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Abstract 

This paper proposes a design guideline for the aspect ratio (R叫 ofthe fin height (h) 
to fin width (w) of 3-D devices (FinFET like double-gate (DG) FET and triple-gate (TG)-
FET) that is based on device simulations. Since any change in the aspect ratio yields 
the trade-off between drivability and short-channel effects, it is shown that optimization 
of the aspect ratio is essential in designing 3-D architectural devices. We found that the 
increase in w seems to bring a high drive current (I0n) and an enhancement of I0n, but that 
a large w is undesirable for shorter channel length (L) devices because the drain-induced 
barrier lowering (DIEL) effect is enhanced; TG-FET is superior to FinFET in terms of both 
drivability and short-channel effects. In addition, we found that the guideline of w < L/3 is 
essential for suppression of the short-channel effects of TG-FET's. We conclude, therefore, 
that a narrow, high fin is best for high performance TG-FET's that offer suppressed short-

channel effects. 

1. Introduction 

As MOSFET's continue to be aggressively scaled in order to suppress short-channel 

effects (SCE's) and to advance device performance, the physical limit of conventional scaling 

is imminent1l. In order to overcome this difficulty, the performance of 3-D devices has been 

investigated; for example, FinFET such as double-gate (DG) FET and triple-gate (TG) FET2・3l 

have been extensively studied, because it can be expected that mature devices will sufficiently 

suppress the SCE's and have high drivability4l. However, such 3-D architectural devices cause 

new aspects or problems, such as the corner effect5l, and switching performance is sensitive 

to geometrical parameters叫drivingcurrent (l0n) and SCE's are also significantly influenced by 

geometrical parameters. Y. Liu et al. discussed the impact of the cross-section (aspect ratios (R. 叫
of the Si-fin height (h) to fin width (w)) of FinFET on SCE's4l. J.-W. Yang and J. G. Fossum 

compared the performances of double-gate-like FinFET and TG-FET; they concluded that 

a double-gate-like FinFET is superior to TG-FET from the viewpoint of area penalty. They 

described a design guideline for double-gate like FinFET, but not for TG-FET7l. However, 

taking into consideration various applications and the fabrication technology, it is not clear 

whether FinFET is actually superior to TG-FET, for FinFET has many disadvantages with 

regard to drivability and SCE's. 

In this paper, we develop, with the aid of 3-D device simulations, a design guideline of 
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FinFET and TG-FET; we examine SCE's and the enhancement of I0n of FinFET's and TG-

FET's against the conventional DG-FET's over a wide range of aspect ratios (Rh;w = h/w). 

Questions of engineering the aspect ratio and trade-off of drivability versus SCE suppression 

are also discussed. 

2. Device Structures and Simulation Model 

We applied Synopsis-DESSJS to 3-D device simulations8>. Various device characteristics 

(drive current (1。n),subthreshold swing (SS), drain-induced barrier lowering (DIBL) and 

inversion carrier density (パ~ot)) were then evaluated as functions of Rhlw・The device structures 

assumed in these simulations are illustrated in Fig. 1, and device parameters are shown in 

Table I. Fig. l(a) shows a bird's-eye-view of the devices; Figs. l(b) and l(c) show half cross-

sectional views of the devices, FinFET and TG-FET, respectively. We simulated only one half 

of each device in order to reduce the simulation time. This is possible given the symmetry of 

the device structures. The top gate oxide thickness for FinFET and TG-FET are 40 nm and 

2.0 nm, respectively. The gate length (Lg) is given by sum of channel length (L) and twice the 

10-nm-long extension region. The silicon body is p-type. Source and drain contacts are put 

on to the top surface of the fin-i.e., the device has no contact with the side surfaces of the fin. 

In terms of fabrication concerns, this configuration gives the most realistic device structure叫

The simulations assume a hydrodynamic transport model because of the very short channel. 

Since the mobility model significantly influences I-V characteristics, we chose the Masetti10l, 

Lombardi11> and Hydrodynamic Canali12> Models in our simulations13i. However, the quantum-

Table 1. 

Parameters 

Device parameters assumed. 

Values [unit] 

20, 30, 100 [nm] 
2, 40 [nm] 
2 [n叫
100 [nmJ 
5 -40 [nm] 
5 -40 [nm] 
lxl017 [cm-3] 
lxl020 [cm-3] 

Channel length, L 
Top gate oxide thickness, ftox 
Side gate oxide thickness, fsox 
Buried oxide thickness, t sox 
Si-fin width, w 
Si-fin height, h 
Si-fin doping cone., Na (p-type) 
Source/ drain doping cone., Nd (n-type) 
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Fig. 1 Schematics of 3-D FET simulated. 
(a) Bird's-eye-view of 3-D FET 
(b) A half cross-sectional view of FinFET structure 
(c) A half cross-sectional view of TG-FET structure 

(c) 
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effect models are not included because the Si-fin is wider than 5 nm. Distinct quantum effects 

were ignored because they only slightly influence device characteristics14>. 

3. Results and Discussions 

3.1 Influence of aspect ratio (Rh/w) on short-channel effects 

We must pay attention to the short-channel effects of FinFET and TG-FET because they 

have unusual 3-D structures15i. Since drain-induced barrier lowering (DIEL) plays a significant 

role in short-channel devices16l, we examined the threshold voltage (Yth) from the viewpoint 

of the influence of drain potential, and the subthreshold swing (SS) in terms of geometrical 

factors. 

At first, we will discuss the influences on Yth due to the drain potential. We extract a 

guideline that suppresses the short-channel effects of threshold voltage (Yt11) from curves shown 

in Fig. 2. In Fig. 2, the Rhlw dependence of DIEL (degradation of V,h) is shown for the case of 

fixed-h value or fixed-w value, where the DIEL is defined as I LlV,h/ Llv';』(=Iv,h (Vd = 1.0 [V])-V,h (Vd = 

0_1 IVD I /0.9)17l. It should be noted in the case of the fixed-h value that short-channel effects are 

significantly enhanced as w increases, while in the case of the fixed-w value, a wide variation of 

h yields little influence on the DIEL value. Generally speaking, a large w is undesirable in fin-

type devices because the DIEL is enhanced4i. FinFET shows a stronger DIEL effect than TG-

FET, which indicates that, as expected, TG-FET is more suitable for suppressing the DIEL. 

This feature stems from the successful body potential control imposed by the top-gate-induced 

electric field in TG-FET. Therefore, we should employ TG-FET with a large Rh/w value when 

we narrow the fin in order to suppress DIEL effects. 

Next, we will discuss the influence of geometrical parameters on SS. In Fig. 3, Rhlw 

dependence of LlSS (degradation of SS) is shown in two different conditions, where LlSS is 

defined as ss(L=30nm)-ss心 100nm)at兄=1 V. LlSS is insensitive to Rぃ forthe fixed-h condition, 

while it rapidly falls as Rh;w increases (or w is reduced). Accordingly, we can readily see that 
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Fig. 2 Aspect ratio dependence of DIEL for 30-nm-
channel device. DIBL is defined as I L1 Vth/ L1 Vd 

I (= I T7th (v:i = 1) -11th (v:i = 0.1) I /0.9). 

Aspect ratio, R hlw 

Fig. 3 Aspect ratio dependence of Ll SS at½= 1 [V] 
for 30-nm-channel device. △ SS is defined as 
SS (L = 30 [nm]) -SS (L = 100 [nm]). 
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the DIBL behavior is quite similar to LISS, as shown in Fig. 2; we can see that the fundamental 

mechanism is the same. By tuning Rhlw for the fixed h value, we could realize a very small 

DIBL value of 0.1 V /Vanda very small LISS value of 10 mV /dee. 

In the present TG-FET or FinFET, Rh;w=2 is the best solution, as it satisfies the condition of 

w<L/3. T. Skotnicki et al. have already shown the guideline of w<L/3 for 2-D planar devices, 

but not for 3-D devices1l. This confirms the value of this work. To examine the validity of 

this tentative guideline, we simulated I0n and SS for the fixed-w value of 10 nm as a function 

of Rhfw・Simulation results for 30-nm-channel devices are shown in Fig. 4. It is interesting to 

see that SS is smaller than 80 m V / dee, and that the large I0n and the small SS have a trade-

off relation regardless of device structure. The present guideline of w<L/3 is very practical 

in terms of suppressing the standby power consumption. Tow further issues faced by the 

present guideline will be considered later. 
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Fig. 4 Aspect ratio dependence of drive current and Fig. 5 Aspect ratio dependence of drive current at l/;z 
subthreshold swing of 30-nm-channel device = 1 [V] for 30-nm-channel device. Solid line and 
with w of 10 nm at Va= I [V]. Dashed line dashed line denote the results for TG-FET and 
and solid line denote the simulation results for FinFET, respectively. Cross symbols and circle 
FinFET and TG-FET, respectively. Square symbols denote the results for the fixed-w of 20 
symbols and triangular symbols denote Ion and nm and fixed-h of 20 nm, respectively. 
SS, respectively. 

3.2 Influence of aspect ratio (Rh/w) on drivability 

Fig. 5 shows I,。ndependence on aspect ratio (Rh;w) for 30-nm-channel FinFET and TG-

FET. One group of curves is calculated for a fixed-h value of 20 nm and the other group for 

a fixed-w value of 20 nm, where the threshold voltage (~h) is fixed at 0.25 V by changing the 

work function of the gate electrode. I.。nis defined as the drain current (Id) at Vg=兄=LO[V]. In 

the case of a fixed-w value, I.。nincreases steadily as Rh;w increases (h increases), regardless of 
device structure. This is because the increase in h (fin height) naturally yields an increase in 

channel width for both devices. However, we can see that the I.。nof TG-FET is higher than 
that of FinFET, regardless of Rhfw• This means that the conductive channel below the top gate 

contributes to I,。n- In contrast, I.。nincreases as Rh;w falls (increase in w) in the case of a fixed-h 

value of 20 nm for TG-FET, while I.。ndecreases as Rh;w falls (increase in w) in the case of a 

fixed-h value of 20 nm for FinFET. For TG-FET, the increase in I.。ncan be readily understood 
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because the conductive channel created below the top gate is widened as w increases. For 

FinFET, however, the decrease in I0n may stem from a lessening of the volume inversion effect 18>. 

We then considered whether this mechanism comes from the SCE's. Fig. 6 shows Ia兄

characteristics for 30-nm-channel TG-FET (in Fig. 6(a)) and for 30-nm-channel FinFET (in Fig. 

6(b)) for two different w values. It is assumed that h = 20 nm. The solid double line shows 

the condition of power supply voltage assumed here (~ 『 1[V]). In Fig. 6(a), we can see that 

Id of the TG-FET with 40-nm w is larger than that of the TG-FET with 10-nm w, regardless of 

Vg condition. In addition, Id of the 40-nm-w TG-EFT does not become saturated, while that of 

10-nm-w TG-FET becomes saturated at Vg= 1 [V]. The former (the behavior of the 40-nm-w 

device) is due to the punch-through phenomenon (i. e., the fatal case of DIBL) as mentioned 

previously. An unusual drain current is established as Vd increases at the threshold condition 

in the 40-nm-w device. It is thought that the electrons near the fin bottom contribute to the 

present unusual Id behavior. For TG-FET, the increase in w suggests an increase in the 

effective channel width. In Fig. 6(b), on the other hand, Id of 40-nm-w FinFET is smaller than 

that of 10-nm-w FinFET at Vg = 1 [V]. Id of 40-nm-w device doesn't become saturated. At 

the threshold condition, Id of 40-nm-w FinFET is much larger than that of 10-nm-w FinFET. 

These aspects of Id behavior indicate that the controllability of the top gate is poor because of 

the thick gate oxide below the top gate electrode. Therefore, increasing the fin-width of short-

channel FinFET's does not yield high drivability. 

80 50 ． TG-FET ． FinFET 
ー◊·w = 10 [nm] -• ． w = 10 [nm] 

w =40 [nm] 40 -___ . w = 40 [nm] 
'< '::1. . ' 

60 
， 含'' 

ヽヽ ヽヽ 30 

I 40 l 20 

> vg = vth >20 ＼ 
10 

0.5 ー 1.5 0.5 ー 1.5 

Drain voltage, V d [V] Drain voltage, V d [V] 

(a) Simulation results for TG-FET. (b) Simulation results for FinFET. 

Fig. 6 Id-~characteristics of 30-nm-channel TG-FET and 30-nm-channel FinFET for two different fin widths 
(w). The double solid line indicates~= 1.0 [V]. Diamond symbols denote simulation results for w = 10 
nm, while symbol-less curves are for w = 40 nm. Solid lines and dashed lines denote Id characteristics 
at~ □ 17th and Vg = 1 [V], respectively. 

3.3 Advantages of TG-FET 

In order to examine more carefully the advantages of TG-FET, we will consider the 

enhancement of I0n of TG-FET in relation to the planar double-gate (p-DG) SOI MOSFET for 

various Rh/w values. The simulated enhancement rate of I0n is shown as a function of Rぃ in

Fig. 7 for the fixed-h value of 20 nm and the fixed-w value of 20 nm. The enhancement rate 

is defined by (lon(TGrlon(かDG))llon(p-DG),where Ion(かncJis extracted from 2-D simulations of the p-DG 
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SOI MOSFET. The enhancement rate increases as Rh;w decreases, although for all Rhlw values 

the enhancement rate is larger with fixed-h value than it is with fixed-w value. This behavior 

is attributed primarily to the short-channel effects, and secondarily to the contribution of 

effective top-gate width. The first mechanism is significant in the case of fixed-h value. 

The smaller the value of Rh;w, the more significant the influence of the short-channel effects 

becomes; namely, TG-FET with large w value suffers from the DIEL effect stemming from its 

3-D geometry, as was previously discussed. The second mechanism dominates at a large Rh/w 

for fixed-h value because the side-gate electrode can almost entirely control the body potential. 

In other words, the 3-D advantage of TG-FET that can utilize the increase in gate width is 

mostly lost. 
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Aspect ratio dependence of the enhancement rate of I0n of TG-FET compared 
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channels, and that I.。nis calculated at~ 戸乃=1 [V]. Dashed line and solid line 
denote the results for the fixed-w of 20 nm and the fixed-h of 20 nm, respectively. 

As mentioned above, the enhancement rate for fixed-h is larger than that for fixed-w. 

Under the present condition of fixed-w, the w value does not satisfy the condition of w<L/3; 

the carrier density (Ntot) in the fin (not shown here) is lower than that in the present condition 

of fixed-h because of short channel effects, and the enhancement rate is smaller than is true 

for fixed-h. Thus, it can be concluded that, although a large enhancement in Id cannot be 

expected, a narrow, high fin is best for realizing high performance TG-FET's because the 

short-channel effects are sufficiently suppressed, 

3.4 Design guideline of 3-D FET's 

The short-channel effect is still one of the more serious problems in short-channel 3-D 

FETs. Rh;w should be large (i.e., w should be small) when the h value is fixed, so as to achieve 

the condition of w<L/3. It should be noted that the apparent enhancement of I0n (see Fig. 7) 

for Rhlw < 1 is primarily attributed to short-channel effects. The meaningful enhancement rate 

of I,。11 that we can expect in TG-FET is, at most, only 20 %. In addition, short-channel effects 

seem to be insensitive to Rh;w (or h value) for fixed w (see Figs. 2 and 3). However, it should 

be noted that the condition of w<L/3 is not satisfied in the range of Rh;w examined here. This 

means that when designing 30-nm-channel FinFETs or TG-FETs with suppressed short-
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Fig. 9 Fin width dependence of subthreshold swing 
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parameter of fin height Open square, open 
circle and open triangle symbols are the 
results for h = 10, 20, and 40 [nm], respectively. 
The dotted line indicates由econdition of w = 
L/3. The shaded region satisfies the condition 
of SS < 80 mV/dec. 

channel effects for a certain fixed-w value, we must reduce the fin width w down to 10 nm. 

We also investigated the design feasibility of a 20-nm-channel TG-FET. Figs. 8 and 9 show 

fin width (w) dependence of I0n and SS of devices with a specific fin height h, respectively. 

The dashed line in both Figs. 8 and 9 indicates the condition of w = L/3. It is clearly seen 

from Fig. 8 that I0n rapidly increases as h increases, regardless of w. This can be understood 

as an increase in channel width, as was mentioned previously. However, we cannot expect a 

significant enhancement of I0n when w increases. In Fig. 9, the shaded region indicates that SS 

values are under 80m V / dec; in other words, the standby leakage current has been sufficiently 

suppressed. When w = L/3, SS of 20-nm-channel devices is about 80 m V / dee regardless of h. 

This means that the present guideline can also be applied in a similar manner to the design 

of sub-20-nm-channel devices. It is worthwhile to note that SS remains small regardless of h 

when w<L/3 is satisfied. Expected value of I0n should be determined by changing h. 

4. Conclusion 

In this paper, we studied, with the aid of 3-D device simulations, how the geometric 

configuration of the fin body influenced the drivability and short-channel effects of FigFET 

and TG-FET. We successfully extracted a key design guideline of 3-D FETs. 

In order to realize 3-D FETs with high drivability, we must select TG-FET that has a large 

Rh/w and a small w, because this combination nicely suppresses the short-channel effects. This 

primary guideline is correct provided the condition of w<L/3 is satisfied. When one needs a 

high 10n with sufficient suppression of SCE's, a high-fin device should be used, which ensures 

the proposed guideline is satisfied. In addition, it was demonstrated that the proposed 
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guideline is valid over a wide range of Rh/w・ 
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