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Abstract—Recently, machine learning technologies have dra-
matically evolved. Accordingly, the concept of self-evolving
botnets has been introduced, which discover vulnerabilities of
hosts by distributed machine learning using the computational
resources of infected hosts, and infect other hosts by attacks
using the discovered vulnerabilities. The infectability of the
self-evolving botnets is too strong compared with conventional
botnets, so that such new botnets will become the serious threat
to future network society including 5G and IoT environments.
In this paper, we consider a volunteer model that discovers
unknown vulnerabilities earlier than self-evolving botnets by dis-
tributed computing using volunteer hosts’ resources and repairs
the vulnerabilities. We propose deterministic modeling for the
volunteer model. Through numerical calculations, we evaluate the
performance of the volunteer model against self-evolving botnets.

I. INTRODUCTION

Recently, machine learning techniques have been widely
used in many research fields and achieved significant results
because of the recent dramatic evolution of deep learning [1],
[2]. The literature has proposed vulnerability discovery meth-
ods that discover bugs and vulnerabilities with static code
analysis and machine learning techniques [7], [8]. Although
the main purpose of these methods is to protect software,
they can be used for discovering unknown vulnerabilities and
exploited for illegal attacks by malicious attackers. To perform
illegal attacks such as DDoS attacks, malicious attackers often
construct a botnet, which consists of hosts getting infected
with the botnet malware [6]. In the past, botnets that consist
of more than a million zombie computers have appeared.

Based on these backgrounds, the authors in [4] have intro-
duced a new concept named self-evolving botnets. The self-
evolving botnets discover vulnerabilities of hosts by perform-
ing distributed machine learning with computing resources
of infected hosts (i.e., zombie computers). Accordingly, they
infect the hosts by attacks using the discovered vulnerabilities
and make themselves bigger by absorbing the hosts. The
authors in [4] have proposed a stochastic epidemic model
of the self-evolving botnets. The epidemic model represents
the infection dynamics of the self-evolving botnets with a
continuous-time Markov chain. Furthermore, in [5], the au-
thors have introduced a deterministic epidemic model of the

self-evolving botnets, which represents their infection dynam-
ics by ordinary differential equations. They have shown that
the infectability of the self-evolving botnets is much stronger
than conventional botnets, through numerical experiments.

The appearance of such new botnets will become the serious
threat to future network society including 5G and IoT envi-
ronments. In order to counter the threat of the self-evolving
botnets, in this paper, we introduce a countermeasure model
named volunteer model against infection and spread of the
botnet malware. The volunteer model extends the basic con-
cept discussed in [3] and aims at countering the self-evolving
botnets by discovering unknown vulnerabilities earlier than
the self-evolving botnets. In the volunteer model, volunteer
hosts’ computing resources are used to discover the unknown
vulnerabilities in non-infected hosts. Those discovered vul-
nerabilities are repaired, and thus the hosts can be protected
from the infection of self-evolving botnets. Furthermore, we
propose deterministic modeling for the volunteer model. In the
deterministic epidemic model, the infection dynamics of self-
evolving botnets under the situation where the volunteer model
is applied are represented by ordinary differential equations.
Through numerical calculations, we evaluate the performance
of the volunteer model against self-evolving botnets.

The rest of this paper is organized as follows. Section II
discusses the epidemic model for self-evolving botnets. In
Section III, we explain the volunteer model. In Section IV, we
discuss the behavior of the volunteer model with the results of
numerical calculations. We conclude the paper in Section V.

II. DETERMINISTIC EPIDEMIC MODEL
OF SELF-EVOLVING BOTNETS [5]

A. SIRS model

We first explain the deterministic epidemic model of self-
evolving botnets in situations where the volunteer model
is not applied. This deterministic epidemic model, which
represents the system states (i.e., the infection dynamics
of the self-evolving botnets), works based on the SIRS
(Susceptible-Infected-Recovered-Susceptible) model, which
expresses states of each host.

The SIRS model consists of three states Susceptible (S),
Infected (I), and Recovered (R) as shown in Fig. 1. The



Fig. 1. SIRS model.

meaning of each state is as follows:
S : The host has at least one known vulnerabilities.
I : The host is infected with the botnet malware.
R : The host has no known vulnerabilities.

We assume that hosts belonging to the state R do not get
infected by known vulnerabilities. However, when the self-
evolving botnet discovers a new vulnerability, their states
transition to the state S. In this case, they can get infected
by the new vulnerability.

In the SIRS model, the transition from the susceptible state
S to the infected state I means that a susceptible host gets
infected by attack of the self-evolving botnet. In this case,
the infected host is taken into the self-evolving botnet and its
computing resource is used to discover new vulnerabilities.
The transition from the susceptible state S to the recovered
state R means that a susceptible host removes known vul-
nerabilities from itself. Also, the transition from the infected
state I to the recovered state R indicates that an infected host
removes the botnet malware from itself, where we assume
that all known vulnerabilities are removed at the same time.
When the self-evolving botnet discovers a new vulnerability,
all hosts belonging to the state R transitions to the state S.
This transition means that the botnet becomes able to infect
the host by using the discovered vulnerability.

In [5], the authors have introduced a deterministic epidemic
model of self-evolving botnets based on the SIRS model. In
the deterministic epidemic model, the infection dynamics of
self-evolving botnets is represented by ordinary differential
equations.

B. Epidemic model

The deterministic epidemic model of self-evolving botnet is
based on the SIRS model. Specifically, it is defined as follows.
Let S(t), I(t), and R(t) denote the numbers of hosts in the
states S, I, and R, respectively, at time t. We assume that the
total number N of hosts is fixed and it does not change over
time t (i.e., N = S(t) + I(t) + R(t)). The change rate of
the number of hosts in each state is given by the following
ordinary differential equations:

dS(t)

dt
= −αS(t)I(t) + γI(t)R(t)− δS(t), (1)

dI(t)

dt
= αS(t)I(t)− βI(t), (2)

dR(t)

dt
= βI(t)− γI(t)R(t) + δS(t), (3)

where α denotes the malware infection rate per infected
host, and thus αS(t)I(t) indicates the average number of
susceptible hosts getting infected per unit time at time t
in (1) and (2). β denotes the malware elimination rate per
infected host. Therefore, βI(t) indicates the average number of
infected hosts eliminating the botnet malware from themselves
per unit time at time t in (2) and (3). γ denotes the new
vulnerability discovery rate per infected host in the self-
evolving botnet. In (1) and (3), γI(t)R(t) indicates the average
number of recovered hosts whose vulnerability is discovered
by the self-evolving botnet per unit time at time t, assuming
that vulnerability discovery is performed by infected hosts. δ
denotes the repair rate per susceptible host, and thus δS(t)
in (1) and (3) means the average number of susceptible hosts
repairing their own vulnerabilities per unit time at time t.

III. DETERMINISTIC EPIDEMIC MODELING
FOR THE VOLUNTEER MODEL

A. Assumption

Because the self-evolving botnet has very high infectability,
it is very difficult for each host to individually protect itself
from the infection. To overcome this difficulty, the volunteer
model counters the self-evolving botnet, using the computing
resources of volunteer hosts to discover new vulnerabilities
and protect the hosts before the self-evolving botnet discovers
them. In this paper, we represent the infection dynamics of
the volunteer model under the following assumptions.

1) There exists one volunteer group consisting of all vol-
unteer hosts in a given network.

2) Each susceptible host and each recovered host can join
the volunteer group (i.e., becoming a volunteer host).
The probability that a host becomes a volunteer host
is proportional to the vulnerability discovery capability
of the volunteer hosts. This is because we assume that
the participation of new hosts to the volunteer group is
encouraged when the vulnerability protection becomes
effective with the increase in the vulnerability discovery
capability.

3) The volunteer group provides the information on vul-
nerability discovery to all hosts in the network, and thus
they can repair the vulnerability.

4) Hosts belong to the volunteer group share the informa-
tion on their known vulnerabilities each other.

5) Each volunteer host can freely leave the volunteer group.
Fig. 2 represents the state transition diagram of each host

in the volunteer model, which follows these assumptions and
is based on the SIRS model shown in Fig. 1. The meaning of
each state is as follows:
S1 : The host belongs to the susceptible state but not the

volunteer group.
S2 : The host belongs to the susceptible state and the

volunteer group.
I : The host belongs to the infected state.
R1 : The host belongs to the recovered state but not the

volunteer group.



Fig. 2. State transitions of each host in the volunteer model.

R2 : The host belongs to the recovered state and the
volunteer group.

In the volunteer model, the susceptible state S and the recov-
ered state R are divided into two states “S1, S2” and “R1, R2”,
respectively. S1 and R1 indicates that the host does not belong
to the volunteer group. On the other hand, S2 and R2 indicates
the host belongs to the volunteer group. Each state transition
1⃝- 11⃝ in Fig. 2 means the occurrence of the following event:

a) The host gets infected by an attack of an infected host
( 1⃝, 5⃝).

b) The host eliminates the botnet malware from itself ( 2⃝).
c) The host repairs known vulnerabilities from itself ( 4⃝,

10⃝).
d) The host leaves the volunteer group ( 6⃝, 8⃝).
e) The host joins the volunteer group ( 7⃝, 9⃝).
f) The self-evolving botnet discovers a new vulnerability

of the host ( 3⃝, 11⃝).
In the event e), susceptible hosts transition to the recovered

state R2 immediately after they join the volunteer group
because we assume that hosts belonging to the volunteer
group share the information on vulnerabilities known by the
volunteer group.

B. Epidemic model

We assume that there exist N hosts in a network. Let S1(t)
and S2(t) denote the numbers of hosts belonging to the suscep-
tible states S1 and S2, respectively, at time t. Let I(t) denote
the number of infected hosts, and R1(t) and R2(t) denote the
numbers of hosts belonging to the recovered states R1 and R2,
respectively at time t. The infection dynamics of the volunteer
model is represented by the following ordinary differential
equations, where N = S1(t) + S2(t) + I(t) +R1(t) +R2(t):

dS1(t)

dt
= −α1S1(t)I(t) + θS2(t)− δ1S1(t)

− ϵS1(t)(S2(t) +R2(t) + 1)

+ γI(t)R1(t)
γI(t)

ψ(S2(t) +R2(t)) + γI(t)
,

(4)

dS2(t)

dt
= −α2S2(t)I(t)− θS2(t)− δ2S2(t)R2(t)

+ γI(t)R2(t)
γI(t)

ψ(S2(t) +R2(t)) + γI(t)
,

(5)

dI(t)

dt
= α1S1(t)I(t) + α2S2(t)I(t)− βI(t), (6)

dR1(t)

dt
= δ1S1(t)− µR1(t)(S2(t) +R2(t) + 1) + βI(t)

+ λR2(t)− γI(t)R1(t)
γI(t)

ψ(S2(t) +R2(t)) + γI(t)
,

(7)

dR2(t)

dt
= δ2S2(t)R2(t) + ϵS1(t)(S2(t) +R2(t) + 1)

+ µR1(t)(S2(t) +R2(t) + 1)− λR2(t)

− γI(t)R2(t)
γI(t)

ψ(S2(t) +R2(t)) + γI(t)
,

(8)

where α1 and α2 denote the malware infection rates for sus-
ceptible hosts in S1 and S2, respectively, per infected host. β
denotes the malware elimination rate per infected host. δ1 and
δ2 denote the vulnerability repair rates per susceptible hosts
in S1 and S2, respectively. ϵ and µ denote the rates of joining
the volunteer group per susceptible host and recovered host,
respectively. θ and λ denote the rates of leaving the volunteer
group per susceptible host and recovered host, respectively. γ
and ψ denote the new vulnerability discovery rates per host in
the self-evolving botnet and the volunteer group, respectively.

In (4), (5), and (6), α1S1(t)I(t) and α2S2(t)I(t) represent
the average numbers of hosts in the susceptible states S1 and
S2, respectively, that get infected per unit time at time t.
They correspond to the state transitions 1⃝ and 5⃝. In (6) and
(7), βI(t) represents the average number of infected hosts
that eliminate the botnet malware from themselves per unit
time at time t, which correspond to the state transition 2⃝.
δ1S1(t) and δ2S2(t)R2(t) in (4), (5), (7), and (8) mean the
average numbers of hosts in the susceptible states S1 and S2,
respectively, that repair their own vulnerabilities per unit time
at time t. Because we assume that recovered hosts in the vol-
unteer group give susceptible volunteer hosts the information
on known vulnerabilities, we represent the average number
with δ2S2(t)R2(t) for the volunteer hosts. They correspond
to the state transitions 4⃝ and 10⃝.

In (4), (7), and (8), ϵS1(t)(S2(t) + R2(t) + 1) and
µR1(t)(S2(t) +R2(t) + 1) represent the average numbers of
susceptible hosts and recovered hosts, respectively, joining the
volunteer group per unit time at time t, which correspond to
the state transitions 7⃝ and 9⃝. The vulnerability discovery
capability increases with the number of hosts in the volunteer
group, so that the participation of new hosts to the volunteer
group is encouraged. On the other hand, θS2(t) and λR2(t) in
(4), (5), (7), and (8) means the average numbers of susceptible
hosts and recovered hosts, respectively, leaving the volunteer
group per unit time at time t. They correspond to the state
transitions 6⃝ and 8⃝.

In (4), (5), (7), and (8), γI(t)R1(t) and γI(t)R2(t) indi-
cate the average numbers of recovered hosts in R1 and R2,
respectively, whose vulnerability is discovered by the self-
evolving botnet per unit time at time t. We assume that
they are weakened according to the discovery capability of
the volunteer group. Specifically, they are multiplied by the



Fig. 3. The number of hosts in each state [t = 0 to
0.4] (α1 = α2 = 0.1, ϵ = µ = 0.1).

Fig. 4. The number of hosts in each state [t = 0 to
40] (α1 = α2 = 0.1, ϵ = µ = 0.1).

Fig. 5. The number of hosts in each state (α1 =
α2 = 0.1, ϵ = µ = 0.197).

ratio of γI(t) to ψ(S2(t) + R2(t)) + γI(t), where γI(t)
means the discovery capability of the self-evolving botnets
and ψ(S2(t) + R2(t)) means the discovery capability of the
volunteer group.

IV. NUMERICAL CALCULATIONS

A. Model

In this paper, we examine the infection dynamics of the vol-
unteer model through numerical calculations. The total number
Nof hosts in a network is equal to 1,000. The initial state of the
system is assumed to be (S1(0), S2(0), I(0), R1(0), R2(0)) =
(999, 0, 1, 0, 0). Specifically, there is one infected host and the
other hosts have vulnerabilities, which do not belong to the
volunteer group. The system parameters in (4)-(8) are set to be
β = 0.1, γ = 0.1, δ1 = δ2 = 0.1, ψ = 0.1, and θ = λ = 0.1.

B. Results

Figs. 3 and 4 show the number of hosts in each state
as a function of elapsed days, where the malware infection
rates α1 and α2 are set to be 0.1 and the rates ϵ and µ
of joining the volunteer group are set to be 0.1. Note that
these figures use different time scales, i.e., [0-0.4] and [0-40].
From these figures, we observe that the number of recovered
hosts belonging to the volunteer group first increases, but it
immediately decreases and becomes almost 0. We also observe
that the number of susceptible hosts decreases at an early
stage and the number of infected hosts rapidly increases, which
means that almost all susceptible hosts get infected with the
botnet malware. The vulnerability discovery capability of the
self-evolving botnet becomes strong with the increase in the
number of infected hosts. Therefore, even if infected hosts
eliminate the botnet malware from themselves and transition
to the recovered state, they are immediately discovered a new
vulnerability by the self-evolving botnet. Therefore, they easily
transition to the susceptible state, and then get infected with
the botnet malware. Therefore, the volunteer group does not
work well in this case.

Here, we examine the impact of the system parameter ϵ
and µ, which are the rates of joining the volunteer group
per susceptible host and recovered host, respectively. Fig. 5
shows the number of hosts in each state as a function of

elapsed days, where α1 = α2 = 0.1 and ϵ = µ = 0.197.
As we can see from this figure, the number of volunteer hosts
keeps high value. However, after about 20 days, the number
of volunteer hosts immediately decreases and the number of
infected hosts increases accordingly. This result indicates that
when the number of volunteer hosts falls below a certain value,
the volunteer model cannot prevent the spread of the self-
evolving botnet. Figs. 6 and 7 show the number of hosts in
each state as a function of elapsed days with different time
scales, where α1 = α2 = 0.1 and ϵ = µ = 0.198. From these
figures, we observe that the number of volunteer hosts does
not decrease and almost all the hosts become the volunteer
hosts. In this case, the volunteer model can prevent the spread
of the self-evolving botnet. The effect of the volunteer model
is very sensitive to the system parameters ϵ and µ.

We then examine the impact of the system parameter α1

and α2, which are the malware infection rates for hosts in
S1 and S2, respectively. Figs. 8 and 9 show the number of
hosts in each state as a function of elapsed days with different
time scales, where α1 = α2 = 0.2 and ϵ = µ = 0.1. As we
can see from these figures, the spreading speed of the self-
evolving botnet is faster than the case of α1 = α2 = 0.1
shown in Fig. 3. This is because the malware infection rate
is higher. Figs. 10 shows the number of hosts in each state
as a function of elapsed days, where α1 = α2 = 0.2 and
ϵ = µ = 0.43. Also, Figs. 11 shows the number of hosts in
each state as a function of elapsed days, where α1 = α2 = 0.2
and ϵ = µ = 0.44. Similar to the results in Figs. 5-7, we
observe that the number of volunteer hosts does not decrease
and almost all the hosts become the volunteer hosts when the
values of ϵ and µ are higher than a certain level.

V. CONCLUSION

This paper introduced a volunteer model to countermea-
sure self-evolving botnets. Through numerical calculations,
we showed that the volunteer model efficiently works when
many hosts join the volunteer groups. As future work, we
will consider how to encourage hosts to join the volunteer
model. This paper assumes that hosts join the volunteer group
according to the number of volunteer hosts. This is because the
effect of vulnerability discovery and protection increases with



Fig. 6. The number of hosts in each state [t = 0 to
0.1] (α1 = α2 = 0.1, ϵ = µ = 0.198).

Fig. 7. The number of hosts in each state [t = 0 to
40] (α1 = α2 = 0.1, ϵ = µ = 0.198).

Fig. 8. The number of hosts in each state [t = 0 to
0.1] (α1 = α2 = 0.2, ϵ = µ = 0.1).

Fig. 9. The number of hosts in each state [t = 0 to
40] (α1 = α2 = 0.2, ϵ = µ = 0.1).

Fig. 10. The number of hosts in each state (α1 =
α2 = 0.2, ϵ = µ = 0.43).

Fig. 11. The number of hosts in each state (α1 =
α2 = 0.2, ϵ = µ = 0.44).

the number of volunteer hosts. However, joining the volunteer
group may degrade their performance because the volunteer
hosts should provide a certain amount of their computing
resources. Therefore, we should consider this trade-off, using
concepts such as the game theory.
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