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Abstract 

This paper describes advanced results of our evaluation of the minimum channel length 

(Lmin). For the first time, we have added the constraint of subthreshold swing to that of 

threshold voltage, which has already been proposed. The Lmin definition that includes the 

subthreshold swing constraint successfully yields a design guideline for low standby power 

applications, while the Lmin definition based on the threshold voltage constraint does the 

same for high-speed applications. In contrast to previous predictions, simulation results 

indicate that the planar single-gate SOI MOSFET promises better performance, clearing the 

ITRS roadmap until at least 2007 for low standby power applications. 

Index terms: SOI MOSFET, planar, single gate, minimum channel, ITRS road map, high 

speed, low standby power 

1. Introduction 

The aggressive down-scaling of MOSFET's is being continuously pushed in order to realize 

advanced applications that will better conform with social demands. However, contemporary 

down-scaling raises various issues that must be addressed, such as short-channel effects門

significant gate leakage刈andvarious parasitic drawbacks, including inevitable large gate 

fringing capacitance3l. In an attempt to overcome most of these difficulties, attention is being 

focused on the SOI MOSFET4). The SOI MOSFET can reduce source and drain parasitic 

capacitances since it replaces the semiconductor-depletion region with a low-k insulator5). 

In addition, the SOI MOSFET has significant benefits such as low-power consumption, low-

threshold voltage, steep subthreshold swing, and radiation hardness4). 

The recent ITRS roadmap6) describes that conventional planar single-gate (SG) SOI 

MOSFET technology cannot be applied to device generation beyond the 50-nm node, but we 

note that the technical discussion of this issue is still at the drawing-board stage. One of the 

authors (Omura) has already studied whether or not the sub-50-nm-channel SG SOI MOSFET 

is promising with regard to future applications7・8); this resea.rch has predicted that 20-nm-

channel SG SOI MOSFETs will indeed support high-speed applications71. The previous papers 

introduced an SG SOI MOSFET design guideline that was based on a model of minimum 
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channel length (Lminf), but support for various applications was not addressed comprehensively. 

The previous model for Lmin was constructed on the basis of the results of many simulations 

conducted from the viewpoint of high-end applications. However, we should reconsider the 

latest guidance because a low-standby power design guideline is urgently needed for many 

portable applications. 

In this paper, we propose an advanced design guideline for sub-50-nm-channel planar SG 

SOI MOSFET's. For the first time, we have taken into account the lateral di廿usionlength 

of source and drain diffusion (L1d), because it plays a significant role in suppressing the short-

channel effect9). We used a 2-D device simulator (Synopsis-DESS/S10)) with a hydrodynamic 

transport model. We propose new models for minimum channel length from the viewpoint 

of subthreshold swing control-in other words, low-standby power designs. In addition, we 

address the problem of how to design high-performance sub-50-nm channel SG SOI MOSFET's 

that have low-standby power consumption. Intrinsic delay time and power-delay product are 

also discussed, using many simulation results. It is demonstrated that, in contrast to previous 

predictions, sub-50-nm channel SG SOI MOSFET's retain their attraction for many applications. 
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Fig. 1 Schematic device structure assumed. 

Table 1. Device parameters assumed in the simulations. 

Device parameters 

Gate oxide thickness, t0x 

SOI layer thickness, tsi 

Buried oxide layer thickness, tbox 
SOI doping concentration, NA 

Lateral diffusion length, L1d 

Substrate doping concentration, Nsub 

Source/drain doping concentration, Ns/D 

Gate poly-Si doping concentration, Ns;D 

Values [unit] 

2 -5 [n叫

5 -30 [nm] 

10 -100 [nm] 
3xl015 -lxl018 [cm-3] 

5 -30 [n叫
3xl017 [cm-3] 

4xl020 [cm-3] 

4xl020 [cm-3] 
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2. DEVICE STRUCTURE AND SIMULATIONS 

The device structure assumed here is the fully-depleted (FD) SG n-channel SOI MOSFET 

shown in Fig.I. Device parameter values are given in Table 1. In the simulations, the 

channel length (L) is changed from 10 nm to 200 nm, the gate oxide thickness (t0x) from 2 

nm11) to 5 nm, the buried oxide thickness (tBox) from 10 nm to 100 nm12), the SOI doping (NA) 

from 3xl015 cm-3 to lxl018 cm-3, and the lateral diffusion length (L1d) from 5 nm to 30 nm. We 

assumed that the minimum value of SOI layer thickness is 5 nm, which obviates the need to 

consider distinct quantum-mechanical effects. A hydrodynamic transport model is assumed 

in the simulations. We did not consider sub-2-nm-thick gate oxide (or EQT), because the SOI 

MOSFET has a design margin in terms of suppressing short-channel effects11). It is assumed, 

for simplicity's sake, that the lateral out-diffusion of impurities from the source and drain 

region is Gaussian. All device characteristics were calculated at the drain voltage (Vn) of 1 V. 

We extracted threshold voltage (11th) and sub-threshold swing (S) from the simulation results; 

the threshold voltage is defined as the gate voltage at which the drain current is (W/L)l0-7 A. 

The minimum channel length (Lmin) means effective channel length in this paper. 

The minimum channel length (Lmin) was extracted in the following two ways. 

(i) Extract-A : 

Lmin is defined as the channel length at which the threshold voltage of the device is lower 

by 0.1 V than that of a long-channel device (L=200nm). This approach was proposed by 

Kawamoto et al.7). 

(ii) Extract-B : 

L加nis defined as the channel length at which the subthreshold swing is lower than a 

certain value. 
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Fig. 2 Lmin dependence on y th at杓=1 V using Extract-A (△ v;h= 0.1 V). Solid line/symbols denote 

the model/simulation results. 
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3. PROPOSED MODEL FOR MINIMUM CHANNEL LENGTH 

3.1 Minimum channel length model constructed using Extract-A 

o: We investigated the L加ndependence on individual device parameters. Since the 

previous modefl used a complex function of device parameters, we tried to simplify the model. 

We obtained the following new expressions: 

Y th= fJ th・In (~A) + 3.8・fox+ l.3・fsi + 0.13・fbox -0.46'Lid+ a th• 

Lmin = 2・Y th, 

(1) 

(2) 

where Yth and Lmin are given in nm units, and we assume that a= 1 cm-3, !3th = 1.3 nm, bth 

= -46 nm. NA is in units of cm-3. The other device parameters are given in nm units. The 

curve produced by Eq. (2) is shown in Fig. 2, where the simulation results are also plotted 

for comparison. We can see there is a good agreement between the simulation results 

and the model curve (Eq. (2)). Thus a model equation (2) can yield the design guideline for 

device construction. In contradiction to the previous prediction7l, it should be noted that we 

can realize a 10-nm channel SG SOI MOSFET by optimizing the device parameters. The 

performance that can be realized using Extract-A will be discussed later in detail. 

Table 2. Constant values used in the model. 

Constants Values 

P1 2.9lx10-2 [n叫

P2 3.59xl9-2 [dec/m V] 

P3 -l.65xlo-1 [dec/m V] 

p4 -1.00xl0-4 [(dec/m V)2] 

P5 2.14xl0-2 [dec/mV] 

p6 -3.76xl0-2 [dec/mV] 

P1 1.00xl0-4 [(dec/m V)2] 

Ps -3.0lxlo-2 [dec/m V] 

Pg -8.08xlo-1 [dec/m V] 

3.2 Minimum channel length model constructed using Extract-B 

In the present paper, we consider how low-standby power LSI's can be designed. Since 

the low-standby power operation of these devices is primarily conditioned by subthreshold 

swing, we must determine the maximal swing value (Smax) so that the low-standby power 

performance can be reproduced. For the engineers'convenience, we derived the following 

useful expression for Lmin・

Y s = CNA・fn (塁） + Ctox・tox + Ctsi・tsi + Ctbox・tbox + CLld・Lzd + Co, 

Lmin = 2・Ys, 

(3) 

(4) 
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where a= 1 [cm-3] and CNA, ctox, ctsi, CtBox,, CLld and CO are parameters depending on the 

maximal S value (Smax) allowed in the device design. These parameters are given by 

CNA = P1 . exp (P2 . smax)' 

Ctox = P3・Smax + 18.5 , 

Ctsi = P6・Smax + 4.89 , 

ctbox = P4 . Sma/ + Ps . Smax -9.19 X 10―1' 

Cud=P7'Sma/+Ps'Smax+l.02, 

C ,5 = Pg'Smax + 46.1 , 

(5 a) 

(5 b) 

(5 C) 

(5 d) 

(5 e) 

(5 f) 
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Fig. 3 Lmin dependence on y th at杓=1 V using Extract-B (Smax= 80 mV /dee). Solid line/symbols 

denote the model/simulation results. 
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where P1 to P9 are constants (see Table 2). 

The dependency of L叩non Ys for various Smax values is shown in Figs. 3 and 4. It can be 

seen that model equations (3) to (5) successfully reproduce the simulation results. It should 

be noted that we can realize a 20-nm channel SG SOI MOSFET with Smax= 80 m V / dec for 

low-standby power applications by optimizing the device parameters. In a similar manner, a 

10-nm channel SG SOI MOSFET with Smax = 90 m V / dec can also be realized. These results 

are the first confirmation of this level of design optimization. 

4. PERFORMANCE PROSPECTS OF SCALED SOI MOSFETs 

We statistically analyzed Lmin dependencies of drive current (/0n), intrinsic delay time (r), 

standby leakage current (I.。Jand delay-time (r)-power dissipation (Pd product (r凡） in order 

to examine the performance prospect of SG SOI MOSFETs with minimum channel length (Lmin). 

A comparison of simulation results with the 2003 ITRS roadmap13l yields a couple of new 

findings on the potential of the SG SOI MOSFET. In all figures, we assumed VD= l V, 凡=1 

V and Vih = 0.1 V or 0.3 V. 
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Fig. 5 Drive current (I0n) dependence on Lmin at 
杓=1 V using Extract-A (△ 松=0.1 V) 
for various threshold voltages. 

Fig. 6 

Lmin [nm] 

Standby leakage current (I,。~dependence

on Lmin at杓=1 V using Extract-A (△ 恥＝

0.1 V) for various threshold voltages. 

4.1 D ynam1c operat10n characteristics of scaled SG SOI MOSFETs 

In this section, we consider the impact of Extract-A on Lmin control with regard to a 

comprehensive performance analysis of scaled SG SOI MOSFETs. First we show on-current 

(l0n) in Fig. 5 and off-leakage current (I,。Jin Fig. 6 as functions of Lmin・In Fig. 5, as expected, I0n 

increases as Lmin decreases. It can be seen that there are many ways (many device parameter 

choices) to realize the maximal Id when a certain Lmin value is assumed. On the other hand, it 

should also be noted that the distribution of I0n values for松=0.1 V and that of I0n values for 

Vik = 0.3 V overlap widely, which suggests that intrinsic delay times of devices with Vik = 0.1 

V or 0.3 V are almost identical. In Fig. 6, as expected, it is seen that I,。>/fdepends strongly on 

V tk・We can extract the followmg emp1ncal equation from Fig. 6. 

I。『 lil(Jvth1ssLmin !Jth, (6) 
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where IL is the constant value of leakage current, SS is the subthreshold swing, and 

parameter (J th = -6/5 and -7 /5 for v;h = 0.1 and 0.3 [V], respectively. From the viewpoint of 

estimating the standby power dissipation, we sh叫 dnote that the Lmin dependence of I.。>ffis 
steeper than first expected. 
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Fig.7 shows the intrinsic delay time (r) dependence on Lmin at杓=1 V, where r =Cc凡／

I0n and Cc is the physical gate oxide capacitance. From Fig. 7, we can see that, because 

of the increase in L。n,r decreases as Lmin decreases, and that the requirement of small て is

not always satisfied simply by tuning the threshold voltage. Since, in practice, scaled SOI 

MOSFETs have a relatively large fringe capacitance and overlap capacitance, we should 

reconsider the practical usefulness of r calculated simply from simulation results. 

The dissipation power-delay product (r叩 isoften used in estimating the power efficiency 

of a device. We show the dependence of r凡 onLmin at VD = 1 V in Fig. 8 using data 

extracted from simulation results following Extract-A; て凡 isnormalized by channel width. r凡

is proportional to Lmim and inversely proportional to t。x- This is because況 isexpressed by 

Cc V/ in the present consideration. Curves show that r凡 decreasesas t。xincreases because 

the total charge required in switching decreases with increase in t。x,while てitselfincreases 

because I0n decreases. 

Now, we will discuss the performance prospects of scaled SG SOI MOSFETs on the 

basis of the simulation results shown above. Simulated parameters are compared to the 

ITRS roadmap 200313) (see Figs. 9 and 10); physical Lgate is equal to L加n+2Lzd +2 nm; and 

threshold voltage is made to match the roadmap value by adjusting the work function of the 

gate electrode (see Table 3). 凡 and杓 areassumed to be 1.0 V in the simulations, while 

they range from 1.0 V to 1.1 V in the 2003 ITRS roadmap. Simulated values and roadmap 

requirements for I0n and L。ff.are compared in Fig. 9.'Simulation-A'shows values for the 

case of t。x=2 nm (Si02) and'Simulation-B'shows values for the case of EOT= 1 nm. 

Simulated l0n values for EOT= 2 nm are lower than the roadmap requirement, while simulated 
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Table 3. Possible device parameters for each technology node (Figs. 9 and 10). 

Tech. node Lmin [nm] lsi [nm] NA [cm-3] lox [nm] tbox [nm] Ltd [nm] 

A 30 5 3xl017 2 10 10 

B 26 5 3xl015 2 100 30 

C 24 5 3xl01s 3 50 30 

D 21 10 3xl015 2 10 30 

E 18 5 3xl017 2 10 30 

1011 satisfies the roadmap requirement to 2007. Lower values of simulated I0n result from a 

thicker gate Si02 film (2 nm)11). Of course, sub-2-nm-thick EOT (effective oxide thickness) is 

possible when a high-k material is employed14). We investigated the impact of EOT on device 

performance and evaluated the performance (l0n) of the device with an EOT of 1 nm (high-k 

insulator with a permittivity of 15.6 c:。15))as compared with that with an EOT of 2 nm (2-nm-

thick Si02 film). Simulation results of I0n for EOT of 1 nm are denoted by the broken line with 

closed squares in Fig. 9. They almost satisfy the ITRS roadmap requirement. As a result, 
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Fig. 9 Comparison of simulated I0n and 1011 values with the 2003 ITRS roadmap 2003 using Extract-A. 

This illustration shows a potential of single-gate SOI MOSFET. In addition, simulated I0n and 
10.ff values for assuming a high-k gate insulator are also shown.'Simulation-A': t0x= 2 nm and 

'Smulation-B': EOT= 1 nm. 
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it is suggested that the condition of EOTく 2nm is more or less appropriate without making 

any changes in other device parameters. In contrast to I0n, the !011 is drastically improved by 

using a high-k gate insulator, because the subthreshold swing is sharpened. It is expected 

that the !011 values will satisfy the roadmap requirement until at least 2010. 

Simulated values and roadmap requirements of r and r凡 arecompared in Fig. 10. 

simulated values of r more or less match the roadmap requirements, but simulated values 

of T凡 aremuch lower than the roadmap requirements. Thus we identified possible device 

parameters for high performance (HP) applications. Table 3 shows the extracted device 

parameters for each technology node shown in Figs. 9 and 10. It should be noted that a large 

L1d value ranging from 10 nm to 30 nm is required -much larger than first expected. As 

shown in Table 3, a very thin SOI layer of 5 nm is required in realizing HP applications, for 

the short-channel effects must be sufficie叫 ysuppressed. In addition, fairly thin buried oxide 

layer, ranging from 10 nm to sub-100 nm, is assumed in the simulations. This suggests that a 

thinner gate EOT is required, for the 2003 ITRS roadmap assumes a 100-nm-thick buried oxide 

layer13l. However, the present practical requirement is not satisfied with the use of a high-k 

gate insulator if we need a higher Ion・As shown in Fig. 10, the high-k insulator used for the 
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Table 4. Possible device parameters for each technology node (Figs. 9 and 10). 

Tech. node Lgate [nm] lsi[nm] ふ [cm-3] t。x[nm] tbox [nm] Lzd [nm] WF[eV] 

A 52 5 3xl017 2 10 20 5.2 

B 45 5 3xl017 2 20 20 5.2 

C 39 10 3xl015 2 50 20 5.3 

D 32 5 3xl015 2 20 20 5.2 

gate insulator does not contribute to the high-speed shift because it enhances the contribution 

of the inversion layer capacitance, hindering improvement in I0n and causing degradation in 

r . In order to improve the switching speed, we have to introduce an underlapped source 

and drain structure: this maximizes I0n and minimizes the fringing capacitance16l. 

We can see from Fig. 10 that the SG SOI MOSFET still has the potential to 

support HP and low operation power (LOP) applications. However, strained-Si-on-insulator 

(sSOI)17l or germanium-on-insulator (GOI)18l will be required after the limits of the silicon-based 

SG SOI MOSFET are reached. 

4.2 Trade-off and optimization of standby power consumption and dynamic operation 

In the previous section, we discussed the design feasibility of scaled SG SOI MOSFETs 

using Extract-A. It was demonstrated that Extract-A makes it possible to design devices for 

HP applications. In this section, we will discuss the simulation results obtained by Extract-B; 

we illustrate on-current (l0n) in Fig. 11 and off-leakage current (/,。,r)in Fig. 12 as functions of 

Lmin・In Fig. 11, as expected, l0n increases as Lmin decreases regardless of the Smax value. It can 

be seen that there are many ways (many device parameter choices) by which to realize the 

maximal I0n when a certain Lmin value is assumed; the threshold voltage is also a parameter to 
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m V / dee) for various threshold voltages. 

be assumed. It should also be noted that, in contrast to Extract-A, the distribution of l0n values 

for Smax= 70 m V / dee and that of I0n values for Smax= 90 m V / dee do not significantly overlap (see 

Fig. 5), which suggests that the intrinsic delay times of devices with Smax= 70 m V / dee differ 

from those with 90 m V / dee. In Fig. 12, it is seen that, as expected, I,。,ffdepends strongly on 

both Smax and½h·We can extract the following empirical equation from Fig. 12: 

/off = Iilo・Vth/SS Lmi/s. (7) 

where we assume parameter (J 5= -1.0 and -6/5 for~h= 0.1 and 0.3 V, respectively, and S= 

70 m V / dee. On the other hand, (J 5= -6/5 and -7 /5 for V,h= O.l and 0.3 V, respectively, and 

S= 90 m V / dee. We should note that a small swing value makes the standby leakage current 

relatively insensitive to Lmm・ 

Fig. 13 shows the intrinsic delay time (r) dependence on L加nat VD= l V with parameters 

of V,h and Smax・From Fig. 13, we can see that r decreases as Lmin decreases because of 

the increase in I0n, and that the requirement of smallて isnot always satisfied if we restrict 

ourselves to merely tuning the threshold voltage as mentioned previously. 

The dissipation power-delay product (r応） is often used in estimating the power efficiency 

of a device. We show the r凡 dependenceon Lmin at杓=1 V in Fig. 14 using data extracted 

from simulation results obtained using Extract-B. r凡 isnormalized by channel width and 

is proportional to Lmin, while being inversely proportional to t0x- This is because r凡 is

expressed by Cc匹 inthe present analysis. Curves show that r凡 decreasesas t ox increases 

because the total charge required in switching decreases as t。xincreases, while て itself

increases because I0n decreases. The salient point is that a large Smax value yields a small rPd 

value. 

We shall now discuss the performance prospect of scaled SG SOI MOSFET on the basis 

of simulation results shown above using (Extract-B). Simulated parameters are compared to 
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Fig. 14 

Intrinsic delay time (r) dependence on Lmin at杓=1 V using Extract-B (Smax = 70 and 90 

m V / dec) for various threshold voltages. 
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Delay-time-dissipation-power product (r凡） dependence on Lmin at杓=1 V using Extract-B (Smax 

= 70 and 90 m V / dee) for a threshold voltage of 0.3 V. 

the ITRS roadmap 2003 (see Figs. 15 and 16); physical Lgate is equal to Lmin +2L1d+2 nm and 

threshold voltage is made to match the roadmap value by adjusting the work function of the 

gate electrode. Figures 15 and 16 were generated by assuming Smax= 70 mV Idec. 凡 and

杓 areboth assumed to be 1.0 V in the simulations, while they range from 1.0 V to 1.2 V in 

the 2003 ITRS roadmap. The simulated values and roadmap requirements for I0n and I0ff are 

compared in Fig. 15; all simulated I0n values are lower than the roadmap requirement after 
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Comparison of simulated I0n and 10ft values with the 2003 ITRS roadmap 2003 using Extract-B 

(Smax= 80 m V /dee.). This viewgraph shows the potential of the single-gate SOI MOSFET. 

Simulated I0n and 10ft values assuming high-k gate insulator are also shown. 
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(Smax= 80 m V / dee.). This illustration shows the potential of a single-gate SOI MOSFET. In 

addition, simulated r and r凡 valuesassuming a high-k gate insulator are also shown. 
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2005, while simulated l0ff satisfies the roadmap requirement until at least 2009. Lower values 

of simulated I0n result from a thicker gate Si02 film (2 nm)11); of course, sub-2-nm-thick EOT 

(effective oxide thickness) is possible when a high-k material is employed14). The potential 

for using a high-k gate insulator with a permittivity of 15.6 c。15)is examined in Fig. 15, where 

simulation results for l0n are denoted by the broken line. The high-k insulator contributes 

to the increase in I0n; and I0n values for devices with the high-k insulator match the roadmap 

requirement, which is different from the result seen in Fig. 9. In addition, I0ff is considerably 

improved by use of the high-k gate insulator because the subthreshold swing is sharpened. 

I0ff values satisfy the roadmap requirement until at least 2009. 

Simulated values and roadmap requirements of r and r凡 arecompared in Fig. 16. 

All simulated values of r are greater than the roadmap requirements, while all simulated 

values of r凡 aremuch lower than the roadmap requirements. Accordingly, we extracted 

possible device parameters for low-standby power (LSTP) applications. Table 4 lists the 

extracted device parameters for each technology node shown in Figs. 15 and 16. It sh叫 d

be noted that a larger-than-expected L1d value of 20 nm is required, and we should reconsider 

the source-drain engineering in order to minimize the switching time16). Because the short-

channel effects must be sufficiently suppressed, a very thin SOI layer of 5 nm is required to 

realize LSTP applications. A moderately-thin buried oxide layer ranging from 10 nm to 50 

nm is assumed in the simulations. Use of the high-k gate insulator allows a thicker buried 

oxide layer, which would match the roadmap requirement. When a thin buried oxide layer 

(sub-100 nm) is not allowed for reasons of ESD protection and other issues, a double-buried-

insulator substrate19l should be used. The double-buried insulator substrate has high potential 

with regard to robust circuit applications although the substrate would be more expensive 

than the present SOI substrate with a single buried insulator. 

5. CONCLUSION 

This paper considered an advanced methodology to extract the minimum channel length. 

A new approach to determining the minimum channel length has been proposed that is based 

on a specific restriction of subthreshold swing value. A comprehensive design guideline for 

scaled SG SOI MOSFETs was derived from the viewpoint of high-speed operation and low-

power consumption or low standby power consumption. Simulations suggest that the SG SOI 

MOSFET can achieve a minimum channel length of about 10 nm when a threshold voltage 

roll-off restriction (△松=0.1 V) is assumed (Extract-A). In addition, we恥 dthat the SG SOI 

MOSFET can achieve minimum channel lengths of about 30 nm, 20 nm or 10 nm when the 

maximal subthreshold swing value is restricted to 70 m V / dec, 80 m V / dec, or 90 m V / dec, 

respectively (Extract-B). 

When Extract-A is used in SG SOI MOSFET scaling, it has been demonstrated that it 

affords us a design guideline for high-performance devices. Simulated results strongly 

suggest that the SG SOI MOSFET can offer adequate high-speed performance until 2009 if 

device parameters are set appropriately. However, in practice, the ITRS roadmap requires a 

100-nm-thick buried oxide layer. This limits the design window: a sub-I-nm-thick EQT and/ 

or a sub-5-nm-thick SOI layer must be applied to the device. 

Extract-B was shown to yield a design guideline for low standby power devices. Simulation 
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results strongly suggest that the SG SOI MOSFET can offer adequate low-standby power 

performance beyond 2009 if the appropriate device parameters are set. The ITRS roadmap 

requiring a 100-nm-thick buried oxide layer limits the design window and requires non-ideal 

optimization of device parameters. In this case, the use of a high-k gate insulator is a possible 

solution. 

We have shown that the thickness of the buried oxide layer significantly restricts SG SOI 

MOSFET scaling, and so must be considered as a future issue in terms of SOI devices and 

substrate technology. 
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