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1 Introduction

In HI-AWARE, both statistical and dynamical downscaling techniques will be used to downscale and bias correct 
climate model data to higher spatial resolutions. For both approaches, General Circulation Models (GCMs) and 
Regional Climate Models (RCMs) must be selected to either be statistically downscaled or used as boundary and 
forcing for dynamical downscaling. This report discusses the statistical downscaling component. 

There are two fundamentally different methods for selecting appropriate GCMs/RCMs. The first approach aims 
to cover the full envelope of possible futures ranging from dry and cold projections to wet and warm projections, 
while the second approach selects GCMs/RCMs on the basis of indicators of past performance. Both approaches 
have their pros and cons, but in the case of the Hindu Kush Himalayas (HKH) the first approach may be preferable 
as climate models have considerable difficulty in simulating past climate (Turner and Annamalai 2012). In this 
study, we develop a new method that combines the two existing methods. We aim to select a set of climate models 
that both cover a wide range of possible futures, but are also able to reproduce the most important processes in 
the region.

GCMs are used to simulate global climate, and they operate at spatial resolutions ranging from ~100 km to 
~250 km. RCMs can be used to simulate regional climate at a typical resolution of ~50 km. The performance 
of GCMs and RCMs over the HKH region has been assessed by different studies. Mishra (2015) showed that in 
the CORDEX framework all RCM ensemble members have difficulties reproducing observed climatic trends in the 
Indus, Ganges, and Brahmaputra basins, and that the GCMs, which provide the boundary conditions for the RCMs, 
in general simulate winter climate in the region better than the CORDEX RCMs. From their analysis of 32 CMIP5 
GCMs in the region, Palazzi et al. (2013) concluded that there is no particular model that is ‘best’ in simulating 
the climate in the HKH region. From their pool of models, only three were able to satisfactorily simulate the annual 
cycle of precipitation in the region. However, even these three models had difficulties reproducing observed trends 
in precipitation. The authors conclude that since no single model can be chosen as best performing, it is important 
to use results from the whole range of models in climate change impact assessments.

For this study, an extension of the envelope approach is used and the selected models will span the entire range of 
possible futures, e.g., dry-cold, dry-warm, wet-cold, and wet-warm. In total, four GCMs and one CORDEX RCM for 
both RCPs will be selected, e.g., 5 x 2 = 10 climate model realizations. Selections are based on average annual 
response, changes in extreme behaviour in temperature of precipitation, and validation of model performance to a 
climatic reference dataset. These models will be used during the whole project.
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2 Selection of RCPs

In the climate modelling community, four representative concentration pathways (RCPs) are used as a basis for 
long-term and near-term climate modelling experiments (van Vuuren et al. 2011b). The four RCPs together span 
the range of radiative forcing values for the year 2100 as found in literature, from 2.6 to 8.5 W/m2 (Table 1, 
Figure 1). Climate modellers use the time series of future radiative forcing from the four RCPs for climate modelling 
experiments and to produce climate scenarios. The development of the RCPs has allowed climate modellers to 
proceed with experiments in parallel to the development of emissions and socioeconomic scenarios (Moss et al. 
2010). The four selected RCPs were considered to be representative of the literature, and included one mitigation 
scenario (RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6) and one very high baseline emissions 
scenario (RCP8.5) (van Vuuren et al. 2011a).

Since the four RCPs are considered to be representative of radiative forcing that can be expected by 2100 
according to the literature, each of them should theoretically be considered with equal probability to be included in 
climate change impact studies. However, in climate change impact studies there is usually a tradeoff in how many 
RCPs and climate models can be included within the available time and resources, while still being able to produce 
robust and reliable results.

RCP2.6 is representative of the literature on mitigation scenarios aiming to limit the increase of global mean 
temperature to 2°C, thus forming the low end of the scenario literature in terms of emissions and radiative forcing 
(van Vuuren et al. 2011a). Often these scenarios show negative emissions from energy use in the second half of the 
21st century. The scenario is shown to be technically feasible, but one of the key assumptions is the full participation 
of all countries in the world in the short run, including broadening participation beyond OECD (Organisation 
for Economic Co-operation and Development) countries and commitment of important OECD countries like the 
USA (van Vuuren et al. 2010). However, outcomes of recent climate summits at the highest level and the annual 
Conferences of Parties to the United Nations Framework Convention on Climate Change (UNFCCC) don’t point 
in that direction. In HI-AWARE, robust, realistic climate change scenarios need to be developed to facilitate the 
planning of adaptation measures. Therefore we choose not to include RCP2.6 as one of the RCPs used as basis for 
the HI-AWARE climate model ensemble. This leaves the choice to two medium stabilization scenarios (RCP4.5 and 
RCP6) and one very high baseline emission scenario (RCP8.5). The best choice in that case is to include RCP4.5 
and RCP8.5, thus including one medium stabilization scenario and the high emissions scenario, and covering the 
entire range of radiative forcing resulting from RCP4.6, RCP6, and RCP8.5. The climate model archives (CMIP5 and 
CORDEX ) are used to select a number of GCMs and RCMs for these two different RCPs.

 Table 1: Description of four representative  
 concentration pathways (RCPs)

RCP Description

RCP8.5
Rising radiative forcing pathway leading to 8.5 W/m2  
(~1,370 ppm CO2 eq) by 2100

RCP6
Stabilization without overshoot pathway to 6 W/m2  
(~850 ppm CO2 eq) at stabilization after 2100

RCP4.5
Stabilization without overshoot pathway to 4.5 W/m2  
(~650 ppm CO2 eq) at stabilization after 2100

RCP2.6
Peak in radiative forcing at ~3 W/m2 (~490 ppm CO2 eq) 
before 2100 and then decline (the selected pathway declines 
to 2.6 W/m2 by 2100)

Figure 1: Representative concentration pathways (RCPs)  
Blue: RCP8.5; black: RCP6; red: RCP4.5; green: RCP2.6
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3 Spatial and Temporal Domains

3.1 Spatial domain

 

3.2 Statistical downscaled dataset

The spatial resolutions in the tables below are tentative and open for discussion. We proposed having a transient 
time series as the temporal domain. Alternatively, two future time slices (both spanning 30 years) could be defined. 
For example, the periods could be for the near future (2031–2060) and far future (2071–2100). The decision 
between transient time series or time slices will have practical implications for the model runs. Transient runs are 
easier to do, but require a longer series of data, thus more computation time and storage space. There is also a 
tradeoff between the length of the time series and the spatial resolution that can be adopted.

Figure 2: HI-AWARE spatial domain

Table 2: Temporal domain and resolution and spatial resolution and projection for upstream basins

Period Temporal resolution Spatial resolution Projection

Historical baseline 1981–2010 Daily 5 x 5 km WGS 84/UTM zone 45N

Future 2011–2100 Daily 5 x 5 km WGS 84/UTM zone 45N

Table 3: Temporal domain and resolution and spatial resolution and projection for downstream basins

Period Temporal resolution Spatial resolution Projection

Historical baseline 1981–2010 Daily 10 x 10 km WGS 84/UTM zone 45N

Future 2011–2100 Daily 10 x 10 km WGS 84/UTM zone 45N
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4 Selection of Climate Models

4.1 Advanced envelope based selection approach

For each RCP, multiple modelling experiment outcomes are available. The outcomes of the General Circulation 
Models (GCMs) that were used for the IPCC’s Fifth Assessment Report are bundled in the fifth phase of the 
Climate Model Intercomparison Project (CMIP5) (Taylor et al. 2012). The envelope approach for selecting climate 
models considers each models’ projected average change of a climatic variable over the grid cells that cover a 
study domain (Figure 3). When considering multiple climatic variables, like mean air temperature and annual 
precipitation sum, an envelope can be drawn around all possible projections for mean air temperature and 
precipitation change. From the model ensemble, the 10th and 90th percentile values of the temperature projections 
and the 10th and 90th percentile values of the precipitation projections can be marked, and the climate models 
closest to these values are selected to be included in the model ensemble that is used for the climate change impact 
study (see the illustrative example in Figure 3). This ensures that the entire range of possible future climates in terms 
of temperature and precipitation change is included, while the furthest outliers, which might be unrealistic, are 
excluded. For the selection of GCMs for downscaling, a three-step selection procedure is used:

1. Initial selection based on average annual changes in mean temperature and precipitation sum

2. Refined selection based on changes in extremes of precipitation and temperature

3. Final selection based on validation of GCM performance to climatic reference product

Steps 2 and 3 go beyond the envelope method as it is usually used, and adds a past performance check to ensure 
the best possible selection.

The three steps are further illustrated in the following sections.
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Figure 3: Left: CMIP5 grid cells covering the Indus, Ganges, and Brahmaputra basins.  
Right: Illustrative (fictive) example showing ensemble of GCMs with projected average changes  

in temperature and precipitation and the model ensemble’s 10th and 90th percentile values
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4.2 Initial selection: Selection based on average annual change in means

Figure 3 (left) shows the grid cells included in the HI-AWARE domain for which the GCM projections are analysed. 
This domain covers the entire Indus, Ganges, and Brahmaputra river basins. Figure 4 shows the projected changes 
in temperature and precipitation averaged over the HI-AWARE domain between 1971–2000 and 2071–2100. 
RCP4.5 has 94 ensemble members, whereas RCP8.5 has 69 ensemble members. These are all model runs that 
were available in the CMIP5 archive on March 2013, and represent the state of the archive that was used for the 
preparation of IPCC Working Group 1 Assessment Report 5 Annex I “Atlas”. The figure shows that for RCP4.5 the 
temperature projections range from +1.7 to +3.6°C and precipitation projections range from –5.7 to +9.4%. For 
RCP8.5 the temperature projections range from +3.6 to +6.5°C and precipitation projections range from –8.5% 
to +37.4%.

Figure 4: Projections of temperature and precipitation change for all CMIP5 ensemble members in  
RCP4.5 and RCP8.5. Projections are averaged over the HI-AWARE domain (see Figure 3)
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An initial selection of climate models is made by selecting the five models clustered closest to the 10th and 90th 
percentile vertices of ΔT and ΔP, which have output available at a daily time step. A part of the model runs has 
output only available at a monthly time step. However, these are not suitable for further use in HI-AWARE, since the 
downscaling procedure that is used after model selection requires GCM output at a daily time step. The proximity 
of the GCMs to the vertices is calculated based on their percentile rank scores corresponding to their projections for 
ΔT and ΔP considering the entire range of projections in the complete ensemble: 

12

�������� = ������ � ����
� � ���� � ����

��

Where  is the distance of a model’s (j) percentile score for ΔT and ΔP (

12

�������� = ������ � ����
� � ���� � ����

��and 

12

�������� = ������ � ����
� � ���� � ����

�� respectively) to the corner’s 
(i) 10th and/or 90th percentile score of ΔT and ΔP for the entire ensemble (

12

�������� = ������ � ����
� � ���� � ����

��and 

12

�������� = ������ � ����
� � ���� � ����

�� respectively). For each corner 
the five models with the lowest D and data available at daily time step are selected from the ensemble.

In total around 40 models are selected (5 models x 4 vertices x 2 RCPs = 40 models). Figure 5 and Figure 6 
show the model ensembles of RCP4.5 and RCP8.5 respectively, and highlight the models close to the vertices that 
have output at a daily time step, which are chosen during the initial selection. Five models close to the 10th and 
90th percentile vertices (cold/dry, cold/wet, warm/dry, warm/wet) of temperature and precipitation projections are 
selected. The selected model runs are listed in Table 4, including their projected change in mean temperature and 
precipitation, averaged over the IGB basins between 1971–2000 and 2071–2100.
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Table 4: Models selected during initial selection  
based on changes in means

RCP Vertex Model ΔT ΔP

RC
P4

.5

W
ar

m
, d

ry

CMCC-CM_r1i1p1 3.3 4.2

CMCC-CMS_r1i1p1 3.5 -2.9

IPSL-CM5A-LR_r2i1p1 3.4 3.1

IPSL-CM5A-LR_r3i1p1 3.3 6.2

IPSL-CM5A-MR_r1i1p1 3.5 6.2

W
ar

m
, w

et

CanESM2_r1i1p1 3.4 17.0

CSIRO-Mk3-6-0_r3i1p1 3.4 13.3

CSIRO-Mk3-6-0_r4i1p1 3.5 15.6

CSIRO-Mk3-6-0_r5i1p1 3.5 14.8

CSIRO-Mk3-6-0_r6i1p1 3.5 13.5

C
ol

d,
 w

et

bcc-csm1-1_r1i1p1 2.2 14.5

BNU-ESM_r1i1p1 2.5 12.7

CCSM4_r2i1p1 2.0 9.7

CNRM-CM5_r1i1p1 2.3 11.9

IPSL-CM5B-LR_r1i1p1 2.1 12.9

C
ol

d,
 d

ry

bcc-csm1-1-m_r1i1p1 2.3 5.8

CCSM4_r6i1p1 2.2 4.5

CESM1-BGC_r1i1p1 2.1 6.1

GISS-E2-R_r6i1p1 2.2 4.1

inmcm4_r1i1p1 1.7 2.7

RC
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ry

CMCC-CMS_r1i1p1 6.3 -3.1

IPSL-CM5A-LR_r1i1p1 6.5 3.5

IPSL-CM5A-LR_r2i1p1 6.5 4.1

IPSL-CM5A-LR_r3i1p1 6.4 6.9

IPSL-CM5A-LR_r4i1p1 6.4 3.6

W
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et

CanESM2_r1i1p1 6.0 28.9

CanESM2_r2i1p1 6.1 36.9

CanESM2_r3i1p1 6.1 37.4

CanESM2_r4i1p1 6.0 29.4

CanESM2_r5i1p1 6.0 37.0

C
ol

d,
 w

et

bcc-csm1-1_r1i1p1 4.4 29.7

CNRM-CM5_r1i1p1 3.9 17.4

IPSL-CM5B-LR_r1i1p1 4.2 23.4

MIROC5_r1i1p1 4.3 17.7

MRI-CGCM3_r1i1p1 4.4 22.1

C
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d,
 d

ry

CCSM4_r1i1p1 4.3 11.0

CCSM4_r6i1p1 4.2 11.4

EC-EARTH_r2i1p1 4.4 6.8

EC-EARTH_r9i1p1 4.3 7.4

inmcm4_r1i1p1 3.6 5.4

Figure 6: Projected changes in temperature and  
precipitation between 1971–2000 and 2071–2100  

for RCP8.5 ensemble members (Models  
selected during the initial selection are highlighted)
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4.3 Refined selection: Selection based on changes in extremes

From the pool of models selected during the initial selection, a refined selection is made. The refined selection 
is based on changes in other climate indices indicating changes in climatic extremes. For the refinement of the 
selection we are most interested in extremes in temperature and precipitation. Sillmann et al. (2013a) developed 
a database with analysis of extreme climate indices of CMIP5 GCM runs. They also evaluated the ability of 
CMIP5 models to simulate climate extremes in the present climate. The researchers concluded that the CMIP5 
models are generally able to simulate climate extremes and their trend patterns at the global scale. They show 
that the representation of precipitation extremes is closer to reality in the CMIP5 ensemble compared to the 
CMIP3 ensemble. However, the authors expect that the climate models tend to under-simulate the magnitude 
of precipitation extremes as represented in the climatic reference dataset they used. To quantify the changes in 
extremes in CMIP5 models, 
we include two climatic 
indicators for changes in 
precipitation extremes and 
two indicators for changes 
in temperature extremes in 
our analysis (Table 5).

For precipitation we include 
an index for extreme high 
precipitation (precipitation due to extremely wet days), and an index for droughts (maximum length of dry spells). 
For temperature we include an index for warm extreme events (warm spell duration index), and an index for cold 
extreme events (cold spell duration index).

Based on this selection, around two models per vertex will remain, thus in total around 16 models (2 models x 4 
vertices x 2 RCPs = 16 models). As not all GCM runs available for the analysis of changes in means have been 
included in the database of Sillmann et al. (2013a, 2013b), the indices were calculated separately for those models 
using the R package that was developed to generate the database of CMIP5 extremes and following the same 
procedure as described in Sillmann et al. (2013a). 

The changes in mean precipitation are for most models closely related to the changes in precipitation sum (Figure 7 
and Figure 8). It is clear that in general the models with larger projected increases in total precipitation also project 
larger increase in R99pTOT and larger decrease in CDD. However, the correlation is certainly not 1:1. For example, 
for both RCPs the wettest model is also the model with largest increase in precipitation due to very high precipitation 
events, but does not have the strongest decrease in consecutive dry days. Similarly, the model with the lowest 
increase in precipitation due to extremely wet days is not the driest model. 

A clear relationship can be seen between projected changes in mean air temperature and the changes in the 
indices for temperature extremes (Figure 9 and Figure 10). Model runs projecting large increases in mean air 
temperature in general also project the largest increase in warm spell duration and largest decrease in cold spell 
duration. However, for both RCPs the variation in changes in the warm spell duration index is large between the 
models projecting the largest changes in mean air temperature. Note that all model runs project strong increases 
in warm spells and strong decreases in cold spells. The figures in the Appendix list the projected changes in climatic 
extremes indicators for all ensemble members included in the database by 
Sillmann et al. (2013a).

The selection of models resulting from the initial selection based on changes 
in mean (section 4.2, Table 4) is further refined based on available data on 
extremes. The models are selected based on the climate indices that are most 
appropriate for the corner of the ensemble in which the models are located 
(Table 6). For example for the warm and dry projection, the ETCCDI index for 
extremes in heat (WSDI: warm spell duration index) and the ETCCDI index for 
extreme droughts (CDD: consecutive dry days) are leading. 

Table 6: ETCCDI indices leading the 
selection based on extremes

Projection ETCCDI indices 
leading selection

Warm, dry WSDI, CDD 

Warm, wet WSDI, R99pTOT

Cold, wet CSDI, R99pTOT

Cold, dry CSDI, CDD

Table 5: Indices for climate extremes (ETCCDI indices) used as selection criteria

Variable ETCCDI index Description

P R99pTOT precipitation due to extremely wet days (> 99th percentile)

P CDD consecutive dry days: maximum length of dry spell (P < 1 mm)

T WSDI warm spell duration index: count of days in a span of at least six days 
where TX > 90th percentile (TXij is the daily Tmax on day i in period j)

T CSDI cold spell duration index: count of days in a span of at least six days 
where TN > 10th percentile (TNij is the daily Tmin on day i in period j
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Figure 9: Changes in mean temperature and changes in temperature extremes  
indicators for CMIP5 RCP4.5 models
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Figure 10: Changes in mean temperature and changes in temperature extremes  
indicators for CMIP5 RCP8.5 models
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For both indices, the models are assigned scores descending from 5 to 1 according to their ranking for that index. 
For example, for the CMCC-CM_r1i1p1 model in the warm, dry corner for RCP4.5, the rank for ΔWSDI is 2nd, 
resulting in a score of 4 and the rank ΔCDD is 2nd, resulting in a score of 4 as well. The scores for the ETCCDI 
index related to temperature and the ETCCDI index related to precipitation are averaged to obtain a combined 
score. The two models with the highest combined scores are selected.

Figure 11 and Figure 12 show the results of the scoring and the final selection for RCP4.5 model runs and RCP8.5 
model runs, respectively. For both RCPs the initial selection of 20 model runs is reduced to eight model runs after 
the refined selection.

RCP Projection model ΔR99P (%) ΔCDD (%) ΔWSDI (%)ΔCSDI (%) ΔT (°C) ΔP (%) T index
rank

P index
rank

Combined
score

CMCC-CM_r1i1p1 98.3 10.5 1162.5 -97.1 3.3 4.2 4 4 4.0

CMCC-CMS_r1i1p1 56.9 14.3 938.2 -98.4 3.5 -2.9 2 5 3.5

IPSL-CM5A-LR_r2i1p1 72.2 4.8 886.1 -96.3 3.4 3.1 1 3 2.0

IPSL-CM5A-LR_r3i1p1 72.9 3.8 961.0 -96.0 3.3 6.2 3 2 2.5

IPSL-CM5A-MR_r1i1p1 75.6 1.4 1472.0 -99.7 3.5 6.2 5 1 3.0

CanESM2_r1i1p1 107.0 -10.0 633.9 -96.7 3.4 17.0 1 4 2.5

CSIRO-Mk3-6-0_r3i1p1 57.8 -7.5 1600.8 -94.8 3.4 13.3 4 1 2.5

CSIRO-Mk3-6-0_r4i1p1 109.3 -9.6 1530.3 -95.4 3.5 15.6 2 5 3.5

CSIRO-Mk3-6-0_r5i1p1 87.7 -3.8 1634.4 -96.9 3.5 14.8 5 3 4.0

CSIRO-Mk3-6-0_r6i1p1 69.1 -7.8 1563.8 -96.5 3.5 13.5 3 2 2.5

bcc-csm1-1_r1i1p1 104.7 -5.6 490.2 -88.8 2.2 14.5 2 4 3.0

BNU-ESM_r1i1p1 140.3 -6.7 729.3 -85.9 2.5 12.7 3 5 4.0

CCSM4_r2i1p1 66.9 -2.9 531.9 -84.8 2.0 9.7 4 3 3.5

CNRM-CM5_r1i1p1 41.9 -0.7 454.2 -90.6 2.3 11.9 1 2 1.5

IPSL-CM5B-LR_r1i1p1 35.1 -11.8 424.3 -80.7 2.1 12.9 5 1 3.0

bcc-csm1-1-m_r1i1p1 46.1 -2.3 569.3 -87.4 2.3 5.8 2 1 1.5

CCSM4_r6i1p1 45.8 5.6 809.9 -88.2 2.2 4.5 1 5 3.0

CESM1-BGC_r1i1p1 57.9 4.3 696.0 -85.6 2.1 6.1 3 4 3.5

GISS-E2-R_r6i1p1 47.8 -2.2 764.7 -81.0 2.2 4.1 4 2 3.0

inmcm4_r1i1p1 10.5 2.9 347.5 -63.4 1.7 2.7 5 3 4.0

selected model

R
C

P
4.

5

Warm, dry

Warm, wet
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Cold, dry

Figure 11: Projected changes in climatic extremes indicators and mean temperature and precipitation  
for RCP4.5 model runs selected in section 4.2 (Model runs selected for checking  

a climatic reference dataset are highlighted orange)

RCP Projection model ΔR99P (%) ΔCDD (%) ΔWSDI (%) ΔCSDI (%) ΔT (°C) ΔP (%) T index
rank

P index
rank

Combined
score

RCP8.5 Warm, dry CMCC-CMS_r1i1p1 140.2 24.1 1855.1 -99.4 6.3 -3.1 5 5 5.0
RCP8.5 Warm, dry IPSL-CM5A-LR_r1i1p1 125.4 3.3 1627.4 -99.3 6.5 3.5 2 1 1.5
RCP8.5 Warm, dry IPSL-CM5A-LR_r2i1p1 145.7 9.3 1346.7 -99.7 6.5 4.1 1 3 2.0
RCP8.5 Warm, dry IPSL-CM5A-LR_r3i1p1 143.9 6.4 1679.0 -99.7 6.4 6.9 4 2 3.0
RCP8.5 Warm, dry IPSL-CM5A-LR_r4i1p1 140.8 13.7 1651.8 -99.5 6.4 3.6 3 4 3.5
RCP8.5 Warm, wet CanESM2_r1i1p1 219.0 -17.7 1378.5 -99.6 6.0 28.9 2 2 2.0
RCP8.5 Warm, wet CanESM2_r2i1p1 227.4 -15.2 1623.6 -99.8 6.1 36.9 5 3 4.0
RCP8.5 Warm, wet CanESM2_r3i1p1 295.5 -11.7 1426.1 -100.0 6.1 37.4 3 5 4.0
RCP8.5 Warm, wet CanESM2_r4i1p1 192.9 -12.6 1460.6 -100.0 6.0 29.4 4 1 2.5
RCP8.5 Warm, wet CanESM2_r5i1p1 261.7 -10.1 1242.2 -99.8 6.0 37.0 1 4 2.5
RCP8.5 Cold, wet bcc-csm1-1_r1i1p1 220.6 -9.6 1215.6 -97.1 4.4 29.7 5 5 5.0
RCP8.5 Cold, wet CNRM-CM5_r1i1p1 75.6 -3.4 884.7 -99.3 3.9 17.4 2 1 1.5
RCP8.5 Cold, wet IPSL-CM5B-LR_r1i1p1 88.4 -16.7 897.8 -97.1 4.2 23.4 4 2 3.0
RCP8.5 Cold, wet MIROC5_r1i1p1 145.3 -12.4 1337.8 -99.8 4.3 17.7 1 3 2.0
RCP8.5 Cold, wet MRI-CGCM3_r1i1p1 157.0 -12.6 1452.5 -97.4 4.4 22.1 3 4 3.5
RCP8.5 Cold, dry CCSM4_r1i1p1 112.5 7.9 1451.4 -99.7 4.3 11.0 1 4 2.5
RCP8.5 Cold, dry CCSM4_r6i1p1 102.8 5.0 1858.5 -98.3 4.2 11.4 4 1 2.5
RCP8.5 Cold, dry EC-EARTH_r2i1p1 161.6 9.2 1984.5 -99.3 4.4 6.8 2 5 3.5
RCP8.5 Cold, dry EC-EARTH_r9i1p1 175.7 5.5 1994.2 -98.9 4.3 7.4 3 2 2.5
RCP8.5 Cold, dry inmcm4_r1i1p1 30.3 5.6 905.6 -89.6 3.6 5.4 5 3 4.0

selected model

Figure 12: Projected changes in climatic extremes indicators and mean temperature and precipitation  
for RCP8.5 model runs selected in section 4.2 (Model runs selected for checking  

a climatic reference dataset are highlighted orange) 
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4.4 Final selection: Selection based on GCM validation to climatic reference

The models remaining after the refined selection are subjected to a validation to a climatic reference product. For 
this validation the WFDEI (Weedon et al. 2014) dataset is used. The selected models are compared to WFDEI 
for six domains (upstream Indus, upstream Ganges, upstream Brahmaputra, downstream Indus, downstream 
Ganges, downstream Brahmaputra). Criteria to assess each model’s ability to simulate the reference climate 
include comparisons between the model simulation and WFDEI for monthly average mean air temperature and 
monthly precipitation sums. The analysis described here is a skill assessment of the selected models remaining from 
section 4.3 for the period 1980–2004. In the end, four GCMs are selected for each RCP scenario.

The output from the GCMs was obtained using the Climate4Impact data portal (www.climate4impact.eu). The 
temporal resolution of the data was monthly and the variables subject to the reality check were precipitation and 
temperature. After downloading all data, a spatial mask was applied to the data so that the climate information was 
assigned to the right subbasin. Figure 13 shows the outline of the six subbasins used.

Figure 13: Outline of the subbasins used in reality checking climate information
(Purple: lower Indus; dark blue: upper Indus; yellow: lower Ganges;  

orange: upper Ganges; light blue: upper Brahmaputra; green: lower Brahmaputra)

4.4.1 Skill Assessment of GCMs 1980–2004

To assess the performance of the selected GCMs, skill scores were derived based on earlier work by Perkins et 
al. (2007), Sanchez et al. (2009), and Kjellström et al. (2010). The performance of every model to simulate 
precipitation and temperature were quantified using skill scores. The calculation of temperature and precipitation 
differed from each other. 

For the calculation of the skill score of temperature, the approach by Perkins et al. (2007) was used. A metric was 
developed which “calculates the cumulative minimum value of two distributions of each binned value, thereby 
measuring the common area between two PDFs”:

where n is the number of bins used to calculate the PDF for a given region, ZGCM is the frequency of values 
in a given bin from the model, and ZOBS is the frequency of values in a given bin from the observed data. If a 
model simulates the observed conditions perfectly, the skill score (Sscore) will equal 1, which is the total sum of the 
probability at each bin centre in a given PDF. 

������ ��������������� ����)
�

�
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The skill score of precipitation is based on the work of Sanchez et al. (2009), which consists of a collection of five 
skill score functions taking into effect different aspects of the behaviour of precipitation, such as “the distribution as 
a whole in terms of mean (f4) and total area (f1), precipitation for more intense precipitation in the upper (f2) and 
moderate precipitation (f3) in the lower half of the distribution and the width of the distribution through the variance 
(f5). The skill score functions as described by Sanchez et al. (2009) are displayed below for our case of comparing 
GCM data to the WFDEI dataset.

21

The skill score functions as described by Sanchez et al. (2009) are displayed below for our case 
of comparing GCM data to the WFDEI dataset. 
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AGCM and AWFDEI are the areas below the cumulative distribution functions of the GCMs and WFDEI, respectively. A+ 
and A– are the corresponding areas to the right and left of the 50th percentile. P is the spatial and temporal average 
of the precipitation and s is the standard deviation. In the end, the five functions were multiplied by each other to 
give a total skill score for precipitation.

The skill scores for both temperature and precipitation are calculated for the control period and for the six 
subbasins (see Table 7). Following the concept of Perkins et al. (2007), the average is taken from the skill scores for 
both temperature and precipitation, and these scores are ranked per subbasin. Subsequently, the rankings of the 
subbasins are summed for each model, which results in a ranking that is tabulated in Table 8.

The analysis until this point is based on the general performance of the model. However, one of the main 
meteorological phenomena in the area of interest is the monsoon. Figure 15 shows the monthly averaged 
precipitation simulated by the GCMs for the period 1980–2004 and the observed numbers from the WFDEI 
dataset for the six subbasins. Most GCMs have difficulty in simulating the right amount of precipitation for the lower 
basins, and most of them underestimate precipitation in the monsoon period. The representation of monsoonal 
precipitation is an important issue in HI-AWARE, so it was decided that an extra ranking should be considered 
based on the forecast of monsoonal precipitation. This skill score consists only of the absolute bias in precipitation 
of the GCM for the complete monsoon period (June–September). The highest ranked GCM has the smallest 
absolute bias and the lowest ranked GCM the largest absolute bias.

Finally, the two rankings (general ranking and monsoon ranking) are combined and weighted to reach a final 
ranking. The weight of the general ranking is 3 and the weight of the monsoonal ranking is 1. The final ranking of 
the GCMs is displayed in Table 8.

This ranking will result in the selection of the models. Note that this way of selecting GCMs omits GCMs that have a 
very good skill for certain subbasins, for example EC-EARTH_r2i1p1 for the Upper Ganges. Table 9 shows the final 
selected models following the skill score assessment explained in this paragraph and maintaining the four corners 
mentioned before. The GCMs which were preselected for the warm-wet corner are the models which do a lesser 
job in simulating the present climate. For the warm-wet corner in the RCP4.5 scenario, the GCM had to be selected 
that only ranked 10 in the overall final ranking. Another striking feature is that two models (inmcm4_r1i1p1 and 
CMCC-CMS_r1i1p1) are selected for further downscaling for both the RCP4.5 and RCP8.5 scenarios.

After this, selection analysis is done on the annual cycle to check if the selected models capture the annual cycle 
correctly. Figure 14 and Figure 15 show the monthly average of temperature and monthly average of precipitation, 
respectively, for each subbasin. The selected models are dark red in colour and the other models are light red in colour. 
As could be expected, there is a large difference between all models. Figure 14 shows that all GCMs are doing a poor 
job in simulating temperatures during the winter for the Upper Indus. The annual cycle of precipitation is even harder for 
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SKILL SCORES PRECIPITATION   TEMPERATURE

MODEL LI UI UB LB LG UG   LI UI UB LB LG UG

CMCC-CM_r1i1p1 0.072967 0.104729 0.002594 0.241479 0.086916 0.142935   0.5933 0.5367 0.3833 0.6467 0.6467 0.6400

CMCC-CMS_r1i1p1 0.123963 0.061684 0.009083 0.24435 0.147814 0.365369   0.61 0.526667 0.65 0.553333 0.566667 0.58

CSIRO-Mk3-6-0_r4i1p1 0.0167 0.094226 0.41363 0.185697 0.059932 0.067821   0.503333 0.573333 0.62 0.413333 0.51 0.606667

CSIRO-Mk3-6-0_r5i1p1 0.02401 0.116957 0.294325 0.169893 0.057366 0.06452   0.496667 0.553333 0.64 0.4 0.49 0.556667

BNU-ESM_r1i1p1 0.322848 0.154629 0.036708 0.096209 0.229052 0.29087   0.603333 0.53 0.566667 0.396667 0.596667 0.426667

CCSM4_r2i1p1 0.059685 0.072969 0.018636 0.203921 0.268733 0.023926   0.72 0.493333 0.473333 0.553333 0.646667 0.623333

CESM1-BGC_r1i1p1 0.071266 0.080638 0.015076 0.226754 0.263694 0.028621   0.746667 0.5 0.5 0.59 0.663333 0.626667

inmcm4_r1i1p1 0.136287 0.357255 0.370019 0.15188 0.2424 0.206475   0.523333 0.446667 0.413333 0.27 0.506667 0.586667

IPSL-CM5A-LR_r4i1p1 0.063959 0.097311 0.289864 0.046979 0.074546 0.411489   0.61 0.58 0.426667 0.686667 0.61 0.66

CanESM2_r2i1p1 0.081088 0.163705 0.186085 0.131063 0.155523 0.10677   0.496667 0.506667 0.523333 0.33 0.586667 0.536667

CanESM2_r3i1p1 0.138974 0.155951 0.197715 0.126305 0.11463 0.121715   0.546667 0.46 0.52 0.32 0.626667 0.583333

bcc-csm1-1_r1i1p1 0.05627 0.569628 0.246664 0.118942 0.082586 0.09379   0.613333 0.556667 0.52 0.426667 0.563333 0.523333

MRI-CGCM3_r1i1p1 0.043358 0.260402 0.099418 0.052537 0.02831 0.16089   0.48 0.453333 0.413333 0.586667 0.5 0.566667

EC-EARTH_r2i1p1 0.010461 0.272902 0.201134 0.135088 0.095489 0.629711   0.513333 0.386667 0.473333 0.356667 0.4 0.45

Table 7: Skill scores of the models for both temperature and precipitation for the six subbasins based on skill score analysis 
(LI: Lower Indus, UI: Upper Indus, UB: Upper Brahmaputra, LB: Lower Brahmaputra, LG: Lower Ganges, UG: Upper Ganges)

Table 8: Ranking of the models for the six subbasins (LI: Lower Indus, UI: Upper Indus, UB: Upper Brahmaputra, LB: Lower 
Brahmaputra, LG: Lower Ganges, UG: Upper Ganges) (SS P: Skill Score Precipitation, SS T: Skill Score Temperature)

Table 9: The selected models based on the skill score analysis

General Circulation Model RCP4.5 RCP8.5

BNU-ESM_r1i1p1 x cold,wet

inmcm4_r1i1p1 x cold,dry

CMCC-CMS_r1i1p1 x warm, dry

CSIRO-Mk3-6-0_r4i1p1 x warm, wet

inmcm4_r1i1p1 x cold, dry

CMCC-CMS_r1i1p1 x warm, dry

bcc-csm1-1_r1i1p1 x cold, wet

CanESM2_r3i1p1 x warm, wet

the GCMs to simulate. Especially in the Upper Indus, the 
models don’t agree with each other about the annual 
cycles. The spread between models is large, but there 
is reasonable agreement for most of the subbasins. 
As mentioned before, most GCMs underestimate the 
precipitation in the lower subbasins.

One of the shortcomings of the presented analysis is 
that GCMs are selected on their overall performance 
over a climatological period and not on properties like 
timing of the monsoon season. Also, models vary in 
their skill per subbasin as EC-EARTH_r2i1p1 shows, 
with a high skill for temperature in the Upper Ganges, but having difficulties in the other subbasins. The analysis on 
the annual cycles show that the selected models are on average correctly selected.

MODEL LI UI UB LB LG UG TOTAL RANK RANK MONSOON TOTAL RANK

CMCC-CM_r1i1p1 8 10 14 1 7 5 45 7 7 6

CMCC-CMS_r1i1p1 4 12 9 3 8 3 39 5 4 4

CSIRO-Mk3-6-0_r4i1p1 14 8 1 7 11 9 50 10 8 10

CSIRO-Mk3-6-0_r5i1p1 13 7 2 8 12 13 55 14 9 14

BNU-ESM_r1i1p1 1 4 10 10 3 7 35 2 3 1

CCSM4_r2i1p1 3 14 13 4 2 11 47 8 13 9

CESM1-BGC_r1i1p1 2 13 11 2 1 10 39 5 10 5

inmcm4_r1i1p1 9 2 3 14 4 4 36 3 2 2

IPSL-CM5A-LR_r4i1p1 6 5 6 5 9 2 33 1 12 3

CanESM2_r2i1p1 10 6 7 12 5 12 52 12 5 12

CanESM2_r3i1p1 5 11 5 13 6 8 48 9 6 8

bcc-csm1-1_r1i1p1 7 1 4 9 10 14 45 7 11 7

MRI-CGCM3_r1i1p1 12 3 12 6 13 6 52 12 14 13

EC-EARTH_r2i1p1 11 9 8 11 14 1 54 13 1 11

CMCC-CMS_r1i1p1 4 12 9 3 8 3 39 5 4 4

inmcm4_r1i1p1 9 2 3 14 4 4 36 3 2 2
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Figure 14: Average annual cycles of temperature (C) per GCM and per subbasin  
(Red: selected GCMs, light red: not selected GCMs, and blue: WFDEI)
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Figure 15: Average annual cycles of precipitation (mm) per GCM and per subbasin  
(Red: selected GCMs, light red: not selected GCMs, and blue: WFDEI)
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5 Statistical Downscaling

Since the venture of General Circulation Models (GCMs), statistical downscaling techniques have been developed 
to account for the scale differences between GCMs and hydrological models, and to interpolate regional scale 
atmospheric predictor variables to station-scale meteorological series (Karl et al. 1990; Hay et al. 1991). GCMs 
typically operate at multiple degrees spatial resolution, but applications like hydrological models, forced by the 
data from GCMs, operate at higher resolutions, up to several meters. Many processes, such as circulation patterns 
leading to hydrological extreme events, cannot be resolved by GCMs (Christensen and Christensen 2002). In  
HI-AWARE, the used models operate at spatial resolutions around 5–10 km, thus also requiring downscaling of  
the GCM data. Given the mountainous nature of the upstream parts of the Indus, Ganges, and Brahmaputra 
(IGB) basins, preferably a downscaling technique is used that has proven its usefulness under these conditions. A 
first prerequisite for a successful downscaling of future climate is to have a high-quality, high-resolution dataset of 
the historical climate, which can be used as a baseline for downscaling, when combined with data from GCMs 
(Figure 16). Differences between past and future climate in the low-resolution GCM data are downscaled to high 
resolution using the historical baseline climate dataset.

Figure 16: High-resolution historical climate data is combined with low resolution  
GCM data to generate high resolution future climate data

5.1 Historical baseline climate dataset

5.1.1 Existing gridded meteorological forcing datasets

Understanding the spatial and temporal variability of precipitation in mountainous areas remains a key challenge. 
Point measurements are often not sufficient to capture the strong gradients in the multiple local factors that 
determine the distribution of precipitation. Climatologists have created numerous gridded datasets based on 
observations. Since many of the existing gridded data products include precipitation and temperature at near-
surface level, they can be used to overcome data gaps in observations.

A distinction in two groups can be made regarding gridded datasets for temperature and precipitation: (i) datasets 
created using advanced geo-statistical interpolation techniques based on station observations, and (ii) datasets 
based on blending the climate model output and observations (often referred to as re-analysis products). A 
tabular overview of available datasets in the IGB and their key characteristics is provided in Table 10. Apart from 
differences in the underlying methodology (interpolation of observations or re-analysis) the main differences in the 
datasets are the spatial resolution, temporal resolution, and time span covered.

High resolution historical 
baseline climate

Downscaled high resolution future climate

Low resolution historical and future climate from GCM

1980        1990        2000        2010       2020        2030        2040        2050
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A thorough comparison on the performance of existing gridded products for the HKH region (Palazzi et al. 2013) 
highlights the striking differences between the different products. All the analysed products are subject to limited 
spatial resolution. They are mostly suitable for large-scale continental studies. However, to analyse climate 
variations at smaller scales and in orographically complex regions, such as the IGB, they lack accuracy. 

Table 10: Overview of gridded meteorological products

Dataset Type Coverage Resolution Frequency Period Parameters Institute

NCEP/NCAR 
reanalysis data

Re-analysis Global ~209 km (T62 
grid)

6 hourly 1948 - 
present

Prec, Tmax, Tmin, 
Tavg ( + many more)

NCEP/NCAR

CFSR Re-analysis Global ~ 50 km (0.5 
degree)

1 hourly, 
6 hourly, 
monthly

1979-
2010

Prec, Tmax, Tmin, 
Tavg ( + many more)

NCEP

ERA 15 basic Re-analysis Global basic: ~ 250 km 
(2.5 degrees)

monthly 1979 - 
1994

Prec, Tmax, Tmin, 
Tavg ( + many more)

ECMWF

ERA 15 
advanced

Re-analysis Global ~ 120 km (N80 
grid)

monthly 1979 - 
1994

ECMWF

ERA 40 basic Re-analysis Global ~ 250 km (2.5 
degrees)

6 hourly 1957 - 
2002

Prec, Tmax, Tmin, 
Tavg ( + many more)

ECMWF

ERA 40 
advanced

Re-analysis Global ~ 120 km (N80 
grid)

6 hourly 1957 - 
2002

Prec, Tmax, Tmin, 
Tavg ( + many more)

ECMWF

ERA Interim Re-analysis Global ~ 70 km (N128 
grid)

6 hourly 1979 - 
present

Prec, Tmax, Tmin, 
Tavg ( + many more)

ECMWF

ERA 20 CM Climate model 
ensemble

Global ~ 120 km (N80 
grid)

3 hourly 1900-
2009

Prec, Tavg ECMWF

NASA MERRA Re-analysis Global ~ 70 km (0.5 x 
0.67 degrees))

3 hourly 1979 - 
present

Prec, Tmax, Tmin, 
Tavg ( + many more)

NASA

Global 
Meteorological 
Forcing Dataset 
for land surface 
modeling

Re-analysis + 
observations

Global ~ 50 km (0.5 
degree)

3 hourly 1948 - 
2008

Prec, Tmax, Tmin, 
Tavg ( + many more)

Princeton 
University

APHRODITE Observations Asia ~ 25 km (0.25 
degree)

Daily 1961 - 
2007

Prec, Tavg Meteorological 
Research 
Institute of Japan 
Meteorological 
Agency

CRU TS 
3.10.01

Observations Global ~ 50 km (0.5 
degree)

Monthly 1901-
2009

Prec, Tmax, Tmin, 
Tavg ( + many more)

Climate Research 
Unit at the 
University of East 
Anglia

GPCC Observations Global ~ 50 km (0.5 
degree)

Monthly 1901-
2007

Precipitation Global 
Precipitation 
Climatology 
Centre

GPCP Observations Global ~ 250 km (2.5 
degrees)

Monthly 1979 - 
present

Precipitation GEWEX

CPC-UGBAGDP Observations Global ~ 50 km (0.5 
degree)

Daily 1979- 
present

Prec CPC

DEL Observations Global ~ 50 km (0.5 
degree)

monthly 1900-
2008

Prec, Tair CCR Univ of 
Delaware

HAR WRF-model 
coupled to 
ERA-INTERIM

High Asia 10 km hourly 2000-
2012

Prec, Tair, many 
others

TU Berlin
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Figure 17: Multiannual mean (1998-2007) of summer (JJAS) precipitation over the HKKH region  
as represented by different dataset (Palazzi et al. 2013)

Researchers who compared the performance of TRMM and APHRODITE over Nepal concluded that the latter 
dataset is more accurate (Duncan and Biggs 2012). Other researchers also concluded that there is large variability 
in performance between different gridded products by comparing them for multiple transects crossing the 
Himalayan ranges (Andermann et al. 2011). They also concluded that APHRODITE, based solely on ground station 
data, gives the best precipitation estimates. However, they also mentioned that the lack of stations at high elevations 
limits the accuracy of this dataset. A study for the Upper Indus basin also showed that high altitude precipitation in 
APHRODITE is strongly underestimated (Lutz et al. 2014b). Immerzeel et al. (2015) compared four precipitation 
products for the Upper Indus basin and validated them to observed river discharge. According to their analysis, 
ERA-Interim provides the best estimate of precipitation in terms of annual totals.

In 2014, the Refined High Asian Reanalysis (HAR) was released (Maussion et al. 2014). HAR is based on WRF 
model runs with an hourly time step, which are bounded daily to the ERA-INTERIM dataset. Although the product 
has a high spatial (10 km) and temporal (1 h) resolution, it covers a relatively short time range (2000–2012), and 
does not cover the entire IGB.

Figure 18: Multiannual mean (1998-2007) of winter (DJFMA) precipitation over the HKH region  
as represented by different datasets (Palazzi et al. 2013)
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5.1.2 Station observations

Station observations in the upstream parts of the IGB basins are sparse. Figure 19 and Table 11 list the stations and 
station metadata, including record length, as available in this project. As evident from the map, the stations are very 
unequally distributed over the basin and mostly located in the valleys. As can be seen in the table, eight out of 40 
stations are located above 4,000 masl, with the highest being located at an elevation of 4,730 masl. In addition, 
many stations have rather short records available. 

Figure 19: Locations of meteorological stations in the upper IGB basins

5.1.3 New historical baseline climate dataset for the IGB basins

Given the results from the cited comparison studies, ERA-INTERIM data will be used as basis to construct a historical 
baseline climate dataset for the upstream, mountainous parts of the IGB, spanning 30 years, from 1 January 
1981 to 31 December 2010, at a daily time step. The temperature data will be downscaled from 0.75° to 5 km 
spatial resolution using a high-resolution DEM and temperature lapse rates, and bias-corrected using the available 
meteorological station observations. The precipitation data will be corrected using observed glacier mass balance 
data, according to the methodology developed in Immerzeel et al. (2012, 2015). Based on geodetic measurements 
of glacier mass balance (Gardelle et al. 2012, 2013), precipitation gradients will be calculated to improve and 
downscale the ERA-INTERIM precipitation fields. The same datasets will be used for the downstream parts of the 
IGB, but no correction to precipitation fields based on observed glacier mass balance will be made, since this is 
only applicable to the high mountain environment.

Since the amounts of precipitation in the ground station data and gridded product are underestimated, it is very 
likely that the precipitation necessary to supply the observed amount of discharged water is occurring at high 
altitudes. Research in this area (Batura Investigations Group 1979; Hewitt 2005, 2007, 2011; Winiger et al. 2005) 
suggests that precipitation increases up to 5,000 to 6,000 masl, where it is at its maximum, and decreases at 
higher altitudes (Figure 20, right panel).

In the construction of an improved gridded meteorological dataset for the upper IGB basins, we assume this 
conceptual model to be correct to infer vertical precipitation lapse rates based on a linear increase of precipitation 
from a certain reference elevation (HREF) up to an elevation of maximum precipitation (HMAX) and decreasing 
linearly at higher altitudes with the same lapse rate (Immerzeel et al. 2012, 2015).
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Table 11: Meteorological ground station records in the upper IGB used in HI-AWARE

ID Name Source Lon (dd) Lat (dd) Elevation (m 
asl)

StartDate EndDate

1 Burzil WAPDA 75.088 34.911 4030 01/01/2000 31/12/2008

2 Khunjerab WAPDA 75.400 36.850 4730 01/01/2000 31/12/2008

3 Naltar WAPDA 74.189 36.158 2810 01/01/2000 31/12/2008

4 Rama WAPDA 74.817 35.367 3000 01/01/2000 31/12/2008

5 Rattu WAPDA 74.871 36.515 2570 01/01/2000 31/12/2008

6 Yasin WAPDA 73.300 36.450 3150 01/01/2000 31/12/2008

7 Ziarat WAPDA 74.276 36.836 3669 01/01/2000 31/12/2008

8 Astore PMD 74.857 35.329 2168 01/01/2000 31/12/2005

9 Bunji PMD 74.633 35.667 1470 01/01/2000 31/12/2005

10 Chilas PMD 74.100 35.417 1251 01/01/2000 31/12/2005

11 Gilgit PMD 74.333 35.917 1459 01/01/2000 31/12/2005

12 Gupis PMD 73.400 36.230 2156 01/01/2000 31/12/2005

13 Skardu PMD 75.680 35.300 2210 01/01/2000 31/12/2005

14 Askole PMD 75.815 35.681 3015 10/08/2005 31/12/2007

15 Urdukas PMD 76.286 35.728 3927 06/17/2004 31/12/2007

16 Chitral PMD 71.780 35.839 1500 01/01/2000 01/01/2005

17 Kotli PMD 73.900 33.520 2017 01/01/2000 01/01/2005

18 Parachinar PMD 70.083 33.867 1726 01/01/2000 01/01/2005

19 Khunjerab Winiger/ICIMOD 74.417 36.850 4700 01/01/2000 12/31/2012

20 Bomi ICIMOD 95.76 29.86 2736 01/01/2000 12/31/2006

21 Chayu ICIMOD 97.46 28.65 2327.6 01/01/2000 12/31/2006

22 Cuona ICIMOD 91.95 27.98 4280 01/01/2000 12/31/2006

23 Dangxiong ICIMOD 91.1 30.48 4200 01/01/2000 12/31/2006

24 Jiacha ICIMOD 92.58 29.15 3260 01/01/2000 12/31/2006

25 Jiali ICIMOD 93.28 30.66 4488.8 01/01/2000 12/31/2006

26 Langkazi ICIMOD 90.4 28.96 4431.7 01/01/2000 12/31/2006

27 Lazi ICIMOD 87.63 29.08 4000 01/01/2000 12/30/2005

28 Lhasa ICIMOD 91.13 29.67 3648.7 01/01/2000 12/31/2006

29 Linzhi ICIMOD 94.47 29.57 3000 01/01/2000 12/31/2006

30 Namulin ICIMOD 89.1 29.68 4000 01/01/2000 12/31/2006

31 Pali ICIMOD 89.08 27.73 4300 01/01/2000 12/31/2006

32 Dungkhar ICIMOD 91.1 27.82 2010 01/01/2000 12/31/2006

33 Phobijekha ICIMOD 90.18 27.47 2860 01/01/2000 12/31/2006

34 Sunkosh ICIMOD 90.07 27.02 410 01/01/2000 12/31/2006

35 Wamrong ICIMOD 91.57 27.13 2180 01/01/2000 12/31/2006

36 Kakani ICIMOD 85.25 27.8 2064 01/01/2000 12/31/2009

37 Taplejung ICIMOD 87.66667 27.35 1732 01/01/2000 12/31/2010

38 Nielamu ICIMOD 85.96 28.18 3310 01/01/2000 12/31/2006

39 Pulan ICIMOD 81.25 30.28 3900 01/01/2000 12/31/2006

40 Shiquanhe ICIMOD 80.08 32.5 4278 01/01/2000 12/31/2006
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Figure 20: Conceptual model of vertical and horizontal meteorological and cryospheric  
regimes in the Karakoram (Hewitt 2007)

In summary, the methodology to improve the data for air temperature and precipitation is as follows:

 �  ERA-INTERIM air temperature and precipitation data are used as basis

•  Air temperature (step 1):

   - Temperature fields are initially corrected using daily determined temperature lapse rates

   - The bias between ground observations and ERA-INTERIM is determined

   - A monthly bias averaged over the available stations is derived

   - Temperature fields are corrected using the monthly bias

•  Precipitation (step 2):

   - Using the downscaled and bias-corrected temperature fields (result of step 1),  
    the observed glacier mass balance is included as a proxy to derive local precipitation lapse rates

   - Local precipitation lapse rates are spatially interpolated

   - Spatially interpolated field of precipitation lapse rates is used to spatially interpolated  
    ERA-INTERIM precipitation grids

5.1.4 Correction of air temperature

As a first step, the ERA-INTERIM air temperature fields are downscaled from 0.75° original resolution to 1 km 
resolution by applying a daily derived temperature lapse rate to correct for elevation differences between a DEM at 
1 km resolution and a DEM at 0.75° resolution representing the average elevation of ERA-INTERIM grid cells and 
bias correction using ground station data. The vertical temperature lapse rate is largely dependent on the moisture 
content of the air and generally varies between the dry adiabatic lapse rate (-0.0098°C m-1) and the saturated 
adiabatic lapse rate (typically -0.005°C m-1, strongly dependent on the temperature). Thus, vertical temperature 
lapse rates tend to be steeper during dry periods and less steep during wet periods, such as the monsoon. For 
each day we determine the temperature lapse rate by calculating an average temperature lapse rate from the air 
temperature values at the original ERA-INTERIM grid cells and their elevations. Figure 21 shows the lapse rates 
determined for the year 1999, and demonstrates that the less steep lapse rates during the monsoon month (June–
September) are nicely represented as well as the steeper lapse rates during the dryer periods.
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Subsequently, the temperature bias between the ground stations and the temperature grids are determined, for 
stations with records covering parts of the period 2000–2010. Stations for which location could not be verified, 
or the elevation difference between the elevation provided in the station’s metadata and its elevation according 
to the 1 km resolution DEM exceeds 400 m are omitted (11 stations, IDs: 4, 16, 17, 18, 21, 25, 32, 35, 36, 38, 
39), and 29 stations are used for the bias-correction. In Figure 22, the bias is plotted for 12 months along with 
the station’s altitude. From the figure, no significant relation between the bias and elevation can be determined 
(blue lines). Therefore, the average bias of the 29 stations (blue dots) is used for each month to bias-correct the 
downscaled ERA-INTERIM temperature fields.
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Figure 21: Average temperature lapse rates in 1999 in the upper IGB basins calculated daily from the  
ERA-INTERIM grid cells and their elevations, covering the upper IGB

Figure 22: Bias between observed temperatures and gridded temperatures per month (in °C, y-axis) and 
elevation (x-axis). (Red dots represent the average bias for 29 individual stations. The blues line shows the 

linear regression through the red dots, the blue dots show the average bias of the 29 stations)
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We correct the ERA-INTERIM gridded temperature on a monthly scale applying the average bias correction. For each 
day in the original dataset running from 1 January 1981 to 31 December 2010, this is done for each grid cell:

36

where TCOR is the corrected temperature, TERA-INT is the original gridded temperature, H is the grid cell elevation 
according to the SRTM Digital Elevation Model (Farr et al. 2007), and a is the monthly bias (blue dots in Figure 22). 
The corrected temperature dataset can in turn be used for the correction of the precipitation data.

5.1.5 Correction of precipitation data

To correct the precipitation data we use the observed glacier mass balance to derive precipitation lapse rates for 
each individual glacier system, as applied before in the Hunza basin and the entire Upper Indus basin (Immerzeel 
et al. 2012, 2015). As the glaciers in the IGB cannot persist without precipitation input being higher than observed 
in the gridded products, we can use the glacier mass balance to derive the amount of precipitation that would be 
necessary to sustain the observed glacier mass balance.

Based on the conceptual model in Figure 20 we assume that precipitation increases linearly up to an elevation with 
maximum precipitation and decreases with the same lapse rate above that elevation:

where PCOR is the corrected precipitation, PERA is the precipitation according to ERA-INTERIM, hr is a reference 
elevation from which precipitation gradients occur, h is the elevation for the grid cell, and h is the precipitation 
gradient (% m-1).

To calculate the precipitation gradients for individual glacier systems, we use geodetic mass balance data for eight 
sites in the HKH region (Gardelle et al. 2012, 2013) (Figure 23). From these regions we select all glacier systems 
that have an area > 5 km2, which are 346 individual systems in the eight regions in the IGB (Table 12). For each 
study site, Gardelle et al. (2013) used the Shuttle Radar Topographic Mission (SRTM) version 4 DEM, acquired mid-
February 2000, as the reference topography. The elevation differences between the SRTM DEM and SPOT DEMs 
acquired between 2008 and 2011, depending on the study site, have been analysed at grid cell level and corrected 
for several biases except for seasonality (see Gardelle et al. 2013 for details).
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Figure 23: Sites in the HKH region where geodetic mass balance data  
has been analysed by Gardelle et al. (2013)
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A glacier’s mass balance is determined by the amount of accumulation and the amount of ablation:

ΔM = C – A

where C is the accumulation and A is the ablation. For each of the glacier systems, the ablation can be determined 
using a degree day melt model forced with the corrected gridded temperature fields. This can be done quite 
straightforward by using the glacier outlines from a glacier inventory (Bajracharya and Shrestha 2011) as a potential 
melting surface. Calculating the glacier accumulation is a bit more complex, since the accumulation area of a 
glacier is often not entirely included in the glacier outlines in a glacier inventory. Especially in the HKH region, the 
glacier accumulation consists for a large part of the snow fed to the glacier surface by avalanching. To include this, 
we assume the accumulation area of a glacier system to include the grid cells covered by the glacier outline from 
the glacier inventory in addition to the adjacent grid cells that have their ‘drain’ direction to the glacier surface and 
have a slope steeper than 0.20 m m-1. This slope threshold is estimated from the slope distribution of the glacierized 
area in the Upper Indus basin.

Figure 24: Average glacier mass balance (m we yr-1) for glaciers within the geodetic mass balance analysis 
sites (Gardelle et al. 2013) in the upper IGB basins (Dots are scaled to glacier surface area)

Table 12: Properties of sites in the HKH region where geodetic mass balance data has been 
analysed by Gardelle et al. (2013)

Site Name Date of SPOT5 
DEM

No. of 
glaciers 
> 5 km2

Average MB (m 
we yr-1) (Gardelle 
et al. 2013)

MB error (m we 
yr-1) (Gardelle 
et al. 2013)

s between 
glaciers (MB 
error *√n)

1 Hindu Kush 17–21 Oct 2008 24 -0.12 0.16 0.784

2 Karakoram West 3 Dec 2008 52 0.09 0.18 1.298

3 Karakoram East 31 Oct 2010 37 0.11 0.14 0.856

4 Spiti Lahaul 20 Oct 2011 59 -0.45 0.14 1.075

5 West Nepal 3 Jan 2011 27 -0.32 0.14 0.727

6 Everest 4 Jan 2011 43 -0.26 0.14 0.918

7 Bhutan 20 Dec 2010 45 -0.22 0.13 0.872

8 Hengduan Shan 24 Nov 2011 59 -0.33 0.14 1.075
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Figure 26: Average glacier mass balance (m we yr-1) for glaciers within the Karakoram (upper panel),  
Spiti Lahaul (middle panel), and West-Nepal (lower panel) sites (Dots are scaled to glacier surface area)

Figure 25: Average glacier mass balance (m we yr-1) for glaciers within the  
Hindu Kush sites (Dots are scaled to glacier surface area)



26

Figure 27: Average glacier mass balance (m we yr-1) for glaciers within the Everest (upper panel), Bhutan 
(middle panel), and Hengduan Shan (lower panel) sites (Dots are scaled to glacier surface area)

Since the glacier mass balance is known and the ablation can be calculated using the melt model, we can derive 
the amount of precipitation required in the accumulation area to sustain the observed mass balance for each 
individual glacier system. Thus, for those glacier systems, we can derive which precipitation gradient is appropriate 
in order to correct the original precipitation field to match the amount of precipitation necessary to sustain the 
mass balance.
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5.2 Statistical downscaling techniques

A number of authors have published review papers on different statistical downscaling techniques in the past 15–20 
years (Wilby and Wigley 1997; Fowler et al. 2007; Maraun et al. 2010). Wilby and Wigley (1997) categorized 
downscaling techniques in four categories: regression methods, weather pattern-based approaches, stochastic 
weather generators, and limited area modelling. Downscaling approaches usually incorporate attributes of more than 
one of these techniques. Fowler et al. (2007) also outlined four approaches, but categorized them slightly differently. 
They identify the ‘delta change’ or ‘perturbation method’ as the simplest statistical downscaling technique. As more 
sophisticated statistical downscaling methods, they identify regression models, weather typing schemes, and weather 
generators. Maraun et al. (2010) categorized statistical downscaling methods into weather generators (WG), perfect 
prognosis (PP), and model output statistics (MOS), combining the classification by Wilby and Wigley (1997) and a 
categorization based on the nature of the chosen predictors (Rummukainen 1997). Here we follow the categorization 
by Maraun et al. (2010) to summarize different approaches to statistical downscaling, including an overview of their 
pros and cons as described in the mentioned review papers and other scientific literature. 

Figure 28: Scheme of different downscaling approaches (adapted from Themeßl et al. 2011a)

5.2.1 Perfect prognosis statistical downscaling

Perfect prognosis statistical downscaling approaches (or traditional empirical-statistical downscaling methods 
(Themeßl et al. 2011b), right pathway in Figure 28) aim to establish links between observed large-scale (synoptic 
scale) predictors and observed local-scale predictands. These include classical statistical downscaling approaches 
such as regression models and weather-pattern based approaches (Maraun et al. 2010). Regression methods were 
among the earliest downscaling approaches (Wilby and Wigley 1997). The simplest regression model is a linear 
regression model. In a standard linear regression model, the unexplained variability is assumed to be Gaussian 
distributed (Maraun et al. 2010), which might be feasible for downscaling annual totals of precipitation and 
mean air temperature, but not on shorter timescales as daily precipitation is commonly modelled using a gamma 
distribution. An extension of the linear model is the generalized linear model, where the predictand may follow 
different distributions, and the general additive model, where the linear dependency is replaced by nonparametric 
smooth functions. Vector generalized linear models don’t solely predict the mean of a distribution, but a vector 
of parameters of a distribution, including for example the mean and the variance of a distribution. These models 
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are favourable when studying the behaviour of extreme events, to estimate the dependence of the variance or the 
extreme tail on a set of predictors (Maraun et al. 2010). In weather type-based downscaling, a set of categorical 
weather types are used to predict the mean of local precipitation and temperature. This approach can be 
considered as a special case of a linear downscaling model. Other perfect prognosis approaches are non-linear 
regressions, for example the use of an artificial neural network (Maraun et al. 2010). The analogue method (Zorita 
and Storch 1999 ) is based on selecting the most similar large-scale weather situation in the past and selecting the 
corresponding local-scale observations. Thereby, this method is limited to events that have occurred in history. The 
analogue method can be extended by randomly choosing the analogue from a number of most similar historical 
conditions (e.g., Moron et al. 2008). Physical processes on intermediate scales, like mesoscale weather patterns, 
are usually ignored in perfect prognosis statistical downscaling approaches.

The most basic linear regression model is the simple delta change or perturbation method (Arnell 1999; 
Prudhomme et al. 2002; Kay et al. 2008), which downscales GCMs to local scale using change factors. Differences 
between a future and control GCM run are superimposed on a local-scale baseline observations dataset. Because 
of the simplicity of this method, a large number of GCMs can be downscaled, facilitating the possibility to use a 
large ensemble of possible future climates in climate change impact studies. Shortcomings of this method are the 
assumption that the bias between the GCM and the local-scale data remains constant in time, and only when 
changes in the mean, minima, and maxima of climatic variables are considered (Fowler et al. 2007). A climate 
change impact study until 2050 with application of the simple delta change method has been conducted for the 
IGB in ICIMOD’s HICAP Programme (Lutz et al. 2014a).

The Advanced Delta Change (ADC) approach (van Pelt et al. 2012; Kraaijenbrink 2013), building on previous work 
by Leander and Buishand (2007), has an advantage over the classical delta change method in that not only are 
changes in the mean are considered, but also the changes in extremes, thus making a non-linear transformation 
of climate signals in GCMs. Changes in multi-day precipitation events are also considered. The approach has 
been successfully applied in the Rhine basin in Europe (van Pelt et al. 2012; Kraaijenbrink 2013). It has also 
been applied in the Upper Indus basin (Lutz et al. 2014b) where some difficulties have been experienced with the 
downscaling of precipitation, which probably stem from the high spatial variability of meteorological variables in 
the high mountain environment. Additional corrections had to be applied to correct for partly unrealistic changes in 
precipitation extremes. The initial nonlinear bias-correction approach developed by Leander and Buishand (2007) 
was applied to bias-correct RCM temperature and precipitation for the upper Rhone basin in Switzerland, to test its 
usefulness in complex, orographically influenced climate systems (Bordoy and Burlando 2013). They conclude that 
the method is able to dramatically reduce the RCM errors for both air temperature and precipitation and further 
conclude that the method could successfully be used for correcting future projections. However, they also observed 
that an undesired effect of the technique developed by Leander and Buishand (2007) is the generation of some 
extreme precipitation extreme values that considerably exceed the range of the observations.

5.2.2 Model output statistics

In model output statistics (MOS) approaches (left pathway in Figure 28), the statistical relationship between 
predictors and predictands is established using simulated predictors and observed predictands instead of observed 
predictors and predictands. In most applications, the predictand is local-scale climate, and MOS combines a 
correction and a downscaling step. The predictors can be either simulated time series or properties of the simulated 
intensity distribution. The predictands can either be simulated local-scale precipitation time series or simulated 
local-scale intensity distributions. MOS is mostly used for RCM downscaling, while MOS application for GCM 
downscaling is still limited (Eden et al. 2012; Eden and Widmann 2014).

Multiple RCM post-processing methods have been developed, termed empirical-statistical downscaling and error 
correction methods (DECMs, left pathway in Figure 28), which are based on the MOS approach (Themeßl et al. 
2011b). Themeßl et al. (2011a) tested seven DECMs for RCM-downscaling of climate for the mountainous country 
Austria (Figure 29), showing that point-wise methods like quantile mapping, and local intensity scaling, as well as 
indirect spatial methods, as non-linear analogue methods improve the original RCM signals.
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Figure 29: Seasonal and annual errors uncorrected RCM and the seven DECMs in sub-region 6  
(western Austria, high Alpine, upper panels), sub-region 8 (southeast Austra, lower Alpine, middle panels) 

and for entire Austria (lower panels). The boxes show the 75th percentile (upper limit), the median (line within 
the box) and the 25th (lower limit). The respective mean observed precipitation amount is given in the header 

of each panel. The statistics result from station-wise evaluation of daily precipitation data and are spatially 
averaged (Themeßl et al. 2011a)

Multiple linear regression methods, however, show significant shortcomings for modelling daily climate due to their 
linear nature. At the same time, satisfactory downscaling of precipitation is of utmost importance for mountainous 
areas like the upstream parts of the IGB. Local intensity scaling applies a spatially varying scaling to climate model 
precipitation accounting for its long-term bias at the location of the observation (e.g., Schmidli et al. 2006). 
Quantile mapping (e.g., Bo et al. 2007) corrects for errors in the shape of the distribution and is therefore capable 
of correcting errors in variability as well as the mean. According to Themeßl et al. (2011a ), in their comparison of 
seven DECMs over mountainous Austria, quantile mapping performed best. Adaptations in the quantile mapping 
method also allow for good simulation of new future extremes, which do not occur in the calibration period 
(Themeßl et al. 2011b). Immerzeel et al. (2013) successfully applied the method developed by Themeßl et al. 
(2011b) to downscale GCM data at two point station locations in the HKH region.

5.2.3 Weather generator approaches

Weather generators are statistical models generating random sequences of weather variables, with statistical 
properties resembling observed weather. They are most commonly used to generate weather at point locations. 
The weather generator based approaches that generate spatial fields can be grouped in three categories (Ferraris 
et al. 2003): multifractal cascades, nonlinearly filtered autoregressive processes, and point processes based on the 
random positioning of a given number of rainfall cells. Attempts to generate continuous spatial precipitation fields 
have only recently been extended for downscaling (Maraun et al. 2010).

Forsythe et al. (2014) combined a stochastic rainfall model and a rainfall conditioned weather generator to assess 
climate change signals for three point stations in part of the Upper Indus basin. Validation to a time-series of 
observations at these three locations showed that the model has good skill reproducing climatological means, 
despite the complexity of climate in the mountainous region, at the boundary of monsoonal and westerly climate 
systems. Future climate was assessed using change factors derived from comparison of a future and control time 
slice of an RCM.
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Bordoy and Burlando (2014) used a stochastic downscaling approach of climate model outputs to subdaily 
temporal resolution for multiple point locations in the Swiss Alps. Their methodology is based on reparameterizing 
the Spatiotemporal Neyman-Scott Rectangular Pulses model (ST-NSRP) for future climate. Their approach showed 
to be robust and effective in addressing the internal variability of precipitation, as compared to other downscaling 
techniques which are hindered by computational and resolution problems (Bordoy and Burlando 2014). Ragettli 
et al. (2013) applied the same methodology to downscale GCM data from monthly to daily temporal resolution at 
three station locations in the Hunza basin in the Upper Indus basin.

5.3 Proposed downscaling approach for future climate

Given the mountainous nature of the upstream parts of the IGB, the downscaling methodology that has proven to 
perform best over mountainous terrain should be used in HI-AWARE. According to the comparison of downscaling 
methods over mountainous Austria (Themeßl et al. 2011b), quantile mapping performed best in this area. In 
addition, the approach was applied successfully in two contrasting basins in the HKH region (Immerzeel et al. 
2013). The proposed methodology builds on the work by Themeßl et al. (2011b) and Immerzeel et al. (2013), but 
will be extended to apply the approach to each 5x5 km pixel of the reference climate dataset for the entire IGB 
(including upper and lower basins). More details on the quantile mapping (QM) method and specific proposed 
application in the IGB are described in this section.

Quantile mapping is applied on a daily basis (t) and for each grid cell (i) separately resulting in a corrected time 
series Ycor using a correction function (CF) as defined here (Themeßl et al. 2011b):

CF represents the difference between the observed (obs) and the modelled (mod) inverse empirical cumulative 
density distributions (ecdf-1) for the representative day of the year (doy) in the calibration period (cal) at probability P. 
P is obtained by relating the raw climate model output Xraw to the corresponding ecdf in the calibration period. For 
QM calibration ecdfs are constructed for each month of the year (as in Immerzeel et al. 2013).

Figure 30 serves as an illustrated example of the QM methodology. The upper panel shows all daily temperature 
observations in July during 1981–2010 and the corresponding GCM values for one grid cell. 
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For both distributions an empirical distribution function can be constructed (middle panel). With both ecdfs the 
correction function can be determined to correct GCM values from the future run to downscaled values (lower 
panel). If, for example, the GCM future run projects T = 14°C on 10 July 2073 (lower panel), then this value can 
be looked up in the ecdf from the GCM values in the control run (middle panel) and the corresponding value from 
the ecdf for observations can be determined (e.g., T = 12°C). Thus the downscaled value will be 12°C (lower 
panel). This is done for all daily values. The approach is comparative for other meteorological values, for example 
precipitation (example in Figure 31).

As described in Themeßl et al. (2011b), the QM procedure can be extended by frequency adaptation (FA), to 
account for a methodological problem, occurring when the dry-day frequency in the model result is greater than 
in the observations, resulting in a systematic wet precipitation bias. Usually this is not the case because of the 
underestimate of the dry-day frequency (‘drizzling effect’) in GCMs and RCMs. Problems have however been 
reported with the so-called summer drying problems of RCMs in southeastern Europe (e.g., Hagemann et al.

[2004]). With FA, only the fraction
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������������������� of dry-day cases with probability P0 are corrected

randomly by linearly interpolating between zero precipitation and the precipitation amount of 
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i.e., the first precipitation class in QM without FA. We will first test the necessity of this additional extension for the 
HKH region.



31

HI-AWARE Working Paper 1

Figure 30: Illustrative example of GCM signal downscaling by Quantile Mapping for one grid cell. Upper panel: 
All daily observations and GCM control run values for days in July during control period (1981-2010).  

Middle panel: Empirical distribution functions (ecdf) constructed for observations and GCM control  
run values in upper panel. Lower panel: Future daily temperature for a July in the future as  

from raw GCM input and corresponding downscaled values
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In addition, Themeßl et al. (2011b) further extended the QM methodology for improved simulation of new 
extremes, being values of extremes outside the range of the calibration period, by including constant extrapolation 
of the correction value (i.e., the difference between ecdfobs,cal and ecdfmod,cal) at the highest and lowest quantiles of 
the calibration range. Considering the example in Figure 31, a value in the future GCM run of 80 mm is outside 
the range of the ecdf of the GCM control run. In that case the future downscaled value would be determined as:
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Although the method is robust, for HI-AWARE initial testing and validation of the extended quantile mapping 
methodology will be done for the IGB region to ensure its applicability. The proposed methodology is as follows:

Daily T values July 1981–2010

ecdf T July 1981–2010

T July 2073
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1. Develop a bias-corrected reference climate dataset for daily mean air temperature (Tavg), daily maximum air 
temperature (Tmax), daily minimum air temperature (Tmin), and daily precipitation (P). This dataset has a daily 
temporal resolution spanning 30 years from 1 January 1981 to 31 December 2010 and a spatial resolution 
of 5x5 km.

2. For each 5x5 km grid cell the ecdfs are determined for each of the four climatic variables (Tavg, Tmax, Tmin and 
P) for grid cells in the reference climate dataset for 1981–2010 and the grid cells in the GCM simulation for 
1981–2010 for each month (Jan-Dec).

3. With the correction functions determined from the constructed future GCM data for each of the eight GCMs, 
each of the four meteorological parameters for each studied time slice in the future are corrected to generate 
downscaled hydrological model forcing.
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Figure 31: Illustrative example of GCM signal downscaling by Quantile Mapping for one grid cell. Upper 
panel: All daily observations and GCM control run values for days in July during control period (1981-2010).  

Middle panel: Empirical distribution functions (ecdf) constructed for observations and GCM control  
run values in upper panel. Lower panel: Future daily temperature for a July in the future as from r 

aw GCM input and corresponding downscaled values
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Appendix: Changes in indices 
for climatic extremes 

Figure 32: Projected changes in climate indices between 1971–2000  
and 2071–2100 for RCP4.5 multi-model ensemble
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model ΔR99P (%) ΔCDD (%) ΔWSDI (%) ΔCSDI (%)
ACCESS1-0_r1i1p1 89.1 14.9 1102.8 -91.9

bcc-csm1-1_r1i1p1 104.7 -5.6 490.2 -88.8

bcc-csm1-1-m_r1i1p1 46.1 -2.3 569.3 -87.4

CanESM2_r1i1p1 107.0 -10.0 633.9 -96.7

CanESM2_r2i1p1 90.7 -13.6 716.8 -98.1

CanESM2_r3i1p1 138.8 -6.7 642.9 -95.4

CanESM2_r4i1p1 89.8 -7.5 654.9 -96.3

CanESM2_r5i1p1 110.7 -7.0 544.2 -97.9

CCSM4_r1i1p1 58.8 -0.1 641.7 -92.8

CCSM4_r2i1p1 66.9 -2.9 531.9 -84.8

CMCC-CM_r1i1p1 98.3 10.5 1162.5 -97.1

CMCC-CMS_r1i1p1 56.9 14.3 938.2 -98.4

CNRM-CM5_r1i1p1 41.9 -0.7 454.2 -90.6

CSIRO-Mk3-6-0_r1i1p1 87.5 -8.5 1563.9 -96.2

CSIRO-Mk3-6-0_r2i1p1 74.7 -3.9 1457.2 -97.2

CSIRO-Mk3-6-0_r3i1p1 57.8 -7.5 1600.8 -94.8

CSIRO-Mk3-6-0_r4i1p1 109.3 -9.6 1530.3 -95.4

CSIRO-Mk3-6-0_r5i1p1 87.7 -3.8 1634.4 -96.9

CSIRO-Mk3-6-0_r6i1p1 69.1 -7.8 1563.8 -96.5

CSIRO-Mk3-6-0_r7i1p1 73.3 -4.5 1579.8 -97.4

CSIRO-Mk3-6-0_r8i1p1 103.7 -6.6 1265.4 -95.1

CSIRO-Mk3-6-0_r9i1p1 82.4 -7.3 1828.7 -97.2

CSIRO-Mk3-6-0_r10i1p1 73.8 -6.2 1874.9 -97.0

GISS-E2-R_r6i1p1 47.8 -2.2 764.7 -81.0

GISS-E2-R_r6i1p3 84.0 -8.1 763.1 -81.2

HadGEM2-CC_r1i1p1 86.5 11.8 1026.2 -96.6

HadGEM2-ES_r2i1p1 102.7 7.0 1387.6 -97.6

HadGEM2-ES_r3i1p1 89.9 12.2 1108.9 -94.5

HadGEM2-ES_r4i1p1 85.3 7.0 1006.0 -98.0

inmcm4_r1i1p1 10.5 2.9 347.5 -63.4

IPSL-CM5A-LR_r1i1p1 76.3 0.6 1039.0 -94.4

IPSL-CM5A-LR_r2i1p1 72.2 4.8 886.1 -96.3

IPSL-CM5A-LR_r3i1p1 72.9 3.8 961.0 -96.0

IPSL-CM5A-LR_r4i1p1 75.6 -1.0 1003.5 -95.5

IPSL-CM5B-LR_r1i1p1 35.1 -11.8 424.3 -80.7

MIROC5_r1i1p1 68.0 -4.6 842.8 -98.1

MIROC5_r2i1p1 84.2 -3.6 800.7 -97.1

MIROC5_r3i1p1 107.7 -2.8 755.7 -98.8

MIROC-ESM_r1i1p1 52.1 4.5 820.7 -97.8

MIROC-ESM-CHEM_r1i1p1 39.5 11.0 1191.8 -92.7

MPI-ESM-LR_r1i1p1 39.6 11.5 862.5 -96.0

MPI-ESM-LR_r2i1p1 29.8 14.0 875.1 -95.8

MPI-ESM-LR_r3i1p1 43.2 13.7 961.0 -96.6

MPI-ESM-MR_r1i1p1 55.8 0.0 642.6 -90.9

MPI-ESM-MR_r2i1p1 46.6 17.6 868.8 -92.5

MPI-ESM-MR_r3i1p1 47.9 11.8 631.9 -94.2

MRI-CGCM3_r1i1p1 59.5 -6.4 580.8 -94.2

NorESM1-M_r1i1p1 63.7 7.7 549.8 -89.0

Figure 32: Projected changes in climate indices between 1971-2000 and 2071-2100 for 
RCP4.5 multi-model ensemble 
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Figure 33: Projected changes in climate indices between 1971-2000  
and 2071-2100 for RCP8.5 multi-model ensemble

56

model ΔR99P (%) ΔCDD (%) ΔWSDI (%) ΔCSDI (%)
ACCESS1-0_r1i1p1 152.2 14.9 1804.2 -97.5

bcc-csm1-1_r1i1p1 220.6 -9.6 1215.6 -97.1

CanESM2_r1i1p1 219.0 -17.7 1378.5 -99.6

CanESM2_r2i1p1 227.4 -15.2 1623.6 -99.8

CanESM2_r3i1p1 295.5 -11.7 1426.1 -100.0

CanESM2_r4i1p1 192.9 -12.6 1460.6 -100.0

CanESM2_r5i1p1 261.7 -10.1 1242.2 -99.8

CCSM4_r1i1p1 112.5 7.9 1451.4 -99.7

CCSM4_r2i1p1 120.9 -2.5 1286.5 -97.1

CMCC-CM_r1i1p1 205.7 4.9 2225.6 -99.7

CMCC-CMS_r1i1p1 140.2 24.1 1855.1 -99.4

CNRM-CM5_r1i1p1 75.6 -3.4 884.7 -99.3

CSIRO-Mk3-6-0_r1i1p1 182.0 -13.8 2211.4 -99.1

CSIRO-Mk3-6-0_r2i1p1 175.5 -11.6 2002.3 -99.3

CSIRO-Mk3-6-0_r3i1p1 162.9 -15.8 2201.7 -98.2

CSIRO-Mk3-6-0_r4i1p1 176.9 -15.5 2177.1 -99.5

CSIRO-Mk3-6-0_r5i1p1 143.2 -17.6 2192.2 -99.5

CSIRO-Mk3-6-0_r6i1p1 123.1 -16.4 2236.4 -99.6

CSIRO-Mk3-6-0_r7i1p1 153.9 -19.3 2110.1 -98.7

CSIRO-Mk3-6-0_r8i1p1 183.3 -16.1 1778.9 -98.7

CSIRO-Mk3-6-0_r9i1p1 172.2 -12.4 2552.5 -98.6

CSIRO-Mk3-6-0_r10i1p1 172.1 -13.4 2564.0 -98.6

HadGEM2-CC_r1i1p1 165.7 12.2 1966.3 -98.2

HadGEM2-ES_r1i1p1 185.8 11.7 2185.5 -99.4

HadGEM2-ES_r2i1p1 188.0 13.2 2427.5 -99.2

HadGEM2-ES_r3i1p1 168.4 12.4 2046.3 -99.8

HadGEM2-ES_r4i1p1 180.2 6.6 1776.3 -99.1

inmcm4_r1i1p1 30.3 5.6 905.6 -89.6

IPSL-CM5A-LR_r1i1p1 125.4 3.3 1627.4 -99.3

IPSL-CM5A-LR_r2i1p1 145.7 9.3 1346.7 -99.7

IPSL-CM5A-LR_r3i1p1 143.9 6.4 1679.0 -99.7

IPSL-CM5A-LR_r4i1p1 140.8 13.7 1651.8 -99.5

IPSL-CM5A-MR_r1i1p1 145.5 -3.3 1739.9 -99.4

IPSL-CM5B-LR_r1i1p1 88.4 -16.7 897.8 -97.1

MIROC5_r1i1p1 145.3 -12.4 1337.8 -99.8

MIROC5_r2i1p1 207.2 -8.0 1380.4 -99.8

MIROC5_r3i1p1 183.0 -2.1 1429.5 -99.9

MIROC-ESM_r1i1p1 77.2 14.3 1781.7 -100.0

MIROC-ESM-CHEM_r1i1p1 71.8 27.5 2529.5 -100.0

MPI-ESM-LR_r1i1p1 103.8 24.7 2045.0 -99.6

MPI-ESM-LR_r2i1p1 74.0 22.6 1887.4 -99.5

MPI-ESM-LR_r3i1p1 87.3 24.7 2101.0 -99.8

MPI-ESM-MR_r1i1p1 90.5 14.3 1560.6 -99.8

MRI-CGCM3_r1i1p1 157.0 -12.6 1452.5 -97.4

NorESM1-M_r1i1p1 151.6 10.1 1246.7 -98.8

Figure 33: Projected changes in climate indices between 1971-2000 and 2071-2100 for 
RCP8.5 multi-model ensemble 
 
 
 



36

References

Andermann, C; Bonnet, S; and Gloaguen, R (2011) ‘Evaluation of precipitation data sets along the Himalayan front’, 
Geochemistry, Geophysics, Geosystems, 12(7): 1–16

Arnell, NW (1999) ‘Climate change and global water resources’, Global Environmental Change, 9(1999): S31–S49

Bajracharya, SR; and Shrestha, AB (2011) The Status of Glaciers in the Hindu Kush-Himalayan Region. Kathmandu, Nepal: 
ICIMOD

Batura Investigations Group (1979) ‘The Batura Glacier in the Karakoram Mountains and its variations’, Scientia Sinica, 22(8): 
958–974

Bordoy, R; and Burlando, P (2013) ‘Bias correction of regional climate model simulations in a region of complex orography’, 
Journal of Applied Meteorology and Climatology, 52: 82–101

Bordoy, R; and Burlando, P (2014) ‘Stochastic downscaling of precipitation to high-resolution scenarios in orographically 
complex regions: 1. Model evaluation’, Water Resources Research, 50(1): 540–561

Christensen, JH; and Christensen, OB (2002) ‘Severe summertime flooding in Europe’, Nature, 421(February): 805–806

Duncan, JMA; and Biggs, EM (2012) ‘Assessing the accuracy and applied use of satellite-derived precipitation estimates over 
Nepal’, Applied Geography, 34: 626–638

Eden, JM; and Widmann, M (2014) ‘Downscaling of GCM-simulated precipitation using model output statistics’, Journal of 
Climate, 27: 312–324

Eden, JM; Widmann, M; Grawe, D; and Rast, S (2012) ‘Skill, correction, and downscaling of GCM-simulated precipitation’, 
Journal of Climate, 25: 3970–3984

Farr, TG; Rosen, PA; Caro, E; Crippen, R; Duren, R; Hensley, S; Kobrick, M; Paller, M; Rodriguez, E; Roth, L; Seal, D; Shaffer, S; 
Simada, J; Umland, J; Werner, M; Oskin, M; Burbank, D; Alsdorf, D (2007) ‘The Shuttle Radar Topography Mission’, Reviews of 
Geophysics, 45(RG2004)

Ferraris, L; Gabellani, S; Rebora, N; and Provenzale, A (2003) ‘A comparison of stochastic models for spatial rainfall 
downscaling’, Water Resources Research, 39(12): 1–16

Forsythe, N; Fowler, HJ; Blenkinsop, S; Burton, A; Kilsby, CG; Archer, DR; Harpham, C; and Hashmi, MZ (2014) ‘Application 
of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The upper Indus basin’, Journal of 
Hydrology, 517: 1019–1034

Fowler, HJ; Blenkinsop, S; and Tebaldi, C (2007) ‘Linking climate change modelling to impacts studies: recent advances in 
downscaling techniques for hydrological modelling’, International Journal of Climatology, 27(12): 1547–1578 

Gardelle, J; Berthier, E; and Arnaud, Y (2012) ‘Slight mass gain of Karakoram glaciers in the early twenty-first century’, Nature 
Geoscience, 5(5): 322–325

Gardelle, J; Berthier, E; Arnaud, Y; and Kääb, A (2013) ‘Region-wide glacier mass balances over the Pamir-Karakoram-
Himalaya during 1999–2011’, The Cryosphere, 7(4): 1263–1286

Hagemann, S; Machenhauer, B; Jones, R; Christensen, OB; Deque, M; Jacob, D; and Vidale, PL (2004) ‘Evaluation of water 
and energy budgets in regional climate models applied over Europe’, Climate Dynamics, 23(5): 547–567

Hay, LE; McCabe, GJ; Wolock, DM; and Ayers, MA (1991) ‘Simulation of precipitation by weather type analysis’, Water 
Resources Research, 27(4): 493–501

Hewitt, K (2005) ‘The Karakoram anomaly? Glacier expansion and the “elevation effect,” Karakoram Himalaya’, Mountain 
Research and Development, 25(4): 332–340

Hewitt, K (2007a) ‘Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya’, Journal of 
Glaciology, 53(181): 181–188



37

HI-AWARE Working Paper 1

Hewitt, K (2011) ‘Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin’, 
Mountain Research and Development, 31(3): 188–200

Immerzeel, WW; Pellicciotti, F; and Shrestha, AB (2012) ‘Glaciers as a proxy to quantify the spatial distribution of precipitation in 
the Hunza basin’, Mountain Research and Development, 32(1): 30–38

Immerzeel, WW; Pellicciotti, F; and Bierkens, MFP (2013) ‘Rising river flows throughout the twenty-first century in two Himalayan 
glacierized watersheds’, Nature Geoscience, 6(8): 1–4

Immerzeel, WW; Wanders, N; Lutz, AF; Shea, JM; and Bierkens, MFP (2015) ‘Reconciling high altitude precipitation with glacier 
mass balances and runoff’, Hydrology and Earth System Science, 12: 4755–4784

Karl, TR; Wang, WC; Schlesinger, ME: Knight, RW; and Porthman, D (1990) ‘A method of relating General Circulation Model 
simulated climate to the observed local climate. Part I: Seasonal statistics’, Journal of Climate, 3: 1053–1079

Kay, AL; Davies, HN; Bell, VA; and Jones, RG (2008) ‘Comparison of uncertainty sources for climate change impacts: flood 
frequency in England’, Climatic Change, 92: 41–63

Kjellström, E; Boberg, F; Castro, M; Christensen, JH; Nikulin, G; and Sánchez, E (2010) ‘Daily and monthly temperature and 
precipitation statistics as performance indicators for regional climate models’, Climate Research, 44: 135–150

Kraaijenbrink, P (2013) Advanced Delta Change method, Internal Report: IR 2013-04, De Bilt, The Netherlands.

Leander, R; and Buishand, TA (2007) ‘Resampling of regional climate model output for the simulation of extreme river flows’, 
Journal of Hydrology, 332: 487–496

Lutz, AF; Immerzeel, WW; Shrestha, AB; and Bierkens, MFP (2014a) ‘Consistent increase in High Asia’s runoff due to increasing 
glacier melt and precipitation’, Nature Climate Change, 4: 87–592

Lutz, AF; Immerzeel, WW; and Kraaijenbrink, PDA (2014b) Gridded Meteorological Datasets and Hydrological Modelling in the 
Upper Indus Basin. FutureWater Report 130, Wageningen, The Netherlands

Maraun, D; Wetterhall, F; Ireson, AM; Chandler, RE; Kendon, EJ; Widmann, M; Brinen, S; Rust, HW; Sauter, T; Themeßl, M; 
Venema, VKC; Chun, KP; Goodess, CM; Jones, RG; Onof, C; Vrac, M; Thiele-Eich, I (2010) ‘Precipitation downscaling under 
climate change: Recent developments to bridge the gap between dynamical models and the end user’, Reviews of Geophysics, 
48(RG3003): 1–34

Maussion, F; Scherer, D; Mölg, T; Collier, E; Curio, J; and Finkelnburg, R (2014) ‘Precipitation seasonality and variability over 
the Tibetan Plateau as resolved by the High Asia reanalysis’, Journal of Climate, 27(5): 1910–1927

Moron, V; Robertson, AW; Ward, MN; and Ndiaye, O (2008) ‘Weather types and rainfall over Senegal. Part II: Downscaling of 
GCM simulations’, Journal of Climate, 21(2): 288–307

Moss, RH; Edmonds, JA; Hibbard, KA; Manning, MR; Rose, SK; van Vuuren, DP; Carter, TR; Emori, S; Kainuma, M; Kram, T; 
Meehl, GA; Mitchell, JFB; Nakicenovic, N; RIahi, K; Smith, SJ; Stouffer, RJ; Thomson, AM; Weyant, JP; and Wilbanks, TJ (2010) 
‘The next generation of scenarios for climate change research and assessment’, Nature, 463(7282): 747–56

Palazzi, E; von Hardenberg, J; and Provenzale, A (2013) ‘Precipitation in the Hindu-Kush Karakoram Himalaya: Observations 
and future scenarios’, Journal of Geophysical Research: Atmospheres, 118: 85–100

Perkins, SE; Pitman, AJ; Holbrook, NJ; and McAneney, J (2007) ‘Evaluation of the AR4 climate models’ simulated daily 
maximum temperature, minimum temperature, and precipitation over Australia using probability density functions’, Journal of 
Climatology, 20: 4356–4376

Prudhomme, C; Reynard, N; and Crooks, S (2002) ‘Downscaling of global climate models for flood frequency analysis: where 
are we now?’, Hydrological Processes, 16(6): 1137–1150

Ragettli, S; Pellicciotti, F; Bordoy, R; and Immerzeel, WW (2013) ‘Sources of uncertainty in modeling the glacio-hydrological 
response of a Karakoram watershed to climate change’, Water Resources Research, 49: 1–19

Rummukainen, M. (1997), Methods for statistical downscaling of GCM simulations. RMK No 80, Swedish Meteorological and 
Hydrological Institute, Norrköping, Sweden

Sanchez, E; Romera, R; Gaertner, MA; Gallardo, C; and Castro, M (2009) ‘A weighting proposal for an ensemble of regional 
climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions’, 
Atmospheric Science Letters, 10: 249–254



38

Schmidli, J; Frei, C; and Vidale, PL (2006) ‘Downscaling from GCM precipitation: A benchmark for dynamical and statistical 
downscaling methods’, International Journal of Climatology, 26(5): 679–689

Sillmann, J; Kharin, VV; Zhang, X; Zwiers, FW; and Bronaugh, D (2013a) ‘Climate extremes indices in the CMIP5 multimodel 
ensemble: Part 1. Model evaluation in the present climate’, Journal of Geophysical Research: Atmospheres, 118(4): 1716–1733

Sillmann, J; Kharin, VV; Zwiers, FW; Zhang, X; and Bronaugh, D (2013b) ‘Climate extremes indices in the CMIP5 multimodel 
ensemble: Part 2. Future climate projections’, Journal of Geophysical Research: Atmospheres, 118(6): 2473–2493

Taylor, KE; Stouffer, RJ; and Meehl, GA (2012) ‘An overview of CMIP5 and the experiment design’, Bulletin of the American 
Meteorological Society, 93(4): 485–498

Themeßl, MJ; Gobiet, A; and Leuprecht, A (2011a) ‘Empirical-statistical downscaling and error correction of daily precipitation 
from regional climate models’, International Journal of Climatology, 31(10): 1530–1544

Themeßl, MJ; Gobiet, A; and Heinrich, G (2011b) ‘Empirical-statistical downscaling and error correction of regional climate 
models and its impact on the climate change signal’, Climatic Change, 112(2): 449–468

Turner, AG; and Annamalai, H (2012) ‘Climate change and the South Asian summer monsoon’, Nature Climate Change, 2: 
587–595

van Pelt, SC; Beersma, JJ; Buishand, TA; van den Hurk, BJJM; and Kabat, P (2012) ‘Future changes in extreme precipitation 
in the Rhine basin based on global and regional climate model simulations’, Hydrology and Earth System Sciences, 16(12): 
4517–4530

van Vuuren, DP; Stehfest, E; den Elzen, MGJ; van Vliet, J; and Isaac, M (2010) ‘Exploring IMAGE model scenarios that keep 
greenhouse gas radiative forcing below 3W/m2 in 2100’, Energy Economics, 32(5): 1105–1120

van Vuuren, DP; Stehfest, E; den Elzen, MGJ; Kram, T; van Vliet, J; Deetman, S; Isaac, M; Goldewijk, KK; Hof, A; Beltran, AM; 
Oostenrijk, R; van Ruijven, B (2011a) ‘RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C’, 
Climatic Change, 109: 95–116

van Vuuren, DP; Edmonds, J; Kainuma, M; Riahi, K; Thomson, A; Hibbard, K; Hurtt, GC; Kram, T; Krey, V; Lamarque, JF; Masui, 
T; Meinshausen, M; Nakicenovic, N; Smith, SJ; Rose, SK (2011b) ‘The representative concentration pathways: an overview’, 
Climatic Change, 109(1-2): 5–31

Weedon, GP; Balsamo, G; Bellouin, N; Gomes, S; Best, MJ; and Viterbo, P (2014) ‘The WFDEI meteorological forcing data set: 
WATCH forcing data methodology applied to ERA-Interim reanalysis data’, Water Resources Research, 50(9): 7505–7514

Wilby, RL; and Wigley, TLM (1997) ‘Downscaling general circulation model output: a review of methods and limitations’, 
Progress in Physical Geography, 21(4): 530–548

Winiger, M; Gumpert, M; and Yamout, H (2005) ‘Karakorum-Hindukush-western Himalaya: assessing high-altitude water 
resources’, Hydrological Processes, 19(12): 2329–2338

Zorita, E; and Storch, H (1999) ‘The analog method as a simple statistical downscaling technique: Comparison with more 
complicated methods’, Journal of Climate, 12: 2474–2489



39

HI-AWARE Working Paper 1



40

© HI-AWARE 2016
Himalayan Adaptation, Water and Resilience (HI-AWARE) 
c/o ICIMOD
GPO Box 3226, Kathmandu, Nepal 
Tel +977 1 5003222 Email: hi-aware@icimod.org Web: www.hi-aware.org

ISBN 978 92 9115 383 1


