

Elementary Proof of Schweitzer's Theorem on Hilbert C*-Modules in which All Closed Submodules are Orthogonally Closed

著者	Kusuda Masaharu
journal or	関西大学工学研究報告 = Technology reports of
publication title	the Kansai University
volume	47
page range	75-78
year	2005-03-21
URL	http://hdl.handle.net/10112/11821

ELEMENTARY PROOF OF SCHWEITZER'S THEOREM ON HILBERT C*-MODULES IN WHICH ALL CLOSED SUBMODULES ARE ORTHOGONALLY CLOSED

Masaharu KUSUDA*

(Received September 15, 2004) (Accepted November 30, 2004)

Abstract

Let A and B be C*-algebras and let X be an A-B-imprimitivity bimodule. Schweitzer showed the theorem that if every closed right B-submodule of X is orthogonally closed, then there are families $\{\mathcal{H}_i\}_{i\in I}, \{\mathcal{K}_i\}_{i\in I}$ of Hilbert spaces such that A (resp. B) is isomorphic to the c_0 -direct sum $\sum_{i\in I}^{\oplus} C(\mathcal{H}_i)$ of all compact operators $C(\mathcal{H}_i)$ on \mathcal{H}_i (resp. $\sum_{i\in I}^{\oplus} C(\mathcal{K}_i)$ of all compact operators $C(\mathcal{K}_i)$ on \mathcal{K}_i) as a C*algebra, and X is isomorphic to the c_0 -direct sum $\sum_{i\in I}^{\oplus} C(\mathcal{K}_i, \mathcal{H}_i)$ as a Hilbert C*-module, where $C(\mathcal{K}_i, \mathcal{H}_i)$ denotes the Hilbert C*-module consisting of all compact operators from \mathcal{K}_i into \mathcal{H}_i . In this paper, we give an alternative proof, of this theorem, which is shorter and more elementary than the original one.

1. Introduction

Let A be a C*-algebra and let X be a Hilbert A-module with an A-valued inner product $\langle \cdot, \cdot \rangle$. For any closed subspace Y of X, we denote by Y^{\perp} the orthogonally complemented subspace of Y in X, i.e.,

 $\mathbf{Y}^{\perp} = \{ x \in X \mid \langle x, y \rangle = 0 \text{ for all } y \in \mathbf{Y} \}.$

We say that a closed A-submodule Y of a Hilbert A-module X is orthogonally complemented in X if X coincides with $Y \oplus Y^{\perp}$, and that a closed A-submodule Y of a Hilbert A-module X is orthogonally closed in X if $(Y^{\perp})^{\perp} = Y$. If Y is orthogonally complemented in X, then it is orthogonally closed in X. But the converse is not necessarily true.

Suppose that X is a full (right) Hilbert A-module. Several years ago, Magajna [5] proved that A is a C*-algebra which admits a full Hilbert A-module X such that every closed right A-submodule of X is orthogonally closed if and only if A is isomorphic to a C*-subalgebra of the C*-algebra $C(\mathcal{H})$ of all compact operators on some Hilbert space \mathcal{H} . In the sequel, Schweitzer [7, Theorem 1] elaborated on Magajna's theorem, that is, he showed the following theorem:

Theorem 1. Let A and B be C*-algebras and let X be an A-B-imprimitivity bimodule. If

^{*}Department of Mathematics

every closed right B-submodule of X is orthogonally closed, then there are families $\{\mathcal{H}_i\}_{i\in I}$ $\{\mathcal{K}_i\}_{i\in I}$ of Hilbert spaces such that $A \cong \sum_{i\in I}^{\oplus} \mathcal{C}(\mathcal{H}_i)$, $B \cong \sum_{i\in I}^{\oplus} \mathcal{C}(\mathcal{K}_i)$, and $X \cong \sum_{i\in I}^{\oplus} \mathcal{C}(\mathcal{K}_i, \mathcal{H}_i)$, where the symbol " \cong " means isomorphic.

Remark that it is trivial that the converse holds in Theorem 1. As a corollary, furthermore immediately we have the following:

Corollary 2. Let A and B be C^{*}-algebras and let X be an A-B-imprimitivity bimodule. Then every closed right B-submodule of X is orthogonally closed if and only if every closed right B-submodule of X is orthogonally complemented in X.

In this paper, we give an alternative proof of Theorem 1 above based on the representation theory of Hilbert C^* -modules. Our proof presented in this paper is more elementary than the original one in the sense that we essentially use nothing particular except the basic fact that any Hilbert C^* -module admits a faithful representation.

2. Alternative proof of Theorem 1

Recall the definition of a Hilbert C*-module. Let A be a C*-algebra. By a *left Hilbert A-module*, we mean a left A-module X equipped with an A-valued pairing $\langle \cdot, \cdot \rangle$, called an A-valued inner product, satisfying the following conditions:

(a) $\langle \cdot, \cdot \rangle$, is sesquilinear. (We make the convention that $\langle \cdot, \cdot \rangle$ is linear in the first variable and is conjugate-linear in the second variable.)

(b) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in X$.

(c) $\langle ax, y \rangle = a \langle x, y \rangle$ for all $a \in A$ and $x, y \in X$.

(d) $\langle x, x \rangle \ge 0$ for all $x \in X$, and $\langle x, x \rangle = 0$ implies that x = 0.

(e) X is complete with respect to the norm $||x|| = ||\langle x, x \rangle ||^{\frac{1}{2}}$.

We remark that the Hilbert A-module is always assumed to be a vector space over the field of complex numbers. Hence every Hilbert A-module is a Banach space with respect to the norm $\|\cdot\|$. Furthermore, X is said to be *full* if X satisfies an additional condition:

(f) the closed linear span of $\{\langle x, y \rangle \mid x, y \in X\}$ coincides with A.

Let B be a C*-algebra. Right Hilbert B-modules are defined similarly, except that we require that B should act on the right of X, that the B-valued inner product $\langle \cdot, \cdot \rangle$ should be conjugate-linear in the first variable, and that $\langle x, yb \rangle = \langle x, y \rangle b$ for all $b \in B$ and $x, y \in X$.

Let A and B be C^{*}-algebras. We denote by $_{A}\langle \cdot, \cdot \rangle$ the A-valued inner product on the left Hilbert A-module and by $\langle \cdot, \cdot \rangle_{B}$ the B-valued inner product on the right Hilbert B-module, respectively. By an A-B- *imprimitivity bimodule X*, we mean a full left Hilbert A-module and full right Hilbert B-module X satisfying

(g) $_{A}\langle xb, y \rangle = _{A}\langle x, yb^{*} \rangle$ and $\langle ax, y \rangle_{B} = \langle x, a^{*}y \rangle_{B}$ for all $a \in A, b \in B$ and x, y X; (h) $_{A}\langle x, y \rangle \cdot z = x \cdot \langle y, z \rangle_{B}$ for all $x, y, z \in X$.

Two C^{*}-algebras A and B are said to be *Morita equivalent* if there exists an A-B-imprimitivity bimodule. We remark that in this paper, Morita equivalence means strong Morita equivalence in the sense of Rieffel (cf. [6, Remark 3.15]). The reader is referred to [4], [6] for Hilbert C^{*}-modules and Morita equivalence.

Let A and B be C^{*}-algebras, and suppose, for simplicity, that X is an A-B-imprimitivity

bimodule. Recall that a *representation* of X is a triple (π_A, π_X, π_B) consisting of nondegenerate representations π_A and π_B of A and B on Hilbert spaces \mathcal{H}_A and \mathcal{H}_B , respectively, together with a linear map $\pi_X: X \to \mathcal{B}(\mathcal{H}_B, \mathcal{H}_A)$ such that

(R1) $\pi_x(ax) = \pi_A(a) \pi_x(x)$,

(R2) $\pi_{X}(xb) = \pi_{X}(x) \pi_{B}(b),$

(R3) $\pi_A(_A\langle x, y\rangle) = \pi_X(x) \pi_X(y)^*$, and

(R4) $\pi_B(\langle x, y \rangle_B) = \pi_X(x)^*\pi_X(y)$

for all $a \in A$, $x, y \in X$, and $b \in B$, where $\mathcal{B}(\mathcal{H}_B, \mathcal{H}_A)$ denotes the set of all bounded linear operators from \mathcal{H}_B into \mathcal{H}_A .

It is known that any A-B-imprimitivity bimodule X admits representations. For example, given a representation π_B of B on a Hilbert space \mathcal{H} , a representation (π_A, \mathcal{K}) of A can be given by the induced representation acting on the B-balanced tensor product $X \otimes_B \mathcal{H} (= \mathcal{K})$ according to $\pi_A(a) (x \otimes \xi) = (ax) \otimes \xi$ and then π_X is defined by $\pi_X(x) (\xi) = x \otimes \xi$ for $x \in X$ and $\xi \in \mathcal{H}$. Note that if π_B is irreducible, so is the induced representation π_A .

Now we are in a position to give an alternative proof of Theorem 1. Note that our proof is constructive in the sense of giving a concrete isomorphism between X and $\sum_{i\in I}^{\oplus} C(\mathcal{K}_i, \mathcal{H}_i)$.

Proof of Theorem 1. We first remark that by assumption, A and B are Morita equivalent. By [5, Theorem 1], there is a family $\{\mathcal{K}_i\}_{i\in I}$ of Hilbert spaces such that B is isomorphic to the c_0 -direct sum $\sum_{i\in I}^{*} C(\mathcal{K}_i)$. Taking into account the Rieffel correspondence (cf. [6, Theorem 3.22]), the proof can be reduced to the one for the case where if B is isomorphic to $C(\mathcal{K})$ on some Hilbert space \mathcal{K} , then there is a Hilbert space \mathcal{H} such that $A \cong C(\mathcal{H})$ and $X \cong C(\mathcal{K}, \mathcal{H})$.

Suppose that (π_B, \mathcal{K}) is a faithful representation of B such that $\pi_B(B) = C(\mathcal{K})$. Then B is simple and of type I. Since π_B is irreducible, there exists a representation (π_A, π_X, π_B) of X on the space $\mathcal{B}(\mathcal{K}, \mathcal{H})$ of all bounded linear operators from \mathcal{K} into some Hilbert space \mathcal{H} such that (π_A, \mathcal{H}) is an irreducible representation of A. It then follows from (R4) and (R1) that π_X and π_A are faithful, since π_B is faithful. Since simplicity and type I-ness of C^* -algebras are preserved by Morita equivalence, A is also simple and of type I. Hence A is also an elementary C^* -algebra. Thus we see that $\pi_A(A) = C(\mathcal{H})$.

Take any $x \in X$. Then $\pi_X(x)^* \pi_X(x) = \pi_B(\langle x, x \rangle_B) \in C(\mathcal{K})$, and so $|\pi_X(x)| = (\pi_X(x)^* \pi_X(x))^*$ (x)) $\frac{1}{2}$ is a compact operator on \mathcal{K} . Consider the polar decomposition $\pi_X(x) = u|\pi_X(x)|$, where u is a partial isometry in $\mathcal{B}(\mathcal{K}, \mathcal{H})$. Then $u|\pi_X(x)|$ is a compact operator in $\mathcal{B}(\mathcal{K}, \mathcal{H})$. Thus $\pi_X(X) \subset C(\mathcal{K}, \mathcal{H})$. Since $\pi_X(X)$ is a closed $C(\mathcal{H}) - C(\mathcal{K})$ -submodule of the $C(\mathcal{H}) - C(\mathcal{K})$ -submodule of the $C(\mathcal{H}) - C(\mathcal{K})$ -submodule, we conclude that $\pi_X(X) = C(\mathcal{K}, \mathcal{H})$. Q.E.D.

References

- 1) J. Dixmier, "C*-algebras", North Holland, New York, 1982.
- 2) M. Kusuda, Proc. Amer. Math. Soc., 131, 3075 3081 (2003).
- M. Kusuda 'Discrete spectra of C*-algebras and orthogonally closed submodules in Hilbert C*-modules', to appear in Proc. Amer. Math. Soc..

- E. C. Lance, "Hilbert C^{*}-modules", London Math. Soc. Lecture Note Series Vol. 210, Cambridge Univ. Press, Cambridge, 1994.
- 5) B. Magajna, Proc. Amer. Math. Soc. 125, 849-852 (1997).
- I. Raeburn and D. P. Williams, "Morita equivalence and continuous-trace C*-algebras", Math. Surveys Monographs Vol. 60, Amer. Math. Soc., Providence, 1998.
- 7) J. Schweitzer, Proc. Amer. Math. Soc., 127, 2123-2125 (1999).