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and Its Performance Evaluation
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The star graph and the hypercube are receiving attention among researchers as attractive
models for highly parallel distributed computing, because they have regular structure, and
connect many processors with small diameter and degree. Recently, an interesting interconnec-
tion network called Rotator graph was proposed and presents some advantages over the star
graph and the hypercube. Namely, Rotator graph has very small diameter and average
distance, and simple routing algorithm. We present a fault tolerant routing algorithm for
n-Rotator graph. This graph has only one shortest path between any two nodes which is not
a good fault tolerant property, but it possesses many short paths. From this fact, we develop
an algorithm that looks for the shortest path or a short path by exploiting the network
properties of the n-Rotator graph. We show the mathematical expression for the probability
of finding the shortest path or the second shortest path (of length equal to the shortest path
+1) in the presence of faulty components (links or nodes). The results show that the algorithm
finds a very short path with high probability. They enhance the rich topological properties of

the n-Rotator graph.

1. Introduction

The hypercube and the star graph due their
regular structure, small diameter and degree
are attractive models for use in highly parallel
communication. Only a few years ago,
Corbett® proposed a good alternative to these
models called Rotator graph. This is a set of
directed permutation graphs that has small
diameter and average distance, and a simple
routing algorithm.

Since the effective execution of parallel tasks
depends on the reliable communication among
processors, the study of fault tolerant routing
algorithms is very popular in the field of paral-
lel computation. In fault tolerant routing algo-
rithms, we can consider two approaches :

The first one is that every node has global
information of the system and the algorithm
routes the message according to this informa-
tion. If the shortest path exists, the algorithm
will find this path. But, we have the necessity of
broadcasting the condition of every component,
which is expensive specially for large networks.
The second one is that every node keeps only
limited information of the system (for example,
the condition of the adjacent links and nodes),
and makes its routing decision. Since every
node does not possess a total view of the sys-
tem, the algorithm might not lead the message
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via the feasible shortest path. In spite of this
disadvantage, this approach seems to be more
practical.

We must design the routing algorithm by
exploiting the network properties for the
improvement of its efficiency. Fault tolerant
routing algorithms have been proposed on
many topologies as hypercube®, star graph'?,
arrangement graph!”, and others.

Chen and Shin® presented a routing algo-
rithm based on depth first search technique for
hypercube. Sur and Srimani!?"'®, with similar
idea, proposed an algorithm for star graph.
Furthermore, both of them show the perfor-
mance of their algorithms for the probability of
routing the message via the shortest path when
the source and destination are at maximum
distance.

The n-Rotator graph has better average dis-
tance and smaller diameter n—1 for a graph
with #z! nodes than either star graph or hyper-
cube. Since the n-Rotator graph has excellent
properties for communications, our interest is
to investigate the problem of routing the mes-
sage in the presence of faults for this topology.
We propose a simple algorithm that guides the
message via a short path in the presence of
faulty components (links or nodes). We
assume that each node knows the condition of
its adjacent components (distributed manner).

It is worth mentioning that z-Rotator graph
presents a unique shortest path. But, it also
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possesses many short paths (For example, a
path of length equal to the length of the shortest
path +1). Our algorithm intends to look for
any of these short paths by considering the
network properties of the #n-Rotator graph. We
also use a memory which keeps the information
of the route traversed by our algorithm (the
visited nodes and visited links) in order to
avoid loops.

It is shown that our algorithm finds the
shortest path or the second shortest path (of
length equal to the length of the shortest path
+1) with very high probability in the presence
of faulty components.

The paper is organized as follows. We intro-
duce some useful definitions and notations in
Section 2. Our fault tolerant routing algorithm
is shown in Section 3. The performance analy-
sis of the algorithm is given in Section 4. We
conclude in Section 5.

2. Preliminaries

We show basic definitions for n-Rotator
graph and its routing algorithm for the fault-
free situation.

2.1 Basic Definitions
Definition 1 Let ai---an be a permutation of n
symbols. For 1<j<mn, we define a rotator oper-

b
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ation as Rot(a1az - an)= a2a3** a;a1Gj+1°** Gn.
For example, Rot:(123)=213 and Rot:(4321)
=3241.
Definition 2 The n-Rotator graph is an dirvect-
ed graph G(V, E) given by :
V={a1a2--~an|a1az---an is a
permutation of #» symbols},
E={(x, y)lx,yE V and y=Rot(x)
for j,1<;<n},
For example, the node 1234 is connected to
the nodes 2134, 2314, and 2341 for the 4-Rotator
graph in Fig. 2. The 3-Rotator graph and the

123

231
213

132

321

312

Fig.1 3-Rotator graph.

Fig.2 4-Rotator graph.
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4-Rotator graph are shown in Fig. 1 and Fig. 2
respectively.

2.2 Basic Properties

The n-Rotator graph is a directed graph with
n! nodes. The in-degree and the out-degree is
n—1 respectively, and the diameter is n—1.
This graph is node symmetric. It permits us to
consider the distance between two arbitrary
nodes as the distance between the source node
and the identity node /=123---%, by renaming
the nodes. For example, let 43215 be the source
and 32145 be the destination. We can map the
destination node to the identity node by making
the following changes as3+~ 1,2+~ 2,1+ 3,
4+ 4,5~5, and the source and the destination
can be considered as 41235 and 12345 respec-
tively. Then, the path between the original
source and the destination node becomes
isomorphic to the path between the node 41235
and the identity node.

2.3 Routing Algorithm

The routing algorithm in fault free mode was

proposed by Corbett?, and is based on the inser-
tion sort of symbols. Since Rotator graph is
node symmetric, we consider the destination as
the identity node /.
Definition 3 Let s=aiaz--aibiv1--bn be an
arbitrary node in n-Rotator graph, wherve a:>
bis1< biy2< < bn. The node is divided into
two regions of symbols : A leading unsorted
region aax--a: and a trailing sorted region
bz‘+1bi+2"'bn-

The trailing sorted region is a sequence of
symbols arranged in increasing order, and the
leading unsorted region is all other symbols.
For example, consider the node 342156. The
leading unsorted region is 342 and the trailing
sorted region is 156.

Consider »-Rotator graph with » symbols.
Let s=aiaz*-a:bi+1*+-bn be the source, and the
destination be the identity permutation 12--- %,
The routing algorithm in fault free mode? is
given by :

1. Move a; into its correct position / so that
bz< a< b1+1, or /=7 and a< bi+ly until s
becomes theidentity node.

For example, let 4321 be the source and 1234
be the destination. According to the routing
algorithm, we make the following moves:

4321~ 3214~ 2134+ 1234.

The following propositions are taken from
Ref. 4).

Proposition 1 The routing algorithm gives a
shortest path between any two mnodes in the
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Table 1 Comparison of Star graph, Hypercube, and Rotator

graphs.
Nodes | Degree | Diameter | Average Distance
5-Star 120 4 6 3.7
7-Hypercube 128 7 7 3.5
5-Rotator 120 4* 4 3.28
7-Star 5040 6 9 5.9
12-Hypercube| 4096 12 12 6
7-Rotator 5040 6* 6 5.28
9-Star 362, 880 8 12 8.1
18-Hypercube | 262, 144 18 18 9
9-Rotator | 362, 880 8* 8 7.28

* in-degree and out-degree respectively.
[Note] The data are taken from Ref. 3), 4).

n-Rotator graph.

Proposition 2 The n-Rotator graph has a
unique shortest path between any two modes.
Proposition 3 The diameter of n-Rotator
graph is n—1.

In Table 1, we compare the n-Rotator graph
with the hypercube and the star graph. For a
given size, the table shows that the »n-Rotator
graph has smaller diameter and average dis-
tance than the hypercube and the star graph.

3. The Fault Tolerant Routing Algorithm

In this section, we present an adaptive rout-
ing algorithm in the presence of faulty compo-
nents for the #-Rotator graph. We consider
that every node knows only the condition of its
adjacent links.

Our work has been realized based on the
following observations :

® Since the n-Rotator graph is node symmet-

ric, we can always consider the destination
as the identity node.

® The visited nodes and the visited links

must be recorded into a memory to avoid
loops or to detect the termination of the
algorithm.

® Each node is divided in two regions: the

leading unsorted rvegion and the trailing
sorted vegion.

® The routing algorithm in fault free mode is

based on insertion sort.

® The sorted region and the unsorted region

are the dominant factors for the efficiency
of the routing algorithm. Thus, we can
exploit fully the properties of the network
by working with these two regions
efficiently.

Proposition 4 Let s=aias aibis1bir2-bn be
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the source node and the identity node be the
destination, where a;>bi1<bi2<+-<bn If
we move ai into its correct position [, where b,
<ar<bi, o I=1 and a< b+ ; the length of
the trailing sorted region will be lengthened,
and the distance to the destination will be shor-
tened.

For example, consider the node 1423. If we
move 1 into its correct position, we have the
node 4123 and the distance to the destination
will be shortened.

Proposition 5 Let s=aiazx-aibisi--bn be
the source mode and the identity node be the
destination, where a;>bi1<bi2<<bn If
we move a; into the jth position, where j<1i, or
j=1i and a1> b1, the length of the trailing
sorted region and the distance to the destination
will be kept the same.

For example, consider the node 4213. If we

move 4 into the second position, we have the
node 2413 and the distance to the destination
will be kept the same.
Proposition 6 Let s=aias - aibis1* b, be the
source node and the identity node be the desti-
nation, wherve a;>bi1<bi2< <bn. If we
move ax into the jth position and the Ith position
is its correct position, where j<I and b,;<a<
biv1, the length of the sorted region will be
shortened to n—j and the distance to the desti-
nation will be increased to j.

For example, consider the node 621345. If we

insert 6 into the third position, we have the node
216345. The length of the sorted region will be
shortened to (6—3), and the distance to the
destination will be increased to 3.
Proposition 7 Let s=aiaz-a:biv1*-bn be the
source node and the identity node be the desti-
nation, where a;>bi1<bi2<:<bn If we
move ax into the jth position and the Ith position
is its correct position, wheve j>1 and b,< a1 <
biv1, the length of the sorted rvegion will be
shortened to n—j+1 and the distance to the
destination will be increased to j—1.

For example, consider the node 42135678. If
we insert 4 into the fifth position, we have the
node 21354678. The length of the sorted region
will be shortened to (8—5+1), and the distance
to the destination will be increased to 4.
Definition 4 The routing information RI
stores the visited wnodes and the visited links by
keeping the number j in votator operation Rot;.

For example, let 3421 and 1234 be the source
and destination respectively. We make the
following rotator operations :
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3421~ 4213, 4213~ 2134, 2134 — 1234,
and the RI={4, 4, 2}.

Definition 5 The inverse rotator operation is
defined as Rot{"™(a\-a; - an)=a:a1** an.

Roti™(1234)=2134 and Roti"™(2134)=3214 as
Jor example. We can apply the inverse rotator
operations to know the visited nodes and the
visited links. The routing information RI and
the inverse rotator operation allow us to avoid
loops and to terminate the algorithm.

The fault tolerant routing algorithm

We present our routing algorithm where s=
a1z @ibivr b b, avaz-a; is the leading un-
sorted region, b:41--+b, is the trailing sorted
region, the /th position is the correct position of
a1, and m is the message.

/* Reach the destination */
if s is the identity node then
stop;
/* Intend to send the message to a node so that the distance to the
destination will be shortened */
if the link from s to node Rot,(s) is not faulty and
the link to this node has not visited before by checking RI then
send(RI,m) to that node;
stop;
/* Intend to send the message to a node so that the distance to the destination
will be kept the same or will be lengthened as small as it is possible, and j # [ */
for j:=2ton do
if the link from s to a node Rot;(s) is not faulty and
the link to this node has not visited before by checking RI then
send(RI,m) to that node
stop;
writeln (’the message can not be routed’)

stop;

Consider 4321 and 1234 be the source and the
destination respectively. The links between the
nodes 4321 and the node 3214, and the link
between the node 3421 and the node 4213 are
faulty. Our algorithm leads the message to the
destination traversing the following route :

Example

4321~ 3421~ 4231+~ 2314+~ 3124+~ 1234

For example, we can observe that the node
4321 intends to select the link connected to the
node 3214, which is faulty. Then, the algorithm
selects the link connected to 3421. Also, the
node 3421 intends to select the link connected to
the node 4213, which is faulty. Then, it sends
to the node 4231.

The execution of the algorithm is as follows :
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Table 2 Numerical values of probability for the shortest
path or the second shortest path in n-Rotator graph
with f faulty links and P equal to the distance
traversed by the algorithm.

f=1 f=2 /=3 f=4 f=5 |P=n—lorn

0.986111 0.970657 0.953756 0.935522 0.916070 Jord
0.997917 0.995772 0.993568 0.991305 0.988984 4ord
0.998611 0.999443 0.999162 0.998879 0.998594 S5orb
0.999967 0.999934 0.999901 0.999868 0.999834 6or7
1.000000 1.000000 1.000000 1.000000 1.000000 9or10

=

~- o U e

—
=Y

Table 2a Numerical values of probability for the shortest
path in #n-Star graph with f faulty links and with
P equal to the distance traversed by the algorithm.

/=1 f=2 f=3 f=4 f=5 P=[3/2(n-1)]

=

4 10.944444 0.887302 0.829132 0.770478 0.711861 4
51 0.991667 0.983229 0.974691 0.966057 0.948518 6
6 | 0.998889 0.997776 0.996661 0.995544 0.994426 7
7:10.999868 0.999735 0.999603 0.999471 0.999338 9
10| 1.000000 1.000000 1.000000 1.000000 1.000000 13

Table 2b Numerical values of probability for the shortest
path in hypercube with f faulty links, and with P
equal to the distance traversed by the algorithm.

n f=1 f=2 f=3 f=4 f=5 P=n

0.916667 0.818182 0.704545 0.577778 0.443182
0.968750 0.935484 0.900202 0.862903 0.823599
0.987500 0.974684 0.961551 0.948101 0.934335
0.994792 0.989529 0.984211 0.978839 0.973413 6

S O =W
G s W

[Note] The data of Tables 2a and 2b are taken from Ref.
12) and Ref. 5) respectively.

Table 3 Numerical values of probability for the shortest
path or the second shortest path in n-Rotator graph
with ¢ faulty nodes.

N

g=14 g=2 g=3 g=4 9=5

0.954545  0.900433 0.838961 0.771765 0.699780
0.991525  0.982471 0.972864 0.962729  0.952093
0.998607 0.997187  0.995740 0.994267 0.992767
0.999802  0.999602 0.999402 0.999201 0.998999
10| 1.000000 0.999999 0.999999 0.999999  0.999999

~N o e

First, it looks for the unique shortest path by
inserting the first symbol into its correct posi-
tion (by Proposition 4). If the path is blocked-
by a faulty component, it intends to send the
message to a non-faulty node which is at the
same distance to the destination as the previous
sender (by Proposition 5). If all these paths
are blocked, the algorithm intends to send to a
non-faulty node, which is the available closest
node to the destination (by Proposition 6 and
by Proposition 7). The order of the execution
of the algorithm is very important. Note that

A Routing Algorithm in Faulty »n-Rotator Graph and Its Performance Evaluation 1515

we can achieve these selections if the algorithm
is begun by inserting the first symbol from the
left position to the right position. Hence, the
distance to the destination will be kept the
same or will be lengthened as small as possible.
If all these paths are blocked, the algorithm
terminates. The information is represented by
(RI, m). We use the routing information R by
keeping the rotator operation.

It is worth mentioning that rich topologies
like hypercube and star graph have many opti-
mal paths (of length equal to the shortest path),
and their routing algorithms intend to look for
these paths. The n-Rotator graph has only a
unique shortest path between any pair of nodes,
but also possesses many very short paths. We
are aware from this fact and develop a routing
algorithm that looks for these short paths.

4. Performance Analysis of Our Routing
Algorithm

We show the mathematical expression for
the probability of routing the message via the
shortest path or the second shortest path for
n-Rotator graph in the presence of faulty com-
ponents (links or nodes). Our results are
compared with those of previous works on
hypercube® and star graph'?. We make the
following observations and assumptions :

® The n-Rotator graph has #! nodes and L=

n!(n—1) links.

® The occurrence of faults are assumed to be

equally.

® Let f be the number of faulty links in

n-Rotator graph. The number of the pos-
sible configurations of f faulty links is Ck.
® For a given source node, not all the f
faulty links may not affect performance of
the routing algorithm to compute the short
path or the second shortest path (the faults
that are located on any possible shortest
path or second shortest path will affect the
performance of the algorithm). We denote
k as this relevant number of faults.

® Since the number of possible routes for the
second shortest paths depends on the repre-
sentation of the source node, we consider
the source as s=#n(#—1)---1 and the desti-
nation as the identity node. So, these nodes
are at maximum distance.

® The algorithm must work effectively with

the sorted region and the unsorted region in
order to exploit fully the network prop-
erties.
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54321

32145 . 43521

34125 32415

21345 23145

Fig.3 Routing from 54321 with faulty components.

Let us consider the example in Fig. 3. It will
illustrate us to analyze the performance of the
algorithm. Let 54321 be the source and the
identity node be the destination. The label of
the edges means the number of faults that is
encountered by the algorithm while routing to
the destination. According to our algorithm,
the source will intend to send the message to
43215, if there is one fault to 45321, if there are
two faults to 43521, and so on. The idea is that
the algorithm will try to send the message to a
node in an specific order according to the num-
ber of faults (by inserting the first symbol from
the left position to the right position of the
given source). This procedure is followed for
all nodes until a leaf node is reached. A leaf
node is reached if it is the destination or a node
where no more faults can be tolerated to gener-
ate the second shortest path.

Lemma 1 If the algovithm starts at distance
n—1 to the destination and there ave f faulty
links, the number of fault configurations so that
the algorithm guides to the shovtest path is given
by C;.—rwl.

Proof: Since the message has reached the
destination by traversing the shortest path, the
number of links used by the algorithm is % —1.
The #n-Rotator graph has L links, and the rest
of links are L—#n+1. Hence, the f faulty links
are distributed among L—#+1 links in CF~"*.
O

Theorem 1 If the algorithm starts at distance
n—1 to the destination and theve ave f faulty
links, the probability of finding the shortest path

July 1995
is given by
C}—n+1
Cs
Proof : Immediately from Lemma 1.[]

Lemma 2 The algorithm guides the wmessage
for the second shortest path, if the length of the
sorted rvegion is kept the same during only one
movement and is lengthened during all other
movements.

Proof : If the algorithm routes the message
via the second shortest path, it means that the
length of the sorted region is lengthened one
time during its execution. On the other hand,
the length of the sorted region can not be
shortened during any movement because the
algorithm leads to a path which is longer than
the second shortest path. []

Lemma 3 Counsider the source node which is
at distance n—1 to the destination. There are
n—2 possible outgoing links connected to this
node so that the algorithm can lead the message
for the second shortest path.

Proof : According to the routing algorithm, it
intends to insert the first symbol into the avail-
able leftmost position due to the presence of
faulty links. We have assumed that the source
is at distance n—1 to the destination, so the
length of the unsorted region is #—1 and the
algorithm can select #—2 positions according
to the number of faulty links adjacent to the
given source. Other positions lead to the case
for the shortest path or the path which is longer
than the second shortest path. []

Lemma 4 Consider the source node which is
at distance n—1 to the destination. There are n
—2 possible configurations for the second
shortest path starting from this node.

Proof : Immediately from Lemma 3. []

For example, in Fig. 3, the node 54321 is at
distance 4 and there are 3 possible
configurations for the second shortest path
starting from this node.

From Lemma 4, for a given source node, we
can notice that the number of possible
configurations for the second shortest path is
decreased as long as the distance between the
given source and the destination is decreased.
This relation can be observed in Fig. 4.

For the analysis of the probability of routing
the message via the second shortest path, we
need to know the total number of configu-
rations for the second shortest path. From
Lemma 4 and the description given in Fig. 4, we
can see all these possible configurations for the
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source at distance n-1

n-2 configurations
second shortest path

source at distance n-2

n-3 configurations for
the second shortest path

identity node
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for the

n-2

Fig.4 Configurations for the second shortest path.

Table 4 Configurations for the second shortest path.

distance/faults | k=1 | k=2 k=n—3 | k=n—2

- o 0
o

n—

© © © © © ©
S © © & © ©°

2 0

second shortest path as the Table 4. The pres-
ence of the symbol “0” means that there are one
possible configuration with % relevant faults.
Lemma 5 If the algorithm starts at distance
n—1 to the identity permutation, the number of
possible configurations for the second shortest
path, which is defined by the function o(k), is
given by
_((n—1)—Fk if 0<k<n—1
a(k)= {0 otherwise

wheve k is the number of relevant faulty links
encountered by the algorithm.
Proof : From the Table 4, we can know that
there are n—2 configurations with one fault,
there are »—3 routes with two faults, and so on.
Thus, the number of configurations is reduced
as long as the number of faults £ is increased.
Hence, for a given source at distance n—1 to
the destination, the number of configurations
with & faults is n—1—£. [

Lemma 6 If the algovithm starts at distance
n—1 to the destination, the total number of
configurations so that the algovithm can lead to
the second shortest path is given by

2iZta(k)
where k is the number of rvelevant faulty links
encounteved by the algovithm.
Proof : Immediately from Lemma 5. Since
1< k< n—2, we have to consider all the possible
configurations for the second shortest path for
any k relevant faults. [J
Lemma 7 If the algovithm starts at distance
n—1 to the destination and theve are f faulty
links. The total number of configurations so
that the algovithm leads to the second shortest
path is given by

22 a(k) CFZRTF,
Proof: From Lemma 6, we get the number of
possible configurations for the second shortest
path when the algorithm has been encountered
by k faulty links. The number of links traver-
sed by the algorithm are #, and % links are
encountered faulty. Hence, there are L—n—#%
available links. The rest f—k faulty links are
distributed uniformly among all possible links.
And, we can say that there are CrZi™*
configurations of these faulty links. So, we
have a total of 217V "~2o(k)CF=f~* different
configurations of faulty links. (]
Theorem 2 If the algovithm starts at distance
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n—1 to the destination and theve ave f faulty
links, the probability of finding the second shor-
test path is given by
2B a(k)Cror*
Cf :
Proof : Immediately from Lemma 7. [J
Theorem 3 If the algorithm starts at distance
n—1 to the destination, and there arve [ faulty
links. The probability of finding the shortest
path or the second shortest path is given by
DpnS -2 o(R)CFZR*+ CF !
Cf :
Proof: It is easily proved from Theorem 2 and
Theorem 1. []

Numerical examples for our algorithm to
compute the shortest path or the second short-
est path in the presence of faulty links is given
in table 2. We can observe that our algorithm
guides the message to the destination with very
high probability. Moreover, if we consider that
the shortest path is #»—1 for a given size of
n-Rotator graph, it shows us that our algorithm
also traverse a very short distance. The results
show that our algorithm leads the message to
the destination via very short distance with
very high probability, and presents some advan-
tages in its performance over the algorithms
proposed by Sur and Surmani and by Chen and
Shin. Namely, we can see that the proposed
algorithm routes the message via shorter dis-
tance (P) than that of the algorithm on star
graph. Also, we can see that the probability of
our algorithm guides message via short paths is
greater than hypercube. All these results
enhance the rich topological properties of the
n-Rotator graph.

Now, we state the problem of routing the
message via ¢ faulty nodes and present the
following theorems :

Lemma 8 If the algorithm starts at distance
n—1 to the destination, and theve are g faulty
nodes. The number of configurations of faults
so that the algovithm leads to the second shor-
test path is given by

Dpmien=2 o) Caitrm*
wheve k is the number of velevant faulty nodes
encounteved by the algorithm.
Proof : If the algorithm is encountered by k&
faulty nodes, the number of routes for the sec-
ond shortest path is 297 2a(%) from the source
(from similar concept to the proof of Lemma
7). Since the algorithm leads to the second
shortest path, the number of nodes visited by
the algorithm is #+1. And, %2 nodes are en-
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countered faulty by the algorithm. The rest g
—k are distributed uniformly among the
remaining nodes »n!—(n+1)—k. Thus, we can
say that there are C7.*™'"* configurations of
faulty nodes. []

Theorem 4 If the algorithm starts at distance
n—1 to the destination, and therve are g faulty
nodes. The probability of finding the shortest
path or the second shortest path is given by

Zln;rtl(g,n—Z)a(k)cgill—n~k_|_ C;z!—l—n

nt-2
g

Proof: We assume that the source and the
destination are correct nodes. It is easily
proved from similar concept to the proof of
Theorem 3. (]

5. Conclusions

We think that »-Rotator graph is a good
candidate for highly parallel and distributed
communication systems, because this topology
has many good properties as small diameter,
simple routing algorithm, and small average
distance.

Our algorithm routes the message by work-
ing with the sorted region and unsorted region
of an arbitrary node. Using this approach, we
could exploit the network properties and face
the problem of the presence of faulty compo-
nents. We also notice that #-Rotator graph has
only one shortest path, but also possesses many
short path. This idea is the skeleton of the
developing of our routing algorithm.

For the performance analysis of our algo-
rithm, we consider that the source and the
destination are at maximum distance. Our
interest is to find the probability so that the
algorithm can lead the message via the shortest
path or the second shortest path. The reason is
that we think that this analysis could give us a
good parameter to evaluate the performance of
our algorithm, and that we could discuss with
other related works. It is shown that the
message is routed to destination by traversing a
very short distance with high probability in the
presence of faulty components. These results
also enhance the rich properties for communi-
cation of this topology.

Finally, we say that the developing of routing
algorithms is important in the field of parallel
computation, and so is the selection of topol-
ogy. We believe that an efficient fault tolerant
routing algorithm in combination with good
topology will be the key of success of parallel
computation.
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