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*Abstract:  
This project addresses knowledge, resource, capacity and networking gaps on the theme: 'Strengthening urban 

governments in planning adaptation.'  

The main objective of this project is to develop an adaptation framework for managing the increased risk to 

African local government and their communities due to climate change impact. The ultimate beneficiaries of this 

project will be African local governments and their communities. The guiding and well-tested ICLEI principle of 

locally designed and owned projects for the global common good, specifically in a developing world context, will 

be applied throughout project design, inception and delivery.  

 

Additionally, the research will test the theory that the most vulnerable living and working in different 

geographical, climatic and ecosystem zones will be impacted differently and as such, will require a different set of 

actions to be taken. Potential commonalities will be sought towards regional participatory learning and wider 

applicability. The five urban centres chosen for this study, based on selection criteria, include: Cape Town, South 

Africa, Dar es Salaam, Tanzania; Maputo, Mozambique; Windhoek, Namibia; and Port St. Louis, Mauritius.  

 

Through a participatory process, this project will carry out a desk-top study, long-term, multi-discipline, multi-

sectoral stakeholder platforms in five Southern African cities comprising of academics, communities and the local 

government in order to facilitate knowledge-sharing, promote proactive climate adaptation and resource 

opportunities available for African cities, develop five tailor-made Adaptation Frameworks and explore regional 

applicability. A network of stakeholders within each urban centre will be established, feeding into a larger 

regional network of local authorities and partners in Sub-Saharan Africa, and globally through existing ICLEI 

global (e.g. the ICLEI Cities for Climate Protection programme), ICLEI Africa and UCLG-A members and 

networks, ensuring global best practice, roll-out, and long-term sustainability. 

 

Key words: Adaptation, Africa, Climate Change, Local Governments, Participatory Action Research, 

Policy. 

 

 

 

 

 

mailto:iclei-africa@iclei.org


ICLEI – Local Governments for Sustainability – Africa 
Climate Change Projections for Cape Town: Adding value through downscaling 

 

 
Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through participatory 

Research and Local Action. 
2 

 

 

 

 

Climate change projections for Cape 
Town:  

Adding value through downscaling 
 

 

 

 

 

 

 

 

 

 

 

  



ICLEI – Local Governments for Sustainability – Africa 
Climate Change Projections for Cape Town: Adding value through downscaling 

 

 
Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through participatory 

Research and Local Action. 
3 

 

 
 

 

 

 

Sub-Saharan African Cities: A five-City Network to Pioneer Climate 

Adaptation through Participatory Research & Local Action 

 

Climate Change Projections for Cape Town: Adding value through 

downscaling 

March 2012 

 
 

 

Authors: Mark Tadross and Peter Johnston  
 

ISBN: 978-0-9921794-8-9 

 

 

 

 

  



ICLEI – Local Governments for Sustainability – Africa 
Climate Change Projections for Cape Town: Adding value through downscaling 

 

 
Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through participatory 

Research and Local Action. 
4 

 

Contents 
Preface ................................................................................................................................................................ 5 

1 Historical observations and trends from Cape Town ................................................................................. 6 

1.1 Climate of Cape Town ........................................................................................................................ 6 

1.2 Historical trends in climate at Cape Town ......................................................................................... 8 

2 GCM projections of future change (for 2050) .......................................................................................... 13 

2.1 Rainfall ............................................................................................................................................. 13 

2.2 Temperature .................................................................................................................................... 15 

2.3 Winds ............................................................................................................................................... 16 

3 Statistically downscaled projection of future changes in rainfall, temperature and evaporation .......... 17 

3.1 Rainfall ............................................................................................................................................. 18 

3.2 Temperature .................................................................................................................................... 19 

3.3 Evaporation and effective rainfall ................................................................................................... 20 

4 Changes in climate extremes .................................................................................................................... 22 

4.1 Changes in extreme temperatures .................................................................................................. 23 

4.2 Changes in extreme rainfall ............................................................................................................. 24 

5 Cape Town: impacts and vulnerabilities ................................................................................................... 24 

5.1 Water and Sanitation....................................................................................................................... 26 

5.2 Transport ......................................................................................................................................... 26 

5.3 Health .............................................................................................................................................. 26 

5.4 Energy .............................................................................................................................................. 26 

5.5 Livelihoods ....................................................................................................................................... 27 

 

  



ICLEI – Local Governments for Sustainability – Africa 
Climate Change Projections for Cape Town: Adding value through downscaling 

 

 
Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through participatory 

Research and Local Action. 
5 

Preface 
 

Climate change is expected to have severe physical, social, environmental and economic impacts on cities 
worldwide, both directly and indirectly. Although there are some uncertainties surrounding the 
understanding of earth’s complex systems, there is strong evidence in current literature and climatic 
measurements to demonstrate that, as a result of increasing greenhouse gas emissions, atmospheric, land 
and sea surface temperatures are rising. Global model projections have demonstrated that temperature 
and rainfall changes throughout Africa, increased frequency of storms and sea-level rise in sub-tropical 
Oceans, will expose current vulnerabilities of coastal (and other) cities, whilst also potentially heightening 
risks associated with food security and water resources. 
 
Global Climate Model projections of change are presented and discussed in ‘the baseline climate report for 
southern African countries including: Namibia, South Africa, Mozambique, Tanzania and Mauritius.1 This 
report shows the results from applying a downscaling methodology developed at the University of Cape 
Town to nine GCMs and the observed rainfall and temperature data from stations near Walvis Bay. The 
downscaling relates daily weather systems to the observed rainfall and temperature at each location on 
each day (to a point-scale). 
 
Projections are described as being manifested as certain impacts, depending on the region, amongst 

others; 

 

 changes in rainfall and precipitation patterns (flooding and drought), 

 increases in temperature and associated desiccation effects, 

 increasing frequency and intensity of storm surges or extreme events, 

 increasing average global sea levels due to melting glaciers and thermal expansion (permanent and 

non-permanent inundation) and, 

 changes in wind speed. 

 

This report will outline impacts and vulnerabilities that the available model results typically imply for Cape 
Town, whilst also discussing constraints and the limitations of the current methods. It must be noted that 
sea-level rise is NOT presented here, as it does not feature in downscaled projections and has been dealt 
with in more detail elsewhere2. 

  

                                                           
1
 Tadross and Johnston, 2011. Projected Climate Change Over Southern Africa; Namibia, South Africa, Mozambique, 

Tanzania and Mauritius, Report for ICLEI, February 2011 
2
 Brundrit, G B (1995). Trends of southern African sea level: statistical analysis and interpretation. South African Journal of Marine 

Science 16: 9-17. 
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1 Historical observations and trends from Cape Town 
 
Historical observations of the recent past from weather stations in the vicinity of Cape Town are required in 
order to understand the current climate context of the city.  They also assist in the determination and 
identification of any historical trends in climate that may be associated with anthropogenic climate change. 
For this study local rainfall and temperature data from Cape Town were made available through a database 
held at the University of Cape Town; these data were also used to produce downscaled estimates of 
changes in rainfall and temperature under anthropogenic climate change. Several stations were available in 
the vicinity of Cape Town and of these the SA Astronomical Observatory has the longest record, including 
data for the last 10 years. Figure 1 shows the location of the Observatory data which is used throughout 
this report. 
 
 

 
Figure 1: Location of SA Astronomical Observatory 
 
 
 
 
 

1.1 Climate of Cape Town 
 
The city experiences a Mediterranean climate, with an average rainfall of between 560 and 1400 mm 
around the Cape Peninsula’s mountains. Summer temperatures peak in February with a monthly average 
maximum of 26.9oC.  Winter averages are lowest in July with an average maximum of 17.7oC and minimum 
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of 9.1oC. Extremes vary between 42oC in summer and 1oC in winter. Daily rainfall and temperature data 
were available for the Observatory station between 1850 and 2010, though temperature data was only 
available for the 1960-2010 period (with missing data 1978-1988). The Priestly-Taylor method was used to 
calculate reference evapotranspiration3  (ET0) based on simulated temperatures, solar radiation and 
altitude. Figure 2 shows the daily climatology (average over all years) of rainfall, temperature and reference 
evapotranspiration at Cape Town. Rainfall falls during winter between April and September, when 
temperatures and evapotranspiration are at a minimum. During summer (November to March) ET0 is 
significantly higher than rainfall. 
 

                                                           
3
 Reference evapotranspiration (ETo) indicates the amount of water that would be lost due to evaporation and 

transpiration if it were available. If ET is higher than rainfall it means that the soil and vegetation will dry out. 
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Figure 2: Daily climatology of rainfall (mm day-1) and reference evapotranspiration (mm day-1) (top) at 
Cape Town and minimum and maximum temperatures (°C) (bottom). 
 
 
 

1.2 Historical trends in climate at Cape Town 
 
Any data collected at a weather station must undergo quality control procedures. Such quality control 
procedures are generally flexible and there are no hard and fast guidelines as to what should be 
implemented. For example, complex statistical techniques that detect discontinuities in time-series (usually 
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indicating the relocation or deterioration of a sensor) can be used with historical data, though these do not 
work as well for rainfall data, which is more discrete in nature. In this analysis it was decided to use the 
following simple tests and data was removed if it failed any of them: 

 check for duplicate or missing records; 

 check for negative rainfall (an impossibility in reality); 

 check for rainfall > 500 mm in one day (also impossible); 

 remove data more than 6 standard deviations from the mean (this would indicate an error in 
reading); 

 remove data where minimum temperatures are greater than maximum temperatures (non-
sensical). 

 
The remaining data was then used to calculate extreme temperatures and rainfall indices, both on an 
annual and seasonal basis utilising software distributed by the ETCCDMI4 and STARDEX5 projects.  
 
Increasing temperature trends are detectable in a number of temperature indices with the most significant 
(at the 90% confidence level) for increasing minimum temperatures. Figure 4 shows the trend in annual 
average daily maximum and minimum temperatures, both of which show statistically significant increases 
since 1960. These trends result in statistically significant increases in average temperature and are present 
during all seasons. 

                                                           
4
 http://cccma.seos.uvic.ca/ETCCDMI/software.shtml 

5
 http://www.cru.uea.ac.uk/projects/stardex/ 
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a)

 
b) 
Figure 4: Trends in annual average daily minimum (a) and maximum (b) temperatures at Cape Town. 
 
 
Figure 5 shows the annual trends in average dry spell length, maximum number of consecutive dry days, 
average rainfall intensity and frequency with which the 90th percentile rainfall event is exceeded. It can be 
seen that all trends are significantly positive, indicating that dry spells are longer on average in the later 
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period and that the intensity of the top 10% of daily rainfall, as well as the average intensity, is higher 
during the later periods. 
 
 

 
a) 

b)  
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c) 

 
(d) 
Figure 5: Trends in annual average (a) dry spell length, (b) maximum number of consecutive dry days, (c) 
average rainfall intensity (mm day-1) and (d) frequency of exceeding the long term (1960-1990) 90th 
percentile daily rainfall event. 
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2 GCM projections of future change (for 2050) 
GCM projections of change were presented in the baseline climate report for southern Africa6 and are 
shown here with a focus on the region around Cape Town. 
 

2.1 Rainfall 
Figure 6 demonstrates how rainfall is expected to change under both a B1 and A27 emissions scenario; for 
each season both the median8  change (15/13 GCMs for the A2/B1 scenario) and percentage of models 
agreeing on the sign of the change is shown. The median of the models (i.e. the most common outcome) 
suggests the most likely change for each period, whereas the percentage of models can be taken as an 
indication of the confidence in whether a positive or negative change is consistently simulated across the 
GCM models (values less than 50% suggest most models are simulating a negative change, whereas greater 
than 50% suggest most models simulate a positive change). 
 
If one seeks consistency across GCM models (which could be defined as more than 60% of models agreeing 
on the sign of change) as well as consistency across both the A2 and B1 scenario, then decreases in rainfall 
are suggested all year round with the greatest changes during the main rainfall season in JJA. During the 
December-February median changes are small, with consistent model simulations tending towards the 
western regions over the ocean. 
 

 

 

 

 

 

 

 

  December-February    March-May 
 

                                                           
6
 Tadross and Johnston 2011, Projected Climate Change Over Southern Africa; Namibia, South Africa, Mozambique, 

Tanzania and Mauritius, Report for ICLEI, February 2011 
7
 Emissions Scenarios were constructed to explore future developments in the global environment with special 

reference to the production of greenhouse gases and aerosol precursor emissions. The A2 scenario family describes a 
very heterogeneous world. The underlying theme is self-reliance and preservation of local identities. The B1 scenario 
family describes a convergent world with the emphasis on global solutions to economic, social, and environmental 
sustainability, including improved equity, but without additional climate initiatives. 
8
 The median is the midpoint of a frequency distribution of observed values, sometimes reflected as the most 

common result. 
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  June-August    September-November 



ICLEI – Local Governments for Sustainability – Africa 
Climate Change Projections for Cape Town: Adding value through downscaling 

 

 
Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through participatory 

Research and Local Action. 
15 

 

 
Figure 6: Median GCM simulations of rainfall change in mm per month by 2050 under A2 and B1 
emissions scenarios for each season. The confidence of the model ensemble simulations is indicated by 
the percentage of models simulating a positive change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Temperature 
All GCMs simulate an increase in temperature which results in the median changes shown in figure 7 for 
both scenarios and all four seasons. Increases are similar for each season depending on the scenario; 1.0-
1.5°C for the B1 scenario and 1.25-2.0°C for the A2 scenario in the region of Cape Town. Increases inland 
are significantly more than towards the coast, due to the moderating influence of the surrounding sea. 
These are median changes and incorporate a range of projected increases, all positive, in each case. 
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  December-February    March-May 

 
 
 
  June-August    September-November 

 
Figure 7: Median GCM simulations of change by 2050 under A2 and B1 emissions scenarios for each 
season. 
 
 

2.3 Winds 
Figure 8 shows the median changes in surface (actually 10m above the surface) winds simulated under an 
A2 scenario; arrows show the direction9  and magnitude of change, red shading indicates that median wind 
speed increases whereas blue shading indicates that wind speeds decrease. Wind vectors tend to come 
more from the southeast during all seasons, which increases the wind speeds during all seasons, except JJA 
when the dominant flow is normally from the west and reflects the northward position of the winter storm 
tracks. These changes reflect a strengthening of the anticyclonic atmospheric circulation over the southern 
Atlantic Ocean, particularly during winter and early spring, as depicted in the IPCC 4th assessment report10 
and which is partly responsible for a southward retreat of the mid-latitude storm tracks (hence the 
decrease in winter rainfall noted earlier).  
 
The implications of increased wind strength during Sept-May must be considered in terms of any existing 
vulnerabilities that Cape Town may face. The impact on harbour activity and wave action on the coastline 
must be also assessed in terms of this projection.  
 
 December-February    March-May 

                                                           
9
 Arrows indicate the movement of the wind – e.g.an arrow pointing south indicates a wind coming from the north. 

10
 IPCC, 2007. IPCC Fourth Assessment Report (AR4) [online]: Available: http://www.ipcc.ch/ 
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 June-August    September-November 

 
Figure 8: Median changes in 10m wind directions simulated under an A2 emissions scenario; shading 
indicates changes in wind speed in (m/s). 
 

3 Statistically downscaled projection of future changes in rainfall, 

temperature and evaporation 
 
The following sections show the results from applying a downscaling methodology developed at the 
University of Cape Town to nine suitable GCMs11 (forced with the A2 emissions scenario) and the observed 
rainfall and temperature data from the Cape Town station. The downscaling relates daily weather systems 
to the observed rainfall and temperature at each location on each day. Taking the simulated changes in 
daily weather systems from each GCM we can then simulate the expected changes in daily rainfall and 
temperature at each location. We use the Priestly-Taylor method to calculate reference evapotranspiration 
(ET0) based on simulated temperatures, solar radiation and altitude. 
 

                                                           
11

 The suitability of GCMs depends on the frequency of data and the type of variable 
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3.1 Rainfall 
Figure 9 below compares the downscaled GCM control climates12 (1961-2000) with the observed climate 
for Cape Town. The GCM control climates are close to the observed climate (black line), replicating the 
observed seasonal cycle and peak rainfall during June. This gives us confidence that the downscaling 
methodology applied to these GCMs is simulating the local climates correctly, though it is worth noting that 
the downscaled climates tend to underestimate the observed rainfall and shift the peak rainfall month 
later. 
 

 
Figure 8: GCM downscaled control rainfall climates (mm per day), for the period 1961-2000 at Cape 
Town. Black line is observed climate and coloured lines are downscaled GCM climates. 
 
 
Figure 10 presents the simulated changes (or anomalies13) in rainfall for Cape Town. The shaded regions 
indicate the spread between the different downscaled GCMs (between 10th and 90th percentiles) and the 
solid lines the median downscaled response. The solid lines indicate the median of the downscaled models 
and the shaded regions the spread between the different downscaled GCMs. Green colouring is for the 
change simulated for the 2046-2065 period and blue for the 2081-2100 period (all relative to the control 
period of 1961-2000). The median of the models suggest an increase in rainfall during June for the 2046-
2065 period but a decrease for other months and the 2081-2100 period. There is significant spread 

                                                           
12

 A Control climate is the current climate as determined by the model – the degree of difference between the control 
and the observed climate gives an indication of the skill of the model  
13

 An anomaly is the difference between the current climate and a future climate as projected by a model. 
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between the 10th and 90th percentile models, particularly during the rainfall months. On the whole, 
though, these changes are not dissimilar to the suggested changes simulated by the GCMs earlier. The 
implications of this are discussed in 3.3. 
 

 
Figure 10: Downscaled rainfall anomalies (mm day-1) for the 2046-2065 period (green) and 2081-2100 
period (blue). Shading indicates model spread (10th to 90th percentile change) and solid lines the median 
model response. 
 

3.2 Temperature 
The downscaled changes in temperature are similar to those from the GCMs presented earlier and are 
similar for both minimum and maximum temperatures. Maximum temperature changes are shown in 
figure 11. Increases are similar during all months, with median changes for the 2081-2100 period as high as 
3.4°C and changes for the 2046-2065 period peaking at 1.9°C during May. 
The implications of this are discussed in 3.3. 
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Figure 11: Downscaled maximum temperature anomalies (°C) for the 2046-2065 period (green) and 2081-
2100 period (blue). Shading indicates model spread (10th and 90th percentile) and solid lines the median 
model response. 
 
 

3.3 Evaporation and effective rainfall 
One major consequence of the changes in temperature is to increase reference evapotranspiration (ET0), 
the changes for which are shown in figure 12. Increases are highest during December and the peak summer 
months, with highest median increases of 0.4 mm day-1 during the 2081-2100 period and 0.2 mm day-1 
during the 2046-2065 period. 
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Figure 12: Downscaled reference evapotranspiration (ET0) anomalies (mm day-1) for the 2046-2065 period 
(green) and 2081-2100 period (blue). Shading indicates model spread and solid lines the median model 
response. 
 
One consequence of these increases in ET0 is that effective rainfall (rainfall – evaporation) becomes less, 
even without a decrease in rainfall. Assuming that evaporation occurs at the reference level (typical of a 
surface covered in short grass– for hard surfaces evapotranspiration is meaningless), figure 13 shows the 
change in effective rainfall. Comparing with figure 10, it can be seen that the change in evaporation results 
in reductions of effective rainfall in nearly all simulations and all months, with the exception of the earlier 
2046-2065 period during the peak of the winter rainfall season. This implies less surface water available for 
dams, plants and agriculture at most times of the year, except potentially during the peak of the rainfall 
season in the mid-century period. 
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Figure 13: Downscaled effective rainfall (ppt - ET0) anomalies (mm day-1) for the 2046-2065 period (green) 
and 2081-2100 period (blue). Shading indicates the spread of results for the various models and solid 
lines the median model response. 
 

4 Changes in climate extremes 
Climate extremes (or extreme events) are harder to simulate than changes in the mean climate, largely 
because GCMs are low resolution parameterised versions of the real climate and may fail to capture 
important mechanisms e.g. intense and localised convective rainfall. Whilst the downscaling here relates 
the large scale atmospheric GCM fields to observed rainfall and temperature, and is therefore good at 
projecting realistic climate on average, it still relies on the GCM simulations to model the change in 
atmospheric dynamics. This, and the infrequent nature of extreme events (poor sampling in the historical 
record), means that it is difficult to project future changes. 
 
Until there are fundamental improvements in the GCMs, better estimates of extreme climate events will be 
difficult; new simulations from the CORDEX programme will offer some high resolution dynamic simulations 
from multiple regional climate models (RCMs) for the first time, and these simulations may be able to 
better simulate the complex dynamics of extreme events leading to improved estimates of change. 
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4.1 Changes in extreme temperatures 
Changes in extreme temperatures are likely to rise in all simulations from GCMs and the statistical 
downscaling used here. Figure 14 indicates the cumulative probability of exceeding different maximum 
daily temperatures for different periods at Cape Town under an assumed A2 emissions scenario. The risk of 
exceeding high values (e.g. 35°C) is higher during future periods, though this might be an underestimate 
given that the GCM control climates slightly underestimate the observed exceedances. The table below 
shows the probability of exceeding several temperatures for Cape Town, as well as for each period. 
 

Temperature 
threshold 

Probability of exceeding 
the given temperature 
under present climate 
(1960-2000) 

Probability of exceeding 
the given temperature 
under future climate 
(2046-2065) 

Probability of 
exceeding the given 
temperature under 
future climate (2081-
2100) 

30°C 5% 11% 19% 

32°C 2% 5% 9% 

35°C 0% 1% 3% 

 
As a rough rule one can therefore expect the frequency of days exceeding these different thresholds to 
more than double by 2055 (e.g. for 32 degrees, from 2% occurrence to 5 % occurrence) and approximately 
quadruple by 2090 (e.g. from 2% to 9%) under the A2 emissions scenario. 
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Figure 14: Cumulative probability of exceeding maximum temperatures under current (black), 
downscaled control (orange), downscaled 2046-2065 (green) and downscaled 2081-2100 (blue) periods at 
Cape Town. 
 
One improvement on these estimates of change for the future would be to downscale using a higher 
resolution RCM which would be better able to resolve graded temperature changes in regions of steep 
topography, something that the GCMs and statistical downscaling used here is not able to do. The multiple 
RCM simulations generated as part of the CORDEX programme could be used in this regard. 
 

4.2 Changes in extreme rainfall 
Changes in extreme rainfall are, at least partly, difficult to estimate due to the problems in simulating 
extreme atmospheric conditions mentioned earlier. Additionally the statistical downscaling technique used 
here can only simulate daily rainfall values seen in the historical record. This means that it may 
underestimate increases in rainfall due to increases in intensity, especially at the extreme tail of the 
distribution. Given that increases in intensity are possible in a hotter climate with more moisture for 
rainfall, this is a shortcoming of the downscaling methodology employed here. Using RCMs (which are not 
restricted by such limits) is currently not an option as there are not enough RCM simulations for multiple 
GCMs available for the region (in order to construct envelopes of change and assess the probability/risk of 
particular changes). Again this may change when the CORDEX data becomes available. 
 

5 Cape Town: impacts and vulnerabilities 
 
Cape Town is situated in the south-west of the Western Cape Province of South Africa. The city’s 
topography varies dramatically from low lying sandy coastal plains (Cape Flats) to Table Mountain standing 
over 1000m above sea level (in the centre of the city). The geographic area of the city is approximately 
2500 km2, with an estimated 3.15 million people living within its boundaries, and an annual population 
growth rate of about 3.5%. 
 
Global climate modelling suggests that there will be significant climate change impacts in South Africa, and 
in the Western Cape Province specifically14. These impacts include general warming, disruption of 
established rainfall patterns and an increase in the frequency of extreme weather events affecting a wide 
variety of sectors. Cape Town, the largest city in the Western Cape, draws much income from tourism and 
enjoys significant economic growth, but in common with other major urban centres of the global South, is 
faced with serious socio-economic challenges15. In the city, a significant number of past disasters and 
events have been associated with weather conditions, and the city is at risk from the projected impacts of 
climate-induced warming and changes in rainfall variability16. Thus there is an imperative for the city to 
include climate change and its potential impacts into policy-making and planning, in order to reduce the 
vulnerability of its communities and infrastructure to the predicted impacts of climate change. 
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Since the city experiences a Mediterranean climate, wet winters accumulate almost all the rainfall required 
to sustain the dry, warm summers. Decreased rainfall accompanied with increased temperatures could lead 
to severe water shortages in a region which is already prone to frequent droughts. Since 1985, there have 
been nine winters with total rainfall below 70% of average (an average of more than one in every three 
years). The region also experiences a very low rainfall to runoff conversion (3.1%)17.   
 
Although Cape Town experiences relatively high precipitation for the sub-region, inter-basin transfer 
schemes have been necessary to satisfy the growth in urban and agricultural water demand in and around 
the metropolitan area. Water resource planning and design has conventionally assumed a stationary mean 
climate. Climate change invalidates this assumption, and places additional uncertainty on projections of 
river discharge and water supply, as well as on water demand. Climate change will affect both agricultural 
and domestic demand. Crops would require more water if temperature and potential evapotranspiration 
were to increase18. A third potential impact is that of sea-level rise. Increased temperatures worldwide are 
causing both land-based ice to melt and thermal expansion of sea water. Sea levels are predicted to rise by 
between 200-900 mm by 210019. As many of Cape Town’s industrial, commercial and residential areas lie 
below 10m above sea-level, any sea-level rise will increase the vulnerability of beaches, shorelines and 
coastal developments and infrastructure to storm surges and erosion. 
 
The sectors most exposed and vulnerable to these threats are determined by their exposure to the impacts 
and the likely magnitude of the impact. The agricultural sector, located around Cape Town, is clearly very 
vulnerable to both increased heat (which is likely to affect the deciduous fruit and wine industry), and the 
reduced rainfall (which will affect rain-fed crops such as wheat and rye)18. The exposure of this sector will 
have knock-on effects on the city in terms of employment, food security and economic opportunities. The 
water sector includes supply, treatment and disposal of water for residential, commercial and industrial use 
in Cape Town. The vulnerability of the supply is obviously affected by both increased temperature and 
reduced rainfall, but even if rainfall does not decrease the impact of evaporation will stress water 
resources. All of the city’s water is supplied by a system of five storage dams outside the metropolitan 
region.  
 
Increased sea level rise also threatens certain waste treatment plants. The housing sector is one where 
significant growth has been experienced in Cape Town, and is expected to continue in the future. Finding 
suitable land that is not currently agricultural or situated in flood-prone areas or wetlands is a constant 
challenge. While, ostensibly, a reduced rainfall scenario may lead to a reduction of flooding, early studies 
show that rainfall intensity has been increasing, thus increasing the vulnerability of dense housing, 
especially that constituted by informal structures. The required growth in this sector (to cope with 
increasing in-migration) will also increase stress on the water availability for the city. 
 
It must be noted that the downscaling study in the report does not add any further insight into the already 
identified vulnerability of sea-level rise. In this report the most significant impact is found to be decreases 
in the amount of effective rainfall, (with possible increases in rainfall intensity), with increase in 
temperature and a higher frequency of very hot days.  
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These impacts may increase or decrease specific threats and vulnerabilities to specific local government 
sectors which were identified in the baseline report20 . The risks and impacts upon sectors such as water 
and sanitation, energy, transport and health ultimately and inherently affect livelihoods.  
 
The risks are summarised in the tables below, and risks that are most expected to increase in the future are 
highlighted in yellow. 
 

5.1 Water and Sanitation 
Impacts upon Water and Sanitation 

 Evaporation is anticipated to alter the availability of fresh water resource, groundwater and aquifers thus affecting water 
supply available for drinking and irrigation purposes and thus food security. 

 Increase pressure and demand for water for drinking and for irrigation purposes. 

 Increase the range and or distribution of waterborne diseases such as cholera or malaria that could result in severe pressure on 
sanitation and the health sector. 

 Impacts on aquatic ecosystem and water quality. 

 Algal blooms are likely to become more frequent and start occurring in bulk water storage facilities. 

 The waste water treatment facilities are likely to experience some infrastructure heave and subsidence with changes in soil 
moisture contents. 

 Reduced water availability of water from aquifers. 

 Increased temperatures, associated evaporation rates and the anticipated drying effects are likely to impact the storm water 
sector by: 

o Changing base or low and peak river flow that may result in the reduced health of the waterways. 
o Increasing erosion and sand particles being blown in the system – exacerbating present blockage problems. 

5.2 Transport 
Impacts upon Transport 

 Exacerbate air pollution caused by the transport sector 

 In the short term, minimal impacts on pavements and structural design are anticipated. In longer terms, higher temperatures 
may have significant impacts such as rutting on bridges, roads and tail buckling. 

 Thermal expansion in excess of current designs of transport infrastructure and could therefore lead to damage of 
infrastructure, increasing safety risks and the need for maintenance operations and upgrades / new designs. 

 It is probable that construction rates will be impacted upon by increasing temperatures i.e. concrete strength, which is affected 
by the temperature with which it cures. 

 Increased need for the use of energy for cooling during the transportation of fresh good and the comfort of passengers in 
public transport. 

5.3 Health 

Impacts upon Health (see also water above) 

 An increase in the frequency and duration of severe heat waves and humid conditions during summer is likely to increase 
morbidity and mortality particularly in the young, elderly and sick. 

 Increased geographical distribution of vectors; food and waterborne disease (i.e. malaria, dengue fever, cholera) 

 

5.4 Energy 
Impacts upon Energy 

 Increasing the use of energy for cooling in homes, businesses and other buildings and during the transportation of fresh good 
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and the comfort of passengers in public transport. 

 

5.5 Livelihoods 
Impacts upon Livelihoods 

 Increased temperature, in association of dryer conditions and wind, may increase the incidence of wildfire threats. 

 Temperature increase affects housing, i.e. in high density informal settlements may exacerbate “heat island effect” also the 
poor or lack of construction for passive cooling in dwellings may cause significant discomfort or deaths (health risks: i.e. stroke 
/dehydration). 

 Hotter weather may affect crop-yields, ecosystem distribution and species range. This may lead to a decline in food security 
and / or production may be reduced. 

 Food stored is likely to spoil quicker, resulting in potential hygiene risks. 

 Cost of keeping livestock and domestic animals may increase as the need for more water and cooling may increase. 

 Impacts on viability of other livelihood activities (i.e. forest and agricultural production) Increase of urban food prices as a 
result of increases in production costs. 

 

The risks and impacts upon water and sanitation, transport, health, and energy as shown and highlighted 
above, ultimately affect human livelihoods. Local authorities need to analyse associated and projected 
impacts and adapt and plan accordingly to strategically build resilience. There is a need for ongoing 
vulnerability assessment and the development of adaptation strategies and preparedness in protecting 
local communities and the environment on which they depend upon for their livelihoods and well-being. It 
is increasingly important to gauge the value of pre-emptive adaptation strategies that increase resilience 
and decrease vulnerability, against the cost of damages if these measures are not put in place. 
 


