the rising point  (      ) 
and the falling point  (    ) of secretion under 
low-intensity light), using    as the reference 
point.  In the elderly group, melatonin secre-
tion phases (which serve as markers for circa-
dian clock phases) are advanced.  Sleep phases 
show an identical degree of advance, giving 
no age-related phase differences between the 
two rhythms.

shown that     shortens as a result of aging 

(Monk and Moline 1989, Weitzman et al. 1982), 
while others have denied that (Czeisler et al. 

1999,  Wever 1979). Based on assessment by 
the forced desynchrony protocol,    is 24.18 h 
for both young and elderly subjects, which is 
very close to the 24 h daily cycle and does not 

suggest any significant age-related changes 

(Czeisler et al. 1999).  In other words, even if 
shortening of    occurs with age, the extent to 
which it shortens is likely to be very small.  In 
that particular study, the amount of apparent 

changes was not significant enough to account 
for the forward phase shift in entrained cycles 
as found in the elderly subjects. In addition, it 
has been suggested that in elderly subjects, 
the phase advance of circadian clock in 
response to high-intensity light is weakened
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 (Klerman et al. 2001). At present, there is 
limited evidence in regard to   or light phase 
response to account for the advanced phase in 

sleep and circadian clock among the elderly.

Age-related

nucleus (SCN)
changes in suprachiasmatic

 It is known that the SCN undergoes age-
related changes in its functions. In rodents, 
several characteristics associated with the 

aging phenotype are known, namely, low 
amplitude of VIP mRNA transcription in the 
SCN in the aged group (Kawakami et al. 1997), 
reduced firing rate of neurons (Satinoff et al. 
1993, Watanabe et al. 1995), weakened phase 

response to light, and reduced induction of 
immediate early genes in the SCN after light 
exposure (Benloucif et al. 1997, Sutin et al. 
1993, Zhang et al. 1996). Results from his-

tological studies have not been consistent. It 
has been reported that there is a reduction in 
the cell count of vasopressin- and vasoactive 
intestinal peptide (VIP)-producing cells (Chee 
et al. 1988, Roozendaal et al. 1987), although 

the total cell number in the SCN remains 
unchanged in aged rats (Peng et al. 1980, 
Roozendaal et al. 1987). On the other hand, 
according to recent studies using a stereotaxic 
approach, in the SCN of 1- to 30-month-old 

Wistar rats, no changes were found in the total 
cell number of neurons and astrocytes or in 
their morphology (Madeira et al. 1995). One 
study on age-related cellular changes in the 
human SCN reported that in an elderly group 

aged over 80, the total cell number and 
vasopressin-producing cell count were re-
duced (Hofman et al. 1988, Swaab et al. 1985). 
This, however, rather suggests that in age 

groups up to 70 years old, no morphological 
changes occur in the SCN, which is consistent 
with various sources of evidence that no 
significant age-related changes can be found 
in   or amplitude of circadian rhythm among 

the elderly.

Age-related changes in sleep structure

 A meta-analysis of previous studies on age-

related changes in sleep structure has been 
conducted (Figure 3) (Benca et al. 1992, 
Ohayon et al. 2004). Apart from the insights 
noted above, it is also found that    wave 

amplitude during  SWS is low, the frequency of 
waking during sleep increases, the number of
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Age-related changes in sleep structure (adapted 
from the literature (Ohayon et al. 2004) with 
modifications). 

(Upper panel) Sleep latency; WASO (wake 
after sleep onset); total wake time; REM (rapid 
eye movement sleep);  SWS (slow wave sleep); 
stage I and stage II are light sleep stages. 
(Lower panel) Age-related changes in sleep 
efficiency (%). The plots show the data from 
different studies.

short waking responses as evidenced on 

electroencephalography (EEG) increases, and 
reinitiation of sleep after midnight waking 
becomes difficult. Sleep initiation mecha-
nisms in the elderly are preferentially im-

paired compared to sleep maintenance mecha-
nisms. It is well accepted in the sleep research 
that rapid eye movement (REM) sleep latency 
becomes shortened in aging. In healthy adults, 
REM sleep occurs with a cycle of 90 minutes 
following initial sleep phases after sleep onset. 

Toward the latter half of sleep, REM sleep time 

gradually lengthens per cycle. It is also known 
that in elderly people, REM sleep sustainabil-
ity is reduced during the latter half of sleep, 

which is accompanied by an invasion of REM 
sleep (phase advance of REM sleep) into the 
initial phases of sleep. Consequently, REM 
sleep becomes more scattered as a component 
of the total sleep time. Additionally, elderly 

people display reduced wakefulness level from 
the early hours of the evening, while there is a 

phase advance in sleep-wake timing in terms
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of their bedtime, sleep onset, 

(Bliwise et al. 1990, Carskadon 
Cohen et al. 1983).
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