

アミノ糖類の立体異性体識別:エナンチオマー標識 ホスト法 を用いるキラル認識FABマススペクトロメ トリー

著者	澤田 正寛,西脇 剛,山岡 寛史,山田 等,高井嘉雄,荒川 隆一			
雑誌名	Journal of the Mass Spectrometry Society of Japan			
巻	48			
号	3			
ページ	231-237			
発行年	2000			
その他のタイトル	Stereoisomer Discrimination of Some Amino			
	Sugars: Chiral Recognition FAB Mass			
	Spectrometry Coupled with the			
	Enantiomer-Labeled Host Method			
URL	http://hdl.handle.net/10112/5990			

REGULAR PAPER

アミノ糖類の立体異性体識別:エナンチオマー標識ホスト法 を用いるキラル認識 FAB マススペクトロメトリー

Stereoisomer Discrimination of Some Amino Sugars: Chiral Recognition FAB Mass Spectrometry Coupled with the Enantiomer-Labeled Host Method

> 澤田正實*a) • 西脇 剛^{b)} • 山岡寛史^{c)} • 山田 等^{a)} • 高井嘉雄^{a)} • 荒川隆一^{b)}

Masami Sawada, Tsuyoshi Nishiwaki, Hiroshi Yamaoka, Hitoshi Yamada, Yoshio Takai, and Ryuichi Arakawa

(Received February 10, 2000; Accepted March 6, 2000)

FAB mass spectrometry coupled with the host-guest complexation method was used to distinguish some amino sugars (1-8) including glucosamine, galactosamine, and mannosamine, etc. The method characteristically used a 1:1 mixture of the chiral crown ether host whose enantiomer was isotopically labeled. Diastereomer differentiation of a given amino sugar salt (G^+) was simply measured with a given host pair (A or B) ($H_{RRRR}:H_{SSSS-d_6}=1:1$) from the peak intensity ratio of the two diastereomeric host-guest complex ions as $I[(H_{RRRR}+G)^-]/I[(H_{SSSS-d_6}+G)^+]$ =IRIS (abbreviation). The stereoisomer differentiation was performed by the IRIS values in the range from 0.4 to 2.0 (for the use of the host pair A) and from 0.4 to 3.4 (for the use of the host pair B). The five underivatized amino sugar hydrochloride salts (1-5) were successfully differentiated using the present chiral recognition FAB mass spectrometry. The stereoisomer-(\frac{13}{C})-labeled guest method was also presensed to evaluate their relative complexation abilities.

1. はじめに

へキソサミン類やヘキソース類の立体化学の決定は、糖化学における基本最重要課題である。最近のマススペクトロメトリーを用いる立体化学簡易決定法としては、Learyらが発表した「Coll メタルイオンのコンプレックス形成を利用する N-アセチルヘキソサミンの立体異性体の識別(イオントラップタンデム ESI マススペクトロメトリー)など20~51 が知られている。また、ホストーゲスト化学の観点からは James らが発表した61 グルコサミンにのみ特異的な会合形成を行うアザクラウンエーテル含有蛍光センサー

**』大阪大学産業科学研究所材料解析センター(®567-0047 茨木市美穂ヶ丘 8-1)

Materials Analysis Center, The Institute of Scientific and Industrial Research, Osaka University (8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan)

b) 関西大学工学部応用化学科 (電564-8680 吹田市山手町 3-3-35)

Department of Applied Chemistry, Kansai University (Suita, Osaka 564-8680, Japan)

○ 大阪女子大学理学部環境理学科(〒590-0035 堺市大仙町 2-1)

Department of Environmental Sciences, Faculty of Science, Osaka Women's University (2–1 Daisen-cho, Sakai, Osaka 590–0035, Japan) 分子の開発など7)を挙げることができる.

われわれは以前,エナンチオマーの一方を同位体標識したラセミゲストを用いて(EL (Enantiomer Labeled)-ゲスト法と呼んでいる),いくつかの代表的なキラルクラウンエーテル類やオリゴ糖類のキラルアミノ酸認識能の程度と方向性を,FABマススペクトロメトリー(NBAマトリックス中)で定量的に評価する方法論を開発し,報告してきた8)~13)。

本論文では、この方法論を発展させ、ホストーゲストコンプレクゼーションを用いて、いくつかのヘキソサミン類の立体異性体が識別できることを述べる。ここでは、従来のEL-ゲスト法の対極に相当する EL-ホスト法を活用する。つまり、エナンチオマーの一方を同位体標識したラセミホスト対(Chart 1 のホスト対 A あるいはホスト対 B)を特徴的に用いる(以後、EL (Enantiomer Labeled)-ホスト法と略称する) $^{14)\sim161}$.

ゲストには、代表的なヘキソサミン5種(1~5)およびその誘導体を取り上げる。本論文はこれらの多種類のホストーゲスト組合せシステムにおいて、アミノ糖ゲストが示すキラルクラウンエーテルホストに対するコンプレクセーション選択性の差異に着目し、アミノ糖の立体異性体を識別しようとするものである。

Host Pair

$$(R) \xrightarrow{(R)} (R) \qquad (S) \xrightarrow{(S)} (S) \qquad B$$

$$(RRRR)-2 \qquad (SSSS)-2-d_6$$

$$Chart 1$$

2. 方 法

EL-ホスト法では、1 枚のマススペクトル上で、ジアステレオメリックホストーゲストコンプレックスイオンを区別するために、与えられたホストの重水素同位体標識エナンチオマーを使用する。標識体と非標識体のホストのエナンチオマー 1:1 等モル混合物(例えば (RRRR)-1: (SSSS)- $1-d_6=1:1$)を、与えられたキラルゲストとコンプレックス形成させ、ついで FAB マススペクトル測定(NBA マトリックス中)を行う。ここで、キラルゲストは種々のアミノ糖(例えば、D-グルコサミン、D-ガラクトサミン、D-マンノサミンなどの塩酸塩)を意味する。

得られたジアステレオメリックホストーゲストコンプレックスイオンのピーク強度比、 I_{RRRR}/I_{SSSSd_n} (式 (1))をIRIS(略称)と称し、この値を求める。種々のキラル有機アミン塩類について、この I_{RRRR}/I_{SSSSd_n} 値に大きな差の出ることがすでに明らかにされている 14l,16l この I_{RRRR}/I_{SSSSd_n} 値が定量的キラル識別能の尺度となり、アミノ糖の立体異性体識別に利用される。

$$I[(H_{RRRR}+G)^{+}]/I[(H_{SSSS-d_n}+G)^{+}] = I_{RRRR}/I_{SSSS-d_n}$$
=IRIS(略称) (1)

3. 実 験

3.1 マテリアルズ

3.2 試料の調整と FAB マススペクトル

マススペクトロメーターには JEOL JMS M600 を標準の状態で使用した(加速電圧、3 kV; 高速中性原子、Xe; FAB イオン銃電圧、6 kV; エミッション電流、0.5 mA; イオン源真空度、 $\sim 10^{-6}$ Torr; スキャン速度、5 s).

代表的な FABMS/EL-ホスト法の試料調整はホスト対 A の場合は,以下のようであった.ホスト (RRRR)-1 2.90 mg ($4.39\,\mu$ mol) をマイクロチューブに秤量し,クロロホルム 27.4 μ L をマイクロシリンジで加えて,よく溶解させた ($0.16\,M$).同様に,エナンチオマー標識ホスト (SSSS)-1- d_6 2.83 mg ($4.24\,\mu$ mol) を秤量し,クロロホルム 26.5 μ L を加えて,よく溶解させた ($0.16\,M$).この二つの等モル溶液を $15\,\mu$ L ずつ混合した(溶液 1,各ホスト $0.080\,M$ に相当).ゲストのアミノ糖塩酸塩 $0.95\,m$ g ($4.41\,\mu$ mol) を秤量し,メタノール/水 (1:1) の $55\,\mu$ L を加えてよく溶解させた (溶液 2、ゲスト $0.080\,M$).

あらかじめマトリックス NBA 15μ L を入れておいたマイクロチューブに溶液 1 を 2.5μ L, 溶液 2 を 2.5μ L 加えてよく混合し、さらに 1 時間超音波洗浄器につけて混合し、一夜室温に放置して FABMS 測定に用いた。イオン源内で溶媒が蒸発した後の NBA 中の各成分濃度は、 $[H_{RRRR}]$ = $[H_{SSSS4_6}]$ = [G] = 0.0133 M となる.

アミノ糖が塩酸塩でない場合は、1N HCI 水 0.1 mL をメタノール 1.15 mL と混合して 0.08 M HCI (メタノール,水)を調整し、これを用いてゲストのアミノ糖を塩酸塩とし、使用した (0.080 M). $20\sim60$ スキャン分 (n=40)の積算データを採用し、標準偏差値を誤差として併記した。

一方、ホスト対 B の場合は、ホスト、ゲスト濃度ともほぼ 1/2 の希薄溶液で実行した。上記と同様の方法で、イオン源内で溶媒が蒸発した後の NBA の各成分の濃度は、 $[H_{RRRR}]=[H_{SSSSd_6}]=[G]=0.0050$ M であった。 $20\sim50$ スキャン分 (n=30) の積算データを採用した。

立体異性体標識ゲスト法(後述)によるアミノ糖の相対コンプレクセーション能測定の場合は、ホスト [H]: 非標識ゲスト [G₁]: ¹³C-標識ゲスト [G₂] = 0.00833 M: 0.025 M: 0.025 M (イオン源内で溶媒が蒸発した後の NBA 中の各成分濃度)の濃度条件下で FAB マススペクトルを得た.

4. 結 果

非標識体の (RRRR)-1 と標識体の (SSSS)-1- d_6 の1:1 (ラセミ)等モル混合物ホスト (ホスト対 A)を作り、これと種々のアミノ糖塩酸塩化合物 ($1\sim7$) との組合せにより、FABMS/EL-ホスト法を実行し、 I_{RRRR}/I_{SSSS-d_6} 値を求めた、代表的な FAB マススペクトル (NBA マトリックス)を Fig. 1 に挙げ、得られた I_{RRRR}/I_{SSSS-d_6} 値を Table 1 に整理した。ここではジアステレオメリックホストーゲストコンプレックスイオンピーク間隔は 6 マス単位離れているので、天然同位体補正は行わなかった。 I_{RRRR}/I_{SSSS-d_6} 値はコンプレックスイオン中心部 (NH $_3$) 近傍の OH 基の立体化学を反映して、 $0.4\sim2.0$ と大きな変化を示した。

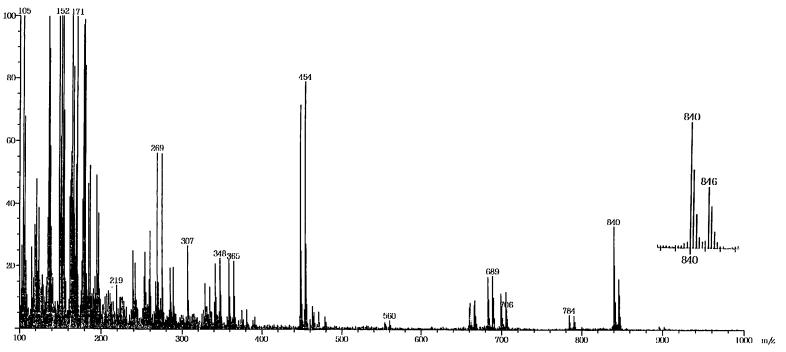


Fig. 1. A FAB mass spectrum (NBA matrix) for the complexation between guest 2 (Cl⁻: glucosamine·HCl) and host pair A (a 1:1 mixture of (RRRR)·1 and (SSSS)·1- d_6): the EL-host method. The two peaks at m/z 840 and 846 are the corresponding diastereomeric host-guest complex ions: $(H_{RRRR}+G)^+$ and $(H_{SSSS-d_6}+G)^-$ ions, respectively.

M. Sawada et al.

Table 1. The $I_{\rm RRRR}/I_{\rm SSSS-d_6}$ Values of Amino Sugars and Their Derivatives Using the Host Pair A

	Amino sugar salt		$I_{\mathrm{RRR}}/I_{\mathrm{SSSS-d_6}^{\mathrm{al}}}$	Index IRIS	Remarks ^{b)}
	Cation	Anion			
-	HOH₂C				
•	> -0	CI-	0.79 ± 0.15	0.8	A
1	HOIIIII NH ₃ +	Cl-	0.78 ± 0.20		В
	но он				
	нон₂с	Cl-	2.03 ± 0.33	2.0	A
2	нош	Cl-	1.88 ± 0.19		A
4	\ /	Cl-	2.02 ± 0.28		A
	HO NH³,	Cl-	1.99 ± 0.41		В
	HOH₂C				
3	он•	CI-	1.68 ± 0.38	1.8	Α
J		Cl "	1.86 ± 0.32		Α
	HO NH₃*				
	HOH₂C — Q	CI-	1.07 ± 0.32	1.1	A
4	нош	Cl-	1.12±0.21	1,1	В
	HO NH ₃	01	1.12_0.21		D
	нон₂с				
5	нош…	Cl-	0.54 ± 0.11	0.5	A
Ð	—	Cl ⁻	0.47 ± 0.09		В
	⁴H₃N OH				
	(H ₃ C) ₃ COC — OH ₂ C				-
6	(H ₃ C) ₃ COCO NH ₃ +	Cl-	0.80 ± 0.16	0.8	В
	(H ₃ C) ₃ COCO (CH ₃	OTs ⁻	0.83 ± 0.22		A
	HOH₂C ୁ				
	> -0				
	нош…	Cl -	$0.87 \pm 0.29^{\circ}$	0.9	A
7	O NH3,	C1-	0.93±0.34°		В
	CH—CH₃				
	соон				
	нон₂с	Cl-	0.37 ± 0.07	0.4	A
8	HOIIIII OCH3	C1-	0.43 ± 0.06		A
	°H₃N OH	C1-	0.43 ± 0.06		В
	H ₃ N OH				

Averaged value (n=40). $[H_{RRRR}]=[H_{SSSS-d_6}]=[G]=0.0133$ M in NBA (see the text). Selected solvent for the host compounds: A(CHCl₃), B(DME, dimethoxy ethane).

c) Small host-guest complex ion peaks.

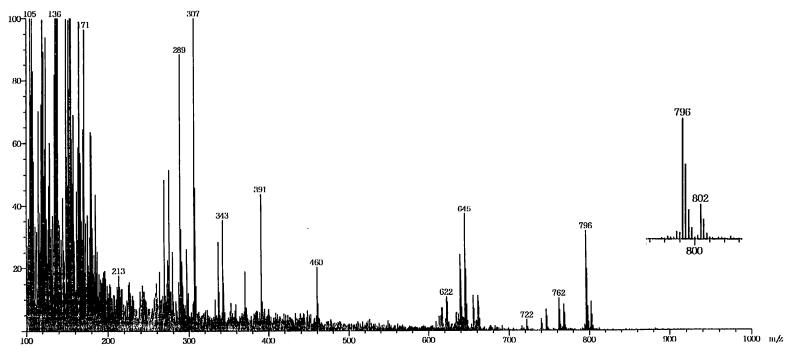


Fig. 2. A FAB mass spectrum (NBA matrix) for the complexation between guest 2 (Cl⁻: glucosamine·IICl) and host pair B (a 1:1 mixture of (RRRR)-2 and (SSSS)-2- d_6): the EL-host method. The two peaks at m/z 796 and 802 are the corresponding diastercomeric host-guest complex ions: $(H_{RRRR}+G)^+$ and $(H_{SSSS-d_6}+G)^+$ ions, respectively.

コンプレックス形成時にこれらの立体効果がさらに顕著に表れると期待される別のホスト対(ホスト対 B)を用いて、同様に FABMS/EL-ホスト法を実行した。代表的な FABMS スペクトル(NBA マトリックス)を Fig. 2 に挙げ、得られた I_{RRRR}/I_{SSSS-d_6} 値を Table 2 に整理した。 I_{RRRR}/I_{SSSS-d_6} 値は $0.4\sim3.4$ と以前にもまして大きな変化を示した。

一方、2種類のゲストアミノ糖類の相対的コンプレクセーション能を調べるために、アミノ糖 a (非標識体)、アミノ糖 b (1-13C 標識体) とキラルクラウンエーテルホストの 3 成分競争系で FAB マススペクトル(NBA マトリックス)を測定し、それぞれのコンプレックスイオンピーク強度を比較した、マンノサミン(非標識体)4、グルコサミン(1-13C 標識体)2-1-13C、およびキラルクラウンエーテル(RRRR)-103成分系の場合の FAB マススペクトルをFig. 3 に挙げる。グルコサミン 2は 1-13C 同位体標識されているため、2本の該当するジアステレオメリックホストーゲストコンプレックスイオンを識別できる。したがっ

Table 2. The I_{RRRR}/I_{SSSSd_6} Values of Amino Sugars Using the Host Pair B ((RRRR)-2:(SSSS)-2- d_6 =1:1)

Amino sugar salt		7 /7 a)	Index IRIS	
Cation	Anion	$I_{\rm RRRR}/I_{\rm SSSS-d_6}$	index ikis	
1	C1-	0.61 ± 0.19	0.6	
2	C1-	3.54 ± 0.63	3.5	
3	Cl-	2.29 ± 0.48	2.3	
4	Cl-	$(ca. 0.6 \pm 0.4)^{b}$	(ca. 0.6)	
5	Cl-	0.38 ± 0.08	0.4	

^{a)} Averaged value (n=30). $[H_{RRRR}]=[H_{SSSS,d_6}]=[G]=0.0050$ M in NBA (see the text).

て、ピーク強度の比からマンノサミンのグルコサミンに対する相対的コンプレクセーション能を評価できる(ここでは、エナンチオマー標識ゲスト法に対して立体異性体標識ゲスト法と称す) 81 . 同様にして、ガラクトサミン(非標識体) 2 - 13 C、およびキラルクラウンエーテル (RRRR)- 1 0 3 成分系を用いて、ガラクトサミンのグルコサミンに対する相対的コンプレクセーション能を評価できる.

 $I[(4+(RRRR)-1)^-]/I[(2-1-^{13}C+(RRRR)-1)^+]=0.4$ $I[(3+(RRRR)-1)^-]/I[(2-1-^{13}C+(RRRR)-1)^+]=1.1$ これらの結果により、ホスト(RRRR)-1 をターゲットとしたときのゲストアミノ糖塩酸塩の相対的コンプレクセーション能は、

マンノサミン<グルコサミン≈ガラクトサミン の順であると決定できた.

5. 考 察

アミノ糖 $1\sim5$ は、分子式は $C_6H_{18}O_5N$ とすべて同一であるが、 NH_3^* 基の位置や方向が異なるし、さらに周辺のOH 基の立体化学も異なっており、3 次元的に別個のキラルアミンとみなすことができる。したがって、キラルクラウンホストとのホストーゲストコンプレクゼーションにおいて、それぞれ異なった程度や方向性を示すキラル識別能が観測できると予想される。もしこのアミノ糖によるキラルクラウン識別能(ここでは I_{RRRR}/I_{SSSS-d_6} 値)が互いに有意の差のあるものならば、それによってアミノ糖類の立体異性体識別が可能となる。

一般に、アミノ糖類はOH基を数多く有しているので、 コンプレックスイオンのマトリックス(NBA)からの脱離

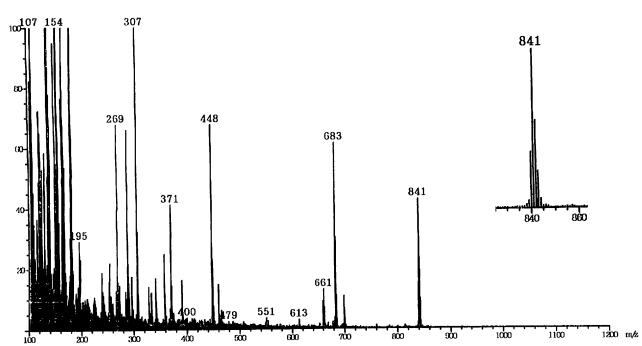


Fig. 3. A FAB mass spectrum (NBA matrix) for the complexation of the three components, guest 2-1- 13 C (Cl⁻: glucosamine-1- 13 C·HCl), guest 4 (Cl⁻: mannosamine·HCl), and host (RRRR)-1: the stereoisomer-labeled guest method. The two peaks at m/z 840 and 841 are the corresponding diastereomeric host-guest complex ions: (H_{RRRR} + G_{mannosamine})⁺ and (H_{RRRR} + G_{glucosamine})⁺ ions, respectively.

⁵⁾ Small host-guest complex ion peaks.

が容易ではない、そのために、観測される I_{RRRR}/I_{SSSS-d_6} 値に乱れが生じ、誤差が大きく(標準偏差値で $10\sim20\%$)表れる欠点がある。そこで、測定回数(スキャン数)を増やして平均値を用いることにし、コンプレックスイオンピークが安定的に出現する中心部分の 20 スキャンから 60 スキャンまで (n=40) のスキャン数の平均値を I_{RRRR}/I_{SSSS-d_6} 値として採用した。平均値の再現性は 3% 以内であった (Table 1)。ホストのクロロホルム溶液を使った場合とホストの DME 溶液を使った場合のいずれも、実測の I_{RRRR}/I_{SSSS-d_6} 値には大差なく、さらにアミノ糖ゲストの HCI 塩とp-トルエンスルホン酸 (T_8OH) 塩との比較でも大差はなかった (Table 1)。

得られた $1\sim5$ のヘキソサミン類のホスト対 A による $I_{\mathsf{RRRR}}/I_{\mathsf{SSSS}d_6}$ 値を比較すると、大きく三つのグループに分かれた。

- (i) アミノ糖2と3が属するIRIS=1.8~2.0のグループ
- (ii) アミノ糖1と4が属するIRIS=0.8~1.1のグループ
- (iii) アミノ糖 5 が属する IRIS=0.5 のグループ これらは、ゲストの NH 基がクラウンエーテル環内に 取り込まれたとき、ゲストの NH 基周辺のグループと、

ホストのクラウン環周辺のグループとの多点立体相互作用 により、キラルホスト選択性として現れたと考えることが できる。

さらに、大きな立体相互作用の出現が期待できるホスト対 Bを用いたときのコンプレクセーション選択性の結果を重ね合わせると、アミノ糖 2 と 3 はそれぞれ $I_{RRRR}/I_{SSSS-d_6}=2.3$ と 3.5 とキラルホスト選択性がより高度になり、両者の区別がいっそう明確になることがわかった。一方、アミノ糖 1 と 4 はそれぞれ $I_{RRRR}/I_{SSSS-d_6}=0.6$ と ca. 0.6 (ただしノイズの多いスペクトルのため誤差が大きい)であった。アミノ糖 4 (マンノサミン)がクラウンエーテルホスト類と相対的にコンプレックス形成しにくいことは、前述の立体異性体 13 C-標識ゲスト法の実験結果で明らかにされている。

アミノ糖誘導体 6 は 1 の OH 基のピバロイル化体であるが、 I_{RRRR}/I_{SSSS-d_6} 値は 0.8 と互いにほぼ同一であった。アミノ糖誘導体 7 は 2 の誘導体化合物であるが、高度な極性基一COOH の存在のためか(理由はさだかでない)、コンプレックスイオンは特に出現しにくい(I_{RRRR}/I_{SSSS-d_6} 値は ca. 0.9)。アミノ糖誘導体 8 は 5 の誘導体化合物であり、 I_{RRRR}/I_{SSSS-d_6}

 $I_{ ext{SSSS-}d_6} \! = \! 0.4$ と未誘導体化合物の 0.5 にほぼ近い値を示した

したがって、ホスト対 A、さらにはホスト対 Aとホスト対 B、を用いれば、ホストーゲストコンプレクセーションキラル選択能 (Index IRIS 値) の差異により、掲載 5 種のアミノ糖の立体異性体識別は、FABマススペクトロメトリーを用いて可能になると結論づけられる。このアミノ糖の立体異性体識別は、有機一級アミン類のエナンチオマー過剰度決定^{14)~16)} につぐ、キラル認識 FABMS/EL-ホスト法の応用例と位置づけられる。

な 女

- 1) H. Desaive and J. A. Leary, Anal. Chem., 71, 1997 (1999).
- G. Smith and J. A. Leary, Int. J. Mass Spectrom., 193, 153 (1999).
- 3) H. Desaire and J. A. Leary, Anal. Chem., 71, 4142 (1999).
- S. P. Gaucher and J. A. Leary, Anal. Chem., 70, 3009 (1998).
- 5) G. Smith and J. A. Leary, J. Am. Chem. Soc., 118, 3293 (1996).
- C. R. Cooper and T. D. James, Chem. Commun., 1419 (1997).
- T. D. James, K. R. A. Samankumara, A. Sandanayake, and S. Shinkai, *Angew. Chem. Int. Ed. Engl.*, 33, 2207 (1994).
- 8) M. Sawada, Mass Spectrom. Rev., 16, 73 (1997).
- 9) M. Sawada, J. Mass Spectrom. Soc. Jpn., 45, 439 (1997).
- 10) M. Sawada, Y. Takai, H. Yamada, J. Nishida, T. Kaneda, R. Arakawa, M. Okamoto, K. Hirose, T. Tanaka, and K. Naemura, J. Chem. Soc., Perkin Trans. 2, 701 (1998).
- 11) M. Sawada, Y. Takai, H. Yamada, S. Hirayama, T. Kaneda, T. Tanaka, K. Kamada, T. Mizooku, S. Take-uchi, K. Ueno, K. Hirose, Y. Tobe, and K. Naemura, J. Am. Chem. Soc., 117, 7726 (1995).
- M. Sawada, M. Shizuma, Y. Takai, H. Adachi, T. Takeda, and T. Uchiyama, *Chem. Commun.*, 1453 (1998).
- 13) 澤田正質ほか, 未発表.
- 14) M. Sawada, H. Yamaoka, Y. Takai, Y. Kawai, H. Yamada, T. Azuma, T. Fujioka, and T. Tanaka, Chem. Commun., 1569 (1998).
- 15) M. Sawada, H. Yamaoka, Y. Takai, Y. Kawai, H. Yamada, T. Azuma, T. Fujioka, and T. Takana, Int. J. Mass Spectrom., 193, 123 (1999).
- 16) M. Sawada et al., unpublished.
- 17) T. Kaneda, K. Hirose, and S. Misumi, J. Am. Chem. Soc., 111, 742 (1989).
- 18) K. Naemura, K. Ueno, S. Takeuchi, Y. Tobe, T. Kaneda, and Y. Sakata, J. Am. Chem. Soc., 115, 8475 (1993).

Keywords: Chiral recognition, Host-guest complex, Amino sugar, Chiral crown ether, Deuterium labeling, Carbon-13 labeling, FAB mass spectrometry