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Millions of subsistence farmers cultivate crops on terraces. These farmers face unique challenges including severe shortages of
arable land and remoteness leading to poor access to inputs including nitrogen fertilizer. These challenges contribute to human and
livestock malnutrition. Terrace walls (risers) as a vertical surface to grow climbing or trailing legumes represents an opportunity
to help overcome these challenges. These crops are rich in minerals and protein, and their associated microbes produce nitrogen
fertilizer. Rice bean is already grown on terrace risers in South Asia. This paper reviews the literature concerning crops that are
currently farmed on terrace walls (FTW), then surveys climbing legume species that have potential for FTW, focusing on crops that
are nutritious and tolerate shade (caused by the terrace wall) and resist drought (many terrace farms experience an extended
dry season). A total of 29 legume species are discussed including climbing varieties of jack bean, common bean, cowpea, winged
bean, horse gram and velvet bean. The review concludes by discussing the practical challenges of farmer adoption of FTW and
makes concrete recommendations.  Terrace wall cultivation of legumes represents an opportunity to intensify agriculture and
increase resiliency in remote mountainous areas.
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Abstract  44	
  
 45	
  
Millions of subsistence farmers cultivate crops on terraces. These farmers face unique challenges 46	
  
including severe shortages of arable land and remoteness leading to poor access to inputs 47	
  
including nitrogen fertilizer. These challenges contribute to human and livestock malnutrition. 48	
  
Terrace walls (risers) as a vertical surface to grow climbing or trailing legumes represents an 49	
  
opportunity to help overcome these challenges. These crops are rich in minerals and protein, and 50	
  
their associated microbes produce nitrogen fertilizer. Rice bean is already grown on terrace risers 51	
  
in South Asia. This paper reviews the literature concerning crops that are currently farmed on 52	
  
terrace walls (FTW), then surveys climbing legume species that have potential for FTW, 53	
  
focusing on crops that are nutritious and tolerate shade (caused by the terrace wall) and resist 54	
  
drought (many terrace farms experience an extended dry season). A total of 29 legume species 55	
  
are discussed including climbing varieties of jack bean, common bean, cowpea, winged bean, 56	
  
horse gram and velvet bean. The review concludes by discussing the practical challenges of 57	
  
farmer adoption of FTW and makes concrete recommendations.  Terrace wall cultivation of 58	
  
legumes represents an opportunity to intensify agriculture and increase resiliency in remote 59	
  
mountainous areas. 60	
  
 61	
  

In review



1. Introduction to terrace agriculture and its challenges  62	
  
Subsistence smallholder agriculture generally refers to a farming system that uses few 63	
  

inputs on a very limited land base and produces food almost entirely for self-consumption 64	
  
(Graeub et al., 2016). A subset of subsistence farmers cultivate crops and raise livestock on steep 65	
  
hillside terraces. There appears to be no global estimates of the land area or number of farmers 66	
  
involved in terrace agriculture, an oversight that should be addressed by the Food and 67	
  
Agricultural Organization (FAO). Terraces have been reported to cover approximately 68	
  
13,200,000 hectares in China and 2,000,000 hectares in Peru (Inbar and Llerena, 2000; Lu et al., 69	
  
2009). Stanchi et al. noted that there is no reliable quantitative data concerning the total area 70	
  
currently covered by terraces in Europe (Stanchi et al., 2012). However it can be stated that 71	
  
terraced agriculture certainly covers a significant portion of land in Southeast Asia, the 72	
  
Himalayan Region, China, the Andes, Central America, East Africa, and a few locations in 73	
  
Europe. It is reasonable to estimate that minimally tens of millions of farmers worldwide rely on 74	
  
terraced land.  75	
  

 76	
  
In general, subsistence farmers are inherently vulnerable to biophysical risks such as 77	
  

drought, flooding, pests and diseases (Morton, 2007). Such farmers may also face socioeconomic 78	
  
constraints, including but not limited to, restricted access to markets and political instability 79	
  
(Morton, 2007). Subsistence farmers who practice hillside terraced agriculture face additional 80	
  
unique challenges including severe limits on arable surface area, drudgery associated with 81	
  
walking up and down hillsides, the narrowness of fields which limit livestock labour, enhanced 82	
  
vulnerability to climate, erosion of soil from sloped topography, and reduced access to inputs and 83	
  
markets due to the inherent remoteness of such farms in mountainous regions, all of which 84	
  
combine to exacerbate human and livestock malnutrition (Chapagain and Raizada, 2017). 85	
  

  86	
  
Terrace farmers must produce food on a very limited surface area. For example, in Nepal, 87	
  

the average agricultural landholding on the flat land (terai) is 1.26 ha, but that number shrinks to 88	
  
0.77 ha for hilly regions and 0.068 ha on mountainous land (Adhikary, 2004). Population 89	
  
pressure makes the task of producing enough yield to provide for a household with limited 90	
  
landholdings an increasingly difficult one (Paudel, 2002). For this reason, there is a need for 91	
  
terrace farmers to intensify production using the entire surface area available. 92	
  

 93	
  
There is increased drudgery associated with terrace farming. Hillside farmers are 94	
  

constantly working against the rugged terrain and complex topography of their land. The 95	
  
narrowness of some terraces and steep terrain can limit access to livestock or machinery, 96	
  
resulting in increased human labour (e.g. land preparation) (Adhikary, 2004). Furthermore, 97	
  
farmers need to walk up and down steep grades with heavy loads, which places particular 98	
  
hardship on women, for not only is hill agriculture dependant on their labour, but they are also 99	
  
traditionally tasked with household duties and childcare (Pande, 1996).  100	
  

 101	
  
The interplay between mountainous topography and climate exacerbates the vulnerability 102	
  

of subsistence farmers. The varying topography creates microclimates and diverse soil 103	
  
characteristics over small areas (Upadhyay, 1993), which complicates the development of best 104	
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management practices and limits where and when a particular crop can be grown within a 105	
  
household’s already limited land holdings (Chapagain and Raizada, 2017; Pande, 1996). Many 106	
  
terrace farms are located in the sub-tropics which have uni-modal or bi-modal rainfall patterns 107	
  
resulting in an extended dry season which severely limits production (Small and Raizada, 2017). 108	
  
Terrace farmers are made more vulnerable by global climate change. For example, in Nepal, 109	
  
climate change has been associated with more frequent severe weather events (flooding, 110	
  
hailstorms, drought, delayed Monsoon rainfall) (Small and Raizada, 2017).Global climate 111	
  
change is expected to decrease the predictability of rainfall, and warming will also shift spring 112	
  
melting earlier (Morton, 2007). In mountainous regions where meltwater can be used for 113	
  
irrigation, this phenomenon will leave less available during the dry summer months when it is 114	
  
critically needed (Morton, 2007).  115	
  

 116	
  
Another problem concerning terrace agriculture is soil stability. It was found in the mid-117	
  

hills of Nepal that 93% of farmers faced some amount of terrace failure, which they spent an 118	
  
average of 14 days of labour per year repairing (Gerrard and Gardner, 2000). Preventing rain 119	
  
from directly hitting the terraces, along with root systems that stabilize soils at terrace edges, 120	
  
may help to prevent terrace failure (Acharya et al., 2007; Andersen, 2012; Gerrard and Gardner, 121	
  
2000; Van Dijk and Bruijnzeel, 2004). Erosion from terrace edges, causing loss of nutrient-rich 122	
  
topsoil, is an important consequence of terrace topography (Van Dijk and Bruijnzeel, 2004). For 123	
  
example, in a study conducted over 2 years in the mid-hills of Nepal, there were losses of up to 124	
  
12.9 tonnes of soil per hectare per year (Gardner and Gerrard, 2003). Conservation methods such 125	
  
as strip cropping have been attempted with variable success, however farmers are unwilling to 126	
  
sacrifice cultivatable land unless there will be a tangible benefit in terms of income (Acharya et 127	
  
al., 2008).  128	
  

 129	
  
Remoteness can compound the impact of soil degradation and low productivity by 130	
  

making access to restorative agricultural inputs difficult. For example, on terrace farms in the 131	
  
mid and high hills of Nepal, limited income and remoteness has been shown to prevent local 132	
  
farmers from having access to markets to purchase inputs such as nitrogen fertilizer to help 133	
  
replenish lost nutrients, in comparison to the foothills and flatter terai region (Paudyal et al., 134	
  
2001).  Practices or crops that allow farmers to be self-sufficient in soil nutrient management are 135	
  
much needed. Reduced access to markets prevents farmers from gaining cash income from their 136	
  
products, and reduces access to knowledge, exemplified in Paudyal et al.’s review of maize in 137	
  
Nepal, which notes that sale of surplus grain and vegetables and access to extension are limited 138	
  
in the remote high hills (Paudyal et al., 2001). Vulnerability to emergencies is also increased as 139	
  
observed in the recent 2015 Nepal earthquake (Neupane, 2015). As mentioned above, terrace 140	
  
farmers in many regions experience an extended dry season; this causes seasonal out migration 141	
  
of men or entire families in search of work, which is made increasingly challenging in remote 142	
  
areas due to poor access to transportation and communication infrastructure, often along with 143	
  
issues of labour exploitation and discrimination as highlighted in a review of seasonal migration 144	
  
in Ethiopia (Asfaw et al., 2010). Any new approach that can generate on-farm income during the 145	
  
dry season may help to prevent this social upheaval. 146	
  

 147	
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All of the above factors contribute to human and livestock malnutrition amongst terrace 148	
  
farm households (Chapagain and Raizada, 2017). In general, smallholder farmers may have 149	
  
adequate calories, but lack some essential nutrients, of which protein (amino acid) deficiency and 150	
  
iron deficiency (anemia) are particularly problematic (Broughton et al., 2003; WHO, 2001). The 151	
  
latter causes weakness and lessens the ability of farmers to work (WHO, 2001). It is estimated 152	
  
that 50% of pregnant women and 40% of preschool aged children in developing nations are 153	
  
anemic (WHO, 2001). Zinc deficiency is also characteristic of people who tend to get most of 154	
  
their calories from cereals, and have minimal high-quality protein (Darton-Hill, 2013). Zinc 155	
  
deficiency can cause stunted growth, low immune system functioning and diarrheic disease 156	
  
(Darton-Hill, 2013). Other significant micronutrient deficiencies identified by the World Health 157	
  
Organization include vitamin A, folate, and iodine; these often occur because of inadequate 158	
  
diversity in the diet due to limited resources (Akhtar, 2016; Johns and Eyzaguirre, 2007).With 159	
  
respect to livestock, during the dry season it becomes difficult for farmers in many regions to 160	
  
find enough high quality fodder (Small and Raizada, 2017). Underweight livestock, overgrazing 161	
  
and illegal harvest of fodder from forests are just three of the several repercussions that arise 162	
  
from this situation (Upadhyay, 1993).  163	
  
 164	
  
2. The potential for legume cultivation on terrace walls (risers) 165	
  
 166	
  

Use of the vertical surface of terrace walls (risers, Fig. 1) to grow climbing or trailing 167	
  
legumes represents an opportunity to help overcome some of the challenges faced by terrace 168	
  
farmers. Legumes could be planted at either the base or top of the riser, and climb up or trail 169	
  
down the vertical surface, respectively. This technique may be referred to as farming on terrace 170	
  
walls (FTW). Growth of legumes on risers have the potential to help terrace farmers intensify 171	
  
their farms without the need for additional space, help improve their cash incomes, gain 172	
  
resiliency to drought, reduce soil erosion, improve soil fertility without external nitrogen 173	
  
fertilizer, and improve human and livestock nutrition.  174	
  
 175	
  

Legumes belong to the family Leguminosae (or Fabaceae) which consists of over 750 176	
  
genera and 20,000 species (Upadhyaya et al., 2011). They range from small herbs to large trees, 177	
  
however the relevant types for FTW are edible legumes with climbing and trailing 178	
  
characteristics. These legumes include several major edible human crops such as common beans, 179	
  
peas and cowpeas, but also underutilized and wild legumes described in this review. However, 180	
  
the legumes also include cover crops and green manures that, aside from soil benefits, can be 181	
  
used as livestock fodder. Certain legumes are able to climb because they have specialized 182	
  
structures called tendrils, a type of modified aerial stem (Tortora and Parish, 1970). Leaflets are 183	
  
replaced by tendrils which may vary in structure, but all function to support the stem of the plant 184	
  
(Langenheim, 1982). They are long and slender, allowing them to wind around objects they 185	
  
encounter, and some have small disks that stick on to supporting structures (Tortora and Parish, 186	
  
1970). Legume grains generally contain high levels of protein, carbohydrates, fibre and minerals 187	
  
(iron and zinc) that make them an important tool for combating human malnutrition (Broughton 188	
  
et al., 2003; Upadhyaya et al., 2011). The nutritional characteristics of legume leaves also make 189	
  
them a protein-rich fodder for livestock (Upadhyaya et al., 2011). The issue of fodder shortage in 190	
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the dry season may be resolved if drought tolerant legumes are selected that continue to produce 191	
  
fodder using only residual moisture (Small and Raizada, 2017). The high protein content of 192	
  
legumes is due to their unique ability to associate with symbiotic bacteria (rhizobia) that inhabit 193	
  
root nodules (Dilworth et al., 2008); these bacteria convert atmospheric nitrogen gas (N2) into 194	
  
ammonia (NH3) which serves as a limiting building block for amino acids, including those that 195	
  
lead to human protein malnutrition (Broughton et al., 2003). This process is called biological 196	
  
nitrogen fixation (Dilworth et al., 2008). Legume leaves and roots also have enhanced levels of 197	
  
plant-available nitrogen and protein, which, if not harvested, can be incorporated into soils as a 198	
  
form of organic nitrogen (Graham and Vance, 2003).  Legume-derived nitrogen reduces the need 199	
  
for synthetic nitrogen fertilizer which would require cash and access to markets, which are both 200	
  
limited due to the remoteness of terrace farms, as noted above. Incorporation of legume residues 201	
  
into soil can increase soil organic matter and structure, to improve nutrient holding capacity and 202	
  
prevent erosion (Dilworth et al., 2008). Spreading-type legumes can also provide physical 203	
  
coverage to soils against rainfall, thus preventing erosion (Dilworth et al., 2008), especially if 204	
  
these varieties are planted at terrace edges.  205	
  

 206	
  
3. Scope of this review 207	
  
 208	
  

This paper reviews the limited literature concerning the current cultivation of crops and 209	
  
forages on terrace walls. After defining ideal agronomic traits, we survey climbing legume 210	
  
species that have potential to grow on terrace walls, focusing on crops that tolerate stress such as 211	
  
drought, are shade tolerant and are nutritious to humans and/or livestock. The review discusses 212	
  
the practical challenges that will limit farmer adoption of this practice. The paper concludes by 213	
  
making concrete recommendations to address these challenges. 214	
  

 215	
  
4. Literature concerning current cultivation on terrace walls (terrace risers) 216	
  
 217	
  

There has been no holistic assessment of terrace wall cultivation, and it is difficult to 218	
  
determine through the literature where the idea may have originated. One could infer from this 219	
  
that it was developed by indigenous farmers through trial and error. From the scattered reports 220	
  
that exist on terrace wall cultivation, Andersen briefly notes that short varieties of rice bean 221	
  
(Vigna umbellata) have been observed to grow on risers in India and Nepal to provide soil 222	
  
stability, feed and fodder (discussed in detail below) (Andersen, 2012). Most papers have noted 223	
  
in passing that grasses or forages are grown on risers as a strategy for increased structural 224	
  
stability or for improved nutrient health of terrace soils (Acharya et al., 2007; Andersen, 2012; 225	
  
Gerrard and Gardner, 2000; Pilbeam et al., 2000; Sharma et al., 2001). The lessons from these 226	
  
studies may help to inform efforts to cultivate legumes on terrace walls.  227	
  

 228	
  
For example, Pilbeam et al. reported that fodder grasses can be grown on terrace risers in 229	
  

the mid-hills of Nepal; these riser grasses could contribute to the portion of livestock diets (30-230	
  
45%, regardless of species) that is comprised of grass (Pilbeam et al., 2000). It was reported that 231	
  
when the grass was removed from risers and fed to livestock, and if the resulting livestock 232	
  
manure was spread on terrace benches, then there was a net movement of nitrogen from non-233	
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agricultural to agricultural land (Pilbeam et al., 2000). The fact that risers were designated as 234	
  
“non-agricultural” space indicates that the vertical area is generally not thought of as productive 235	
  
or useful in terms of cultivation.  236	
  

 237	
  
Gerrard and Gardner noted in their study of landslide events in the mid-hills of Nepal that 238	
  

terraces were more susceptible to failure early in the season when irrigation was applied and riser 239	
  
vegetation was not yet established (Gerrard and Gardner, 2000). The lesson learned from this 240	
  
study was that if structural stability is one of the goals of planting on risers, fast growing 241	
  
varieties would most likely be more effective. In India, the National Watershed Development 242	
  
Project for Rain-fed Areas distributed broom grass (Thysanolena maxima) to farmers, hoping to 243	
  
utilize its soil binding properties for terrace stability (Sharma et al., 2001). In this case study, 244	
  
Sharma et al. found that perennial species were more helpful in preventing structural breakdown 245	
  
of terrace risers than annuals (Sharma et al., 2001).  246	
  

 247	
  
A study by Acharya et al. may be especially informative in the context of farmer 248	
  

adoption of a new crop variety or practice. In order to reduce nutrient losses in the mid-hills of 249	
  
Nepal, the researchers planted fodder grass (Setaria anceps) on risers (Acharya et al., 2007). It 250	
  
was concluded that this practice prevented runoff but had no effect on the more significant 251	
  
problem of leaching (Acharya et al., 2007). The relevant observation from this study was that 252	
  
farmer adoption was more likely out of interest for higher quality fodder than environmental 253	
  
improvements, and that the production of fodder on-farm saved time over collecting it from the 254	
  
forest, thus reducing labour (Acharya et al., 2007). It was noted that establishment of the grass 255	
  
on risers initially caused more disturbance to the farming system, with the major benefits 256	
  
observed in subsequent years, which may be an obstacle to adoption (Acharya et al., 2007). This 257	
  
study emphasized the importance of farmers’ priorities as vital starting points for introducing any 258	
  
new species (Acharya et al., 2007). The study also discusses the importance of multiple decision-259	
  
making factors when it comes to the promotion of farmer adoption of a new technique (Acharya 260	
  
et al., 2007).  261	
  
 262	
  
5. Climbing legume agronomic traits that address the vulnerabilities of terrace farming 263	
  
systems 264	
  
 265	
  

Terrace farming systems are diverse around the world, in terms of their biophysical and 266	
  
socioeconomic contexts, and hence a particular plot may have unique priorities in terms of crop 267	
  
species selection. However, amongst the climbing legumes, there are some species that may be 268	
  
able to address the above noted vulnerabilities of many terrace farming systems based on their 269	
  
agronomic traits. These traits are summarized (Fig. 2). Learning from earlier studies, to ensure 270	
  
adoption, a climbing legume must have obvious utility as food, fodder, or for income generation. 271	
  
Secondary traits would include: drought tolerance (to provide nutritious food and fodder in the 272	
  
dry season), shade tolerance (since the terrace wall may cause shading), adaptation to low 273	
  
chemical inputs (to combat remoteness), low labour requirements (to reduce drudgery), and 274	
  
utility as a cover crop or green manure (to maintain and improve soil quality). Tertiary traits 275	
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include those that allow crop growth under marginal soils (saline, acidic, alkaline) or for which 276	
  
improved varieties have been bred.  277	
  
 278	
  
6. Survey of climbing legume species that have potential to mitigate the vulnerabilities of 279	
  
terrace farming systems 280	
  
 281	
  

The current literature was reviewed to identify species with agronomic, nutritional and 282	
  
alternative use traits that may render them successful for growth on terrace walls. In total, 29 283	
  
climbing legume species belonging to 16 different genera show some promise with respect to 284	
  
farming on terrace walls (complete list, Table S1). The species are organized by their reported 285	
  
tolerance to abiotic stress (Table 1), rainfall requirements for those that are drought tolerant 286	
  
(Table 2), reported utility (Table 3), specific nutritional details (Table 4), and current level of 287	
  
genetic improvement (Table 5). Below is a summary of each candidate genus:  288	
  
 289	
  
Amphicarpaea: There are three noteworthy species of climbing legumes from the genus 290	
  
Amphicarpaea, a close relative of the soybean family. These species generally grow on separate 291	
  
continents: A. africana, A. bracteata (also referred to as hog peanut or talet bean) and A. 292	
  
edgeworthii from Africa, North America and Asia, respectively, with A. edgeworthii adapted to 293	
  
the mid-altitude Himalayas (Turner and Fearing, 1964) where there are many terrace farms. They 294	
  
all have twining vines, however most available information focuses on the two most similar 295	
  
species, A. bracteata and A. edgeworthii (Turner and Fearing, 1964). Both of these species 296	
  
produce two types of fruit, aerial pods and subterranean beans, from heteromorphic flowers – a 297	
  
botanical feature that gave rise to the name of this genus (Graham, 1941; Zhang et al., 2006). 298	
  
The underground pods are primarily the ones consumed, and they have also been reported to be 299	
  
dug up and eaten by pigs, giving rise to the common name ‘hog peanut’ (Graham, 1941). A. 300	
  
bracteata interestingly showed >3-fold increased productivity under 80% shaded conditions 301	
  
compared to full sunlight (Lin et al., 1999), suggesting that it may perform well in the shadow of 302	
  
terrace walls. Though some of the characteristics of this genus sound promising, limited recent 303	
  
literature suggests that the species may need some genetic improvement.   304	
  
 305	
  
Apios: A. americana and A. priceana are vines native to North America, and have been similarly 306	
  
neglected in recent studies. Some older reviews cited their potential in agriculture as a crop and 307	
  
to enable soil improvement (Graham, 1941; Putnam et al., 1991). Both species have edible tubers 308	
  
that appear to have high levels of carbohydrates and protein, although it was found that the 309	
  
amino acid profile of A. priceana is relatively poor compared to major root crops (Walter et al., 310	
  
1986).  A. americana was able to produce nodules when inoculated with rhizobia traditionally 311	
  
used for soybean and cowpea (Putnam et al., 1991), indicating good potential for nitrogen 312	
  
fixation if introduced into agricultural systems. 313	
  
 314	
  
Canavalia: Canavalia ensiformis is a legume commonly referred to as jack bean or overlook 315	
  
bean, which has several agronomic characteristics and diverse uses that may render it useful to 316	
  
terrace farmers (Bazill, 1987; Haq, 2011; Kay, 1979). For this reason, this species will be 317	
  
reviewed extensively here. The crop is a weak perennial (because of this it is usually grown as an 318	
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annual) native to the West Indies and Central America (Haq, 2011; Kay, 1979). C. ensiformis is 319	
  
adapted to the humid tropics, and though it is reported to require 900-1200 mm rainfall/year 320	
  
during early growth, once established it has a deep root system and becomes drought tolerant and 321	
  
can survive on as little as 650 mm/year (Haq, 2011; Kay, 1979; Pound et al., 1972). It has also 322	
  
been reported to be tolerant of saline or waterlogged soils (Haq, 2011; Kay, 1979), the latter 323	
  
condition observed on rice terraces as already noted. A study conducted in Costa Rica found that 324	
  
C. ensiformis produced well in shaded conditions, able to grow with only 18% of full sunlight 325	
  
(Bazill, 1987), making it a strong candidate for growth on terrace walls. Indeed, the shade 326	
  
tolerance of this species has allowed its widespread use as a cover crop under cocoa, coconut, 327	
  
citrus and pineapple (Haq, 2011).  328	
  
 329	
  

Multiple authors have noted that agronomic data concerning this species is limited. It is 330	
  
planted both in rows and broadcast, with seeding rates and spacing data reported (Haq, 2011; 331	
  
Kay, 1979).  C. ensiformis is often observed to be intercropped with other crops like sugarcane, 332	
  
coffee, tobacco, rubber and maize (Arim et al., 2006; Haq, 2011). In one study, maize that had 333	
  
been intercropped with C. ensiformis performed better when infested with Pratylenchus zeae, a 334	
  
pathogenic nematode (Arim et al., 2006). It was hypothesized by the author that either the toxic 335	
  
components in C. ensiformis created low phosphorus conditions which are unfavourable to P. 336	
  
zeae, or intercropping with the legume improved the growth of maize and hence made it more 337	
  
resistant to pests (Arim et al., 2006). In general, C. ensiformis has been reported to be pest 338	
  
resistant, perhaps because it produces hydrogen cyanide (HCN) and other toxic properties (Haq, 339	
  
2011; Pound et al., 1972).  340	
  

 341	
  
Pods are reportedly ready to harvest after 3-4 months, and the seeds after 6-10 months 342	
  

(Haq, 2011). Forage yields have been reported to be ~6000 kg/ha, and dry bean yields range 343	
  
from 1200-4800 kg/ha (Haq, 2011; Kay, 1979). A study conducted in the Dominican Republic 344	
  
noted that multiple cuts of forage can be removed in one season, and reported seed yield that 345	
  
overlapped with soybeans under the conditions grown (Pound et al., 1972).  346	
  

 347	
  
There are many different reported utilities of C. ensiformis. The crop has good seed and 348	
  

storage qualities (Pound et al., 1972). Young leaves, pods and immature seeds are all edible by 349	
  
humans (Haq, 2011), however the seeds must be soaked or boiled for several hours to soften and 350	
  
remove toxic components, but even following these treatments, they are purportedly not very 351	
  
palatable (Kay, 1979). The plants can be a valuable forage for livestock, and sometimes dried 352	
  
seeds are used as feed, however poisoning has been reported if seeds are uncooked or comprise 353	
  
more than 30% of the livestock diet (Kay, 1979). Two reports also mentioned that the high 354	
  
protein content of C. ensiformis (generally reported between 23 and 28%) lends itself to the 355	
  
opportunity for processing into protein isolates (Haq, 2011; Kay, 1979). C. ensiformis has also 356	
  
been studied as a green manure, and it was found that the deep root system and exceptional 357	
  
nodulation gave the species a high capacity to provide nitrogen to subsequent crops (Wortmann 358	
  
et al., 2000). The species was found to fix 133 kg N/ha from the atmosphere, and was generally 359	
  
more effective than several other legumes, including soybeans (Wortmann et al., 2000).  360	
  

 361	
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There is limited information concerning genetic resources and improvement of C. 362	
  
ensiformis, though there are apparently some breeding programs in India, Indonesia and Africa 363	
  
with goals of creating higher yielding and lower toxicity varieties (Haq, 2011).  364	
  

 365	
  
In the same genus, Canavalia gladiata, a more vigorous perennial climber often called the 366	
  

sword bean, has some similarly encouraging characteristics. Originally cultivated in India 367	
  
(Rajaram and Janardhanan, 1992) it was reportedly spread around the world by ancient peoples 368	
  
intrigued by the sword-like length of its seed pod (Herklots, 1972). Though it requires high 369	
  
temperatures and reasonably fertile soils, there are some varieties that are resistant to drought 370	
  
once established, and reports suggest that it is fairly resistant to pests and diseases (Ekanayake et 371	
  
al., 2000). Yields of sword bean overlap with the range of yields observed with soybeans, and 372	
  
this species has diverse uses as summarized (Table 3) (Ekanayake et al., 2000). Since it is 373	
  
already currently cultivated throughout Asia, acquiring seed and establishing growing methods 374	
  
should be easier than for some of the lesser known species discussed in this article.  375	
  

 376	
  
Cyamopsis: As discussed earlier in this review, legumes are versatile plants with a multitude of 377	
  
uses. A good example of that is Cyamopsis tetragonoloba, commonly known as the cluster bean 378	
  
or guar in India and Pakistan where it is already a major food crop. Kumar et al. (2005) have 379	
  
extensively reviewed the Indian literature concerning this crop, including selection and breeding 380	
  
efforts (Kumar, 2005). The beans of this plant, a drought tolerant annual, may be eaten as a 381	
  
vegetable, but it also produces a valuable gum (Kay, 1979; Whistler and Hymowitz, 1979). Once 382	
  
processed, guar gum can be used for applications both in the food industry and in other types of 383	
  
manufacturing (Mudgil et al., 2014). It is also reported that the saline and alkaline tolerating 384	
  
properties of this species make it useful in reclamation of degraded soil (Kay, 1979).   385	
  
 386	
  
Lablab: One of the most versatile climbing legumes included in this review is Lablab purpureus, 387	
  
a climbing perennial that has over 150 common names (Maass et al., 2010). It appears to have 388	
  
originated in Africa and today continues to be grown in the highlands of East Africa (Haque and 389	
  
Lupwayi, 2000) with reports that it was grown in India as early as 1500 BC (Maass and Usongo, 390	
  
2007), though today it is grown worldwide (Maass et al., 2010). It is considered to be an 391	
  
excellent green manure to support the growth of cereals in a rotation system (Haque and 392	
  
Lupwayi, 2000; Wortmann et al., 2000) though farmers appear to adopt it primarily when used 393	
  
as a livestock forage in the dry season (Haque and Lupwayi, 2000). This species shows great 394	
  
diversity in both agro-morphological characteristics and potential uses, with possibly 3000 395	
  
accessions available for future crop improvement (Maass et al., 2010). It tends to require 396	
  
adequate water during the early stages of growth, but once established can be extremely drought 397	
  
resistant and produce many edible parts including pods, beans and leaves (Haq, 2011; Maass et 398	
  
al., 2010). One of the most promising qualities of this crop is that it has undergone some genetic 399	
  
development to create improved varieties, significantly in India and Bangladesh, though yields 400	
  
are generally considered to be low (Maass et al., 2010). 401	
  
  402	
  
Lathyrus: Another crop that shows potential for harsh conditions is the species Lathyrus sativus, 403	
  
an annual, straggling crop present throughout most of Asia and some parts of Africa, including 404	
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Ethiopia (Hillocks and Maruthi, 2012). This species is commonly referred to as grass pea. In 405	
  
South Asia, it is grown as a relay crop following rice (Hillocks and Maruthi, 2012).  It has been 406	
  
reported that grass pea may be the oldest domesticated crop in Europe, originating from Spain 407	
  
(Hanbury et al., 2000; Pena-Chocarro and Pena, 1999). The crop is reported to tolerate a wide 408	
  
range of difficult conditions, and is considered a safety net for farmers during drought and 409	
  
flooding when other crops fail (Hillocks and Maruthi, 2012; Malek et al., 2000); waterlogging is 410	
  
common to rice terraces containing clay soils. However, the edible parts of this crop also contain 411	
  
a neurotoxin that, when consumed in large quantities, can cause a condition called ‘lathyrism’ in 412	
  
both humans and animals (Hanbury et al., 2000; Hillocks and Maruthi, 2012). The toxin may 413	
  
cause symptoms such as weakness and paralysis, thus reducing farm labour capacity, and this 414	
  
toxin is associated with several species of this genus (Hanbury et al., 2000). Other species that 415	
  
show potential include Lathyrus japonicas, commonly referred to as sea pea, and Lathyrus 416	
  
tuberosus, often referred to as the earthnut pea. Little is known about these two species, but there 417	
  
are claims that they were used historically for food and may have potential for similar uses to L. 418	
  
sativus (PFAF, 2012). The neurotoxin related to this genus and associated neurodegenerative 419	
  
condition is certainly an obstacle that makes adoption of these species unattractive to growers, 420	
  
with its seed being banned in some nations; however if improved varieties with low toxin levels 421	
  
can be developed from the >4000 accessions available for breeding (Hillocks and Maruthi, 422	
  
2012), then the grass, sea and earthnut pea may be beneficial choices for challenging farming 423	
  
environments.  424	
  
 425	
  
Macrotyloma: Macrotyloma uniflorum, a multi-use legume known as horse gram, grows in 426	
  
parts of Asia and Africa, particularly in India where it was likely domesticated and has been 427	
  
found since ancient times (Mehra and Upadhyaya, 2013). This species is also sometimes referred 428	
  
to as Dolichos uniflorus, and is utilized as a low-grade pulse crop, a forage for cattle/horses 429	
  
(particularly because it is available throughout the dry season) and as a green manure (Mehra and 430	
  
Upadhyaya, 2013; Siddhuraju and Manian, 2007; Cook et al., 2005). It is widely cultivated, 431	
  
however limited attention has been paid to it in terms of genetic development or marketing, so it 432	
  
is still referred to as underutilized, similar to several other crops in this review. Nevertheless, 433	
  
horse gram shows promise because of its drought tolerance and nutritional qualities, along with 434	
  
the fact that it requires few inputs (Bravo et al., 1999; Mehra and Upadhyaya, 2013; Siddhuraju 435	
  
and Manian, 2007; Witcombe et al., 2008). It has been shown to be a good source of protein and 436	
  
carbohydrates, and potentially also iron and calcium as long as certain preparation methods are 437	
  
used to break down anti-nutritional compounds (Bravo et al., 1999; Sudha et al., 1995). 438	
  
Participatory trials have been conducted that showed considerable success at addressing some of 439	
  
the challenges of resource poor farmers when horse gram was intercropped with maize in India 440	
  
(Witcombe et al., 2008). Farmers reported that labour demand decreased due to ground cover 441	
  
provided (particularly female drudgery such as weeding), and they were able to harvest both 442	
  
grain for food and fodder for livestock from the crop (Witcombe et al., 2008). There have also 443	
  
been studies conducted that showed improvement when horse gram was intercropped with finger 444	
  
millet (Pradhan, et al., 2014). One study was based in the hilly regions of India which found 445	
  
increased yields and improved nitrogen and phosphorus status with the addition of horse gram 446	
  
(Narendra et al., 2010). There have been some genetic improvements with a focus on increasing 447	
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yield and disease resistance (Bhardwaj et al., 2013), however further efforts appear to be 448	
  
required to make more seed available to farmers and to develop a market for the grain. Recently 449	
  
this species has received increased attention and been reviewed more extensively for its potential 450	
  
as a health food and nutraceutical (Prasad and Singh, 2015).  451	
  
 452	
  
Mucuna: The genus Mucuna contains one herbaceous climbing vine of potential interest to 453	
  
terrace farmers, M. pruriens, commonly referred to as velvet bean (Haq, 2011; Kay, 1979). This 454	
  
species, which originated in Asia, can be either an annual or perennial, and is now grown 455	
  
throughout the tropics, particularly in the western hemisphere (Haq, 2011; Kay, 1979). It is 456	
  
generally suited to high rainfall areas, however some drought tolerant varieties are reportedly 457	
  
available (Kay, 1979).  458	
  
 459	
  

In southeast Asia, the immature pods and leaves are reportedly consumed, whereas in 460	
  
parts of Asia and Africa, the seeds are typically roasted, fermented or used as thickeners in soups 461	
  
(Haq, 2011). M. pruriens shows promise in providing some essential components to the diets of 462	
  
the rural poor; the grain has crude protein levels of between 15.1 and 31.4%, as well as 463	
  
significant portions of unsaturated fatty acids, fibre and energy (Haq, 2011; Siddhuraju et al., 464	
  
1996). Velvet bean also has potential to replace some of the soybean present in animal feed, 465	
  
which generally provides the majority of the protein content but must be imported to tropical 466	
  
regions (Chikagwa-Malunga et al., 2009). However, adoption of velvet bean cultivation has been 467	
  
somewhat limited due to the presence of HCN and other anti-nutritional factors which may 468	
  
decrease its digestibility (Rich and Teixeira, 2005; Siddhuraju et al., 1996). It has been reported, 469	
  
however, that proper processing and cooking methods involving heat can significantly decrease 470	
  
the levels of undesirable compounds (Haq, 2011; Siddhuraju et al., 1996). When investigating 471	
  
the harvest window in which nutrition for animal feed was optimized, it was found that between 472	
  
110-123 days after planting, crude protein and fibre content remains constant, although dry 473	
  
matter continues to increase, and generally varies widely with different environmental factors 474	
  
such as rainfall (Chikagwa-Malunga et al., 2009).  475	
  

 476	
  
M. pruriens has also been used as a cover crop and green manure, with some success. 477	
  

One study noted that when intercropped with corn there were decreased negative impacts by 478	
  
nematodes, similar to the impact of C. ensiformis discussed earlier (Arim et al., 2006). Timing of 479	
  
planting for use as a cover crop (particularly with maize) has been a subject of investigation, for 480	
  
the success of such a system depends on many factors (Lawson et al., 2007; Ortiz-Ceballos et al., 481	
  
2015). Velvet bean planted soon after the sowing of maize sometimes had issues of lowering 482	
  
maize yield through competition for resources, with M. pruriens reportedly climbing maize stalks 483	
  
and shading the crop (Lawson et al., 2007). It will be interesting to test how these two crops 484	
  
perform when velvet bean is allowed to grow on the terrace wall, with maize cropped along the 485	
  
remainder of the terrace. When velvet bean was planted as a cover crop 6 weeks after maize was 486	
  
planted, it produced less ground cover, however the maize yields were higher and there was still 487	
  
significant weed suppression (Lawson et al., 2007). Recently, to investigate the issue of 488	
  
smothering, M. pruriens was used in rotation with maize as a relay crop in fallow seasons, 489	
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instead of being intercropped, and it was an effective green manure, improving the fertility and 490	
  
structure of the soil (Ortiz-Ceballos et al., 2015). 491	
  

  492	
  
It is encouraging to note that recent studies are being undertaken to address obstacles to 493	
  

the adoption of this legume, therefore potentially leading to a more thorough understanding of its 494	
  
agronomic characteristics (e.g. drought tolerance, cover crop and nutritive potential) and how 495	
  
they may be useful in addressing the challenges of terrace farmers.  496	
  
 497	
  
Pachyrhizus: The genus Pachyrhizus (known as yam bean, and in South America commonly as 498	
  
ashipa/ahipa) consists of four main crop species with climbing varieties, of which P. tuberosus 499	
  
and P. erosus are the most significant (Pena-Chocarro and Pena, 1999). P. tuberosus is a tropical 500	
  
perennial herbaceous vine that is cultivated on trellises; it was likely domesticated in the 501	
  
Peruvian Andes, although its origin has been difficult to map due to its extremely long reported 502	
  
history of continuous cultivation and consumption in South America (Sorensen et al., 1997; 503	
  
PFAF, 2012). The hallmark of this legume is that it produces a nutritious tuber(s) which is used 504	
  
as a substitute for cassava; but unlike cassava which has a toxic tuber, this tuber is usually eaten 505	
  
raw (Sorensen et al., 1997). P. tuberosus requires at least 16 weeks of growth to flower, however 506	
  
in soils with limited fertility it requires a longer period (8-15 months) to produce tubers 507	
  
(Sorensen et al., 1997). It is reportedly able to grow when planted at the end of the rainy season 508	
  
using only residual moisture (Sorensen et al., 1997). The roots and pods have both been 509	
  
described as edible, however they must be thoroughly cooked to remove rotenone, an insecticide 510	
  
(Sorensen et al., 1997). There is limited information concerning nutritional composition or 511	
  
agronomic practices, most likely due to the fact that it is traditionally a part of shifting 512	
  
cultivation systems and consumed within the community itself (Sorensen et al., 1997). P. erosus, 513	
  
however, has been cultivated on a larger scale for export and is grown in tropical regions of most 514	
  
continents (Sorensen et al., 1997). This species is similar to P. tuberosus in structure and is also 515	
  
grown for its tuberous roots (Sorensen et al., 1997).  The larger-scale production of this species 516	
  
has allowed for the development some processing industries (Melo et al., 2003). Regarding these 517	
  
crops, Sorensen et al. have extensively reviewed older literature from the 1920’s-1940’s 518	
  
(Sorensen et al., 1997), while Ramos-de-la-Pena et al. have reviewed the scarce data available 519	
  
from more recent years (Ramos-de-la-Pena et al., 2013).  520	
  
 521	
  
Phaseolus: Perhaps the most well-known legume genus is Phaseolus, which includes species 522	
  
that have climbing varieties, such as P. coccineus (runner bean), P. lunatus (lima bean) and P. 523	
  
vulgaris (common bean). P. vulgaris genetically diverged into two populations and was 524	
  
simultaneously domesticated in the Andean and Mesoamerican regions 8000 years ago (Gaut et 525	
  
al., 2014). This species is considered one of the most important legume of the world’s poor, 526	
  
cultivated and consumed worldwide (Broughton et al., 2003; Kay, 1979). It provides as much as 527	
  
1/3 of dietary protein in some regions of the world (Gaut et al., 2014). In pre-Columbian 528	
  
America, P. vulgaris was intercropped with maize which provided support for climbing, as part 529	
  
of the “Three Sisters” intercrop (Zhang et al., 2014).  Similar to P. vulgaris, P. lunatus was 530	
  
domesticated in both the Andean and Mesoamerican regions in parallel (Motta-Aldana et al., 531	
  
2010), while P. coccineus is thought to have originated solely in Mexico (Kay, 1979). P. lunatus 532	
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is drought tolerant, producing beans with only 500-600 mm of rainfall, however P. coccineus is 533	
  
extremely drought susceptible [35]. While the mature dry beans of P. vulgaris and P. lunatus are 534	
  
primarily consumed, P. coccinus is consumed primarily as immature pods (Kay, 1979). Perhaps 535	
  
the most promising aspect of this genus is the fact that there are already well-established 536	
  
breeding programs working to improve bean cultivation. The International Centre for Tropical 537	
  
Agriculture (CIAT) is a leader in Phaseolus breeding, and makes available improved seed 538	
  
accessions, including climbing varieties (Broughton et al., 2003).  539	
  
 540	
  
Pisum: Pisum sativum, commonly known as green/garden pea, is a temperate or cool season 541	
  
annual climbing plant that has been used by humans since the Bronze Age (Cousin, 1997; Kay, 542	
  
1979). It likely originated in Ethiopia and Afghanistan before moving to the Mediterranean 543	
  
region and beyond (Cousin, 1997). Branches, frames and nets are all used as climbing supports 544	
  
for its tendrils. There are both spring and winter types of this crop, as well as a wide range of 545	
  
morphologies (Cousin, 1997; PFAF, 2012), made famous by Mendel as the foundation for 546	
  
genetics. The species is generally separated into four subcategories based on end-use: field peas 547	
  
which are used as a forage, market peas used as fresh vegetables for human consumption, vining 548	
  
peas for processing such as freezing and canning, and dried peas which contribute to both human 549	
  
food and animal feed (Cousin, 1997). Similar to P. vulgaris, P. sativum is consumed widely and 550	
  
is an important source of dietary protein in many developing regions (Santalla et al., 2011) with 551	
  
a composition high in starch, but also containing between 23-33% protein (Cousin, 1997). P. 552	
  
sativum can be consumed as immature pods, mature peas, sprouts or further processed into 553	
  
secondary products like flour (PFAF, 2012). Newer genetic research is focusing on improving 554	
  
yields by limiting vegetative growth (leaf area), including by converting some leaf growth to 555	
  
tendrils, therefore potentially increasing the climbing strength of the species (Cousin, 1997; 556	
  
Santalla et al., 2001). Breeding offers potential to counteract this crop’s susceptibility to 557	
  
pathogens (eg. Fusarium, pea mosaic virus) and drought (which arrests nitrogen fixation) 558	
  
(Cousin, 1997) that terrace farmers may not have the resources to mitigate with expensive inputs.  559	
  
 560	
  
Psophocarpus: Psophocarpus tetragonolobis is a twining climbing perennial that is currently 561	
  
only cultivated on a small scale, but shows considerable promise based on its agronomic and 562	
  
nutritional traits (NRC, 1981; PFAF, 2012). It is commonly called winged bean and currently 563	
  
cultivated in humid, tropical environments in Asia and some parts of Africa, though its origin is 564	
  
unconfirmed (NRC, 1981). Typically this species experiences success with 700-4000 mm 565	
  
rainfall annually, however some anecdotal drought resistance has been reported, such as reports 566	
  
from India, as well as from Thailand where this crop survived a severe drought in 1979 while 567	
  
most other crops failed (NRC, 1981). It can grow on a wide range of soils, including those with 568	
  
limited organic matter, relevant for leached terraces, and it is grown almost exclusively by 569	
  
subsistence farmers (NRC, 1981). Winged bean is a valuable green manure due to its exceptional 570	
  
nodulation ability (PFAF, 2012) and has also been successfully grown as a cover crop with tree 571	
  
species such as coconut, banana, oil palm, rubber and cacao in Ghana (NRC, 1981). The crop 572	
  
uses these trees as support to climb without inhibiting their growth, and otherwise requires stakes 573	
  
for support (NRC, 1981). Arguably the most valuable trait of this species is that most organs are 574	
  
edible, including the immature pods (which reportedly can be harvested in as little as 20 days), 575	
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leaves (rich in vitamin A), shoots (asparagus-like), flowers (used as a garnish or similar to 576	
  
mushrooms), tubers (in certain varieties) and seeds (NRC, 1981; PFAF, 2012). The seeds have 577	
  
almost an identical nutritive value to soybeans, containing a significant amount of protein 578	
  
(around 37.3%), with the advantage of superior palatability (Cerny et al., 1971). This feature 579	
  
eliminates the need for fermentation that is required to produce many soy products traditionally 580	
  
consumed, particularly in Asia (Cerny et al., 1971). Winged bean flowers under short days, 581	
  
which limits its ability to be cultivated in temperate summers (NRC, 1981), however research is 582	
  
being conducted to develop day neutral varieties (PFAF, 2012). Unfortunately, there is almost no 583	
  
contemporary literature pertaining to agronomic practices associated with this crop. Reviews 584	
  
from the 1970’s (Cerny et al., 1971; NRC, 1981) hailed winged bean as being extremely 585	
  
promising, however its continued underutilization indicates that more research is needed to make 586	
  
its adoption a success, especially on terraces.  587	
  
 588	
  
Pueraria: Members of the Pueraria genus are commonly referred to as kudzu and are generally 589	
  
aggressively climbing perennials (Keung, 2002; Mitich, 2000). Three main species are of interest 590	
  
when considering agricultural endeavours: P. montana (common kudzu), P. phaseoloides 591	
  
(tropical kudzu), and P. tuberosa (Indian kudzu). These species are distributed throughout Asia 592	
  
and Oceania (Keung, 2002). P. montana was introduced to the United States in 1876 for use as a 593	
  
cover crop, whereas P. phaseoloides was spread throughout tropical regions of Africa, Asia and 594	
  
America for the same purpose (Keung, 2002). The climbing trait of these species allow them to 595	
  
grow upwards on supports or spread along the ground (Keung, 2002). There is limited agronomic 596	
  
data available for this genus, and most of what is reported pertains to the species P. montana. The 597	
  
Pueraria species appear to be adapted to many adverse conditions, such as drought, acidic and 598	
  
marginal soils, and recently disturbed or depleted land, however they cannot tolerate 599	
  
waterlogging (Keung, 2002; Mikhailova et al., 2013; Tsugawa, 1985). It has been reported that 600	
  
P. phaseoloides is suitable for growth as a cover crop under coconut, showing exceptional 601	
  
nodulation and nitrogen fixation, and shows potential for intercropping with other plantation 602	
  
crops (Keung, 2002; Thomas and Shantaram, 1984). P. montana and P. phaseoloides have both 603	
  
been noted to be used as a forage and cover crop, and P. tuberosa roots can be eaten raw as a 604	
  
famine food or used as an animal feed, but it is also reported to have a multitude of traditional 605	
  
medicinal uses (Keung, 2002; PFAF, 2012). P. montana can also be consumed by humans, either 606	
  
the cooked roots or young shoots and leaves (PFAF, 2012). It has been reported that kudzu 607	
  
should not be harvested or grazed in the first two years of growth to prevent failure, however 608	
  
once established it produces well for grazing and can recover from livestock trampling and 609	
  
defoliation (Tsugawa, 1985). In fact, kudzu can become so competitive that the crowding out of 610	
  
other crops may become an issue, and its cultivation has been discouraged in the United States 611	
  
since 1950 due to damage caused by its climbing of buildings and telephone lines (Keung, 2002; 612	
  
Mitich, 2000). This vigorous growth can also makes mechanical cutting or mowing of kudzu 613	
  
difficult (Tsugawa, 1985). These issues seem to have limited the further exploration of Pueraria 614	
  
species for agriculture, and recent studies concerning its agronomic details are rare.  The crop 615	
  
may be ideal for planting along the base of especially tall terrace risers.  616	
  
 617	
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Sphenostylis: Though there are seven species of this genus that grow in the dry forests and 618	
  
savannas of Africa, by far the most economically important, widely distributed and 619	
  
morphologically diverse species is Sphenostylis stenocarpa. A hallmark of this African species is 620	
  
that produces both edible grains and tubers. As a result, this legume is informally referred to as 621	
  
African yam bean, but it is a little-known crop that nevertheless holds importance to tropical 622	
  
Africa (NAS, 1979). It is cultivated deliberately throughout much of western Africa, but is 623	
  
gathered from the wild in other parts of the continent, with most production being based on 624	
  
traditional indigenous knowledge (Oagile et al., 2007; Potter, 1992).  When grown deliberately, 625	
  
it is often harvested as an annual, however if its tubers are left in the ground they can act as 626	
  
organs of perennation (tuber-based regrowth) (Potter, 1992). It has been reported that it requires 627	
  
a humid tropical environment with well-drained soils to be successful, but can tolerate acidity 628	
  
and low-fertility reasonably well (NAS, 1979). It is normally grown on trellises or stakes, and 629	
  
varieties vary in their climbing ability from delicate to robust (Oagile et al., 2007; NAS, 1979). 630	
  
Some reports claim that one may still yield tubers from unsupported S. stenocarpa plants (NAS, 631	
  
1979). This crop has also been noted to have a high capacity to deposit nitrogen for subsequent 632	
  
crops, for it has a low N harvest index, which shows potential for its use as a green manure or 633	
  
cover crop (Oagile et al., 2007).  634	
  
 635	
  

As noted above, the main use of this species is for human consumption of both the seeds 636	
  
and tubers (Potter, 1992; NAS, 1979). The tubers take 7-8 months to mature and are reported to 637	
  
have a flavour similar to potatoes, however a much higher protein content (Potter, 1992; NAS, 638	
  
1979).  The seeds mature in a similar timeframe, and must be soaked and/or boiled for several 639	
  
hours to soften, which is often pointed out as a limitation to the crop’s adoption (Potter, 1992; 640	
  
NAS, 1979). The seeds may then be boiled, fried or made into a paste and are reported to contain 641	
  
between 19.5-29% protein (Potter, 1992; NAS, 1979). There is limited mention of the use of S. 642	
  
stenocarpa as animal feed or forage, although one study did note it as a potential good source of 643	
  
protein for livestock (Potter, 1992). Yields have been claimed to be as high as ~2000 kg/ha, but 644	
  
more typically are reported to be around 300-500 kg/ha (Potter, 1992; NAS, 1979). These low 645	
  
yields are the result of several production constraints, which likely also limit adoption of this 646	
  
crop beyond its current range. These constraints include inadequate agronomical guidelines, lack 647	
  
of uniform planting material (for either seed or tuber propagation), and a lack of improved 648	
  
varieties (Oagile et al., 2007). 649	
  

  650	
  
Vicia: The genus Vicia contains ~210 species, and has been investigated by The International 651	
  
Center for Agricultural Research in the Dry Areas (ICARDA) for its potential to provide much 652	
  
needed forage to the growing livestock population in West Asia and North Africa (Abd El 653	
  
Moneim, 1993; Raveendar et al., 2017). Vicia sativa, or common vetch, is an annual climber that 654	
  
has been noted to grow in this area and has been reported to show good seed yields, herbage and 655	
  
digestibility for use as a forage, though there is considerable variability between varieties (Abd 656	
  
El Moneim, 1993; PFAF, 2012).  It has been reported that the early developing fibrous root 657	
  
system and early nodulation make this species suitable for low-input systems, since these 658	
  
nodules can supply nitrogen from the early stages of plant growth (Vlachostergios et al., 2011). 659	
  
The seeds of V. sativa are also noted to be nutritious for humans (though not very palatable), 660	
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which may be cooked or dried and ground into flour (PFAF, 2012). A technique that has been 661	
  
investigated for organic or low-input farming involves planting a mix of several cultivars of V. 662	
  
sativa with the goal of more stable yields and disease resistance; this approach shows promise 663	
  
despite some practical difficulties (Vlachostergios et al., 2011). The work conducted on vetches 664	
  
by ICARDA may support the potential cultivation on terrace walls during the dry season. 665	
  
 666	
  

Another species of some note is V. americana, a perennial sprawling or twining legume 667	
  
with extremely variable morphology that grows throughout North America, from the Yukon and 668	
  
Northwest Territories to Texas and California (Kenicer and Norton, 2008). The cooked young 669	
  
shoots as well as immature pods and mature seeds have been reported to be consumed by 670	
  
indigenous populations of North America (PFAF, 2012). However, for this species to be useful 671	
  
for terrace farmers, significant research would need to be conducted concerning its ability grow 672	
  
in new environments and its utility (PFAF, 2012).  Similarly, the plethora of species within Vicia 673	
  
likely hold potential as crops for terrace walls, but more research will be required.  674	
  

 675	
  
Vigna: The genus Vigna includes several drought tolerant legumes of critical importance to 676	
  
human societies, and includes climbing varieties of cowpea (V. unguiculata) and rice bean (V. 677	
  
umbellata). Cowpea is an annual crop native to Africa that is considered to have great potential 678	
  
to improve the nutritional status of millions of malnourished people (NRC, 2006). It is grown in 679	
  
areas of Africa, Asia and the Americas and is extremely tolerant to heat and drought, with some 680	
  
cultivars producing grain with less than 300 mm of rainfall (NRC, 2006; Ehlers and Hall, 1997). 681	
  
It is generally cultivated at low altitudes and replaced by common bean higher up, however 682	
  
cowpea is reported to be grown at high altitudes in Kenya and Cameroon (Ehlers and Hall, 1997) 683	
  
indicating that growing cowpea is possible in mountainous regions where the majority of terrace 684	
  
farmers are located. Cowpea has also been reported to produce well in shaded environments, 685	
  
further confirming its suitability for terrace agriculture (Bazill, 1987). Cowpea is often 686	
  
intercropped with sorghum, millets, maize, cassava and cotton, though intensive monocrop 687	
  
systems are present in some places (NRC, 2006; Ehlers and Hall, 1997). Edible parts include the 688	
  
fresh green leaves (which are a good source of iron), green pods and beans, but most commonly 689	
  
the dry grain (NRC, 2006; Sprent et al., 2010). An attractive feature of this crop as a food source 690	
  
is that it can be cooked quickly, which is useful in places where there may be cooking fuel 691	
  
shortages (Ehlers and Hall, 1997). Cowpea is also used as a forage, particularly when other 692	
  
species have failed due to drought (NRC, 2006). As a green manure it has been reported to fix up 693	
  
to 70 kg of nitrogen per hectare annually (NRC, 2006), however it has also been noted that in 694	
  
some parts of Africa there can be great variability in nodulation which may limit N fixation 695	
  
(Sprent et al., 2010). Though high yields can be achieved in intensive systems, typical 696	
  
subsistence farm yields of cowpea remain low (~100-300 kg/ha) (NRC, 2006). Insect damage, 697	
  
both in the field and in storage, is reported to be the greatest constraint limiting the success of 698	
  
cowpea, and development of resistant varieties is one of the main objectives of genetic 699	
  
improvement for the species (NRC, 2006; Ehlers and Hall, 1997). The research focus on cowpea 700	
  
as well as its impressive stress tolerance suggests that this crop has significant potential for 701	
  
farming on terrace walls.  702	
  
 703	
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Rice bean is native to southeast Asia (Andersen, 2012; Saikia et al., 1999), and has a 704	
  
twining growth habit allowing it to climb up trees or other crops (Andersen, 2012). It is 705	
  
particularly relevant to this review, since as noted earlier, it is the only legume species that is 706	
  
documented to be cultivated on terrace risers already. Short varieties are reported to be grown on 707	
  
terrace walls to provide food and fodder as well as to protect against erosion in Nepal and India 708	
  
(Andersen, 2012). This species is tolerant of many adverse conditions; it can be established on 709	
  
depleted soils, is reported to remain dormant during drought and then flourish when rains return, 710	
  
and is tolerant to many pests and diseases (Andersen, 2012; Haq, 2011). As a food, the green 711	
  
pods may eaten as a vegetable, but it is more common for the dry seeds to be used as a pulse and 712	
  
cooked into ‘dal’, similar to more common crops such as lentils and pigeon pea (Andersen, 2012; 713	
  
Haq, 2011). The crop residues are a nutritious fodder that are known to increase milk production 714	
  
in cattle (Andersen, 2012). Though not particularly high in crude protein compared to some 715	
  
legumes, the bioavailability of rice bean protein is superior, and there are also significant levels 716	
  
of important nutrients like calcium, iron, zinc and fibre (Andersen, 2012; Saikia et al., 1999). 717	
  
This species is also commonly used as a green manure, often intercropped with maize and millets 718	
  
to provide additional nitrogen to the soil and suppress weeds (Andersen, 2012; Khadka and 719	
  
Khanal, 2013). Varieties vary tremendously in the time to maturity, ranging from 60 to 130 days 720	
  
(Haq, 2011). In some regions of Asia, the duration of rice bean allows it to be planted in rotation 721	
  
with paddy rice, improving the soil fertility (Haq, 2011), which is noteworthy as paddy rice is 722	
  
grown on a significant number of terraces worldwide. Rice bean has been the focus of an 723	
  
initiative called Food Security through Ricebean Research in India and Nepal (FOSRIN), and 724	
  
there are large repositories of germplasm in both India and Taiwan, to enable continued 725	
  
development of this crop (Andersen, 2012; Haq, 2011). However, there are some constraints to 726	
  
farmer adoption of rice bean, particularly issues of indeterminate versus determinate growth 727	
  
varieties, and inconsistent seed size and hardness (Andersen, 2012). Continued investment in 728	
  
optimizing agronomic practices and improving varieties would allow terrace farmers to take full 729	
  
advantage of this promising legume.  730	
  
 731	
  
7.Challenges, recommendations and conclusions 732	
  
 733	
  
7.1 Summary of opportunities  734	
  
 735	
  
The purpose of this paper was to review climbing legumes that have potential to grow on terrace 736	
  
walls to address the challenges faced by millions of subsistence farmers in mountainous regions, 737	
  
including: poor access to inputs (fertilizers, herbicides and pesticides), female drudgery (e.g. the 738	
  
need to climb up and down steep gradients to weed), exacerbated human and livestock 739	
  
malnutrition, and vulnerability to climate change. Though all the crops reviewed show promise, 740	
  
some crops are worth highlighting: 741	
  
• With respect to input replacement, African yam bean and jack bean have a particularly high 742	
  
capacity to provide nitrogen compared to other crops (Oagile et al., 2007; Wortmann et al., 743	
  
2000).  744	
  
•Jack and velvet bean have been shown to discourage nematodes (Arim et al., 2006; Witcombe 745	
  
et al., 2008).  746	
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•In terms of drudgery reduction, horse gram has been shown to decrease the labour required for 747	
  
weeding by providing ground cover (Arim et al., 2006; Witcombe et al., 2008).  748	
  
•Nutritionally, horse gram, cowpea and rice bean can be significant sources of iron, while rice 749	
  
bean also contains high levels of zinc, and the leaves of winged bean are a good source of 750	
  
vitamin A (Andersen, 2012; Bravo et al., 1999; Ehlers and Hall, 1997; Saikia et al., 1999; NRC, 751	
  
1981; Sudha et al., 1995).  752	
  
•In terms of climate change resiliency, cowpea, common bean, kudzu, and green pea are all 753	
  
especially drought tolerant (NRC, 2006; Kay, 1979; Mikhailova et al., 2013).   754	
  
 755	
  
7.2 Potential challenges 756	
  
 757	
  
With so many potential advantages, the question must be asked as to why most terrace farmers 758	
  
around the world have not adopted the practice of using terrace walls for growing plants, 759	
  
including legumes. The exception, as noted earlier, appears to be rice bean (Andersen, 2012). 760	
  
There may be several reasons for this gap. In particular, the terrace agro-ecosystem itself may 761	
  
present challenges. For example, paddy rice production involves seasonal flooding and would 762	
  
lead to waterlogged soils, which may be incompatible with some climbing legumes. However, 763	
  
three of the reviewed species in particular are reported to perform even in waterlogged soils: A. 764	
  
americana (groundnut), C. ensiformis (jack bean), and L. sativus (grass pea) (Duke, 1983; Haq, 765	
  
2011; Malek et al., 2000). Terrace walls have diverse heights and angles, making cultivation of 766	
  
any one crop variety challenging. If climbing legumes are grown directly on the terrace walls, 767	
  
there may also be pest problems with soil borne pathogens or insects emerging from riser soils. 768	
  
Climbing varieties may intercept sunlight, to shade crops adjacent growing on the horizontal 769	
  
surface of the terrace. Aggressive perennials such as kudzu (which is known to be smothering) 770	
  
would be of most concern (Keung, 2002; Mitich, 2000). Access to the seeds of appropriate 771	
  
varieties, and breeding of climbing varieties for local conditions, represent additional practical 772	
  
challenges. Finally, farmer adoption is a challenge with any innovation, and there need to be 773	
  
clear economic benefits with little additional labour for farmers to be attracted to a new practice. 774	
  
This is particularly true when additional challenges present themselves as in the case of 775	
  
underutilized (and hence under-developed) crops, as evidenced by the dis-adoption of rice bean 776	
  
in the Himalayan region (Andersen, 2012). 777	
  
 778	
  
7.3 Recommendations for the future   779	
  
 780	
  
We have nine specific recommendations to help accelerate research into farming on terrace walls 781	
  
(FTW), related to overcoming agronomic, breeding and socio-economic challenges: 782	
  
 783	
  
7.3.1. Agronomy 784	
  
 785	
  

Local agronomists expertise in terrace agriculture must be recruited to undertake: 786	
  
1. Field trials on research plots: Using controlled research plots, good quality agronomic data 787	
  
will be required for the climbing legumes such as optimal seeding rates and spacing, as well as to 788	
  
understand interactions (competition and synergies) with the crops already grown on the 789	
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horizontal terrace surface. Trials will need to be conducted to find species most suitable for local 790	
  
climactic and soil conditions, and fit them appropriately into local cropping calendars.  791	
  
2. Establishment of best practices for farmers: Once agronomic trial data has been collected, that 792	
  
information must be transferred into practical instructions for farmers. For farmers to adopt a 793	
  
new crop variety and practice, they will need to know how, when and what to cultivate. 794	
  
Management practices for pests as well as any fertilizer recommendations will be required, with 795	
  
a deliberate focus on low chemical inputs. Legumes require compatible rhizobia to be present in 796	
  
the soil to fix nitrogen, which may limit farmer adoption of a new legume species, or require 797	
  
introduction of appropriate microbial inoculants. If tendril strength or the riser material is 798	
  
inadequate or unsuitable, the introduced climbing legumes may require trellises made from local 799	
  
wood resources. Finally, to ensure that nutrients and water are sufficient at the base of the terrace 800	
  
risers, the terraces may need to be inverse-sloped.  801	
  
3. On farm systems-level evaluation: Using on-farm split plots and participatory approaches, the 802	
  
real world benefits and challenges of FTW must be evaluated side by side with conventional 803	
  
terrace farming at a systems-level, focusing on agronomic changes (changes in yield, soil 804	
  
quality) and socioeconomic indicators (nutrition, income, labour, resiliency).  805	
  
 806	
  
7.3.2. Breeding 807	
  
 808	
  
 Participatory plant breeding may help ensure that the specific needs of the local 809	
  
agricultural system are addressed to ensure farmer adoption of improved varieties. We have three 810	
  
recommendations in this area: 811	
  
1. Breeding to suit the terrace microenvironment: Candidate climbing legumes may need to bred 812	
  
for improved climbing ability, improved shade resistance, tolerance to waterlogging and shorter 813	
  
duration. 814	
  
2. Breeding for a low-input system: To adapt climbing varieties to a low input system, 815	
  
characteristic of terrace farms, breeding will be required for improved N fixation, pest resistance, 816	
  
and tolerance to abiotic stresses. 817	
  
3. Overcoming crop specific limitations: Some of the species suggested in this review have 818	
  
particular traits that require breeding to improve their use on terrace walls. For example, P. 819	
  
montana (kudzu) requires breeding to make it less aggressive, while Lathyrus species require 820	
  
breeding to decrease neurotoxin levels.   821	
  
 822	
  
7.3.3. Socio-economic factors 823	
  
 824	
  
1. Local availability, acceptability and rates of adoption: A critical step towards the success of 825	
  
FTW would be ensuring that seeds of climbing varieties would be available to remote terrace 826	
  
farmers, with no regulatory or physical restrictions. Co-operation between governments, private 827	
  
seed companies and centres of the Collaborative Group of International Agricultural Research 828	
  
(CGIAR) would help to overcome barriers such as varietal approval. For seed distribution into 829	
  
remote regions, using existing networks such as snack food and alcohol vendors may be useful. 830	
  
Participatory approaches will ensure local acceptability of taste, texture, look and quality of new 831	
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food products.  Long-term evaluations will be needed to track farmer adoption, successes and 832	
  
challenges of FTW. 833	
  
2. Extension: It will be challenging to disseminate the FTW concept and provide training in 834	
  
remote areas at a reasonable cost. The SAK Nepal project (Chapagain and Raizada, 2017) has 835	
  
begun experimenting with captioned picture books to demonstrate the technique (Figure 3), and 836	
  
these resources are open access and can be downloaded for free. 837	
  
3. Development of markets: To provide market incentives, value chains will need to be 838	
  
established to permit sales of surplus crops for human food or animal feed and forage.  839	
  
 840	
  
7.4 Conclusions 841	
  
 842	
  
It is hoped that this review has helped to shed light on the specific challenges faced by terrace 843	
  
farmers around the world, and provided an avenue for future innovation in these ancient farming 844	
  
systems. There are many candidate climbing legumes that have potential to grow on terrace 845	
  
walls. Many of these crops are nutritious to humans and/or livestock, can grow under low input 846	
  
conditions and show tolerance to drought and shade. This review has noted the practical 847	
  
challenges that may limit farmer adoption of FTW, but we hope that these may be addressed by 848	
  
the concrete recommendations listed. In an era where human population growth will occur 849	
  
primarily in developing nations at a time of unpredictable climate change and environmental 850	
  
degradation, growing legumes on terrace walls provides an opportunity to reduce the increasing 851	
  
vulnerabilities of terrace farmers.  852	
  
 853	
  
 854	
  
 855	
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Figure Legends 877	
  
 878	
  
Figure 1. Example of terrace risers in Nepal as an underutilized surface area with potential 879	
  
to grow crops (photo credit: Manish Raizada). 880	
  
 881	
  
Figure 2. Agronomic traits of crops that address the vulnerabilities of terrace farming 882	
  
systems 883	
  
 884	
  
Figure 3. Agriculture extension lesson to train smallholder farmers about the potential of 885	
  
growing climbing legumes on terrace risers. Image courtesy of Lisa Smith, University of 886	
  
Guelph, can be can be reused under the Creative Commons BY licence. 887	
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Table 1. Climbing legumes with respect to reported tolerance to abiotic stress 1181	
  

Genus Species 
 

Common 
name 

Reported Tolerance to Unfavourable Conditions 
Drought  Shade Poor Soil  pH Flooding 

Amphicarpaea A. bracteata Hog Peanut  l    
 A. edgeworthii N/A   l(calcareous)   
Apios 
 

A. americana Groundnut    l(low) l 
A. priceana N/A    l(low 

and 
high) 

 

Canavalia  
 

C. ensiformis Jack Bean l (once 
establishe
d) 

l l (saline)  l 

C. gladiata Sword Bean l* (once 
establishe
d) 

    

Cyamopsis C. 
tetragonoloba 

Cluster Bean l  l (saline) l 
(high) 

 

Lablab L. purpureus Hyacinth 
Bean 

l (once 
establishe
d) 

l    

Lathyrus L. sativus Grass Pea l  l(low 
fertility) 

l 
(high) 

l 

Macrotyloma M. uniflorum 
 

Horse Gram  l      

Mucuna M. pruriens Velvet Bean l *   l (low)  
Pachyrhizus P. tuberosus Ashipa    l (low)  
Phaseolus  
 

P. lunatus Lima Bean l      
P. vulgaris Common 

Bean 
l *     

Pisum P. sativum Field/Green 
Pea 

l *     

Psophocarpus  P. 
tetragonolobus 

Winged Bean   l (low OM)   

Pueraria  
 

P. lobata  Kudzu l      

P. phaseoloides Tropical 
Kudzu 

l l 
(mode
rate) 

   

P. tuberosa Indian Kudzu   l (eroded or 
exposed) 
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Sphenostylis S. stenocarpa African Yam 
Bean 

  l (low 
fertility) 

l (low)  

Vigna V. umbellata Rice Bean l     
V. unguiculata  Cowpea l* l l (salinity) l (low)  

*tolerant varieties available 1182	
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Table 2.  Rainfall and distribution requirements of drought tolerant climbing legumes.  1184	
  
 
Genus 

 
Species 

Common Name 
 

Reported Specific Water Requirement/ 
Drought Capability 

Canavalia C. ensiformis Jack Bean Requires well-distributed 900-1200 mm/year 
to establish, after that can be successful as 
low as 650 mm/year 

C. gladiata Sword bean Requires well-distributed 900-1500 mm/year 
initially, some varieties drought resistant 
once established 

Cyamopsis C. 
tetragonoloba 

Cluster Bean  Grows well with annual rainfall of 500-750 
mm/year 

Lablab L. purpureus Hyacinth Bean Distribution dependant, can grow with 600-
900mm/year. Requires adequate rainfall for 
first 2-3 months after planting, then becomes 
drought resistant and can produce well into 
the dry season 

Lathyrus L. sativus Grass Pea Prefers rainfall of 350-600 mm/year 
Macrotyloma M. uniflorum Horse Gram  Rainfall requirement can be as low as 200 

mm/year 
Mucuna M. pruriens Velvet Bean 

 
Flourishes at 1200-1500 mm/year, however 
there are some drought resistant varieties 
available 

Phaseolus  
 

P. lunatus Lima Bean Reasonably drought tolerant, however also 
successful with high rainfall. Can grow with 
anywhere between 500-1500+ mm/year.  

P. vulgaris Common Bean Significant attention in breeding programs. 
Some areas seen success with 300-400 
mm/year 

Pisum P. sativum Field/Green Pea Preferably 800-1000 mm/year, however 
some success with as low as 400 mm/year 

Pueraria  
 

P. lobata  Kudzu Thrives with more than 1000 mm/year, 
however also drought resistant 

P. phaseoloides Tropical Kudzu Reasonably tolerant of drought 
Vigna V. umbellata Rice Bean Optimum yields between 1000-1500 

mm/year, however also tolerant of drought  
V. unguiculata  Cowpea Rainfall requirement depends on duration 

type; quick maturing varieties can grow with 
less than 600 mm/year 
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Table 3. Uses of candidate climbing legume species  1186	
  
Genus Species Common 

Name 
Reported Utility 
Food Forage 

or 
Fodder* 

Green 
manure 

Cover 
crop 

Feed* 

Amphicarpaea A. bracteata Hog Peanut l l    
Apios 
 

A. americana Groundnut l     
A. priceana N/A l     

Canavalia  
 

C. ensiformis Jack Bean  l l l l  
C. gladiata Sword Bean l l l l  

Cyamopsis C. 
tetragonoloba 

Cluster Bean l l l   

Lablab L. purpureus Hyacinth 
Bean 

l l l   

Lathyrus L. sativus Grass Pea l    l 
L. tuberosus Earthnut Pea l l    

Macrotyloma M. uniflorum Horse Gram l l l   
Mucuna M. pruriens Velvet Bean l  l l l 
Pachyrhizus P. tuberosus Ashipa l     
Phaseolus  
 

P. coccineus Runner 
Bean 

l     

P. lunatus Lima Bean l  l  l 
P. vulgaris Common 

Bean 
l    l 

Pisum P. sativum Green/Field 
Pea 

l l   l 

Psophocarpus  P. 
tetragonolobus 

Winged 
Bean 

l l  l  

Pueraria  
 

P. lobata  Kudzu l l l   
P. 
phaseoloides 

Tropical 
Kudzu 

l l l l  

P. tuberosa Indian 
Kudzu 

l    l 

P. americana American 
Kudzu 

l     

Sphenostylis S. stenocarpa African 
Yam Bean 

l     

Vicia 
 

V. sativa Common 
Vetch 

l l    

Vigna V. umbellata Rice Bean l l l   
 V. unguiculata  Cowpea l  l l  

 1187	
  
*forage and fodder refer to unprocessed animal feed (e.g. pasture grazing, cut and carry) whereas 1188	
  
feed refers to processed or refined animal feed 1189	
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Table 4. Edibility and nutritional information of climbing legumes 1192	
  

Genus Species Common 
Name 

Additional nutritional notes 

Amphicarpaea A. bracteata Hog Peanut Sub-terrain seeds eaten roasted. 
Apios 
 

A. americana Groundnut Tubers 
A. priceana N/A Slightly larger tubers than A. americana, poor amino acid profile. 

Canavalia 
 

C. ensiformis Jack Bean Mature seeds eaten, must be boiled first to soften and get rid of 
toxic components. May be roasted as a coffee substitute. 
Immature pods boiled and eaten as a vegetable. 

C. gladiata Sword Bean See C. ensiformis. 
Cyamopsis C. 

tetragonoloba 
Cluster Bean Immature pods boiled, fried, or processed into gum. Leaves 

sometimes cooked as a vegetable. 
Lablab L. purpureus Hyacinth Bean Pods used as vegetable or in curries. Beans may be boiled or 

roasted, sometimes fried into a cake. 
Lathyrus L. sativus Grass Pea Beans consumed, however overconsumption associated with 

degeneration of upper motor neurons due to neurotoxin. Advised 
to be eaten in moderation and paired with antioxidant rich foods. 

L. tuberosus Earthnut pea Tubers eaten raw or roasted. Seeds sometimes consumed. 
Macrotyloma M. uniflorum Horse Gram Seeds boiled, fried or made into cakes. 

Mucuna M. pruriens Velvet Bean Beans must be soaked or boiled to remove toxic component. 
Sometimes eaten roasted. 

Pachyrhizus T. tuberosus Ashipa Roots eaten raw or cooked, tubers may be used to make custard, 
pudding or flour. Young pods cooked, must be boiled to get rid of 
insecticidal toxin. 

Phaseolus 
 

P. coccineus Runner Bean Immature pod and seeds within boiled. Mature seeds eaten fresh 
or dried, tubers sometimes used for starch. 

P. lunatus Lima Bean Mature dry beans can be boiled, fried, baked or ground into flour. 
Immature pods can be eaten as a vegetable. 

P. vulgaris Common Bean Considerable variation in beans, often mixed with carbohydrate 
source (e.g. rice/cassava). 

Pisum P. sativum Field/Green 
Pea 

Wide variation. Seeds eaten dried or fresh. Some immature 
seedpods consumed. Many processing options, usually canning. 

Psophocarpus P. 
tetragonolobus 

Winged Bean Full plant edible: young pods (raw, boiled, steamed, fried or 
pickled), leaves, shoots (similar to asparagus), flowers (steamed 
or fried), seeds, and tubers. 

Pueraria 
 

P. lobata Kudzu Leaves, shoots and flowers consumed. Roots harvested for starch. 
P. 
phaseoloides 

Tropical 
Kudzu 

Tuberous roots edible, however not significantly recorded. 

P. tuberosa Indian Kudzu Tubers considered a famine food. 
Sphenostylis S. stenocarpa African Yam 

Bean 
Seeds can be boiled, soaked and fried, tubers usually boiled or 
roasted. 
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Vicia 
 
 

V. americana American 
Vetch 

Young shoots, immature seedpods and mature seeds consumed 
(traditionally by Native Americans). 

V. sativa Common 
Vetch 

Beans may be consumed by humans, not very digestible. 

Vigna V. umbellata Rice Bean Beans usually mixed with rice. Pods and green seeds cooked as a 
vegetable.  

V. unguiculata  Cowpea Beans in soups and cakes, immature seeds and pods may be eaten 
as a vegetable. Shoots can be boiled.  
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Table 5. Current status of genetic development of climbing legumes for agricultural use. 1195	
  
Well Established as Crop -
-  Potential for Genetic 
Improvement 

Limited Cultivation – Will 
Benefit Substantially from 
Further Breeding 

Only Wild 
Growth/Gathering – 
Requires Domestication  

Species Common 
Name 

Species Common 
Name  

Species Common 
Name 

Lablab 
purpureus 

Hyacinth 
Bean  

Amphicarpaea 
bracteata 

Hog Peanut 
 

Amphicarpaea 
africana 

N/A 

Macrotyloma 
uniflorum 

Horse Gram Apios 
americana 

Groundnut Amphicarpaea 
edgeworthii 

N/A 

Phaseolus 
coccineus 

Runner 
Bean 

Apios priceana N/A Lathyrus 
japonicas 

Sea Pea 

Phaseolus 
lunatus 

Lima Bean Canavalia 
ensiformis 

Jack Bean Lathyrus 
tuberosus 

Earthnut Pea 

Phaseolus 
vulgaris 

Common 
Bean 

Canavalia 
gladiata 

Sword Bean Pueraria 
phaseoloides 

Tropical 
Kudzu 

Pisum 
sativum 

Green Pea Cyamopsis 
tetragonoloba 

Cluster 
Bean 

Pueraria 
americana 

Indian 
Kudzu 

Vigna 
umbellata 

Rice Bean  Lathyrus 
sativus 

Grass Pea Vicia sativa Common 
Vetch 

Vigna 
unguiculata 

Cowpea Mucuna 
pruriens 

Velvet Bean   

  Pachyrhizus 
tuberosus 

Ashipa   

  Psophocarpus 
tetragonolobus 

Winged 
Bean 

  

  Pueraria 
lobata  

Kudzu   

  Sphenostylis 
stenocarpa 

African 
Yam Bean  
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