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CHANGES IN CHINA'S ENERGY INTENSITY:
ORIGINS AND IMPLICATIONS FOR LONG-TERM
CARBON EMISSIONS AND CLIMATE POLICIES

Jing Cao
Mun S. Ho

EXECUTIVE SUMMARY

Since the economic reforms that began in 1978, China has experienced a dramatic
decline in energy intensity but in 2002 it flattened out and even rose slightly. There have
been considerable debates about the origins of this dramatic decline in energy intensity
before the year 2000: is this decline mostly due to changes in the composition of economic
activity? (structural change) or is it mostly due to changes in technology? (energy per
ton of steel, for example). However, very few studies have examined the slightly rising
energy intensity trend for the post-2000 period. In this report, we use a new time-series
input-output data set from 1981– 2007 to decompose the reduction in energy use into
technical change and various types of structural change, including changes in the quantity
and composition of imports and exports. We use two different decomposition methodologies:
Structural Decomposition Analysis (SDA) and Index Decomposition Analysis (IDA)
methods. Based on these estimates of changes in energy intensity, we project Autonomous
Energy Efficiency Improvement (AEEI) parameters in forecasting future capital, labor
and energy input shares of output for each industry. We then construct a recursive-dynamic
computable general equilibrium (CGE) model of the Chinese economy to analyze both
command-and-control policies and carbon taxes, and provide policy recommendations
on how China could pursue a more sustainable development trajectory to deal with
greenhouse gas emissions.
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1.0  INTRODUCTION

1.1 Problem Description

In many developing or transitional economies, energy consumption typically grows
faster than GDP or final economic output during the period of industrialization, motorization,
and urbanization. This is due to rising capital-labor ratios, increasing use of commercial
energy, and the construction of modern infrastructure (Lin and Polenske, 1994; Lin 1994).
However China, the biggest transitional and developing economy in the world, followed
a strikingly opposite pattern of consumption up until the year 2000. China had an average
annual growth rate of 9.7% from 1978 to 2000, but commercial energy consumption per
unit of GDP declined by about two thirds. After 2000, the rate of declining energy intensity
slowed down or even slightly rose in certain years (Figure 1).

Much of this energy comes from fossil fuels and China's carbon intensity (carbon
emissions per unit of GDP) followed a sharply falling trend up to 2000. However, given
the size of the economy and the rapid growth of GDP, it is now estimated that Chinese
arbon emissions have surpassed the U.S. to become the biggest carbon emitter in the world1.
Given the reversal of the downward trend after 2000, the growth of Chinese CO2 emissions
now dominate the growth in global CO 2 emissions. Figure 2 shows the annual carbon
emissions from fossil fuels and cement production in the major carbon-emitting countries.
China follows a trend similar to other non-Annex I countries up until the early 2000s,
but after 2002 the growth of carbon emissions increased dramatically, much faster than
all the developed and other non-Annex I countries. Understanding these trends is important
for discussing the future path of emissions and control policies.

2

1 See, for example, the estimates by the Netherlands Environmental Assessment Agency:
http://www.pbl.nl/en/publications/2009/Global-CO 2-emissions-annual-increase-halves-in-2008.html
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Figure 1: China's energy intensity (measured in kg coal equivalent to thousand YUAN,
2005), 1978 – 2007

Sources: Sinton (2005) China Energy Databook (version 6); China Energy Statistical Yearbook; Data of
Gross Domestic Product of China: 1952 – 2004; and China Statistical Abstract: 2007 (GDP data reflects
the national revision in 2006). Note: energy consumption here only includes commercial energy and excludes
biomass and firewood.

In its 11th Five-Year Plan (2006), the Chinese government set a target to reduce
energy intensity by 20% during 2006 – 2010. Prior to the world economic crisis of 2008,
the dramatically faster growth in total energy use and carbon emissions after 2001
(see Figures 1, 2 and 3) indicated to many that it would be very difficult to meet this target.
China failed to reach the energy saving and environmental protection targets set out in
the 10 th Five-Year Plan, as discussed in Cao et al. (2009). Although the government has
asserted that the target in the 11th Five-Year Plan is a "mandatory" objective, the likelihood
of reaching it attracted a lot of discussion in both academic and policy forums prior to
the global slowdown. To assess this, it is necessary to understand the nature of past changes
in energy intensity. This paper examines the change in aggregate energy intensity (the
energy-GDP ratio) by decomposing it into structural change and change in energy efficiency
at the industry level. This industry level efficiency change includes the effect of substitution
among inputs due to changes in prices, and changes due to technical progress. Structural
change includes the reallocation of capital and labor across industries due to the changes
in the composition of final demand (composition of consumption, investment and exports).

A comprehensive analysis of climate change policies should include some
understanding of future greenhouse gas emissions (GHGs). Projections of long-term
emissions of GHGs require a projection of the level of economic activity, the distribution
of resources among the various industries, and the demand for fossil fuel by these industries.
Given this complexity there is little consensus on the projection of long-term emissions.
The main sources of uncertainty are the modeling of technical progress and the modeling
of substitution.
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Source: EDGAR 4.0 (JRC/PBL, 2009) (1990-2005); Energie/energy: International Energy Agency (IEA), 
2008 (1990-2006); BP, 2009 (2006-2008 trend).

4

Figure 2: CO2 emissions from fossil fuel use and cement production in major countries, 
1990 – 2008 (in million tons of carbon)

Figure 3: China's carbon intensity (measured in tons of carbon dioxide per thousand
YUAN, 2005), 1978 - 2007

Sources: Carbon emission data was collected from the Energy Research Institute (ERI) of the National
Development and Reform Commission (NDRC), and was originally based on IEA estimates.

In many integrated assessment models or environmental-economic models,
the technological changes of energy use per unit output (i.e. changes over time not
due to price effects) are typically represented as following some exogenous path
of Autonomous Energy Efficiency Improvement (AEEI). By exogenous we mean
that the rate of technical progress does not depend on any variable determined within
the model, such as levels of output or prices 2. Some models implement this by having
a declining trend in the coefficients on coal, oil and gas use in the production functions.
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2 An alternative formulation would have endogenous technical progress where higher prices of energy, say,
would lead to a faster rate of innovation in energy-saving processes. Another case is where research and
development expenditure leads to a faster rate of progress. These effects are distinct from the more familiar
substitution between capital and energy in a given period due to changes in the prices of capital and energy.
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Other models specify two techniques – clean and conventional – and change the share
of the clean one over time. For example, in Edmonds and Reilly (1985) and many
intertemporal CGE models for climate policy analysis, coefficients on energy use in
industrial production functions were constructed to decline according to the inverse of
an index of energy-saving technological progress.

In this research project, we first decomposed the change in aggregate energy intensity
into the contributions of structural change and change in energy efficiency at the industry
level. Then we used the estimates of the rate of change of input intensities in individual
sectors to project the change in the AEEI parameters in our economic growth model. In
this paper we compare two types of climate policies: command-and-control mandates on
energy conservation, and market-based policies such as energy taxes. In the current (11th)
Five-Year Plan, the first policy option – command-and-control energy targets – is being
implemented by the National Development Reform Commission (NDRC). However, the
latter policy option is under discussion for future implementation

1.2 Review of Energy Intensity Decomposition Literature

There is extensive literature which uses decomposition analysis to study the changes
in Chinese energy intensity, the changes in carbon dioxide intensity and other related
indicators in the past two decades (for example: Huang, 1993; Sinton and Levine, 1994;
Lin and Polenske, 1995; Garbaccio, Ho and Jorgenson, 1999; Zhang, 2003, Fisher-Vanden
et al., 2003; Ma and Stern, 2007). Most of these studies examine the energy intensity trend
for the pre-2000 period, and conclude that the most important factor for the sharp decline
in energy intensity is technical change, and there is some disagreement about the role of
structural change. Many find that structural change only plays a minor role in reducing
energy intensity, Garbaccio, Ho and Jorgenson (1999), and Ma and Stern (2007) even
estimated that structural change increased energy use. On the other hand, the World Bank
(1994, 1997) asserted that structural change was the major factor in the declining energy
intensity trend. That conclusion was drawn from earlier work conducted by the Energy
Research Institute (ERI) of the National Development and Reform Commission (NDRC)
(Wang and Xin, 1989).

Ma and Stern (2007) is the only study among those listed above that examined
energy intensity in the post-2000 period. Ma and Stern concluded that the increasing trend
after 2000 was mainly explained by negative technological progress. However, Ma and
Stern based their study only on 10 aggregate sectors, or aggregated to primary, secondary
and tertiary sectors. They used the Index Decomposition Analysis (IDA) approach, due
to a lack of time-series input-output tables, for a more robust Structural Decomposition
Analysis (SDA)3. In addition, as Garbaccio, Ho and Jorgenson (1999) pointed out, most
of the controversies rest on the level of aggregation used. Thus, if the sectors are aggregated
at a high level, structural changes below that level may be wrongly attributed to technical
changes. Similarly, both Sinton and Levine (1994) and Fisher-Vanden et al. (2003) found
that the explanatory power of structural change rises as the sectoral disaggregation becomes
finer. Thus, in this study we use a more robust decomposition method based on a time-
series of input-output tables for 1980– 2005 for 33 sectors in China.

3 We explain these different decomposition methods in the Research Methods section.
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 The changes in the economy post-2000 may have been of a very different nature
compared to the earlier period of declining energy intensity. Environmental and other
regulations may have limited the potential for technical improvements at the industry
level; improvements in household incomes may have exceeded some threshold that
dramatically changed the rate of automobile and electricity use.

Our goal is to examine the historical trend and patterns in energy and carbon intensity,
focusing carefully on the changes in the post-2000 era. We believe that this is useful
information for policy analysts to parameterize their models, as well as for government
energy planning. This should help project the trend of technical change and also shed some
light on future carbon emissions and other local pollutants, such as particulate matter and
sulfur dioxide. Given the widespread concern about the quality of data on output and
prices from different sources, we also conducted several decomposition methods, including
the Divisa-index SDA approach, and LDA approaches, to see if there was a common
pattern from these different methods and data sources.

1.3 Autonomous Energy Efficiency Improvement (AEEI)

As noted above, most top-down energy use or climate policy models have an
exogenous Autonomous Energy Efficiency Improvement (AEEI) parameter to project
exogenous improvements in energy per unit of output. The value chosen is about 1% per
year (Weyant, 1999). The basic idea is to sketch a declining trend in the coefficients on
energy use in the production function, with the AEEI parameter being the rate of the
decline (Sue Wing and Eckaus, 2005). In most of these macro-economic models the AEEI
is set to one common parameter for all industries for generating the future trajectories of
energy use and carbon emissions. Such an approach is understandable given the lack of
estimates, however, this "one-size-fits-all" parameter has some weaknesses.

Base-year bias: many models calibrate the AEEI parameters by retaining the
characteristics of the base year when forecasting the future. However, without decomposing
the origins of the aggregate efficiency improvement, the fixed calibrated AEEI tends to
maintain the ratio of energy use to overall economic output and the initial industry structure
of the economy. This is due to the absence of mechanisms to allow the different rates of
improvement that we actually observe in the data.

Inappropriate use of developed-country estimates: In much climate policy modeling,
long-term energy intensity (E/GDP) is modeled to decline at about 1% per year, which
is roughly the average of US performance over the past 200 years (Grubler, 1998). However,
future growth in energy and emissions intensities may differ significantly from historical
time series. Even for the United States, Manne and Richels (1990) pointed out that there
is no well-established empirical basis for such a coefficient for energy efficiency improvement.
Hogan and Jorgenson (1991) also argue that the AEEI may actually be negative. In addition,
there is no obvious reason for the US historical experience to be replicated in today's
developing or transitional economies.

In this study we decomposed the trend in aggregate energy-output ratio by sector
to identify the sources of the aggregate AEEI. We want to understand the magnitude of
the contributions from intra-sector intensity reductions driven by the substitution of various
inputs, such as embodied energy-saving technologies, disembodied technological progress,
and structural change. Based on our empirical decomposition results, we estimated the
values of the AEEI parameter for China, and then applied these parameters to an economic
growth model for climate policy analysis.
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1.4 Significance of this Study
As the largest developing country in the world, and a country experiencing dramatic

change and economic growth, China is expected to consume a large and rapidly rising
share of the world's energy. This trend is viewed with alarm by anyone worried about
the sustainability of such economic development. China's energy intensity had been
declining for 20 years, since the economic reforms of 1978. However, this frugal pattern
may have reversed since 2002, causing analysts to raise the previous high projection even
further. How the Chinese government can reverse this rise in energy intensity, or at least
lower the growth rate, i.e. how it can achieve its 20% reduction target, as stated in the
11th Five-Year Plan, and reduce carbon emissions in the future, is becoming a crucial
question. In particular, should the government follow a command-and-control policy, such
as the energy conservation mandates currently used in the 11th Five-Year Plan, or alternatively,
should economic incentive-based policies – such as energy or carbon taxes – be used?
These questions are the focus of our study. We provide a methodological framework for
energy intensity decomposition, and for projecting future energy use and carbon emissions
using industry-level estimates of improvements in energy use. In the process we provide
a new set of AEEI estimates by detailed sectors for other analysts to use in their models.

2.0 RESEARCH OBJECTIVES

2.1 General Objective
The general goal of this project is to understand the proximate reasons for past changes

in aggregate energy intensity and to use the estimates of the contribution of these various
factors to project future energy consumption and emissions if past policies are maintained.
With these estimates of past energy use we also analyzed the effects of other policies in
reducing energy use and emissions to meet China's sustainable development targets.
2.2 Specific Objectives

The specific objectives were:
• To reconcile energy use and production data in value terms in the time-series of

input-output tables (1980 – 2005) prepared by the National Bureau of Statistics
(NBS) with price and quantity data. (Our research team is involved in a project
compiling a consistent time-series of I-O tables with collaborators from the NBS,
Beihang University, and The Conference Board).

• To apply the Structural Decomposition Analysis (SDA-Divisa) method for energy
intensity using the above set of matched data on output and consumption, and
to apply other index decomposition methods to check the robustness of the results.
We related the decomposition results and energy intensity trends to major
macroeconomic events and changes in reform policies.

• Based on the above decomposition results, to work out a strategy for constructing
the AEEI parameters to forecast future energy consumption, carbon emissions,
and energy intensity by sector to 2030, and to use this as the reference, or
"business-as-usual" scenario for further policy analysis.

• To analyze two alternative policy options: command-and-control policies versus
economic-incentive-based taxation policies, such as taxes imposed on energy use.
Finally, based on these policy simulations, we compared the pros and cons of
the two alternative policy options, and then we discussed what lessons there might
be for climate change policy reform in the 12th Five-Year Plan.



3.0 RESEARCH METHODS

3.1 Data Preparation and Adjustments

As noted above, previous decomposition analysis of Chinese energy intensity change
has either used input-output tables from two benchmark years or has used annual data
for gross output and energy input only. In this study, we used an annual series of
input-output tables. This data set, covering the period 1980 – 2005, was a preliminary
version of estimates made by a group led by the National Accounts Department in the
National Bureau of Statistics (NBS) and Ren Ruoen of the School of Economics and
Management, Beihang University, in collaboration with Dale Jorgenson (Harvard University)
and Bart van Ark (The Conference Board, New York) 4. This is the first study to use this
unique data set for energy decomposition analysis.

Our data covered a newly revised data set covering the period 2000 – 2005, after
the NBS adjusted the GDP level. A new GDP series I-O table was revised upward so that
the GDP adjustments in major service sectors could be incorporated. Therefore the entire
series was used in this report.

3.1.1 Capital Input

We measured capital input in a way that took into account the heterogeneity of the
capital assets, from long-lived buildings to short-lived computers. Capital input for industry
j, Kjt , was defined as the Tornqvist index (the Divisia method) of three types of assets:
structures, equipment and auto vehicles:

(Equation 1)

where the value shares are given by:

(j =1, 2, …, 33; k =structures, equipment, auto vehicles)

      denotes the rental price of capital asset k in industry j and is derived from
data on operating surplus and depreciation. K jkt is the stock of capital of type k and is
derived from data on investment in asset k. The measurement of capital input is discussed
at length by Ren and Sun (2005).

8

4 An earlier version of this work is described in Cao et al. (2009). Van Ark and The Conference Board also
aim to supplement these input-output estimates with data on capital and labor input in order to conform to
the requirements of a large international project to study productivity, the Productivity in the European
Union (EU KLEMS) project. This is described at www.euklems.net.

PKkt
j
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3.1.2 Labor Input

Labor input was measured in a way that also accounted for the heterogeneity of
workers, from high-wage, educated, experienced workers to young, less educated workers.
The details are in Yue et al. (2005). Briefly, the workers were cross-classified by gender,
age and educational attainment. The labor data was compiled from the 1982, 1990 and
2000 Population Censuses, and the 1987 and 1995 Sample Population Surveys. Labor
costs were estimated from household surveys of income distribution, the China Household
Income Project (CHIP) survey. Our index of labor input in industry j, Ljt, was a Tornqvist
index over the various types of labor:

(Equation 2)

where the value shares are:

(j=1,2,…, 33; l=cross classification of gender, age, education)

       denotes the price of labor of type l in industry j, and Ljlt denotes the hours
worked by type l.

3.1.3 Output and Intermediate Inputs

Ren et al. (2005) describe how they constructed a time-series of input-output tables
for 33 industries in nominal terms covering the period 1981 – 2000. These were derived
by revising the benchmark tables for 1981, 1987, 1992 and 1997 to the latest definitions
based on the System of National Accounts (SNA). They also constructed price indices
for the output of the 33 industries since they were not compiled by any statistical agency
in China. These value and price data were then used to construct indexes of sectoral output
and intermediate inputs.

The I-O tables give us the value of each of the 33 intermediate input, and capital
and labor inputs into each of the 33 industries. The energy input index for industry j, Ejt,

is the Tornqvist aggregate over the five energy commodities (e = coal mining, oil and
gas mining, petroleum and coal products, electric utilities, gas utilities) while the material
input index, Mjt, is an aggregate over the remaining i=1, 28 commodities:

(Equation 3)
where

PLlt
j
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3.2 Decomposition Analysis of the Change in Energy Intensity (1981 – 2005)

Decomposition analysis has been extensively applied in energy research, in particular
in interpreting the factors affecting aggregate energy intensity, or energy-related carbon
emissions. However, there is little consensus on a decomposition methodology and results
vary depending on the methods, in addition to the differences due to data sources and
sample periods. Here we used three decomposition techniques on the Chinese data to shed
some light on these methodological issues, and tried to look for a convenient approach
to use the decomposition results to adjust AEEI parameters in our CGE model.

Up to now, two major types of decomposition method have been extensively used:
Structural Decomposition Analysis (SDA) and Index Decomposition Analysis (IDA).
Structural Decomposition Analysis is based on input-output tables, so it captures both
direct and indirect effects. An increase in the demand by households for motor vehicles
has a direct effect on the output of motor vehicles, but producing more vehicles requires
more steel and the production of steel requires motor vehicles, thus there is an indirect
effect due to the increase in household demand. Given the structural details in the input-
output table that allow us to distinguish between GDP (the sum of value added) and the
sum of industry gross output, SDA is able to distinguish between a range of technical
effects and structural effects that are not possible in the IDA model (Ma and Stern, 2007).
Index Decomposition Analysis usually considers only industry gross output and defines
aggregate output as the sum of industry output. More specifically, the IDA analyzes effects
from changes in the structure of production, while SDA typically analyzes the technology
effects in production that arise from changes in the input requirement matrix and the
structural effects from the changes in the composition of GDP (final demand) (Wadeskog
and Palm, 2003). Structural Decomposition Analysis almost exclusively works with levels,
while IDA can work with levels, intensities, or elasticities. In terms of time frames, SDA
typically corresponds to the availability of I-O tables, which are only available for
benchmark years, while IDA is less demanding in terms of data and easier to implement
for time-series analysis (Wadeskog and Palm, 2003).

Another key issue was the choice of index, such as the Laspeyres Index, with fixed
base year weights, or the Divisia Index, with moving weights. In this study, our preferred
methodology used an SDA approach based on input-output tables, similar to the I-O-based
studies introduced by Lin and Polenske (1995) and Lin (1996). Following Garbaccio, Ho
and Jorgenson (1999) we did not use fixed base year weights, but used the Divisia Index.

3.3 Method 1: Structural Decomposition Analysis (SDA)

Our method was similar to that used in Garbaccio, Ho and Jorgenson (1999) and Liu,
Ang, and Ong (1992). A summary description of our method is given here5. Unlike the above
studies we were able to apply the methodology to a sequence of annual tables, rather than
two sporadic base and end years. This was especially useful when matching our decomposition
results with the actual policies implemented in particular years or with particular energy-
saving strategies – so we had a more accurate estimate of the impact of past policies, allowing
for a better discussion of future energy-saving programs or policy options. It was also helpful
to further divide the whole period into sub-periods based on structural breaks.

5 Our discussion and notation follows Miller and Blair (1985), however, here we only use the activity matrix
A instead of the "use" and "make" matrices separately.



Let At denote the input-output matrix at time t (with n sectors), yt the vector of
final demand and xt the vector of industry gross output (both of length n). The sum of
intermediate demand and final demand equals the supply of the output:

Atxt + yt = xt   (Equation 4)

The sum of the values of the n commodities in the final demand vector gives us
GDP. From equation 4 we get the well known Leontief inverse which gives us the level
of industry output required to supply the vector y:

xt = ( I – At)-1yt   (Equation 5)

It is useful to decompose final demand to the main components:

yt = ct + vt + gt + et – i t = ytd – i t   (Equation 6)

where c t  is household consumption, vt is investment, g t  is government consumption,
et is exports and it is imports. The second equality in equation 6 expresses net final demand
as the difference between the gross domestic demand and imports.

In addition, the use of commodities (ut) can be written as domestic production plus
imports less exports:

ut = xt + i t – et   (Equation 7)

We can also rewrite yt as a share vector of total demand, or GDP, (Yt):

                           Where      =  (      ,...,       )
,

  (Equation 8)

 The output equation 5 can thus be rewritten as:

  (Equation 9)

where Gt = ( I – At) -1 is the Leontief inverse, the "commodity total requirements matrix"

Writing this out explicitly for the output of industry j:

(Equation 10)

Combining this with equation 7, the rate of change in the use of commodity j is:

(Equation 11)

The Tornqvist discrete time approximation of the integral of equation 11 gives
(see Garbaccio, et al. (1999) equation 20):

(Equation 12)

11
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, ,

where the d superscript denotes domestic, and m denotes import, and the shares are:

and Ru is the approximation residual. When j = coal, for example, we may interpret the
above equation as expressing the change in coal use as the sum of the change in technique,
the change in the composition of domestic demand, the change in the composition of
imports, the growth of GDP, and the change in the level of coal imports and exports. Note
that the GDP term on the right-hand side may be simplified using equation 10 to:

We also wanted to decompose the change in the intensity of energy use (energy per
unit of GDP). Rewriting equation 12 by moving the GDP term to the left-hand side, and
denoting the change in intensity of commodity j by        , we get:

(Equation 13)

When j = coal, for example, equation 13 may be interpreted as saying that the change
in the intensity of coal use can be attributed to the following five factors 6.

1) Changes in technology as represented by changes in the G matrix.

2) Changes in final demand patterns for domestic goods as represented by changes in the
share vectors (   d).

3) Changes in the pattern of imports (   m).

4) Changes in the level of imports of commodity j.

5) Changes in the level of exports of commodity j.

6 See the discussion in Garbaccio, Ho and Jorgenson (1999) for their equation 27.
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Before applying the above decomposition equation let us summarize the main
features of Chinese energy use. Table 1 gives an overview of the domestic output of China's
primary energy and secondary energy sectors. We can see that China kept a real GDP
growth rate of about 10% from 1981 – 2005, while coal, crude petroleum and gas, and
refining petroleum only increased at 5%, giving the decline in energy intensity. Electricity
growth was slightly slower than GDP growth at 9.1% per year, compared to 10.1%.
However, during the most recent period (2000 – 2005), the overall growth rate of coal,
oil, gas and electricity was close to real GDP growth with some energy sectors, such as
natural gas and electricity, even exceeding the GDP growth rate. Thus overall energy
intensity did not go down as in the earlier period, but was flat or slightly increased. In
order to use the SDA method, we collected more data in addition to the I-O tables –
industry output prices, export and import prices and quantities for all energy commodities.

As equation 13 suggests, we conducted a decomposition analysis for each of the
energy types: coal, crude petroleum and gas, hydroelectricity, electric power (non-hydro),
and refined petroleum. The hydroelectric sector is part of the power generation sector in
the input-output tables described in the data section above, and we disaggregated it so
that we had an explicit hydro industry. We did this in order to be able to isolate the
contribution of the main sources of primary energy – coal, crude oil, natural gas, and
hydro. Nuclear power and biomass were still very small sources of electricity from
2000 to 2005, so we did not separate them.

The results of our decompositions of changes in energy use per YUAN of GDP
are reported in Tables 2, 3, 4, 5 and 6. The decompositions were performed using the
input-output tables from 1981 to 2007 described above. The first column of numbers is
the overall change in the use of each type of energy per YUAN of GDP for each year.
The next six columns of numbers correspond to the terms on the right-hand side of equation
13, breaking down the change in the energy-output ratio into the five components and
the approximation residual. Since China has substantially revised its GDP value, so the
data set we have has a gap before and after the year 2000, where the NBS had a consistent
national account measurement after 2000 based on the NBS official 2002 benchmark
I-O table definition and 2004 census data. For the period before the year 2000, the NBS
also revised the whole time series and adjusted the service sector based on 2004 census
information. However all the pre-2000 figures are based on a 1997 I-O benchmark,
so there is still a gap between the 1981 – 1999 and 2000 – 2007 data, so we divided our
sample into two sub-samples for analysis.
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Year  (mil.SCE) (mil.SCE) (mil.SCE) (Twh) (Twh) (mil. SCE) (YUAN)

Table 1: Domestic Output of Energy Sectors (1981– 2005)

Primary Energy             Secondary Energy

Crude Natural Hydro-        Total Refined GDP*
Coal Petroleum Gas Electricity  Electricity  Petroleum Bil. 2000

1981 432.2 118.9 16.9 65.6 309.3 105.8 1613.0

1982 457.4 117.3 15.9 74.4 327.7 106.8 1759.8

1983 490.0 119.5 16.2 86.4 351.4 113.9 1951.6

1984 533.9 123.4 16.5 86.8 377.0 117.0 2248.2

1985 581.2 131.1 17.2 92.4 410.7 121.1 2551.7

1986 612.8 139.1 18.3 94.5 449.5 130.2 2776.3

1987 660.1 147.3 18.5 100.0 497.3 137.2 3098.3

1988 708.6 159.0 19.0 109.2 545.2 143.6 3448.4

1989 736.7 165.8 20.0 118.4 584.8 149.8 3589.8

1990 752.1 163.8 20.3 126.7 621.2 152.4 3726.2

1991 789.8 177.5 21.4 125.1 677.6 162.2 4069.1

1992 826.4 191.0 21.0 132.5 753.9 171.9 4646.9

1993 866.5 211.1 22.3 151.8 837.3 182.3 5297.4

1994 920.5 213.6 23.4 167.4 928.1 183.5 5991.4

1995 978.6 229.6 23.9 190.6 1007.7 199.1 6644.5

1996 1037.9 250.1 26.8 188.0 1080.0 212.4 7308.9

1997 988.0 281.1 30.2 196.0 1134.5 231.9 7988.6

1998 920.2 284.3 31.0 208.0 1166.2 232.5 8611.7

1999 924.8 302.5 29.0 203.8 1239.3 251.3 9266.2

2000 939.4 321.4 32.0 222.4 1355.6 279.8 10044.6

2001 955.1 327.9 36.3 277.4 1480.8 282.8 10958.7

2002 1006.4 355.2 39.2 288.0 1654.0 295.6 12054.5

2003 1196.9 388.5 44.1 283.7 1910.6 326.9 13272.0

2004 1381.9 453.2 51.9 353.5 2203.3 379.3 14652.3

2005 1552.6 471.8 61.6 397.0 2500.3 398.3 16381.3

Sources: Chinese Statistical Yearbook, Chinese Energy Yearbook, and author's calculations.
GDP*: computed from our time-series input-output table, so there are some discrepancies compared
with the official NBS yearbook statistics.
SCE: Standard Coal Equivalent

Growth (81-05) 5.47% 5.91% 5.53% 7.79% 9.10% 5.68% 10.14%

Growth (81-00) 4.17% 5.37% 3.40% 6.64% 8.09% 5.25% 10.10%

Growth (00-05) 10.57% 7.98% 14.01% 12.29% 13.02% 7.32% 10.28%



Consistent with the overall energy intensity trend in Figure 1, there was a general
intensity decline between 1981 and 1999 for the five types of primary energy, followed
by rising intensity between 2001 and 2005. In the following discussion we will try to
understand the links between actual macroeconomic and energy policy changes and our
energy intensity decomposition factors.

3.3.1  Coal

In terms of coal, technical change is the main factor that explains the overall intensity
changes during our samples. Except for the period from 1992 to 1996, when Chinese
macroeconomics expanded with inefficient investment, overall the coal mining industry
improved its technological progress over the whole period from 1982 – 2002. However,
during 2002 – 2005 the trend reversed until 2005 – 2007 when China implemented its
20% energy intensity reduction target in the 11th Five-Year Plan. Part of the reason for
the trend reversal from 2002 to 2005 was that in the 10th Five-Year Plan China faced huge
demand from infrastructure development. With big profits in iron, steel, cement and the
chemical industries, small-scale inefficient firms were built up quickly to meet the surge
in demand but the level of technology actually declined substantially, eventually leading
to the failure to reach the environmental target set for 10 th Five-Year Plan. After 2005,
China imposed some stringent policies in energy-intensive sectors – mainly in the coal
mining and electricity sectors – for example shutting down inefficient coal mines and
power plants, and listing the achievement of energy saving and environmental targets as
important performance indicators for local government. Thus we observe substantial energy
intensity improvement after 2005.

In terms of changes in demand patterns for the coal sector, we can see that except
for some periods, such as 1987 – 1989, 1992 – 1993 and 1997 – 1998, the demand pattern
in general shifted positively towards a cleaner consumption structure. Coincidently, these
special periods all correspond to major reforms or events, such as Deng's trip south, which
foreshadowed the start of SOE (State-Owned Enterprises) reform in 1992, the Asian
economic crisis in 1997, and the Yangtze River floods of 1998. So we can see inefficiencies
before these historical moments and big improvements following them. Similarly, for the
period 2001 – 2005 we can see that inefficiencies arose due to a huge surge in demand
for housing and real estate development. The 11th Five-Year Plan energy policy also
reversed the negative demand trend.

15
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Imports and exports play important roles after 1991, though they are not as important
as technological change and demand patterns. For the sub-periods of 1994 – 1998 and
2001 – 2005 we can see that import patterns play a positive role in energy intensity
reduction, however after 2005 although overall energy intensity declined the trend of coal
importation was reversed, thus dragging down progress in energy conservation. On the
other hand, China's coal exports increased substantially during 2002 – 2004 then contracted
again after 2004, reflecting changes in both domestic and world coal markets.

3.3.2 Crude Petroleum and Gas

We can see that during the pre-2000 period, crude petroleum and gas had similar
effects to coal but after 2002 inefficiencies in technology and in demand, partly due to a
surge in demand for automobiles in China, was reflected in the trend reversal. We also
found big changes between 1992 – 1993 and 1997 – 1998. Part of the reason for this may
have been due to macro events, though data issues could be another reason for outliner
estimates. We observed a big improvement in efficiency between 2000 and 2002, however
this trend was reversed after 2002 and got even worse after the 11th Five-Year Plan, because
there is only an overall energy efficiency target, which encourages a shift in the use of
coal to oil, and there was no policy to curb automobile use. Import and export patterns
and level changes were key factors affecting overall energy intensity for crude oil, and
imports played a much more important role than exports. This trend became more prominent
in the post-2000 period, shedding light on the challenges ahead in improving oil efficiency
and curbing vehicle emissions.

Tables 4, 5 and 6 show the decomposition results for hydroelectricity, electricity
power (non-hydro) and refined petroleum. Except for hydroelectricity, both the electricity
(non-hydro) and refined petroleum results suggest that intensity in 2005 – 2007 basically
followed the trend of 2002 – 2005, and that the post-2000 trend is quite different from
the pre-2000 trend. Since 2004, electricity demand has faced a shortage, with two-digit
GDP growth, meanwhile the coal price and electricity price are managed by the NDRC,
thus a low electricity price leads to excess demand. In some areas, such as Guangdong
Province, inefficient oil-fired power plants have been put into production again with local
government subsidies to support the electricity shortage. These partly offset the government's
efforts in terms of the small unit power plant shutdown policy and the energy saving
target policy.



Table 2: Decomposition of change in energy use per unit of GDP (SDA method):
Coal
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Of which:

Overall change Technical Change Change Change Change
per YUAN of GDP change in demand in import in quantity in quantity Residual

patterns patterns of imports of exports

Type of energy

Coal

Pre-2000

1981-1982 0.1237 0.1301 0.0153 -0.0029 -0.0013 -0.0049 -0.0127

1982-1983 -0.0043 -0.0485 0.0472 0.0136 0.0003 0.0040 -0.0209

1983-1984 -0.0926 -0.0849 -0.0180 0.0297 -0.0011 -0.0058 -0.0125

1984-1985 -0.1679 -0.1875 0.0045 0.0445 -0.0099 -0.0087 -0.0109

1985-1986 -0.0473 -0.0625 -0.0004 -0.0081 0.0039 -0.0107 0.0305

1986-1987 -0.0834 -0.0876 -0.0345 -0.0048 0.0002 0.0017 0.0416

1987-1988 0.0734 0.0454 0.0298 -0.0098 -0.0007 -0.0044 0.0130

1988-1989 0.1578 0.1288 0.0598 0.0027 -0.0030 0.0064 -0.0369

1989-1990 -0.0302 0.0503 -0.0289 0.0161 -0.0007 -0.0182 -0.0487

1990-1991 -0.0590 -0.0291 -0.0206 0.0044 0.0036 -0.0088 -0.0085

1991-1992 -0.1021 -0.0885 -0.0176 0.0168 -0.0016 -0.0120 0.0008

1992-1993 0.1138 0.1185 0.0138 -0.0045 0.0036 0.0246 -0.0422

1993-1994 -0.1096 0.0274 -0.0934 0.0314 -0.0022 -0.0122 -0.0606

1994-1995 0.0206 0.0348 -0.0006 -0.0225 -0.0005 0.0027 0.0067

1995-1996 0.1472 0.1563 0.0279 -0.0085 -0.0052 -0.0003 -0.0231

1996-1997 -0.0578 -0.0093 -0.0606 -0.0178 0.0066 -0.0002 0.0234

1997-1998 0.0121 -0.0544 0.0704 -0.0138 0.0009 0.0013 0.0077

1998-1999 -0.1210 -0.0645 -0.0545 0.0164 0.0002 -0.0010 -0.0177

Post-2000

2000-2001 -0.0659 -0.0318 -0.0141 0.0053 0.0005 -0.0228 -0.0030

2001-2002 0.0142 -0.0739 0.1057 -0.0231 0.0060 0.0033 -0.0039

2002-2003 0.0585 0.2064 -0.1236 -0.0617 0.0005 -0.0022 0.0390

2003-2004 0.0613 0.1612 0.0856 -0.0602 0.0083 -0.0109 -0.1227

2004-2005 0.0962 0.1521 -0.0364 -0.0092 0.0057 0.0013 -0.0174

2005-2007 -0.1391 -0.2615 -0.1225 0.0552 0.0078 0.0012 0.1806
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Table 3: Decomposition of change in energy use per unit of GDP (SDA method):
Crude Petroleum and Gas

Of which:

Overall change Technical Change Change Change Change
per YUAN of GDP change in demand in import in quantity in quantity Residual

patterns patterns of imports of exports

Type of energy

Crude Petroleum and Gas

Pre-2000

1981-1982 -0.0585 -0.0762 -0.0286 -0.0083 0.0000 -0.0076 0.0622

1982-1983 -0.0954 -0.0550 -0.0180 0.0071 0.0000 -0.0274 -0.0022

1983-1984 0.0393 0.1213 0.0298 0.0273 0.0000 -0.0698 -0.0693

1984-1985 -0.4092 -0.2353 -0.1600 0.0500 0.0000 -0.0121 -0.0519

1985-1986 0.0192 -0.0235 -0.0080 -0.0024 0.0000 0.0599 -0.0069

1986-1987 -0.0517 -0.0024 -0.1157 -0.0033 0.0000 0.0780 -0.0083

1987-1988 -0.0679 -0.1213 -0.0638 0.0083 0.0000 0.0585 0.0504

1988-1989 0.0897 0.0495 0.0486 0.0095 -0.0041 0.0158 -0.0298

1989-1990 0.0427 0.0750 0.0818 0.0477 -0.0173 -0.0474 -0.0972

1990-1991 0.0977 0.0300 0.0657 0.0553 -0.0491 0.0109 -0.0150

1991-1992 0.0600 0.1311 -0.0373 0.0391 -0.0556 0.0042 -0.0215

1992-1993 0.1472 0.2754 -0.0776 -0.0141 -0.0129 0.0201 -0.0437

1993-1994 0.0757 0.1858 -0.0077 0.0886 -0.0708 -0.0075 -0.1126

1994-1995 -0.0964 -0.1805 0.0320 0.0158 -0.0245 -0.0134 0.0741

1995-1996 -0.0240 -0.1175 0.0448 -0.0536 0.0340 -0.0128 0.0812

1996-1997 0.0459 0.0997 0.0238 0.0477 -0.0514 -0.0404 -0.0335

1997-1998 0.4860 0.5364 0.1083 -0.0935 0.0490 0.0332 -0.1474

1998-1999 0.0668 0.1130 -0.0162 0.0324 -0.0205 0.0151 -0.0570

Post-2000 

2000-2001 -0.1225 -0.0245 -0.1519 0.0893 -0.0383 0.0145 -0.0117

2001-2002 -0.0684 -0.0376 0.0017 -0.0030 -0.0121 0.0017 -0.0191

2002-2003 0.1377 0.1621 0.0754 -0.2177 0.1604 -0.0039 -0.0386

2003-2004 0.1174 0.1175 0.0556 -0.2112 0.1541 0.0050 -0.0036

2004-2005 0.1391 0.1145 -0.0078 -0.0568 0.0865 -0.0110 0.0137

2005-2007 0.2729 0.2032 -0.1082 0.0301 0.1612 0.0039 -0.0173
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Table 4: Decomposition of change in energy use per unit of GDP (SDA method):
Hydroelectricity

Of which:

Overall change Technical Change Change Change Change
per YUAN of GDP change in demand in import in quantity in quantity Residual

patterns patterns of imports of exports

Type of energy

Hydroelectricity

Pre-2000

1981-1982 0.0499 0.1277 -0.0624 -0.0047 0.0000 0.0000 -0.0107

1982-1983 0.0390 0.0405 0.0281 0.0155 0.0000 0.0000 -0.0452

1983-1984 -0.2041 -0.2133 -0.0352 0.0368 0.0000 0.0000 0.0076

1984-1985 -0.1059 -0.1336 0.0377 0.0486 0.0000 0.0000 -0.0587

1985-1986 -0.1435 -0.2078 -0.0089 -0.0036 0.0000 0.0000 0.0767

1986-1987 -0.0555 -0.0735 -0.0162 -0.0039 0.0000 0.0000 0.0382

1987-1988 -0.0443 -0.1124 0.0119 -0.0161 0.0000 0.0000 0.0723

1988-1989 0.1336 0.1731 0.0073 -0.0009 0.0000 0.0000 -0.0458

1989-1990 0.0945 0.2118 -0.0291 0.0211 0.0000 0.0000 -0.1093

1990-1991 -0.0584 -0.0477 -0.0064 0.0141 0.0000 0.0000 -0.0184

1991-1992 -0.0191 0.0008 0.0021 0.0241 0.0000 0.0000 -0.0460

1992-1993 0.0205 0.0234 0.0246 -0.0032 0.0000 0.0000 -0.0243

1993-1994 0.0652 0.1306 -0.0251 0.0398 0.0000 0.0000 -0.0801

1994-1995 0.0526 0.0508 0.0233 -0.0274 0.0000 0.0000 0.0059

1995-1996 -0.0557 -0.1061 -0.0043 -0.0162 0.0000 0.0000 0.0709

1996-1997 0.0472 0.0458 0.0079 -0.0134 0.0000 0.0000 0.0069

1997-1998 0.3030 0.4625 0.0175 -0.0131 0.0000 0.0000 -0.1640

1998-1999 -0.1031 -0.1980 0.0733 0.0197 0.0000 0.0000 0.0020

Post-2000

2000-2001 0.1151 0.1385 -0.0274 0.0046 0.0000 0.0000 -0.0007

2001-2002 -0.0948 -0.0762 -0.0051 -0.0174 0.0000 0.0000 0.0039

2002-2003 0.0819 0.0087 0.1410 -0.0615 0.0000 0.0000 -0.0064

2003-2004 0.2990 0.2754 0.0815 -0.0479 0.0000 0.0000 -0.0100

2004-2005 -0.0504 -0.0207 -0.0151 -0.0061 0.0000 0.0000 -0.0084

2005-2007 -0.2630 -0.2067 -0.1546 0.0491 0.0000 0.0000 0.0491
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Table 5: Decomposition of change in energy use per unit of GDP (SDA method):
Electricity Power (non-hydro)

Of which:

Overall change Technical Change Change Change Change
per YUAN of GDP change in demand in import in quantity in quantity Residual

patterns patterns of imports of exports

Type of energy

Electricity Power (non-hydro)

Pre-2000

1981-1982 0.2012 0.2433 0.0137 -0.0055 -0.0004 -0.0309 -0.0191

1982-1983 -0.0267 -0.0056 -0.0108 0.0093 -0.0014 0.0042 -0.0223

1983-1984 -0.0374 0.0557 -0.0538 0.0274 -0.0053 -0.0192 -0.0422

1984-1985 -0.4301 -0.4095 -0.0602 0.0679 -0.0409 -0.0206 0.0333

1985-1986 0.0305 0.0882 0.0063 0.0014 -0.0050 0.0110 -0.0715

1986-1987 -0.1782 -0.1408 -0.0647 -0.0025 -0.0048 0.0018 0.0330

1987-1988 0.0543 -0.0539 0.0031 0.0331 -0.0490 0.0185 0.1026

1988-1989 0.0854 0.0521 0.0627 0.0092 -0.0066 0.0033 -0.0353

1989-1990 0.0578 -0.0612 0.1544 0.0458 -0.0408 -0.0270 -0.0135

1990-1991 0.1813 0.1340 0.0835 0.0163 -0.0234 -0.0066 -0.0224

1991-1992 -0.0825 -0.0228 -0.0608 -0.0191 0.0177 0.0003 0.0021

1992-1993 0.1704 0.2632 -0.0412 -0.0042 -0.0062 0.0204 -0.0616

1993-1994 -0.0922 0.0379 -0.0768 0.0160 0.0041 -0.0203 -0.0530

1994-1995 -0.0064 -0.0173 -0.0022 0.0039 -0.0295 0.0017 0.0370

1995-1996 -0.0250 -0.0801 0.0226 0.0007 -0.0178 -0.0063 0.0559

1996-1997 0.0368 0.0714 -0.0168 0.0126 -0.0291 -0.0145 0.0132

1997-1998 0.3179 0.4482 0.0388 -0.0532 0.0366 0.0097 -0.1624

1998-1999 0.0541 0.1269 -0.0287 0.0194 -0.0077 -0.0027 -0.0531

Post-2000 

2000-2001 -0.0784 0.0016 -0.0873 0.0180 -0.0088 -0.0007 -0.0013

2001-2002 0.0092 0.0017 0.0144 -0.0586 0.0540 0.0000 -0.0024

2002-2003 0.0796 0.1574 0.0776 -0.0722 0.0134 -0.0205 -0.0760

2003-2004 0.0991 0.0964 0.0894 -0.0920 0.0492 -0.0148 -0.0292

2004-2005 0.1075 0.1369 -0.0209 -0.0169 0.0237 -0.0127 -0.0026

2005-2007 0.1853 0.0920 -0.0668 0.0768 0.0002 -0.0011 0.0842
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Table 6: Decomposition of change in energy use per unit of GDP (SDA method):
Refined Petroleum

Of which:

Overall change Technical Change Change Change Change
per YUAN of GDP change in demand in import in quantity in quantity Residual

patterns patterns of imports of exports

Type of energy

Refined Petroleum

Pre-2000

1981-1982 -0.0310 0.0271 -0.0623 -0.0047 -0.0005 0.0000 0.0093

1982-1983 -0.0345 -0.0518 0.0281 0.0155 -0.0002 0.0000 -0.0260

1983-1984 -0.1631 -0.1604 -0.0351 0.0367 -0.0005 0.0000 -0.0038

1984-1985 -0.0767 -0.0978 0.0376 0.0484 -0.0041 0.0000 -0.0608

1985-1986 -0.0660 -0.0962 -0.0088 -0.0035 0.0001 0.0001 0.0423

1986-1987 -0.0031 0.0080 -0.0162 -0.0039 0.0000 0.0000 0.0090 

1987-1988 -0.0389 -0.1048 0.0119 -0.0161 0.0000 0.0000 0.0702

1988-1989 0.1210 0.1560 0.0073 -0.0009 0.0000 0.0000 -0.0413

1989-1990 0.0847 0.1981 -0.0291 0.0211 0.0000 0.0000 -0.1055

1990-1991 0.0205 0.0665 -0.0064 0.0141 0.0000 0.0000 0.0537

1991-1992 0.0289 0.0726 0.0021 0.0241 0.0000 0.0000 -0.0699

1992-1993 0.0041 -0.0014 0.0246 -0.0032 0.0000 0.0000 -0.0159

1993-1994 0.0666 0.1328 -0.0251 0.0398 0.0000 0.0000 -0.0809

1994-1995 -0.0013 -0.0335 0.0233 -0.0274 0.0000 0.0000 0.0363

1995-1996 0.0278 0.0205 -0.0043 -0.0162 0.0000 0.0000 0.0277

1996-1997 0.0440 0.0571 0.0080 -0.0135 0.0000 0.0000 -0.0077

1997-1998 0.2702 0.4145 0.0176 -0.0132 0.0000 0.0002 -0.1490

1998-1999 0.0139 -0.0242 0.0739 0.0198 0.0000 -0.0017 -0.0538

Post-2000

2000-2001 -0.0185 0.0045 -0.0275 0.0046 0.0000 -0.0007 0.0006

2001-2002 -0.0213 -0.0002 -0.0051 -0.0175 0.0002 0.0002 0.0012

2002-2003 0.2419 0.1664 0.1416 -0.0617 0.0002 -0.0002 -0.0045

2003-2004 0.2216 0.1973 0.0816 -0.0480 0.0001 0.0006 -0.0101

2004-2005 -0.0428 -0.0187 -0.0151 -0.0061 0.0004 -0.0004 -0.0029

2005-2007 0.1865 0.2491 -0.1540 0.0490 -0.0002 -0.0003 0.0429

Note: change in import pattern and change in quantity of export are calculated as
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3.4 Method 2: Index Decomposition Analysis (IDA)
The second method used was Index Decomposition Analysis (IDA), described in

Ma and Stern (2007). This method uses a time series data set from the NBS's final energy
use by sector data, and the sector gross output and price data from the I-O data set. In
the NBS framework, the aggregate economy is first divided into primary, secondary and
tertiary industries. The mining, manufacturing, utilities and construction sectors can be
found within the secondary industry category. Then there are sub-sectors within these
areas; within manufacturing, for example, there are sub-sectors such as food manufacturing,
tobacco, textiles, etc.

Instead of calculating separate decompositions for coal, oil and gas, as in the previous
SDA method, here we added the units of energy (in Standard Coal Equivalents, SCE) from
all the primary sources to give the total energy consumption of the target of interest. The
target may be the total economy, however, here we focused on the mining, manufacturing
and utilities sectors only because they have the most reliable data. Let E mk denote the
energy in SCE from fuel m used in the k-th sub-sector, and Qk the output. The total energy
used in the sub-sector was:                  and its energy intensity is: Ik = Ek /Qk

  Aggregate energy use is               , aggregate output is                and the overall,
or total, energy intensity is thus I tot=E/Q. The IDA method expresses the overall
energy intensity as a function of the fuel shares in each sector and sector output shares
of aggregate output:

(Equation 14)

Itot – overall energy intensity;

Fm – share of fuel m in total energy consumption of the ijk-th sub-sector
   (Emk/Ek); m = coal, oil, gas, hydro;

Ik – energy intensity in the ijk-th sub-sector;

Sk – output share of the ijk-th sub-sector in the ij-th sector;

Sj – output share of the ij-th sector in the i-th industry;

Si – output share of the i-th industry in the overall economy.

The overall energy intensity can be decomposed as a summation of each of the sub-
sectors of the major sectors in the economy. As Ma and Stern (2007) suggest, a Logarithmic
Mean Divisa Index (LMDI) would avoid the unexplained residual in the SDA methods,
and is not path-dependent so that one can choose any two years for comparison.
Differentiating equation 14 with respect to time, and using the logarithmic mean weight
scheme, we have:
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That is, the aggregate intensity change, ˘Itot, is decomposed to five factors:

I fls –  intensity change due to fuel substitution;

I tec –  technological change;

I strss –  structural shift at sub-sector level;

I strs –  structural shift at sector level;

I stri –  structural shift at industry level.

Our analysis focused on the industrial sector only, this included mining, manufacturing,
electric power and hot water utilities; we ignored agriculture and services here. That is,
the overall energy intensity in this section is not the economy-wide energy intensity of
the previous section using the SDA, but merely the secondary industries. In terms of
equation 14 we do not need the Si term, and in equation 15 there is no ˘Istri term. We also
just focused on total energy use in each sub-sector, ignoring the reallocation among fuel
types. The fuel substitution effect was folded into the technological change term. Thus,
we focused on the following three factors:

I tec –  technological change;

I strss –  structural shift at sub-sector level;

I strs –  structural shift at sector level.

The I-O data set described earlier includes a version with 62 sub-sectors, with
52 of these in the mining/manufacturing/utilities group. This gives us the output of the
52 sub-sectors for each year between 1993 and 2005. The Chinese Energy Statistical
Yearbook (CESY) gives final energy use for 39 sub-sectors within Industry (Tables
5 – 3 of CESY 2007). Final energy use includes the combustion of fossil fuels and electricity
but excludes biomass and energy embodied in intermediate inputs. Combining the output
and energy use data gives us information for 39 sub-sectors.

Table 7 gives the results of the above IDA method of decomposing energy intensity
changes in the mining, manufacturing and electricity power sectors. The industrial energy
intensity drops very quickly during 1982 – 1987 and 1990 – 1994. Overall, due to the
data difference, the IDA decomposition results in some years are quite different from the
SDA methods. But for 2005 – 2007, the general trend is consistent for all the sectors using
both methods. We can see that for the coal sector there were inefficiencies during
2000 – 2005 but with the 11th Five-Year Plan there was an efficiency improvement in
2005 – 2007. However for other energy sectors, we did not observe this effect, which
suggests that our energy conservation mostly focused on coal use only, thus the overall
intensity decline from 2005 to 2007 was still very limited.

Where                                     and                               is the logarithmic mean weight:

(Equation 16)=
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Table 7: Decomposition of change in energy use per unit of GDP (IDA method)
Energy Technical Structural Residual Energy Technical Structural Residual Energy Technical Structural Residual
intensity change change intensity change change intensity change change 
change change change

Coal Crude Petroleum Refined Petroleum Electricity Utilities Gas Utility

1981-1982 0.108 1.236 -1.128 -0.001 -0.030 0.150 -0.184 0.004 0.238 0.654 -0.416 0.000

1982-1983 -0.042 -1.124 1.083 0.000 -0.064 -0.126 0.061 0.000 -0.009 -0.537 0.528 0.000

1983-1984 -0.115 -0.108 -0.006 0.000 0.059 0.195 -0.136 0.000 0.009 -0.029 0.038 0.000

1984-1985 -0.197 -0.319 0.122 0.000 -0.321 -0.116 -0.204 -0.001 -0.352 -0.382 0.029 0.001

1985-1986 -0.043 0.068 -0.111 0.000 -0.043 0.534 -0.577 0.000 0.069 0.072 -0.003 0.000

1986-1987 -0.074 0.109 -0.163 -0.020 -0.058 0.100 -0.058 -0.099 -0.129 -0.071 -0.056 -0.002

1987-1988 0.086 0.055 0.027 0.005 -0.079 -0.019 -0.016 -0.044 -0.022 -0.027 0.004 0.002

1088-1989 0.129 -0.075 0.204 0.000 0.073 -0.230 0.303 0.000 0.032 -0.048 0.080 0.000

1989-1990 0.000 -0.063 0.062 0.000 0.097 -0.391 0.488 0.000 -0.080 -0.130 0.049 0.000

1990-1991 -0.036 0.106 -0.142 0.000 0.075 -0.067 0.141 0.000 0.105 0.131 -0.026 0.000

1991-1992 -0.098 -0.005 -0.093 0.000 0.052 0.245 -0.193 0.000 -0.041 -0.013 -0.028 0.000

1992-1993 0.128 0.182 -0.059 0.005 0.201 0.483 -0.281 -0.001 0.237 0.276 -0.051 0.013

1993-1994 -0.033 -0.097 0.035 0.028 0.050 0.109 -0.063 0.004 -0.051 -0.043 -0.013 0.005

1994-1995 0.038 0.086 -0.047 0.000 -0.143 -0.164 0.022 0.000 0.009 0.075 -0.066 0.000

1995-1996 0.150 0.230 -0.080 0.000 -0.068 -0.133 0.065 0.000 -0.037 -0.055 0.018 0.000

1996-1997 0.010 0.083 -0.073 0.000 0.069 0.081 -0.012 0.000 0.075 0.080 -0.005 0.000

1997-1998 -0.041 0.628 -0.669 0.000 0.494 1.053 -0.558 -0.001 0.334 0.699 -0.364 0.000

1998-1999 -0.057 -1.015 0.958 0.000 0.061 0.090 -0.028 0.000 0.067 -0.295 0.363 0.000

2000-2001 -0.045 0.075 -0.121 0.000 -0.087 0.871 -0.958 0.000 -0.004 0.023 -0.027 0.000

2001-2002 -0.083 -0.023 -0.050 -0.010 -0.080 -0.027 -0.004 -0.049 0.013 0.000 0.011 0.002

2002-2003 0.256 0.051 0.205 0.000 0.129 -0.610 0.738 0.000 0.155 0.146 0.009 0.000

2003-2004 0.173 -0.089 0.257 0.005 0.111 -0.320 0.430 0.001 0.093 -0.134 0.224 0.003

2004-2005 0.123 0.210 -0.096 0.008 0.129 -0.043 0.154 0.017 0.126 0.114 -0.009 0.021

2005-2007 -0.240 0.502 -0.818 0.076 0.189 0.929 -0.788 0.048 0.122 0.396 -0.364 0.090

 0.019 1.032 -1.012 -0.001 0.014 0.937 -0.921 -0.001

-0.037 -1.215 1.178 0.000 -0.036 -1.087 1.051 0.000

-0.146 -0.297 0.151 0.000 -0.112 -0.244 0.132 0.000

-0.093 -0.187 0.093 0.000 0.156 0.067 0.089 0.000

-0.054 -0.057 0.003 0.000 0.035 0.031 0.005 0.000

0.017 0.046 -0.028 -0.002 -0.019 0.001 -0.019 -0.001

-0.032 -0.118 0.086 0.000 0.163 0.088 0.073 0.002

0.115 0.004 0.111 0.000 0.119 0.004 0.115 0.000

0.086 0.079 0.007 0.000 0.097 0.096 0.001 0.000

0.037 0.011 0.025 0.000 0.058 0.037 0.021 0.000

0.033 0.065 -0.032 0.000 -0.057 -0.061 0.003 0.000

0.036 0.113 -0.080 0.003 0.146 0.191 -0.051 0.006

0.020 -0.051 0.065 0.005 -0.155 -0.205 0.053 -0.002

-0.009 0.085 -0.094 0.000 -0.044 0.050 -0.094 0.000

0.042 0.010 0.032 0.000 0.060 0.027 0.033 0.000

0.059 0.083 -0.024 0.000 0.066 0.060 0.006 0.000

0.284 0.736 -0.452 0.000 0.201 0.656 -0.456 0.000

-0.041 -0.383 0.342 0.000 0.021 -0.341 0.362 0.000

0.007 -0.026 0.033 0.000 0.006 0.016 -0.010 0.000 

0.010 0.006 0.003 0.001 -0.013 -0.045 0.028 0.004

0.197 0.231 -0.034 0.000 0.111 0.017 0.094 0.000

0.238 -0.059 0.282 0.016 0.137 -0.038 0.174 0.001

-0.019 -0.024 0.002 0.003 0.068 0.060 0.001 0.007

0.275 0.886 -0.534 -0.077 0.274 0.538 -0.441 0.177

Energy Technical Structural Residual Energy Technical Structural Residual 
intensity change change intensity change change 
change change



The caveats for the IDA methods rely on its decomposition of sector classifications
at different layers and data is extracted from very different sources, so its results are less
reliable than the SDA method. In summary, when we conclude the total energy intensity
change, we can see that both methods show that after the year 2000 there is a reverse
trend. Changes in technology and the pattern of demand both play important roles here,
and sometimes both have opposite effects.

3.5 Method 3: Simple Index

Most energy decomposition studies use the SDA or IDA methods implemented here.
However, the results from these decomposition techniques are difficult to use to specify
AEEI parameters that could be incorporated into CGE models. Therefore, we also used
a simple decomposition technique suggested by Wing and Eckaus (2004 and 2005) to
apply a simpler index for linking with our CGE model.

Let the energy used in industry i in period t be Eit, the output be Yit, and the aggregate
energy use be E  . Aggregate energy intensity is a weighted sum of the sectoral intensities:

(Equation 17)

where      is the overall energy intensity, N is the total number of sectors which include

the primary, manufacturing and tertiary sectors, and       is the weight of industry i given

by the ratio of its share of GDP to its share of total energy use              and        is the

energy intensity of each sector i. Taking the time derivative of equation 17 in logarithms,
we have:

(Equation 18)

The change in overall energy intensity can be decomposed as two parts:

1) Structural change effects: the average of changes in industries' contributions to
aggregate energy intensity, denoted as      ;

2) Intensity change effects: the average of changes in energy intensity within industries,
such as input substitution, pure technology progress with fixed amounts of inputs,
denoted as      .

We combined our time-series 1981 – 2007 I-O tables with the physical units of
energy used by five energy industries: coal, oil and gas mining, hydro, the refining sector
(processing of petroleum, coking, nuclear fuel, etc.), and electricity. Figure 4 presents
the estimated structural change effects (    ) and intensity change effects (     ) of coal use
in China. Figure 5 shows the estimated structural change effects (     ) and intensity change
effects (     ) of crude oil and natural gas in China. For coal use, we can see that the overall
change in energy intensity (    +     ) is negative in most years except 2003–2005. The
improvement in energy efficiency is mostly attributed to changes in technology – we can
see that in only 6 out of 24 years the intensity change effects were positive, and for about
half of the years the structural change effects are positive. Although this is only the energy
change for coal use, considering coal use accounts for about 70% of total energy use in
China, it is not surprising that the coal result alone coincides with the total energy intensity
trend in Figure 1. For crude oil and natural gas, we see similar overall trend changes,
though structural changes and technology changes are more volatile than coal use, except
during 2005 – 2007.
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The detailed results of coal intensity decomposition in the mix of industries within
the large sectors is shown in Figures 6 and 7, both are in terms of coal consumption. We
can see that structural composition changes and energy intensity changes vary substantially
across different sectors. For example, in most energy-intensive industries and service
industries, the origins of coal intensity decline can be attributed to within-industry intensity
changes. In fact, we can also see that for energy-intense sectors and service sectors, the
effects of the changing composition of industry increase the use of energy. However, for
agriculture and other manufacturing, the effects of changing industrial composition may
exceed the energy intensity changes within the industry, and both effects are working in
the same direction, reinforcing the decline in overall energy intensity. From 2003 – 2005,
within-industry energy intensity changes were smaller in all the four major sectors:
agriculture, energy-intensive sectors, other manufacturing, and service sectors. This explains
why overall energy intensity flattens out after 2003, especially the improvement from
the structural change, which is almost flat for most sectors when compared to 1981 levels.
From 2005 to 2007, we can see that within-sector intensity change improved substantially
for coal use, however this, for the most part, was offset by the structural change in the
opposite direction. Therefore, overall the aggregate intensity change was still quite limited.

In summary, our paper obtained similar results to many previous energy intensity
decomposition studies for China for the pre-2000 era. For example, using a discrete SDA
method, Lin and Polenske (1995) suggested that the origin of the energy intensity decline
between 1981 and 1987 was technology change, rather than final demand changes. In
addition, with an improved SDA method and updated I-O data for 1987 and 1992 tables,
Garbaccio and Ho (1999) also suggested that technology change within sectors accounted
for most of the fall in the energy-output ratio, and pointed out that structural change
increased the use of energy. Zhang (2003) used the Laspeyres Index to calculate the energy
intensity decomposition for China's manufacturing sectors for 1990 – 1997, and suggested
that technology change was the most important reason. Ma and Stern (2006) used the
Logarithmic Mean Divisia Index (LMDI) to study the energy intensity trend for 1980 –
2003. They focused on the post-2000 period and suggested that the increased energy
intensity could be attributed to negative technology change and that within-sector energy
input substitution and structural change played very minor roles. In this study, we applied
three decomposition techniques, all suggesting that real technology change after 2002 is
limited, however for 2005 to 2007 the trend seems to reverse to some degree, most
prominently in the coal sector.

Figure 4: Contribution of structural change and intensity change to change
in aggregate energy intensity in the coal sector, 1981 – 2007

Structure change
Intensity change
Aggregate intensity change
Accumulative energy
intensity change
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Figure 5: Contribution of structural change and intensity change to change
in aggregate energy intensity in the crude oil and natural gas sectors, 1981 – 2007

Structure change
Intensity change
Aggregate intensity change
Accumulative energy
intensity change

4.0 ENERGY INTENSITY DECOMPOSITION, ENERGY USE
PROJECTIONS AND ENVIRONMENTAL POLICY ANALYSIS

We now turn to the question of what these results imply for the projection of energy
use and carbon emissions in the long-term future, especially how the energy intensity
decomposition results for the historical data can be of some use to the CGE model analysis
and policy simulations. At the moment, most CGE models normally assume one-size-
fits-all AEEI parameters to indicate the autonomous energy efficiency improvement, that
is, all the countries and most models use the same common parameter, assuming AEEI
shows a 1% improvement every year.

Figure 6: Effects of changing industrial composition by sectors, coal use, 1981 – 2007

Agriculture
Energy-intensive industries
Other Manufacturing
Services

(Percentage change from 1981 level)

Agriculture
Energy-intensive industries
Other Manufacturing
Services

Figure 7: Within-industry energy intensity change, coal use, 1981 – 2007

(Percentage change from 1981 level)
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It has long been understood that AEEI is not a simple factor, but a shorthand
approximation of several complicated processes, such as: energy-saving technological
progress that uses less energy with given fixed inputs; shifts in the composition of energy
mix; shifts in the composition of the economy that demand less energy use (i.e. structural
changes); relevant policy effects, such as environmental policies that restrict the use of
fossil fuels; research and development and technological diffusion; or simply removing
market barriers to more advanced energy-saving technologies (Williams 1987, 1990;
Williams et al. 1987, Weyant, 2000, Wing and Eckaus, 2005).

In this study, we conducted a number of numerical experiments to shed some light
on various future energy use and carbon emission scenarios. The scenarios are described
in Table 8.

Table 8: Experiments with the CGE model AEEI scenarios

Scenarios Growth Rate of AEEI

      I No AEEI improvements
      II 1% per year
      III Average annual rate of overall energy intensity change

(     +      ) = 0.0476, 1981 – 2007
      IV Average annual rate of overall energy intensity change

(     +      ) = 0.0229, 2000 – 2007
      V Average annual rate of overall energy intensity change

(     +      ) = 0.0177, 2000 – 2005

First, we considered a scenario where we assumed no AEEI at all in a control experiment,
that is only the benchmark I-O table was used in our simulations. Secondly, we adopted
the most common assumption in energy modeling, that is to assume that the AEEI shows
a 1% improvement for each sector every year. Thirdly, following the Wing and Eckaus study
of 2005, and based on our energy intensity studies above, we assumed that the AEEI
parameters incorporated both structural and intensity change factors, and we used different
sample periods 1981– 2007, 2000 –2007 and 2000 – 2005 results for our sensitivity analysis
to forecast carbon emissions using our CGE model. Note the difference from other carbon
emission forecasts, which focus on empirical estimation techniques – here we conducted a
sensitivity analysis on AEEI parameters, then ran our CGE model in order to obtain a forecast
of carbon emissions. From 2000 – 2005 our overall intensity change (1.77%) was only
slightly higher than the one-size-fits-all AEEI (of 1%). If we incorporate the 11th Five-Year
Plan period after 2005, then overall intensity from 2000 – 2007 was about 2.29%, and if
we consider the overall AEEI for 1981 – 2007, then technology progress stands at 4.76%.

Figure 8: Range of uncertainties in model projections (Carbon emission forecasts)

Carbon emissions (in million tC)

Cao-Scenario I
Cao-Scenario II
Cao-Scenario III
Cao-Scenario IV
Cao-Scenario V
Zou Ji Group
Jiang Kejun Group
Zhang Xiliang Group
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Figure 8 shows our forecast of China's future energy use and carbon emissions up
until 2030. Without any improvement in AEEI, we can see that energy use and carbon
emissions will increase six-fold by 2030. If we adopt the common AEEI assumption (1%
per year), then both energy use and carbon emissions will be cut by more than half. If
we base our AEEI assumption on data from 2000 – 2005, our carbon emissions forecast
is similar to EIA (2008), Zou Ji's group at Renmin University, and ERI Jiang Kejun's group
results. If we assume 2000 – 2007 and 1981 – 2007 results, our forecast is much lower
than most other groups at the "business-as-usual" level. During 2000 – 2005 there was
no important energy policy in place and after 2005 China imposed a very stringent energy
intensity target policy. Therefore, we think that an overall AEEI of 1.7% is more reliable
in the business-as-usual scenario and is mostly consistent with other modeling groups'
results, so we have used this as our central estimate in the following policy analysis, while
using other scenarios to test for sensitivity and robust checks.7

4.1 An Overview of the Chinese Economy-Energy-Environment CGE Model
To have a better and more reasonable forecast of future energy use and carbon

emissions in China, we incorporated the results of the previous section into a recursive-
dynamic CGE model of the Chinese economy8. In the following section, we will describe
the economic module and the environmental module respectively.

4.1.1 Economic Module
Production
The production technology is a nested Cobb-Douglas production function:

(Equation 19)
where is g(j,t) the technical progress term that assumes rapid technology progress

at the beginning, followed by a decrease in growth rate, and eventual stabilization at a
steady state. When analyzing the impacts of policies, the Cobb-Douglas production function
is sometimes more flexible than other function forms, such as the Constant Elasticity of
Substitution (CES) function, or translog functions. Considering that there are no reliable
econometric estimates for such functions, we have used the calibrated Cobb-Douglas
parameter in our model, and leave alternative models of function forms for future work.
However, this assumption may underestimate policy impacts on the economic system or
overestimate energy reduction or environmental performance.

Household
The representative household drives utility from the consumption of commodities,

supplies an inelastic supply of labor input in production, and owns a share of the capital
stock; it also receives lump-sum transfers and interests on its public debts. For the recursive
property, the representative household makes exogenous savings decisions that are
transformed into investment in the subsequent period.

7 Scenario I assumes no efficiency improvement and structural shift, so it is not realistic. In the uncertainty
analysis on environmental policies we drop this scenario as upper bound but pick the 1% AEEI assumption
as upper bound for energy use and carbon emissions.

8 A detailed description of the Chinese CGE model is given in Appendix 1.
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Capital and Investment
The Chinese capital stock was modeled in two parts: the first part is the share of

planned capital, from the centrally-planned economy, because some state-owned enterprises
receive favorable investment funds directly from the state budget; the second part is market
capital, the rental price of which is equal to the marginal product of capital input. Both
types of capital are evolved with investment accumulation and depreciation.

Pre-Existing Taxation
The model includes a variety of pre-existing taxes, such as: taxes on production;

taxes on consumption; subsidies for production and consumption; and tariffs and subsidies
on exports. With tax reform in 1994, the Chinese taxation system has moved to a broader
tax base and a value-added tax covers all the industrial sectors, commerce, enterprise
profits tax, and sales tax.

International Trade
This model assumed imperfect substitution among goods originating from China

and those from the rest of the world. The demand for imported goods was derived from
a CES aggregation of domestic and imported goods. The current account and government
debts were set as exogenous. Although at this stage of our CGE model development such
a strong assumption was not quite realistic, we focused on calibrating the 2005 – 2008
current account, and we were only concerned with short-medium-run simulation results,
mitigating the effects of such modeling weaknesses. Our policy was focused on the
domestic, so changes in imports and exports were not quite as important for our purposes.
In addition, our domestic policy changes only brought about second-order bias when we
compared with the benchmark case.

Market Clearing
All market prices in the model were endogenous and adjusted to clear the market

for goods and factors. In addition, the government debt balance, trade balance, and savings-
investment balance were combined in order to complete the model. The Walras Law was
checked to test the market clearing.

Calibration
To improve the robustness of the model, a critical step after setting up the model

was to calibrate parameters in the recursive CGE model so that it could successfully "replicate"
the benchmark year of 2002 for China. But, different to the previous version, the energy
input share parameters were based on our empirical work on energy intensity decomposition.
Figure 9 shows the projected GDP, energy use and pollution trends from 2005 to 2030.

Figure 9: GDP, energy and emissions projected in the base case (Scenario VI)
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1 Economic activity and fossil fuel use to pollutant emissions
2 Emissions to concentrations
3 Concentrations to human exposure
4 Exposure to health impacts
5 Valuation of health impacts
6 Marginal damage by industry and fuel type
7 Benefit-cost analysis of command-and-control and energy taxes based

on marginal damage

Table 9: Pollution Impact Pathways and Analysis

Step 1. From economic activity and fossil fuel use to pollutant emissions
In our integrated economy-environment model for China, the economic component

generated the level of output for 33 industries and the household sector. The input demand
functions of the model generated the consumption of fossil fuels  – coal, oil and gas – or
each industry, which in turn generated the emissions of pollutants. The focus was on three
pollutants: TSP, SO2 and NOx. Emissions may come from either the combustion of fossil
fuels or from production processes. Only NOx emissions from the transportation sector were
considered, because there were no estimates for the other sectors at the time of either study.
The emissions of the three pollutants were linked to fossil fuel combustion by emission
coefficients (e.g. tons of TSP per ton of coal). The damage due to particulate matter depends
crucially on the size of the particles, with fine particles going deep into the lungs. PM 10

denotes particles smaller than 10 microns, and PM2.5 denotes those finer than 2.5 microns.
However, comprehensive data for China was only available for TSP. Therefore the emission
coefficients were calibrated to the official national TSP data and converted to PM10 equivalents.

Step 2. From emissions to concentrations
Although different industries clearly produce different levels of emissions and emissions

per dollar of output, it may be less obvious that each ton of emissions from different industries
produces a different level of damage. This is due to numerous factors, including differences
in meteorology, smokestack characteristics, proximity to dense populations, and distributions
of particle size. The modeling of atmospheric transport is a large field of study involving
complex atmospheric chemistry. In this interim report we used our previous Harvard-
Tsinghua study to calibrate our emission-concentration relationships. The detail of this work
is explained in Ho and Jorgenson (2007a, 2007b). Our results have been calibrated to two
basic air dispersion models. The first used a relatively simple model for dispersion within
50 km, and the second used a more sophisticated model for regional dispersion of up to
3,000 km. We used this model to calculate the dispersion of pollutants for a sample of
sources and, as explained in Step 3, the concentration estimates were combined with
population maps.

4.1.2 Environmental Module

One advantage of our CGE model lies in its integrated structure; both economics
and energy/pollution/health modules are used for analyzing the benefits and costs of
environmental policies. More specifically, the China CGE model has developed a methodology
and data base that provide a tractable link between emissions and human exposure, which
is incorporated into an environmental damage model that estimates health damage by
industry. In estimating the cost and benefit of environmental policies, many previous studies
have dealt only with the direct costs of pollution control, such as the cost of scrubbers. In
contrast, our CGE modeling approach also identified the indirect, general equilibrium costs.
The overall flowchart of this integrated approach is summarized in Table 9.
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Step 3. From concentrations to human exposure

In this step, we applied the "intake fraction" (iF) methodology described by Levy
and Greco (2007) which allowed the Harvard-Tsinghua study to estimate human exposure
to all national sources. The iF from a particular source is the fraction of a pollutant emitted
that is eventually inhaled by people before it is dissipated. This method calculates the
iFs using the air dispersion models and population maps for a small sample of sources
and then extrapolates to other emission sources. This extrapolation is done using regressions
of the iFs on a small set of key characteristics, such as a source's stack height and emission
characteristics, average wind speed, population within 10 km and total population in the
domain. The iF estimates for China were obtained by running the air dispersion models
over a fine population grid for a sample of sources. The resulting pollution concentrations
were then regressed on the key characteristics described above. We then turned to national
data sets for the four highly polluting industries and selected a national sample of plants.

Step 4. From exposure to health impacts

This part of the analysis relied on air pollution epidemiology to identify concentration-
response coefficients (e.g. the percentage increase in death rates per �g/m3 increase in
the PM10 concentration). Levy and Greco (2007) summarized the few epidemiological
studies for China and compared them to estimates for other countries. They described
how most of the studies for the U.S.A., which has much lower levels of pollution, attributed
most of the health effects to PM concentrations and a statistically insignificant amount
to SO2 (Levy and Greco, Table 4.5, p135, in Ho and Nielsen, 2007, Clearing the Air, the
Health and Economic Damages of Air Pollution in China). However, because the Chinese
studies also found statistically significant contributions from SO2, we have included effects
from both types of pollutants. After considering all the studies, we used concentration-
response estimates for "acute mortality" of 0.03% per �g/m3 of PM10 and 0.03% per �g/m3

of SO 2. Based on the mortality rate in China, we estimated that these values of the
concentration-response are equivalent to 1.92 deaths per million people per year per
�g/m3 increase in concentration of PM10 and SO2.

Step 5. Valuation of health effects

After the health impacts have been estimated, they need to be monetized in order
to compare the benefits of pollution reduction with the cost of pollution reduction policies.
The central concept in this analysis is the value of a statistical life (VSL), which is the
willingness to pay (WTP) divided by the change in risk. We expressed the value of the
change in the number of cases of illness and mortality in terms of Yuan, the Chinese
currency. The VSL ranges from a modest YUAN 0.26-0.51 million from Hammit and
Zhou (2005) to over YUAN 1.4 million from the World Bank (2008). In our study we
conducted sensitivity analysis to compare various environmental policies due to the
uncertainty of VSL estimations.

The estimated valuations for the other health effects listed in Table 10 are based
on the World Bank (2007) and ECON (2000), and are mostly from studies of Western
countries. The top two values of morbidity risks are for chronic bronchitis and respiratory
hospital admissions.
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Table 10: Estimates of the value of a statistical life in Chinese studies

4.2 Environmental Policy Analysis (Command-and-Control vs.
Economic-Incentive-Based Instruments)

When reconciling economic growth and environmental protection, the Chinese
government has made a great deal of effort to achieve certain growth rate targets, such
as 8% this year (2009). However, in recent years, environmental concerns have been
increasingly incorporated into China's planning process at both national and local levels,
and targets for pollution control are being set parallel with the the growth rate target. For
example, in the area of environmental protection, the National Economic and Social
Development 11th Five-Year Plan has set a 20% energy intensity reduction, a 10% SO 2

reduction, and a 10% reduction in COD. These targets were ratified by the Fourth Plenary
Session of the 10th National People's Congress in March 2006, and can be seen as an
attempt to maintain rapid growth while accommodating increased concern for environmental
sustainability.

The 11th Five-Year Plan, covering the years 2006 – 2010, assumed that China's
economy is now market-driven, and targets are now specified as either "expected" or
"compulsory." Expected targets are those that are anticipated to be achieved through market
forces, with the government providing overall macroeconomic stability and the necessary
regulatory institutions. Compulsory targets are those that are imposed by central government,
with enforcement the responsibility of central government agencies and local governments
(Fan 2006; You 2007). Of the compulsory targets, half are directly related to energy and
the environment. This plan contains only five targets: three for water quality and two for
air, including a 10% reduction in SO2 emissions and a 20% reduction in energy intensity.
The sulfur target is modest, perhaps due to poor performance under the 10th Environmental
Protection Plan, which covered the years 2001 – 2005, which was set at 10% below the
2000 level of emissions but was exceeded by more than 40%. The energy efficiency target
is very ambitious, reflecting a number of growing concerns in central government. Among
these concerns is energy security, as China has been forced to import increasing amounts
of oil and natural gas and more recently has also been a net importer of coal (Oster and
Davis 2008).

Study Million YUAN

Wang and Mullahy (2006) 0.30 – 1.25

Zhang Xiao (2002) 0.24 – 1.70

Hammitt and Zhou (2005) 0.26 – 0.51

Krupnick et al. (2006) 1.40

The estimated valuations for the other health effects listed in Table 10 are based on the
World Bank (2007) and ECON (2000), and are mostly from studies of Western countries.
The top two values of morbidity risks are for chronic bronchitis and respiratory hospital
admissions.

Source: World Bank (2007)
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Table 11: SO2 emissions targets for the 11th Five-Year Plan

Source: JES (2007)

Table 12: Cost structure for thermal power plants, 2005 (YUAN per kWh)

Source: Energy Research Institute

Alternatively, we think that China is ready to impose a new market incentive-based
tax or cap-and-trade instruments. In our model, we used a carbon tax to represent this
portfolio of policies. We assumed that the tax was imposed on the carbon contents of fossil
fuel consumption. Based on a recent Ministry of Finance Carbon Tax study, it is likely
that such a tax on fossil fuel will be implemented in the 12th Five-Year Plan or the 13th

Five-Year Plan. In fact Chinese energy tax, in the form of the “resource tax”, is already
undergoing a major reform process to substantially raise its current tax rate to reflect the
environmental externality cost. In our study, we assumed a fiscal neutral carbon tax, that
is the revenue is either transferred to households as a lump sum, or is used to reduce other
pre-existing distorted taxes in the current fiscal structure.

2005 2010 BAU Baseline      2010 Target

mil. mil. Change mil. Change Change
tons tons from 2005 tons from 2005  from BAU

Power Sector 13.3 18 35% 10 -25% -44%

All Other Sectors 12.2 13 +6% 13 +6% 0%

Total 25.5 31 +19% 23 -10% -26%

Large                Small Plants
Costs Plants Total Coal Diesel
Average Total Cost 0.250 0.704

Operating & Maintenance Cost 0.057 0.068

Fuel Costs 0.153 0.596 0.230 2.520

9 All new power plants are required to install FGD equipment.

In this study we focused on two typical command-and-control policies in the 11th

Five-Year Plan: a technological mandate policy that requires the installation of fluidized
gas desulfurization (FGD) equipment in the electricity sector; and a mandate policy to shut
down small-scale coal-fired power plants. More specifically, the first policy requires the
installation of 167 GW of new FGD equipment in existing power generation units.9 The
adoption of this equipment is expected to result in a reduction of 5.4 million tons of emissions.
The second policy is a shutdown of 50 GW of small-scale power generation units during
the time span of the plan (2006– 2010). The expected net reduction in SO2 emissions from
this policy is 2.1 million tons. Base year (2005) emissions levels, 2010 business-as-usual
(BAU) emissions projections, and the 2010 Five-Year Plan targets are shown in Table 11. 
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In summary, we wanted to compare two different policies: command-and-control
policies (FGD, shutdown, and combined 11th FYP FGD and shutdown policy), and a
carbon tax (recycled with lump-sum transfer, or recycling other distorted taxes). We
assumed that both kinds of policies were imposed from the first year of the 11th Five Year
Plan (2006), then we compared their cost-effectiveness and economic impacts with regard
to each carbon emission scenario specified in previous sections of this report.

4.2.1 FGD Installation Policy under the 11th Five-Year Plan

At the end of 2005, FGD equipment had been installed on 46.2 GW of coal-fired
electricity generation capacity – 12 % of the total. In order to meet the SO 2 reduction
target stated in the 11th Five-Year Plan, an additional 167 GW of FGD equipment is
scheduled to be installed on existing power generation units by 2010. Moreover, all new
power generation units constructed during the 11th Five-Year Plan – estimated in the
JES (2007) at 250 GW of capacity – are mandated to have FGD equipment. Thus, if the
FGD policy is fully implemented, there will be a total of 463.2 GW of FGD equipment
installed on coal-fired power plants by the end of 2010. The IEA's reference scenario
(IEA 2007) projects total coal-fired electricity generation capacity at 547 GW in 2010.
This means that FGD would be installed in almost 85% of total coal-fired power plant
capacity.

The costs of the FGD installation policy can be divided into two types: direct and
economy-wide. The direct costs of the FGD policy include the capital costs of the FGD
equipment and its operation and maintenance costs, which include additional electricity
for the operation of the equipment and so an increase in fuel inputs. Capital costs for
FGD units manufactured in China have fallen by more than half since the 1990s as domestic
firms have learned to produce this new technology. These costs now range from
150 YUAN per kW for a 600 MW plant to 180 YUAN per kW for a 100 MW plant. As
the cost of constructing a 600 MW plant without FGD is approximately 4,000 YUAN
per kW, the addition of FGD equipment represents a 3.8% increase in capital costs. The
unit operating cost of the FGD equipment (per ton of SO2 removed) depends on the size
of the plant and the sulfur content of the coal used, and ranges from 1,244 YUAN per
ton of SO 2 for a 100 MW plant to 800 YUAN per ton for a 1,000 MW plant (for coal
with a sulfur content of 1%). Low sulfur coal raises the cost per ton removed, from
1,020 YUAN per ton for 1% sulfur coal to 1,840 YUAN per ton for 0.5% sulfur coal.
The Chinese Academy for Environmental Planning (CAEP 2007) reports that coal with
a sulfur content of less than 0.5% makes up 30% of coal combusted in the power sector,
with coal with a sulfur content of 0.5-1% making up another 35%. Averaging over plant
sizes and coal types, CAEP estimates that running FGD equipment raises operating costs
by 2.4%. In terms of the price of delivered electricity, which includes transmission costs,
the additional cost of running FGD equipment is only 1.5%.
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Using our CGE model, we modeled the impact of FGD policy as a negative productivity
shock in the production function, that is, to raise electricity prices, by 0.25% in 2006, rising
to 0.94% in 2010. Given our unit elasticity assumption, this reduced overall electricity
use by approximately the same (absolute) percentage as the rise in price. The higher cost
of electricity led to a small decline in the output of energy-intensive industries such as
chemicals, non-metal mineral products, and primary metals. The use of FGD also increased
the amount of coal required to generate a kWh of deliverable electricity. However, this
was offset by the reduction in demand for electricity and the reduction in demand for coal
by energy-intensive industries, which led to a small net decline (0.08%) in coal consumption
in 2010.

As Table 13 shows, this small negative productivity shock resulted in a slight decline
in GDP, with corresponding reductions in the consumption and investment components
of GDP. The negative shock gave rise to larger impacts on consumption, while most other
indicators, such as impacts on CO 2, TSP, SO 2 and NO x were similar in the first year or
last year. The GDP loss ranged from -0.10% in 2010, corresponding to the central AEEI
assumption specified in the previous sections. The impacts on CO 2 and PM are less
significant, and there was no revenue collected for the government to reduce other distortions.

4.2.2 Shutting Down Small-Scale Power Plants under the 11th Five-Year Plan

At the end of 2005, almost one third of China's thermal power generation capacity
was provided by small-scale power generation units, where small-scale is defined as a unit
with a capacity of less than 100 MW.10 Most of these small-scale units are coal-fired, but
some are oil and diesel units serving localities which have in the past experienced severe
electricity shortages. These small units are generally inefficient in their use of energy and
highly polluting. However, as they have been seen to be providing local benefits, they have
continued to operate. With the emphasis on energy efficiency and pollution control in the
11th Five-Year Plan, 50 GW of small-scale power plants have been targeted for closure
by the end of the plan (2010).

Table 12 shows the cost structure for thermal power plants. The average total cost
per kilowatt hour for small plants is almost three times higher than for large plants. The
greatest contributor to this cost is the higher fuel requirements needed to produce a kilowatt
hour of electricity. Diesel-fired plants are particularly inefficient.

Implementing the small unit shutdown policy requires replacement capacity to be
built. However, as the policy is being implemented gradually over the five years of the
plan, the individual units that are shutdown are proportionately small and have a wide
geographical spread. Also, the electricity connected to the grid is fungible so the actual
cost of replacement capacity is an average of all new capacity installed over the plan period.
The direct cost of the shutdown policy would then be equal to the cost of producing the
replacement electricity, less the operating and maintenance costs that would have been
incurred by operating the small units and the decommissioning costs.11

10 The NDRC's Energy Research Institute estimates that in 2006 there was about 115 GW of capacity
provided by coal- and oil-fired units under 100 MW, out of a total of 391 GW of thermal-fired capacity.

11 The location of the replacement plants may also mean higher transmission costs.
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The decommissioning costs could include the shutdown of the small plants themselves
and perhaps the retraining and relocating of displaced workers. The value of any scrap
materials and the land the plant was located on should be accounted for as negative costs.
Although estimation of the total direct costs of the shutdown of these very heterogeneous
units is difficult, limited analysis indicates that when high fuel costs and the value of freed-
up land are fully accounted for, the total direct costs of the shutdown policy are negative
– even without taking into account the environmental benefits. The environmental benefits
of the small unit shutdown policy are substantial. Based on a previous study, it is estimated
that the shutdown of 50 GW of small units would save almost 30 million tons of coal
over the 11th Five-Year Plan period. The annual reduction in SO2 emissions from the policy
would be about 2.1 million tons.

The second column in Table 13 shows the effects of such a shutdown policy on the
economic and environmental variables. We can see that the effects on SO2 are higher than
the FGD mandates, in fact due to the inefficient small scale and higher fuel use, we can
see that the positive impacts are the biggest of all of the policies. This shows that in some
circumstances command-and-control policies are important because they can prevent the
market's myopic perspective on investment, encouraging investment in larger and more
environmentally-friendly technologies, thus requiring government intervention to mitigate
market failure. Column 3 shows the effects of the combined FGD and shutdown policy,
which can be used to approximate China's 11th FYP measures on SO2 controls. Therefore
the impact on SO 2 emissions is very significant, while impacts on CO 2, TSP, and NO x

are quite limited.

4.2.3 Hypothetical Carbon Tax Policies

The alternative policy instrument we picked was the imposition of a carbon tax on
energy use. The carbon tax policy is currently being debated in China, compared to an
emissions trading policy, and has not yet been implemented by the Chinese government,
except for the installation of a new gasoline tax to replace road tolls, which started in
January 2009. So it is interesting to ask questions about the potential role of this alternative
economic incentive-based tax policy – whether it is more cost-effective than the currently
implemented command-and-control options listed above, and how this alternative tax
policy differs in terms of influence on energy use, and technology choices within and
across sectors. In particular, should this alternative tax policy be recommended to reach
a new energy-intensity target in the next (12th) Five-Year Plan?

In this report, we experimented with a carbon tax policy of 100 YUAN per tC on
coal, crude oil and natural gas, depending on their carbon content. A carbon tax encourages
a switch from polluting coal to cleaner oil and gas, and a substitution of capital for energy.
Although it is not a first-best policy, such a tax in general could still generate substantial
reductions in pollution.
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Table 13: Effects of environmental policies on the economy and environmental performance
(in percentages)

GDP -0.100 0.732 0.656 -0.129 0.025

Consumption -0.094 0.479 0.436 0.169 -0.086

Investment -0.083 1.114 1.137 -0.162 0.379

Coal use -0.159 -5.478 -5.558 -14.402 -14.167

Oil use -0.062 -0.447 -0.475 -2.577 -2.368

CO2 emissions -0.143 -4.567 -4.638 -12.199 -11.970

Primary TSP -0.138 -1.057 -1.162 -12.458 -12.381
from combustion

SO2 emissions -9.184 -16.096 -16.164 -13.077 -12.884

NOx emissions -0.080 0.353 0.313 -2.231 -1.931
(transportation)

Premature deaths -4.234 -6.784 -6.891 -11.482 -11.657

Value of health -3.943 -5.718 -6.277 -11.763 -11.574
damages

Change in other 0.000 0.000 0.000 0.000 3.030
tax rates

Reduction in -0.002 -0.0021 -0.002 -0.004 -0.004
damages/GDP

Pollution tax/total 0.000 0.000 0.000 2.390 2.880
tax revenue

Assumption: reform starts in 2006 and effects in year 2010

C&C –     C&C –    C&C –   Carbon tax with     Carbon tax with
 FGD shutdown combined  lump-sum transfer reduced distorted tax
policy    policy    policy (100 YUAN per tC)  (100 YUAN per tC)

The model was first simulated with the existing tax rates to obtain a base case growth
path. We then simulated the carbon tax in the counterfactual case to be compared to the
base case. In this experiment, we assumed revenue neutral carbon tax reform, that is, the
collected carbon tax revenue would be returned to industries by cutting their VAT and
business taxes and other fees.

As shown in the fourth and fifth columns of Table 13, the carbon tax caused coal
use to fall by about 14% in 2010 and crude oil use to fall by 2.4-2.6%. Because the policy
raises coal prices and petroleum product prices, the major users of these fossil fuels increase
their output prices, causing a reduction in demand for energy-intensive goods. The imposition
of fuel taxes caused changes in output mix and fuel switching that reduced both primary
combustion PM emissions by 12.4-12.5% and SO2 emissions by 12.9-13.1% in 2010. The
modest tax on oil reduced transportation output and NO x emissions by only 1.9-2.3%.
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So, compared with command-and-control policies, a carbon tax can deal with multiple
pollutants and be more effective in reducing overall health damages, at similar macro
costs. We can also see that, in the case of carbon tax, the impacts on GDP are small overall,
though the magnitude depends on how revenue is recycled. The GDP impacts are positive
in the reduced distorted tax scenario, however this slightly hurt households but compensated
firms with capital tax and VAT tax reductions. For recycling with a lump-sum transfer to
households, households were better off with a slight decline in investment. In our simulations,
carbon tax at 100 YUAN per tC brought in 2.4-2.9% in revenue, which is a modest tax
revenue source for the government to spend on compensating negatively-affected coal
miners, or on reducing pre-existing capital and VAT taxes, or in investing in low-carbon
research and development technologies, etc.

In our study we also conducted a robust sensitivity check using different AEEI
assumptions. We found that our policy simulations were not sensitive to the changes in
the benchmark cases due to various AEEI results – the signs and magnitudes of policy
impacts on GDP, consumption, investment and environmental performance were quite
similar in all the scenarios.

5.0 CONCLUSION

In this study we used time-series input-output tables and corresponding physical
energy use statistics by sector to decompose China's sectoral energy intensities, by adopting
several decomposition techniques. Based on the energy intensity decomposition, we
forecast future energy use and carbon emissions based on various AEEI assumptions. Then
we compared our results to other studies and used a central AEEI estimate for China to
conduct climate policy analysis. The main results of this study may be summarized as
follows.

Firstly, during the 1980s and 1990s, technological changes played a very important
role in explaining the sustained decline in overall energy intensities, while structural shifts
played very limited roles. In many industries China's productivity and technological
progress was lower than that of developed countries. After economic reform it was easier
to catch up with productivity, allowing sustained efficiency improvement within industries.
However, after sustained improvement over a 20-year period, by the year 2000 there was
a steady decline in the role of technology progress in energy intensity decomposition,
and structural change had not yet taken a dominant role. Stringent energy intensity policy
after 2005 seemed to revert the energy intensity trend, but most of these efforts have been
mainly in the coal sector.

Secondly, based on our energy intensity decomposition using different decomposition
techniques, we extracted some useful information for specifying AEEI parameter
assumptions. We used the common AEEI assumption for comparison, that is, a
"one-size-fits-all" parameter that assumes that all sectors show a 1% improvement in
energy efficiency each year. Our studies suggested that, for a transitional economy such
as China, a parameter set at 1% is neither accurate nor generates trajectories of energy
use and carbon emissions that are consistent with the historical trend. Thus, based on past
energy intensity decomposition studies, we tried different AEEI scenarios and then,
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using our CGE model, we forecast future energy use and carbon emissions. In general,
our model projection range was consistent with several other modeling groups in China,
especially using the low AEEI parameter at 1.7%. These carbon emissions and low-carbon
pathway studies were conducted by Tsinghua Zhang Xiliang's group, the ERI's modeling
group, and Renmin University Zouji's modeling group. Though all three were based on
bottom-up technology models, similar to the macro model, our projections linked historical
energy intensity decomposition to derive AEEI parameters, then used a top-down CGE
model to simulate future carbon emission trends.

Thirdly, based on the different AEEI estimates and different energy use and carbon
emission projections, we used a recursive CGE model to analyze the economy-wide
impacts of two alternative policies:

1) An existing command-and-control policy used widely in the 11th Five-Year Plan, FGD policy
in the electricity sector and shutdown policy for small-scale power plants; and

2) A carbon tax of 100 YUAN per tC imposed on fossil fuel use with two different revenue recycling
regimes. Our model showed that assumptions of future energy use and carbon emissions only
slightly affected the model results, however, in general, the signs and magnitude of policy effects
held in all the simulations. Thus the changes in the projections of the base case model only brought
second order bias, thus we can trust the robustness of the CGE model on policy analysis even
with various AEEI parameter assumptions.

Finally, by comparing the command-and-control policies and the carbon tax we
found that the carbon tax was more cost-effective in terms of reducing a wide range of
pollutants, while command-and-control technology mandates usually only imposed big
cuts in one pollutant. Our model showed that technology mandates would bring negative
macro costs, however sometimes command-and-control policies, such as shutting down
inefficient small-scale power plants and replacing them with large-scale efficient power
plants, could have both economic and environmental effects on correcting the myopia of
investment distortions and market failures. In both command-and-control policies no
revenue could be utilized to reduce other distortions, for example fiscal distortions in the
pre-existing world or research and development investment in low-carbon technologies.
In addition, our experiments showed that a carbon tax was more efficient for reducing
carbon emissions and had great potential to bring other co-benefits to public health. Thus,
in general, the carbon tax was superior to the command-and-control policies, if we take
into account both economic and environmental net benefits, and can be used to reconcile
both local environmental protection and climate change challenges.
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