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Groundwater, a renewable and finite natural resource, is a vital source of sustenance for humans and dif-
ferent ecosystems in the semi-arid regions. Rapid population growth in the last three decades has caused
a rise in water demand which has inadvertently posed a stress on its availability. Occurrence of ground-
water in the Deccan Volcanic Province is governed by the subsurface hydrogeological heterogeneity of
basaltic lava flows and by the presence of geological structures like dykes, sills and fractures that influ-
ence spatial & vertical groundwater flow. The main objective of this paper is to map and assess areas that
are naturally most susceptible to groundwater scarcity and at risk of depletion due to over extraction. The
current study involves a field hydrogeological mapping that was integrated with remote sensing and GIS
to delineate areas. This technique was based on using different thematic layers viz. lithology, slope, land-
use and land cover, lineament, drainage, soil type, depth to groundwater and annual rainfall. Additionally,
pumping tests were carried out to classify the study area into different hydrogeological typologies to help
delineate communities that are most vulnerable to subsurface heterogeneity. This paper attempts to
underline the groundwater scarcity zones based on different influencing thematic layers and provide a
robust methodology to prioritize areas vulnerable to groundwater unavailability, by categorizing the
study area into different vulnerable class types – extreme, high, moderate and low.
� 2016 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Groundwater is a vital resource for communities and ecosys-
tems in the semi-arid agro-climatic zone of Sangamner and Akole
blocks of Ahmednagar district, Maharashtra, India. In the past
few decades, groundwater withdrawal for public supplies, agricul-
ture, industry and other uses has increased by a manifold. Agricul-
ture intensification has resulted in expansion of groundwater
irrigated area in India (Shah, 2008). Tian et al. (2014) studied large
scale land transformations in India for the period of 130 years
ranging from 1880–2010. The study indicated a dramatic shift in
cropping patterns from rain-fed cereal crops to more water inten-
sive cash crops; a significant loss of forest cover and an increase in
cropland. These changes further pressurized the groundwater
resources. Therefore its over-exploitation or indiscriminate extrac-
tion tends to deplete the shallow and deep aquifer water table. In
mountainous areas, it also causes a reduction in the flow of springs
(Thomas, 2011; Buono et al., 2015); a subsequent reduction in the
base flows of streams and availability of water in open wells and
lakes. Successive droughts and excessive extraction have induced
a stress on the current aquifer regimes, which threatens the flow
of many springs that emerge from this region (refer Fig. 1).

In the Deccan Trap Province, the occurrence of groundwater in
basalts depends on differing hydrological properties of the rock
types (compact, vesicular, amygdaloidal, inter-basaltic clay),
degree of weathering and their intrinsic jointing patterns and frac-
tures (Kulkarni et al., 2000). Rainfall plays a significant role regard-
ing how water is distributed and is available for recharge in these
regions. The underlying geology and deficiency in rains has seri-
ously crippled the agrarian livelihood and could threaten the
future of farmers who are dependent on irrigated agriculture
(Shah, 2009; Udmale et al., 2014). Rampant well drilling due to
groundwater unavailability for irrigation has pushed many of the
farmers into a spiraling debt and ultimately to a suicide (Taylor,
2013). Knowledge of subsurface hydrogeology, hence, plays a vital
role in regulation of drilling boreholes and aiding the communities
to manage the underlying aquifers.
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Figure 1. Many remote communities are dependent on natural springs for drinking purposes, which ooze out through the basalt flow contacts (sheet pahoehoe flow units).
(Location: Kandobachiwadi, Pimpaldhari).
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The expanse of hard basaltic rocky terrain, also known as the
Deccan Volcanic Province (DVP) or Deccan Traps, covers an area
of more than 500,000 km2 in the western central region of the
country and exceeds more than1.5 � 106 km2 of total flow, which
makes it one of the largest, among other known continental flood
basalt provinces namely Siberian and Paraná-Etendeka traps. The
lava pile in DVP is thicker towards the Western Ghats and wanes
down gradually towards the east. Sangamner and Akole region of
Ahmednagar district, situated towards the western region, are
underlined by massive lava pile consisting of flow units of varied
thickness and belong to different flow types (Bondre et al., 2000,
2004). The flows are composed of compound pahoehoe
(Duraiswami et al., 2001; Bondre et al., 2004), slabby pahoehoe
(Duraiswami et al., 2003), rubbly pahoehoe (Duraiswami et al.,
2008) and aa’ types (Brown et al., 2011). The flow units are a result
of volcanic eruptions which erupted through a series of long fis-
sures that occurred approximately 65 million years ago (Chenet
et al., 2007). The massiveness of these units presents itself as an
impervious stratum which provides very little possibility for water
to be recharged. Access to groundwater in such units is dependent
on the availability of inherent structures like cooling joints, frac-
tures and presence of intrusive features like dykes and sills. The
region is cluttered with dyke swarms and fracture lineaments
(Bondre et al., 2006) that are potential groundwater reservoirs
(Duraiswami, 2005; Mège and Rango, 2010) and act as conduits
for groundwater flow (Lie and Gudmundsson, 2002; Larsen and
Gudmundsson, 2010) in the hard rock terrain (Deolankar et al.,
1980; Peshwa et al., 1987; Babiker and Gudmundsson, 2004).

The failure of boreholes in the hard rock areas in Deccan Traps is
a common phenomenon and has been happening more frequently
than before. This can be attributed to over exploitation and incorrect
site selection. Groundwater mainly exists in shallow weathered
rock, vesicular and amygdaloidal rock, fractures and joints (refer
to Fig. 2) (Kale and Kulkarni, 1993; Kulkarni et al., 2000). Locating
groundwater productive zones and predicting the subsurface flow
processes needs rigorous scientific survey. Recurring crop failures,
due to insufficient rainfall and depleting groundwater in shallow
aquifers, has resulted in a growing need for tapping deeper aquifers.

For spatial mapping of groundwater zones different methods
like the overlay and index methods, process-based methods
consisting of mathematical modelling and empirically based statis-
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
tical methods (Eslamian, 2014) are available, but the overlay and
index method was found to be suitable to delineate areas that
are generally vulnerable to groundwater unavailability. Many
studies based on integration of thematic layers have been geared
towards identification of groundwater potential zones (Murthy,
2000; Dar et al., 2011; Magesh et al., 2012; Nag and Ray, 2014;
Ibrahim-Bathis and Ahmed, 2016.) and recharge zones (Shaban
et al., 2006; Duraiswami et al., 2009), however efforts to identify
and delineate areas that face groundwater unavailability needs to
be ascertained in order to increase knowledge at the village level.
The multi influencing factor technique takes into consideration dif-
ferent thematic layers and its independent influences on each
other. Hence this method is quite novel in spatial mapping of the
vulnerable zones.

In lieu of vagaries of climate, this study aids in delineating vul-
nerable areas based on different influencing factors, which are at a
serious risk from rainfall limitations and drought like conditions. It
will also enable in strengthening the communities for sustainable
management of their resources. Additionally it will aid in better
formulation of adaptation strategies that requires to be adopted,
given the current scenario of successive climatic drought condi-
tions prevalent in this region.

2. Study area

The present study conducted in the year 2015–2016, comprised
of seventeen villages from Sangamner and Akole block of Ahmed-
nagar district as shown in Fig. 3 (Jawalebaleshwar, Warudi Pathar,
Gunjalwadi, Karjule Pathar, Mahalwadi, Sawargoan Ghule, Sarole
Pathar, Dolasane, Malegoan Pathar, Khandgedara, Kuthe Khurd (kh),
Kothe Budruk (Bk), Borban, Pemrewadi, Wankute, Bhojdari and Pim-
paldhari). These villages fall in the semi-arid region, with a mean
annual precipitation being around 450 mm, and with a minimum
and maximum average daily temperature of 12 �C and 42 �C
respectively.

2.1. Geomorphology of the area

The study area depicts alluvial plains, undulating lands with
mesas and buttes to dissected hills with escarpments and narrow
valleys. The highest elevation in this area accounts to 1163 m
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Figure 2. General anatomy of a basalt flow (rubbly pahoehoe flow) and typical groundwater occurrence in the Deccan traps.

Figure 3. Location map of the study area – cluster of 17 villages with prominent drainage.
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above mean sea level (AMSL) to the north at Jawalebaleshwar,
while the lowest elevation accounts to 620 m AMSL in the plains
close to Ghargoan, towards east of study area.

The Mula River dissects the study area into northern and south-
ern plateau regions, and is a sub-basin of Mula-Pravara tributary of
the Godavari river basin. The study area consists of moderate to
dense network of dendritic drainage pattern and portrays a slight
structural control over the alignment of drainage channels because
of the lineaments criss-crossing the area.

2.2. Geological and hydrogeological conditions

The study area consists of basalt flows that are nearly flat-lying
(the sequence has a regional southerly dip of 0.5–1� and primarily
belong to the Thakurvadi Formation of the Kalsubai Subgroup
(Khadri et al., 1988; Bondre et al., 2006). Extensive colluvio-
alluvial deposits of the late quaternary Pravara Formation
(Bondre et al., 2000) overlie the basalts along the Pravara River
and its tributaries. Patches of these sediments are also found along
the Mula River (Refer Fig. 4). The basaltic flows belong to a varied
range of flow types, compound pahoehoe, sheet pahoehoe, rubbly
pahoehoe and aa’ flow types (Refer Fig. 5a & b) (Bondre et al.,
2004; Brown et al., 2011) and range in thickness from few tens
of meters to over 50 m. They are made up of individual flow lobes
ranging in thickness from a few cm to 20 m (Bondre et al., 2000,
2006).

In the Deccan Traps, the spatial and temporal distribution of
compound pahoehoe and simple flows, differences in their internal
structures with respect to brecciation, vesiculation, jointing pat-
terns (colonnade, entablature & platy), and presence of intrusive
features like dykes and sills (Refer Fig. 5c–h) have created diversity
in the hydrogeological properties of these aquifers. This diversity is
present within similar agro climatic zones. The inherent
Figure 4. Hydrogeological map of the study area based on field transect surveys. Inset m
Deshmukh and Sehgal (1988)) (b) Rossette Diagram of the lineament trend (n � 86) fro
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differences in the lava morphology, their geometry and the super-
imposing fabric of post volcanic tectonics are important, locally, in
contributing to the anisotropic nature of the aquifer (Duraiswami
et al., 2012). Owing to this anisotropic nature of the aquifers, mul-
tiple field traverses were undertaken to understand different
hydrogeological scenarios existing in the area, which highlight
the heterogeneity. Since the scope of the paper was to delineate
areas at risk of groundwater unavailability, a general aquifer typol-
ogy has been inferred, based on the geological (flow morphology)
and hydrogeological investigations, namely – soft rock (alluvium),
hard rock (basalt) and lineaments (dykes and fractures).

In most of the wells situated in the study area, groundwater was
available until early months of summer. Many hamlets situated at
higher elevations faced acute water scarcity during summers.
Recoverable groundwater was restricted to two permeable zones
of the flow i.e. the weathered upper portion to the vesicular crust
and/or to the upper sheet joints and jointed core. Hydraulic con-
ductivity between these zones and the shallow top-soil/alluvial
aquifer determine the water bearing potentiality of the aquifer.
The alternating geometry/disposition of flows results in a predom-
inant horizontal permeability over vertical permeability
(Duraiswami et al., 2012). Overall, the geological and hydrogeolog-
ical conditions are not conducive for groundwater development
that inadvertently hampers the overall groundwater availability.
There has been push by the government of Maharashtra to provide
farm ponds to each farmer owing to farmer suicides and agrarian
crisis (GoM, 2016). Analysis of farm ponds and its impacts on the
decline of groundwater is beyond the scope of this paper and needs
further research. But during field studies, it was observed that
these structures are lined with plastics and are used for surface
storage of groundwater for irrigating annual crops. The authors
believe that these structures are misplaced in context to semi-
arid regions, where rainfall is scarce. Increase in the number of
ap: (a) Extent of the Deccan Volcanic Province and types of lava flows (adopted from
m the study area.
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a. Precursor 
Pahoehoe lava 
flow lobe seen in 
lower flow units 
at Malegoan 
Pathar. The lobe 
outline depicted 
in hashed line 
shows a red 
glassy rind.

b. Aa’ flows 
showing jointed 
core and flow 
bottom breccia 
observed along 
the road between 
Wankute and 
Bhojdari

c. ~14 m thick 
vertical dyke 
cutting across the 
landscape at 
Jawalebaleshwar

Figure 5. Field photographs of different geological features from the study area villages.
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farm ponds construction in the plateau region can have adverse
impacts on groundwater available in the aquifers. The structures
are supposed to be unlined and used for recharge. Under the gov-
ernment scheme; there has been a total of 349 farm pond con-
structed in the study villages. The recommended size being
10 m � 10 m � 3 m, but sizes greater than the recommended sizes
were observed. This has allowed exposing of the finite groundwa-
ter resource to evaporation. This has serious repercussions on the
availability of groundwater to other low income groups, putting
people at high risk to future groundwater availability. Owing to
low transmissivity and storativity of the aquifer, the communities
are placed at a risk of resource unavailability over a long run.

Based on field observation studies and analysis of maps, three
distinct aquifer typologies were identified namely – lineament
zone, basalt zone and alluvium zone. In alluvial aquifer, the stora-
tivity of the aquifer is high and therefore the wells yield sufficient
quantity of water throughout the year compared to basaltic
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
aquifers. The groundwater generally flows from the plateau areas
to the valley alluvial aquifer region. The storativity and transmis-
sivity values range from low to moderate in fractured and jointed
rocks. Wells located along the lineament zones tend to be more
productive, owing to the openings that are available in the form
of joints and fractures that allow groundwater to move easily.
Springs that occur as natural flow of groundwater to the surface,
feature along lineaments and along flow contacts. They are a vital
source of drinking water for tribal communities.

Based on satellite imagery analysis and field survey, a network
of lineaments in the cluster villages has been revealed. Majority of
the lineaments trend in the NW – SE direction, but other minor lin-
eaments also trending in N–S direction also feature in the study
area. The lineaments in the area were composed of two types –
fracture and dyke lineaments; only dyke lineaments were observed
to having a curvilinear disposition. Analysis of fracture was carried
out using Stereonet software (Allmendinger et al., 2011; Cardozo
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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d. Dug well 
exposing vertical 
dyke cutting 
through rubbly 
pahoehoe flow 
unit at Sawargoan 
Ghule

e. Parallel fracture 
zones cutting 
across the Deccan 
lava pile exposed 
in 
Jawalebaleshwar

f. Fracture 
lineament cutting 
through a dug 
well in 
Pimpaldhari

Fig. 5 (continued)
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and Allmendinger, 2013). The fractures are usually related to
shears and the dykes appeared to occupy dilatory tensional frac-
tures (Deshmukh and Sehgal, 1988). Dykes occur as near vertical
intrusions forming linear ridges of moderate relief and extend for
tens of kilometers beyond the study area. They also show distinct
vegetation growth along the ridges, which was used as one of
the tool in spatial identification before embarking on ground veri-
fication of these features that indicate presence of shallow
groundwater.

In Malegoan Pathar, sill intrusion was seen to be emplaced con-
cordantly in a rubbly pahoehoe flow unit (Refer Fig. 5g & h),
wherein the sill top margin was distinctly observed between a
maximum elevation of 820–800 m and the bottom margin at a
minimum elevation of 787–772 m. Its thickness approximates to
about 30 m and shows a highly fractured rock and with a contorted
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
joint pattern. Sill intrusion happens to be a common occurrence in
the Deccan Traps (Duraiswami and Shaikh, 2013), and its presence
in Sangamner tends to shed more light on the emplacement mech-
anism of the lava flows, the interconnected nature of unidentified
nestled sill complex below and dyke intrusion in the region. The
sill, that encircles the watershed boundary of Malegaon, was seen
as a highly fractured and contorted one (slight folding observed
within the sill segment) and happens to be hydrogeologically
important, for its ability to soak in the recharge from precipitation.
Documentation of dyke geochemistry (Bondre et al., 2006) and Aa’
flow morphology (Brown et al., 2011) has been extensively carried
out in the Sangamner region. The dykes are important hydrogeo-
logically as they act as linear groundwater aquifers due to their
close joint geometry (Duraiswami, 2005) and were seen crisscross-
ing villages in the north and in the south-west of the Mula River.
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Table 1
Dyke trend and their thicknesses as measured from the study area.

Dyke Curvilinear – linear
trend

Thickness
(in m)

Pimpaldhari dyke 39�–41�–47�–50�–65�–38� �7.0 to 7.5
Mahalwadi dyke 100�–90�–76�–62�–59� �1.5 to 3.5
Jawalebaleshwar dyke 1 67� �14.0
Jawalebaleshwar dyke 2 100� �1.5 to 2.5
Jawalebaleshwar dyke 3 100� �2.0 to 3.0
Warudi Pathar – Sawargaon Ghule 167� �3.0 to 3.5
Dolasane – Sawargaon Ghule –

Sarole Pathar dyke
302�–314� �3.0 to 4.0

g. Highly fractured 
and thick (~30 m) 
sill emplaced in a 
rubbly flow unit 
seen on a winding 
road in Malegoan 
pathar

h. Highly fractured 
and contorted 
sill segment 
seen in 
Malegoan 
Pathar

Fig. 5 (continued)
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The dykes showed a curvilinear pattern; their general trends with
their thickness are outlined in Table 1.

The dykes and sill showed a distinct cooling joint pattern, and
were observed to be highly fractured that are naturally resistant
to weathering. Due to their distinct fractured rocks, they act as
conduits for groundwater movement and flow. Most of the wells
situated along these features showed a distinct groundwater
hydrology when compared to the host basaltic lava flow sequence.
3. Methodology

The approach adopted for the present study area has been pre-
sented in the form of a flowchart (Fig. 6).

It was used to create indices based upon the aggregation, or
overlay, of many variables or factors collected based on field sur-
veys and integration of remote sensed data sets that were deemed
important in delineation of vulnerable zones. The formulation of
the base map was based on Survey of India map (Toposheet No.
47 I/3), LANDSAT 8 and ASTER GDEM (30 m resolution) that was
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
further pan sharpened to 15 m using band 8. As the study area falls
under the Deccan Volcanic Province, consisting of hard basaltic
rock type with varying aquifer properties influencing groundwater
availability, field transect surveys were carried out to map the local
subsurface heterogeneity in the rocks and to delineate the geolog-
ical structures – lineaments in the area that are potential aquifers
for groundwater storage. A total of 101 dug wells were monitored
for the groundwater level during the pre-monsoon season and has
been interpolated using inverse distance weighted method. Aquifer
Performance Test (APT) was carried out to calculate storativity and
transmissivity values for selected wells in different representative
typologies. This was carried out using Theis (1935) and Cooper and
Jacob (1946) methods, for unconfined & confined aquifers. The
pumping test was scheduled to be in sync with irrigation timings
of the farmers in order to prevent any wastage of water.

Eight influencing factors were considered to delineate ground-
water vulnerable zones, viz. lithology, slope, land-use, lineament,
drainage, soil, depth to groundwater and rainfall. These factors
influence each other, hence, are interdependent. Their interrela-
tionship is shown in Fig. 10. Based on the field inputs and different
thematic layers generated using RS studies, each of these factors
were allocated a fixed score and weight as shown in Table 2; that
was computed using multi influencing factor (MIF) technique
(adopted from Magesh et al., 2012). The effect of each major and
minor factor was assigned a weightage of 1.0 and 0.5 respectively
(Fig. 7). The cumulative weightage of both major and minor effects
were considered for calculating the relative rates (Table 2). This
rate was further used to calculate the score of each influencing fac-
tor. The proposed score for each influencing factor was calculated
by using the formula:

Aþ B=
X

ðAþ BÞ
h i

� 100
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Figure 7. Multi influencing factors and their interrelationship used for delineation of groundwater vulnerable zone.

Figure 6. Flowchart for delineating the groundwater vulnerable zone.
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where,
A is major interrelationship between two factors, and
B is minor interrelationship between two factors.

Each relationship was weighted according to its strength. The
representative weight of a factor of the vulnerable zone accounts
to be the sum of all weights arising from each factor. A factor with
a higher weight value shows a larger impact and a factor with a
lower weight value shows a smaller impact on groundwater vul-
nerable zones. Integration of these factors with their potential
weights was computed using weighted overlay analysis in ArcGIS.

Each weighted thematic layer was statistically computed to
identify the groundwater vulnerable zones. The groundwater
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
vulnerable zones, thus obtained were divided into four categories,
viz., extreme, high, moderate and low vulnerable zones. The results
depicted the groundwater scarcity zones based on different influ-
encing thematic layers of the study area.

The concerned score for each influencing factor was divided
equally and assigned to each of the reclassified factor (Table 3).
The domains controlling the groundwater flow and availability
in the hard rock terrain has been identified from various litera-
tures dealing with the groundwater zonation. The domain link-
ages were ascertained with expert knowledge and based on
collected data from the field studies. The corresponding weights
have been identified from the major and minor effects of the
domains.
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Figure 8. Slope map of the study area.

Figure 9. Land Use and Land Cover classification map of the study area.
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Figure 10. Lineament Density map of the study area.

Table 2
Effect of influencing factor, relative rates and score for each potential factor.

Factor Major effect (A) Minor effect (B) Proposed relative rates (A + B) Proposed score of each influencing factor

Lithology 1 + 1 + 1 + 1 + 1 0 5 22.72
Slope 1 + 1 + 1 0.5 3.5 15.91
LU/LC 1 + 1 + 1 0.5 + 0.5 + 0.5 4.5 20.45
Lineament density 1 + 1 + 1 0 3 13.63
Drainage density 1 0.5 1.5 6.82
Soil 1 0 1 4.55
Depth to groundwater 0 0.5 + 0.5 1 4.55
Rainfall 1 + 1 0.5 2.5 11.36P

22 99.99
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4. Results

A major part of the study area falls under the hard basaltic
typology which was further divided into sub-typologies based on
the rock type, and alluvial cover was restricted to the valley region;
their properties and integration of different thematic layers has
helped in classifying them under different vulnerability risk as out-
lined in Table 4.
4.1. Lithology

In the study area, 94% of the area was found to be covered with
Deccan basalts of Cretaceous age, 0.5% of lineament containing
intruded dykes and fractures and the rest 5.5% of the area by the
valley fill sediments and minor alluvium of recent quaternary age
along the drainage courses (Fig. 4). The basaltic lava flow units con-
sisted of vesicular, amygdaloidal and compact basalts and the
thicknesses of the flow units also seemed to differ. The shallow
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
weathered depth varied from place to place, which predominantly
depended on the slope and degree of weathering. The sedimentary
aquifers consist of alluvial with clay-lenses that forms unconfined
to semi-confined conditions.

4.2. Slope

Slope is an important factor that influenced the groundwater
availability. A higher degree of slope results in a higher run-off
potential. The slope map was prepared using ASTER GDEM,
wherein 65% of the area was <20% with low runoff, 19% of the area
was between 20 and 40 with moderate runoff, 11% was 40–60 with
high runoff and 5% of the area was >60% with very high runoff.
(Refer Fig. 8).

4.3. Land-Use/Land cover

The major land-use and land cover type in the study area
belonged to agricultural cropland and plantation, barren land,
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Table 3
Vulnerability index weightage for different factors.

Factors Domain of effect Weightage

Lithology Basalt 23
Alluvium 12

Slope <20% 4
20–40% 8
40–60% 12
>60% 16

LU/LC Open scrub, barren land & fallow land 20
Settlement 15
Agriculture plantation & forest 10
Crop land 5

Lineament density <4 km/km2 14
4–8 km/km2 11
8–12 km/km2 7
>12 km/km2 4

Drainage density <4 km/km2 7
4–6 km/km2 5
6–8 km/km2 4
>8 km/km2 2

Soil Clay 5
Sandy Clay Loam 3
Sandy Loam 2

Depth to Groundwater <2 m 1
2–5 m 3
5–10 m 4
>10 m 5

Rainfall <400 mm 11
400–450 mm 8
450–500 mm 6
>500 mm 3
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fallow land, forest, open scrub, settlements and waterbodies. These
land-use classes were identified using LANDSAT 8 satellite data
using supervised classification (Rawat and Kumar, 2015). The
classes were sub-divided into four groups namely; (i) crop land,
(ii) agriculture plantation & forest, (iii) open scrub, barren land &
fallow land, and (iv) settlement. The above groups were further
regrouped based on the decreasing severity to groundwater avail-
ability criteria. Of the total area – open scrub, barren land & fallow
land form the major class covering an area of 54%, followed by agri-
culture plantation & forests covering 32% of the study area, and the
remaining area of 13% and 1% by crop land and settlement respec-
tively (Refer Fig. 9).

4.4. Lineament density

Lineaments were found to be linear or curvilinear geological
structural features and represent zones of structural weak planes
denoting fracturing and faulting. Two distinct lineament types
were identified with the aid of LANDSAT 8 and, ASTER GDEM data
sets (Abdullah et al., 2010; Assatse et al., 2016) that were used to
delineate dyke and fracture lineaments. Field traverses were
undertaken to cross-validate the linear features. Greater density
of lineament usually denotes permeable zone as the rock type is
highly fractured and jointed. The lineament density map of the
study area as shown in Fig. 10, reveals a high lineament density
in the north-east and central region of the study area with a value
ranging from 4 to >12 km/km2 (Refer Fig. 10).

4.5. Drainage density

Drainage map was created by using ASTER GDEM and
Toposheet. The drainage pattern was predominantly dendritic with
most of drainage lines aligned to the lineaments. These classes
were assigned into four groups, based on closeness of spacing of
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
stream channel. Drainage density is a measure of the total length
of the stream segment of all orders per unit area, calculated using
line density analysis tool in ArcGIS software. High drainage density
(>8 km/km2) was recorded in the north-eastern and central alluvial
plains. The drainage density is an inverse function of permeability.
The less permeable a rock means less the infiltration of rainfall,
which conversely tends to be concentrated in surface runoff.
Groundwater scarcity areas of <4 km/km2 density covered almost
68% of the total area, making it impermeable for groundwater
recharge. (Refer Fig. 11).

4.6. Soil

Soil is an important factor for delineating the groundwater vul-
nerable zones. The moderate to deep black cotton clayey soils is a
product of weathering of compact basalt rocks. The analysis of the
soil type (based on Maharashtra Soils Sheet 1, National Bureau of
Soil Survey (NBSS) and Land Use Planning (LUP), with Scale of
1:50000, revealed that the study area was predominantly covered
by clayey soil (in the hilly and plateau region) with sandy clay loam
occupying the parts of the plateau slopes and sandy loam soil along
in the flood plains (Refer Fig. 12).

4.7. Depth of groundwater

As shown in Fig. 13and 65% of the area comprised of groundwa-
ter, whose depth ranged between 5 and 10 m below ground level
(bgl). The groundwater level map was generated based on the
pre-monsoon dug well static water levels of 101 wells. The depth
of groundwater was found to be greater than 10 m in the villages
of Pimpaldhari, Wankute, Swargoan Ghule, Gunjalwadi and Sarole
Pathar, wherein excessive pumping has been resulting in severe
water shortages with most of the wells running dry by the end
of January month. Most of bore-wells have reached almost 152 m
depth, hence taping deeper confined aquifers.

4.8. Rainfall

The annual rainfall acts as an important factor that influences
groundwater available for recharge in the semi-arid region. The
annual average rainfall in the study area was found to be around
450 mm. Based on the automatic weather stations installed by
Watershed Organisation Trust (WOTR); the local isohyetal precip-
itation map was delineated for the study area (Refer Fig. 14). The
annual precipitation was observed to decrease from west to east.

The different thematic layers of lithology, lineament density,
drainage density, slope, soil, depth to groundwater, land-use/land
cover and rainfall were prepared with the help of satellite ima-
geries coupled with cross validation on the field. The various the-
matic layers were assigned an appropriate weightage through
MIF technique and then integrated into the GIS environment in
order to prepare the groundwater vulnerable zone map of the
study area as shown in Fig. 15.

In the study area, the majority of villages fall under ‘high’ vul-
nerability category (refer Fig. 16). The villages Wankute, Dolasane,
and Sawargaon Ghule showed high proportion of area under ‘ex-
treme’ groundwater vulnerable status, while Jawale Baleshwar vil-
lage showed larger area under ‘extreme’ category. The reason for
extreme vulnerability in the same village is mainly attributed to
percentage area under different influencing factors and presence
of higher weightage domain effects provided under various factors.
The differing domains effects occurring in the same village bound-
ary add to the complexity of different vulnerabilities. Irrespective
of the administrative boundaries, the spatial distribution of con-
trolling domains of the groundwater plays a major role on classify-
ing the different vulnerabilities.
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Table 4
Aquifer properties of various typologies vis-à-vis vulnerability class defined for the study area villages (S & T values ranges adopted from Duraiswami et al. (2012)# and CGWB
groundwater exploration data (Lamsoge et al., 2015)#1, ⁄ – indicate field pumping test carried out at select wells by the author of this paper).

Typologies Dominant Aquifer type Storativity Transmissivity
(m2/day)

Vulnerability
class

Study area villages

Basalts Weathered Compound lobate – sheet lobate aquifers 0.001–2.8#

0.11⁄
6–534#

47.43⁄
High Borban

Malegoan Pathar⁄

Bhojdhari
Vesicular Compound lobate – sheet lobate aquifers 0.8–2.9# 80–503# High Borban

Bhojdhari
Malegoan Pathar,
Jawalebaleshwar,
Sawargoan Ghule,
Pemrewadi,
Pimpaldhari

Fractured/jointed Sill, dykes & (columnar & sheet) joints 0.6–2.9#

0.13⁄
26–450#

112.6⁄
Moderate Malegoan Pathar,

Pimpaldhari,
Sawargoan Ghule⁄,
Warudi Pathar,
Dolasane,
Jawalebaleshwar,
Mahalwadi,
Sarole Pathar,
Kandegedhara,
Wankute, Bhojdhari

Compact Simple confined aquifers 0.08–0.1# 6–15# Extreme Dolasane,
Karjule Pathar,
Gunjalwadi,
Warudi Pathar,
Sarole Pathar,
Sawargoan Ghule,
Jawalebaleshwar,
Mahalwadi Malegoan Pathar,
Wankute,
Pimpaldhari,
Bhojdhari,
Borban,
Pemrewadi,
Kandegedhara

Alluvium Unconfined to semi-confined with clay lenses 0.16–3.5#1

0.27⁄
12.7–2314#1

174.2⁄
Low Kothe Budruk⁄,

Kothe Khurd,
Kandegedhara,
Pimpaldhari,
Borban
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5. Discussion

The half decadal cycle of climatic drought (scarcity of surface
water) followed by agricultural drought (crop failure, fodder scar-
city) leading to hydrological drought (drying of wells, and scarcity
of drinking water) is familiar in the Trappean province. Groundwa-
ter, therefore, becomes the sole source of water for domestic and
irrigation purpose (Duraiswami et al., 2012). The general anatomy
of cooling joints, flow contacts and fractured rocks, and the vertical
and spatial extent of individual flow units form potential aquifers
in otherwise hard impervious basaltic terrain. Changing rainfall
regimes and falling groundwater tables have aggravated the issue
of water scarcity, and hence, tend to be one of the key drivers for
excessive drilling and over-extraction of the groundwater in the
region.

Even though there are different vulnerable categories exist in a
same village, the majority of the area falls under ‘high’ and
‘extreme’ vulnerable category. The ‘low’ vulnerable zones exist,
where the alluvial landforms, higher order stream channel in the
planes and presence of structural lineaments support groundwater
flow and storage. The current trend of groundwater usage (addition
of new wells tapping multiple aquifers and pumping out ground-
water for storing in the farm ponds) in the study area can induce
the change of the ‘low’ vulnerable zones into ‘high’ and ‘extreme’
categories in the coming years. This persistent pressure on the
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
limited groundwater resources needs propermanagement and con-
servation measures to sustain the existing climate change scenario.
A pragmatic definition of the relative vulnerable zones and their
corresponding scenarios is given in Table 5.

6. Conclusion

As the groundwater potential is low and the current practice of
excessive pumping, regular impounding of groundwater in the
farm ponds, drilling of new deeper wells with limited rainfall fur-
ther aggravates its availability for future use. If the current prac-
tices continue ‘business as usual’, the ‘high’ category
groundwater vulnerable villages are at further risk of being trans-
formed into ‘extreme’ category. Hence, the delineation of ground-
water vulnerable zones in the sixteen villages from Sangamner
and one from Akole block, Ahmednagar district in Maharashtra
using hydrogeological mapping, remote sensing, GIS and MIF tech-
niques was found to be very useful for identifying areas that has a
high probability to face recurring hydrological droughts due to
groundwater unavailability and prioritize adaptive strategies for
effective management of common pool groundwater resources.

In lieu of declining precipitation rates, identifying villages that
are at serious risk of groundwater unavailability can provide useful
guide to assist government and village bodies in making effective
policy changes related to the land use planning and management
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008
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Figure 11. Drainage density map of the study area.

Figure 12. Soil map of the study area (adopted and modified from Maharashtra Soils Sheet 1, National Bureau of Soil Survey (NBSS) and Land Use Planning (LUP).
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Figure 13. Pre-monsoon depth of groundwater level map in the study area.

Figure 14. Rainfall distribution map in the study area based on Automatic Weather Stations installed by WOTR, Pune.
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Figure 15. Groundwater vulnerable zone of the study area.

Figure 16. Area of vulnerable zones in different villages.
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of common pool aquifers; thereby enabling a quick and effective
decision-making for sustainable water resources management.
For effective climate smart interventions in the form of watershed
treatments and groundwater management at a local scale, the
results of the present study can serve as guidelines for prioritizing
mitigation strategies in the face of reduced precipitation in the
region, thus ensuring sustainable groundwater utilization and its
Please cite this article in press as: Thomas, R., Duraisamy, V.. Egypt. J. Remote
timely management. This method can be widely applied to other
drought prone areas, provided that it is backed with field data. It
also highlights one of the key knowledge gaps of identifying
groundwater vulnerable areas that exist at the community level,
additionally attempting to foreground the necessity for effective
adaptation in the face of variability in rainfall and groundwater
recharge, in the semi-arid regions of Ahmednagar.
Sensing Space Sci. (2017), http://dx.doi.org/10.1016/j.ejrs.2016.11.008

http://dx.doi.org/10.1016/j.ejrs.2016.11.008


Table 5
A pragmatic definition of the relative classes of groundwater vulnerability at any
given location based on integration of different thematic layers.

Vulnerability
class

Corresponding scenarios

Extreme Vulnerable to extreme water shortages. Owing to depletion
of unconfined aquifers, water being tapped from deeper
confining aquifers. Serious risk of multiple confined aquifers
is being depleted due to – reduced rainfall, presence of
massive basaltic units limiting groundwater recharge and
availability, significant land use/land cover changes and
excessive pumping of wells for irrigation

High Risk to water shortages is high that further depends on the
land use, limited groundwater storage in shallow unconfined
aquifers, excessive pumping of wells and a gradual shift to
groundwater exploration of deeper confined aquifers and
being deprived from any other sources of surface water

Moderate Presence of dykes, fractures, weathered rocks and drainage
lines that provide moderate water; however is limited to
presence of fracture connectivity and frequency of
groundwater pumping from such lineament zones

Low Presence of thick alluvial aquifers that have higher capacity
to store and transmit groundwater. Groundwater and surface
water availability is almost year round; however is
dependent on annual replenishment of aquifers from rainfall
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