
Chi-Squared Portmanteau Statistics for Vector
Autoregressive Models with Uncorrelated Errors

著者 Katayama Naoya
journal or
publication title

Kansai University review of economics

volume 13
page range 1-23
year 2011-03
URL http://hdl.handle.net/10112/00017190



Kansai University Review of Economics

No. 13 (March 2011), pp. 1-23

Chi-Squared Portmanteau Statistics for Vector
Auto regressive Models with Uncorrelated Errors^

NAOYA KATAYAMA*

The portmanteau statistic based on the first m residual

autocorrelations is used for testing the goodness-of-fit for

vector autoregressive models with varying m. However, it is

known that existing portmanteau statistics are approximately

non chi-squared distributions in the presence of non-inde

pendent innovations. In this paper we propose a new port

manteau statistic that is asymptotically chi-squared even in

the presence of non-independent innovations. We also study

the joint probability of the multiple portmanteau statistics with

different degrees of freedom.Monte Carlo experiments illus
trate the finite sample performance for the proposed port

manteau test.

Keyword: Vector weak AR model; Portmanteau test; Residual autocorrelation;

Goodness-of-fit test; Multiple tests.

1. Introduction

Portmanteau test statistics are commonly used in time series analysis, which is used

as a goodness-of-fit test statistic and is defined by the sum of squares of the first m

residual autocorrelations. This approach was first presented by Box Si Pierce (1970) for

the univariate autoregressive (AR) models. Chitturi (1974) extended the test statistics for

vector AR models. Li (2004) reviewed applications of the portmanteau statistics in various

time series models.

In these portmanteau statistics, the errors are generally supposed to be independent and

identically distributed (i.i.d.), and are referred to as strong white noise (see, for example,

Francq et al., (2005) (referred to as FRZ) and Francq and RaVssi (2007) (referred to as

* Faculty of Economics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, JAPAN.

kata(@ kyudai.jp

^ Revision Date: November 16, 2010. This work was supported by the Japan Society for the Promotion of Science.

1



FR)). The full versions of these manuscripts are available from the first author's website,

and have frequent examples and expositions. These authors also claim the following:

(i) the assumption of strong white noise is restrictive because it precludes conditional

heteroskedasticity and/or other forms of nonlinearity where the errors are uncorrelated but

non-independent and known as weak white noise, (ii) If we assume the errors are strong

white noise, the existing portmanteau statistics are asymptotically chi-squared random

variable. However, if the errors are weak white noise, they are not always asymptotically

chi-squared random variable but are the weighted sums of the chi-squared random variables,

(iii) Therefore if the errors are weak white noise, the chi-squared test by the portmanteau

statistics results in an over-reject ion problem. Therefore the present portmanteau test may

unnecessarily provide a higher order (vectorized) AR model.

To solve (iii), they proposed estimation methods of the critical regions using the weighted

sum of the chi-squared random variables, which uses Imhof's (1961) formula or other ap

proximate methods (see, for example, Johnson et al., (1994, Section 8 in Chapter 18)).

From the simulation experiments, they found that the methods worked favorably for the

sample size n > 1000. Their methods are based on the approximation of the probability

of the weighted sum of the chi-squared random variables and, consequently, the null dis

tribution depends on the data and involves computational complexity. For example, for

n = 100 and m = 24, the empirical relative rejection frequencies are far from the asymp

totic significance level. Therefore, their proposed method is still constrained in terms of

sample size.

Suppose that the data generating process (DGP) is a stationary and nonlinear process,

where the aim of modeling is to forecast the data. If we have rich sample size, we are able

to select more complicated parametric models by using an appropriate information criterion,

which may improve the results of forecasting. If not, we would look for a simplified linear

model such as the AR model with weak white noise. However, there is no appropriate

method because of the small sample size. In this sense we have to develop a new method

for a goodness-of-fit test when subject to weak white noise.

If we look at FRZ and FR from another standpoint, their methods are extensions of LJung

(1986) from the strong white noise case to the weak white noise case. Even if the noise is

strong, it is known that the chi-squared approximation of the portmanteau statistic performs

poorly when the degrees of freedom (DF) are small (equivalently, when the number of m

is small). To solve this problem, LJung (1986) proposed modifications of the portmanteau

test, which compute critical regions from the weighted sum of the chi-squared random

variables as an approximated random variable of the portmanteau statistic.

Alternatively, Katayama (2008) proposed modifications to the test. He proposed a modi

fied portmanteau statistic with a correction term to conduct a chi-squared test with a small



number of DF. Based on this modification, Katayama (2009) pointed out the advantage

of multiple portmanteau tests. However, the portmanteau statistic by Katayama (2008,

2009) focused on the univariate autoregressive moving average (ARMA) model with strong
white noise.

For this reason, in this paper, we extend the portmanteau statistic by Katayama (2008)

from the strong white noise case to the weak white noise case in Section 2. We propose a

new portmanteau statistic that is asymptotically chi-squared even in the presence of non-

independent innovations. We also study the joint probability of the multiple portmanteau

statistics with different DF. These distributions are easy to compute when all the DF are

even integers.

For ease of understanding, we have adopted FR's notations and define O as an appropriate

dimensional zero matrix. The mathematical proof is given in the Appendix.

2. MAIN THEORETICAL RESULTS

2.1 Chi-squared approximation of the portmanteau statistic

Suppose that the d-dimensional time series (Xt) is generated by a vector AR(p) model:

p

Xt + t = 0,±l,±2,..., (1)
i=l

where (e^) is strictly stationary and ergodic; E(et) = 0, Var(et) = and Q is positive

definite; and

p

detA{z) ̂  0 for all 1^1 < 1, where A{z) = h — ̂
i=l

As in FR, if (ct) is i.i.d. (strong white noise), we call {Xt) a strong AR{p) model and if

(ct) is uncorrelated (weak white noise), we call (Xt) a weak AR{p) model. In addition, to

obtain the asymptotic normality of the least squares estimator of Oq = vec[Ai... Ap], we
assume the following conditions:

CXD

< oo and ||Xt||44.2i. < oo
2=0

for some v > 0, where || • || denotes the Euclidian norm, ||X||r = E(||X||'')^/'", and

oixii) = sup I Pr(7l n B) — Pr(A) Pr(B)|.
AEa(Xu ,u<t),B£cr{Xu



Given the observations Xi-p,... ,Xn, the least squares estimator of 60, On, is obtained

and its asymptotic distribution is given in Proposition 2 in FR.

Let (ei) be a residual sequence using On- If we fit the model (1) appropriately, (e^) should

behave like (et) as n increases. Therefore, as n increases, the residual autocovariances.

Tm

would behave like

^  ̂ -1/ 1
{vecre(l)}',..., {vecre(m)}' where r^{j) = - ̂

n
t=j+i

1
Cm = [{vecCi}',..., {vecCm}']' where Cj = - ̂

t=j+i

However, testing for many 7^s are cumbersome because we cannot compute the joint

probability of the For this, the portmanteau statistic is commonly used which is the

weighted sum of squares of (7^^) or the residual autocorrelations. FR showed that

7m — + ̂m{On " ^o) + Op{n (2)

where ̂ rn is d?m x d?p matrix is defined by:

^m = — E , ̂t-m] ̂  • • • ) ^

and the asymptotic distribution of is obtained from the Joint asymptotic distribution

of {On — OqY). From FR (Theorem 1),

Ettx Yj^
Ar(0 (3)y/n

- Oo
, S), where E —

■  Cm,On

V^7m where _ E^ + $mSg-^$m + 0n'
'  (4)

(FR defined E^ as Ec„. however we write E^ simply to avoid the double index). The

asymptotic variance matrix of y/ncm, Em = j)]i,j=i,...,m< is given by:
CXD OO

Em = ̂  and Em(i, j) = ̂  E{et-i® et){€t-h-j ® ̂t-h)',
h=—oo h=—oo

where Wt = ^ Thus we have the FR (Theorem 2) versions of the

portmanteau statistics by Chitturi (1974) and Hosking (1980):
m

Qs{m) = nX^tr{r,(i)'fr\0)f,(j)'fr\0)} (5)
J = 1

m

and Q*{m) = n' — tr {r,(j)'fr\o)f,(i)'fr (0)} (6)
j=i 3



which converge to a weighted sum of the chi-square variables under weak white noise,

where the weights are the eigenvalues of The statistic Qs(m) is a modified statistic

of Qs{rn) for a small sample distribution. On the other hand when (e^) is strong, these
statistics are approximate to a X%{rn-p) distribution. Therefore, we are unable to conduct
a chi-square test by Qs{m) and Q*(m) without the condition of strong white noise.

Our aim is to produce an asymptotically chi-squared portmanteau statistic under not

only strong white noise but also weak white noise. The idea is similar to (10) in Katayama

(2008). Put p <m < n and

Dm = (7)

Multiplying both sides of (2) by \/n{Id2m - Dm), and using (7^2^ - Dm)^m = 0 yields:

~  ~ {^d^m ~ + Op(l)

S N{0, (Id^m - Dm)^m), (8)

as n ̂  oo, where the convergence follows from FR (p.468). By the Choleski decomposition,

there exists a positive definite matrix, , such that = Em^(Sm^)'- Since {Idprn —
Dm)^rn = follows from (8) that:

- Dm)V^7m ̂  N{Q, - D*m), (9)

as n 00, where D*^ = Fm.{F^Fm)'^Fm and Fm. = It follows that:

^'ymi.^d^m ^7n)^m ij^d?m ^^)^m Tm

Xd2(m-p)' (10)

as n ̂  00, where 5„,(m) = vrj'^D'm^mDmlm = D*mT.m''^lm
convergence follows from the fact that the rank$^ = cPp (see Appendix). FR pointed
out there exist consistent estimators of ̂ rn and E^- Consequently, we propose a new

portmanteau statistic:

Qw(j^^ ^m)^m ^7n)Tm

=  (11)

where Bw{m) = rrf'mDm'^mDmlm and Em are consistent estimators of Dm
and ̂ ru'

Theorem 1 Under the model (1) with weak white noise, for p < m < n,

Qw{m) Xd2(m-p)> asn-*oo.



Note that the chi-squared approximation of the statistic is not required for large

m, but only for m > p.

In addition to the chi-squared approximation, there are a few advantages to using

First, our method reduces computational complexity (See steps 4-7 in PR (Section 4)).

PR's method requires fitting the {m p)(P-sector AR(p) models to the estimate E. While
our method requires fitting, at most, the md^-vector AR(p) models to the estimate

Furthermore, reading PRZ and PR (including the longer versions) and other related articles,

it seems that almost all examples of weak white noise show that Tim may be approximated

by a block-diagonal (or tri-diagonal) matrix. In this case, the estimation of Tm does not

require the estimation of the covariance structure of a high dimension multivariate process.

It enables us to conduct a portmanteau test with large degree of freedom even if the

sample size is small (e.g., n = 100 and m = 20) which is examined in Section 4. Finally, if

we assume that Tm is block-diagonal, we are able to conduct multiple portmanteau tests

which are examined in Sections 2.3 and 4,2.

2.2 Univariate case

PRZ considered the univariate case d = 1, In their paper, Tm,7n =

Tmihj) and Am = Therefore, for d= 1,

r) _ A / / A p-1 \f \-l A -n-1

Prom PRZ (Theorem 2),

^7^71 "^772,771 + A^(AooAqq) Acoroo,ooAQQ(AooAQ^3) Am

~ ̂m,ooA^(AQQA^) Am ~ A^(Aqc>A^) AooToOjm?

where AqqAJ^q = lini77T,_^oo AooToOjOoAqq = lilIlm,n^oo AmTm,nA^, Tm,ooA^ =

liniyi cxD rm,nA^, and AooTcOjm — li^n^oo

We now consider the asymptotic variance of ̂ /n^^^Tm~^7mi which is a part of
For d = 1, the asymptotic variance of Var(>/n$'^Em~^7m) is XmJ~^'^mJ~ Xm Xm I
as m ̂  oo, where Xm = A^r~^y^A^ and J = AooA'^. As noted by PRZ and Katayama
(2008), for the case of a univariate strong AR model, liiUm-^ooXm = J and this variance

vanishes as m increases. However, for the case of the weak AR model, this equation does

not hold in general.

2.3. Multiple portmanteau tests

In practical analysis, we conduct multiple portmanteau tests in which we vary m because

we are unable to find an optimal number for m. Katayama (2009) proposed multiple



portmanteau tests for the univariate ARMA models with strong white noise errors.

Let p < m = m(l) < m{2) < ■ ■ ■ < m{s) — M < n. Then, from (8) and (9), we
obtain:

o
(12)

for f = 1,2,..., s, where EmU) is a (fM x d?M matrix defined by:

Em{i)

which yields the following theorem:

o o

Theorem 2 Under the model (1) with weak white noise, it holds that, as —» oo.-

[Q,(m(l)),..., Q^(m(s))] ̂  [{Zl,)' (13)

where is a MdP-dimensional random variable such that ~ A^(0, Em)

TTI* / 77t* \t TP*
^m{i) — ^m{i) "

o o

The convergence of (13) follows from y/ncM ^m Cramer-Wold device.
In general, computation of the probability of the asymptotic joint distribution of (13)

is difficult because all the elements are correlated. However, if Em is a block-diagonal

matrix, we obtain the following corollary:

Corollary 1 Under assumptions in Theorem 2, suppose that Em is a block-diagonal

such that

Tim — diag[EM(l51)? • ♦ • > 5 ■^)]? (14)

where E(i, i), i = 1, . . . , M, is a d? x d^ symmetric matrix. Then, for j = 1, . . . , s, as
m —> oo,

(Tm{j)

iziiyE*mu)Zh= E
i=d^p-\-l

(15)

where A G (0,1) and (Zi) is i.i.d. iV(0,1).
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In general, (15) does not hold without (14) because Lemma 2 in the Appendix does not

hold. The assumption of Corollary 1 is stronger than that of Theorem 2. However, there are

some nonlinear models satisfying this assumption, including the m-dependent process by

Romano and Thombs (1996, Example 2.1) and the generalized autoregressive conditionally

heteroskedastic (GARCH) process, (see the longer versions of FRZ and FR).

From this corollary, if we have strong evidence that Em is block-diagonal, since we are

able to conduct multiple portmanteau tests easily as in Katayama (2009) when all the DF

are even integers. The finite sample performance of the multiple tests are examined in

Section 0.4.

3. Note on the strong white noise case

The following remarks focus on the case where (e^) is strong white noise.

3.1 Relationship between QJ/n) and QJm)

The idea of the chi-squared approximation of Qw{m) is similar to that of Hosking (1980,

Section 4). Hosking (1980) considered the portmanteau statistics for the multivariate

ARMA models subject to errors from strong white noise. When the (et) is strong, E^^ =

and n7^E~^7^^ in (10) becomes:

m

= ny^{vecf^{j)y{rt~^ ®Q~'^){vecfe{j)}
j=i

m

-n^tr
j=l

which is approximately equal to the portmanteau statistics Qs(m) and (3*(m). We note

that Hosking (1980, Appendix) makes additional assumptions, which are extensions of Box

and Pierce's (1970) assumptions for the multivariate case. Accordingly Hosking (1980, Sec
tion 4) ignores the term corresponding to B^{m) in (10) and restricts Qs{m) and Ql(rn) to

large m for the chi-squared approximation. However, LJung (1986) and Katayama (2008)

pointed out that their assumptions are inappropriate both theoretically and empirically be

cause the convergence depends on not only the asymptotic behavior of m but also the true

value of the AR parameter, ̂ o-



3.2 A modified portmanteau statistic under strong white noise

If we have firm evidence that (e^) is strong white noise, we have the alternative portman

teau statistics with a correction term. From

and T,m = /m 0 ̂  we have

QT{m)=Q:{m)-B:{m)^ (16)

where

Kim) =

In
n

{vecfe(l)}',..., , {vecfe(m)}'
_\Jn-\ \Jn - m

(E^)-i=/^0re '(O)0f, \o),

Unlike Qsim) and Ql{m), the chi-squared approximation of the statistic (3**(m) is not

required for large m, but only for m > p. This statistic is an extension of the modified

portmanteau statistic by Katayama (2008) to the multivariate case.

As in (14) in Katayama (2008), B*{m) 0 as m increases (see Appendix).

3.3 Independence property of the portmanteau statistics

We determine an independence property under strong white noise. Let 7(i) = vecre(z),

i = 1,...,M and p < m < M < n. From Hosking (1980) and FR, the asymptotic

variance of 7^ under strong white noise is

= Im 0 0 ~ ^M' (1'^)
I M

By Lemma 1, as m ̂  00, (17) becomes;

• E;^ = diag [^1 0 ri,..., 0 r^]
O  O

+ 0(A™+^-P), (18)

which approximately indicates the independence of 7^,7(771+ 1),...,7(M). In other

words, Ql*{m) and Ql*{M) - Ql''{m) are approximately independent and Ql*{M) —

QTM ^d2(M-m) large. As an alternative to Corollary 1, it establishes
multiple portmanteau tests under strong white noise. Similar results can be applied to

Qs{m) and Ql{m) because B*{m) 0 as m increases.
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For the univariate case, (18) provides multiple tests using individual residual autocorrela

tions. We reject the fitted model if > Cm or {a~/7(0/7(0)}^ > c,3i — m+1,..., M,
where ani are the asymptotic standard errors of 7(i)/7(0) and c and Cm are given by

Pr(x^_p_, < Cm) = (1 - Pm) and Pr(x? < c) = 1 - /3i.

where /3m,/3i ^ (0,1). Since and 7(i), z > m are approximately independent, the

overall significance level of this test is approximately given by

1 - Pr (Xm-p-q < Cm) {Pr (xi < c) = 1 - (1 -/?„)(! - (19)

when m and n are large. The approximate significance level of multiple tests by higher-

order lag individual residual autocorrelations is 1 — (1 — /3)^~"^. This probability is ap
proximately equal to: For M - m = 10,20,30, 1 — 0.95^""^ = 0.40,0.64,0.79 and

1 — 0.99-^""^ = 0.10,0.18,0.26. These results give us an interpretation of the use of

model diagnostics as follows: In standard model diagnostics using statistical software, the

residual autocorrelation functions, 7(z)s, are plotted with 95% confidence intervals. How

ever, a few higher-order lag 7(z)s are sometimes out of the 95% confidence limits even

if the residual process behaves as the white noise process. However, this phenomenon is

natural as this probability is more than 40% when M — m > 10. Except for the lower

order residual autocorrelations, although the plot is a useful tool to check the regularity of

autocorrelations, we should not pay attention to the 95% confidence intervals but to the

99% confidence intervals from the standpoint of multiple testing.

4. Some simulation studies

This section examines the finite sample properties of the proposed portmanteau statistics

by simulation studies.

4.1 Estimation of I,
m

FRZ and FR pointed out there are two main approaches for estimating the matrix E

in (3). One is the model dependent method which assumes a model for the noise (e.g.,

i.i.d., GARCH, Markov-switching), and a plug-in approach which leads to a consistent

estimator. However, if we have strong evidence about the nonlinear structure and a large

enough sample size, we should be able build this information into the model. The second

approach is a fully nonparametric one in which no specific time series model is assumed

for the noise. For the second approach, they provided two proposals. One is to use a

heteroskedasticity and autocorrelation consistent (HAC) estimator (see Andrews, 1991,
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and references therein). The other approach is to obtain a consistent estimator by fitting

the noise distribution to an auxiliary AR model of large order (see, for example, Section 4

in FR).

As argued in Section 2.1, we only estimate in S, which is the asymptotic variance of

y/ricjn and may be approximated by block tri-diagonal matrix. We will now suppose that

the matrix is (possibly approximately) a block tri-diagonal: there exists r = 1,... ,m - 2

such that Iljnihj) = O for \i — j\ > r. Here we discuss how to estimate this matrix.

One reasonable way to compute a consistent estimator of E^ follows from FR (Section

4). Assume E^(z, j), z, j = 1,..., m is a x matrix, E^ = pm(^ j)]i,j=i,...,m» and

for i = 1,.. .,m-r + 1, f

stepl. Put E^(z, j) = O for all z, j and k = m — r 1.

step2. Using the Durbin-Levinson algorithm fit for the AR(rfc) model:

rk ^

j=l

where is fixed or determined by BIC information criteria.

stepS. Update E^^ = [E^(z, j)] by substituting a matrix:

^  \ ^ ̂  ^
~ ̂  ̂ '^k.j I ^k,u I ^d?h ^ ̂ *^k,i

3 = 1 / V 3=1
1

where T^k.u = - ̂  ̂k,Sk v
n t ^ '

'^t=i

step4. Repeat steps 2 and 3 for /c = m — r, m — r — 1,..., 1.

In the rest of this section we examine the empirical size and power of the various portman

teau statistics presented above. Here we also examine finite sample behavior for different

values of r.

4.2 Empirical significance level

We examine the following DGPs with n = 100,1000 with 1000 replications:

DGP 1

DGP 3

DGP 5

Xt = A(0.95,0)Xt_i + ef (0); DGP 2

Xt = ̂(0.6,0)Xt_i + ef ̂(0); DGP 4

Xt = ̂(0.6,0.3)Xt_i + £^^(0.5); DGP 6

Xt=^(0.6,0.3)Xt_i+ef'(0.5);

Xt = ̂(0.95,0)Xt_i + ef^(0);

Xt = ̂(0.95,0)Xt_i + ef ̂(0.5);



12

where

A{a, b) =
a  b

b  a ^t{p)
^2t

.i.d. AT O 1  P
P  1 ^2t^2t-1^2t-2'

FR showed that the E^s are block-diagonals in each DGP and conducted simulation studies

for DGPs 1 and 4. The studies of DGPs 1 and 4 are also conducted using FR (Section 5.1).

To compute (5ty(m), we used the method given in FR (Section 4) and Section 0.4.1 for

Em with r = 1. In each model, we computed the statistics for m = 2,3,..., 24, n = 100

and for m = 2,3,..., 48, n = 1000.

The empirical significance level of Qs(m),(3**(m) and (5w(^) corresponding to 5%

for the AR(1) model are given in Figures 1 and 2. As discussed in FR, Q*(m) tends to

exceed the significance level in each case. For the strong white noise case (DGPs 1 and

2), QT{m) performs favorably, however it shows over-rejection behavior in the weak white

noise case. Whereas Qwi'^) performs well as a whole even for n = 100, m > 10, and the

nearly non-stationary case.
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Figure 1: Percentages of the empirical significance level of the statistics

Q*Am) ~ xl(m-i) (denoted by 1), QTim) ~ x\m-i) (denoted by 2) and
Qw{m) ~ X4(m-i) (denoted by w).
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Qt(m) ~ xl(m-i) (denoted by 1), Qr(m) ~ xl(m-i) (denoted by 2) and
Qw(m) ~ X4(m-i) (denoted by w).
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Since these DGPs' are block-diagonal matrices, we are able to conduct the multiple

portmanteau tests discussed in Section 2.3. Table 1 shows the empirical significance levels

of the multiple portmanteau tests, where the marginal significance levels are 5%, m =

2,3,..., 24 for n = 100, and m = 2,3,..., 48 for n = 1000. From Katayama (2009), the

approximate significance levels of these multiple portmanteau tests are 20.8% and 25.0%,

respectively. Table 1: reveals that the empirical joint significance levels perform similarly

to the asymptotic significance levels for the strong AR(1) models, while it reveals under-

rejection behavior towards the asymptotic significance levels for the weak AR(1) models.

Table 1: Empirical significance levels of the multiple portmanteau tests given
marginal significance level 5%, where asymptotic joint significance levels are
20.8% for n = 100 and 25.0% for n = 1000, respectively

DGP 1 2 3 4 5 6

n= 100 18.4 17.1 13.5 12.1 12.0 12.7

n - 1000 24.6 26.1 16.3 13.7 14.0 13.3

Figures 1 and 2 show the empirical size of Q*(m) and Q**(m) tend to be consistent

as m increases, which implies that the correction term Bs{rn) in Qs*(m) converges with

zero as m increases. Based on these, we also examined which is

the first term of Qwi'm) in (11). We guessed B^{m) in Qu;(m) might converge to zero

as m increases. However, we could not prove this theoretically from Section 0.2.2 even

if we used Lemma 1. Therefore we examined the finite sample behavior of Bw{m) as m

increases. We also examined a modified version of the portmanteau statistics for the small

sample approximation of Qiu(m) corresponding to (3*(m):

Qwi'^) ~ 0 ~~ ̂ rr})^rri {^(Prn ~ Bm){Tn 0 (20)

where Tn = ndiag[(n — 1)"^^^,..., (ti — m)~^/^]. Figures 3 and 4 show the finite sam
ple behavior of these statistics. It reveals that though Ql^{m) approaches Qwi'm) as m

increases, this is not at an exponential rate. It implies that the correction term Bw{m)

does not converge to zero rapidly as m increases. In addition, Q^(m) shows over-rejection

behavior as m increases, which implies the use of Qw{f^) is more favorable than QJ^(m)

for conducting chi-squared tests with small sample sizes.
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Figure 3: Percentages of the empirical significance level of Qw{m) X4(m-i)
(denoted by 1) Qw{m) ~ X4(m-i) (denoted by w) and Qljim) X4(m-i)
noted by *).
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Figure 4: Percentages of the empirical significance level of Qwim) X4(m-i)
(denoted by 1) Qw{m) ~ X4(m-i) (denoted by w) and Qt{m) X4(m-i) (de
noted by *),
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Figure 5: shows the finite sample behavior of with r = 1,2,3 and n = 100.

Since is a block-diagonal matrix, r = 1 is a desirable method for estimating E^. These

figures show the over-rejection behavior for the cases of r = 2 or r = 3, which indicates

the selection of r is sensitive to the consistency of E^^-

DGP3, n=100

a  a

3332-^

322

^ , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ^

DGP4, n=100

2  3

33,

|2^ 32222

1 1 , 1 1 ' I 1 1 1 1 1 ,

10 15 20 5  10 15 20 5  10 15 20

Figure 5: Percentages of the empirical significance level of Q

where the cases of r = 1, 2,3 are denoted by 1, 2, 3.

4.3 Empirical power

We consider 1000 replications of size n

defined by:

100,1000 of the bivariate AR(2) models

DGP 7: Xt = 24(0.2,0.1)Xt_i + A{c,0)Xt-2 + ef (0);

DGP 8: Xt - A{0.2,0.1)Xt_i + 24(c,0)Xt-2 + et^^(O);

DGP 9: Xt = ̂(0.6,0)Xt_i + A(c,0)Xt_2 + et^^(O);

where c = 0.0,0.1,0.2,0.3 and A(a,6),ef (0),ef^^(0) are defined similarly to DGPs 1-6
in Section 4.2. DGP 8 is also conducted by PR (Section 5.2) and DGP 9 with c = 0

corresponds to DGPS in Section 4.2. The results are given in Figure 6 and Table 2.

We fitted an AR(1) model and conducted the tests using Qw{'^) ~ X4(m-i) ^
significance level for m = 2,3, ...,24, n = 100 and for m = 2,3,... ,48, n = 1000

with T = 1. Figure 6 indicates the test using Qxi,(m) is more powerful as n,c increases

and m decreases, which are natural results compared with the previous simulation studies

of the portmanteau tests. The results using DGP 8, n = 1000 indicate the tests using

Qw{f^) possess power comparable to the portmanteau tests suggested by FR. Table 2 gives
the results of the multiple portmanteau tests, where the tests are conducted similarly to

Table 1. Table 2 indicates the multiple portmanteau tests possess sufficient power, as we

expected.
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As a whole, the tests by Qwifn) perform well even for the small number of n and are

comparable to the tests suggested by FR. However, we note that these simulation studies

are based on as a block-diagonal and the problem of the choice of r still remains.

Table 2: Empirical power of multiple portmanteau tests given a marginal
significance level 5%, where the asymptotic joint significant levels are 20.8% for
n = 100 and 25.0% for n = 1000

DGP 7 c = 0.0 0.1 0.2 0.3

II

o
o

15.9 21.0 52.2 86.8

n = 1000 23.9 97.0 100.0 100.0

DGP 8 c = 0.0 0.1 0.2 0.3

II

O
o

14.3 14.9 28.5 47.7

n = 1000 15.0 59.7 99.0 100.0

DGP 9 c = 0.0 0.1 0.2 0.3

II

o
o

13.5 14.7 22.7 35.5

n = 1000 16.3 41.6 90.6 99.5

APPENDIX

Proof of rank^m = From (2.1.13) in Liitkepohl (2006), we have:

and

It follows that

Xt =
1=0

(A.1)

J is a d X dp matrix such that J= [Id 0... 0], A = Ai for p = 1

A2 ...
0  ...

Ap—i
0

Ap'
0

A = O h 0 for p > 1.

_o ... 0

0

Id 0_

Id, (A.2)
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Figure 6: Percentages of the empirical power of Qw(fn) ̂  X4(m-i)? where the
cases of c = 0.0,0.1, , 0.3 are denoted by 0,1,..., 3.
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where

Gm = E

et-i

St—m.

m^oY o

m^oY o

QiA*m-2Y

and A'l. — Qiork< 0. Therefore, rank#m = rankG,n • rank/d = cPp.

We present the following Lemmas, which are required to prove Corollary 1;

Lemma 1 Under the assumptions in Theorem 2, it holds that, as m ̂  oo:

A*m = 0{xn,

^m = [K O]'+ OCA^+i-P),

+ 0(A'"+i-P),D*m =
D*m O
O O

O

o

n(AS)'

□

(A.3)
(A.4)

(A.5)

where A G (0,1) is such that A is larger than the absolute value of any eigenvalues of
A and in is a block upper triangular matrix.

Note that except for the strong white noise case, \/n7^, v^vecre(m+l),. . . , y/nYecTe{M)
are not independent in general as m,n increase, even if we apply (A.4) (see (4)).

Proof of Lemma 1: We have (A.3) from Lutkepohl (2006, Section 2.1.1 and A.9.1). In
addition, (A.4) holds from (A.2). According to Lutkepohl (2006, Section A.9.3), there
exists an upper triangular matrix, such that Ei(^(Ei(^)' = E^n- Furthermore, from
Lutkepohl (2006, Section A.IO), we have

y, —1/2 y —1/2^
Ci2 -1/2

— O  C22,

Then, from (A.4), we have:

Fm =

as m ^ 00, which proves (A.5).

and EM O a- 1
22

-^22

o]' + 0(A™-P), (A.6)

□

Lemma 2 Under the assumptions in Corollary 1, for i <j<k< l, as
m{i) (X), and -
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From the Craig-Sakamoto Theorem (see, for example, Provost, 1996), Lemma 2 indi

cates the asymptotic independence of and - Em{k))2M^ or

(■^m) (.^'rn{j) M (^m) (■^m(z) M* ^ increases.
Note that Lemma 2 does not hold in general when Em is not block-diagonal. Em nriay

be approximated by a block tri-diagonal matrix, E^. However, (E^)~^ is not a block
tri-diagonal matrix. See, e.g., Magnus and Neudecker (1999, Theorem 15.9).

Proof of Lemma 2: Similar to the proof of Katayama (2009, Lemma 1), we shall only
prove that, as m(l) ^ oo:

1/2 \m(l)4-l-p )• (A.7)

However, other cases can be similarly treated. From Lemma 1, we have —
diag[£;;;(^p S(2,2)-1, O]+0(A™(1)+1-P). It follows that

Im{l) - Dl

,l/2y

•'m(l)

■e:

o o o  o
(l)o

o
o o
o o

O I,
o

m(2)—m(l)
o

4" 0(Am + l-p ),

which proves (A.7). □

Proof of Corollary 1: From Lemma 2, the proof of Corollary 1 is treated in a similar
manner to the proof of Katayama (2009, Theorem 1). □

Proof of B*{m) ^ 0 as m —> oo: Since (E^)~^ and ^rn consistent estimators of
E~^ and it is enough to examine From (17), the asymptotic variance of

is

It follows that it is enough to show that

s-i - =o(a2-),
"n

as m ^ OO. From (A.2), Hosking (1980) and FR, we have

(A.8)

lk=l

) Q- 1

.k=l

I Q, -1

By these and (A.3), we obtain (A.8). □
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