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Abstract: A novel method is proposed for simulating free-space 
propagation from an input source field to a destination sampling window 
laterally shifted from that in the source field. This off-axis type numerical 
propagation is realized using the shifted-Fresnel method (Shift-FR) and is 
very useful for calculating non-paraxial and large-scale fields. However, the 
Shift-FR is prone to a serious problem, in that it causes strong aliasing 
errors in short distance propagation. The proposed method, based on the 
angular spectrum method, resolves this problem. Numerical examples as 
well as the formulation are presented. 
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1. Introduction 

A variety of numerical methods for free space propagation are required for computational 
holography, such as digital holography (DH) or computer-generated holograms (CGH). DH 
can be regarded as analog to digital (A/D) conversion of optical wave fields, whereas CGH is 
digital to analog (D/A) conversion. Evolution of these conversions may contribute to the 
feasibility of digital signal processing (DSP) of light, in which numerical simulation of free-
space propagation plays a role in the signal processing. 

The first category of free-space propagation is propagation between parallel planes [1]. In 
this category, various methods, such as the single Fourier-transform-based Fresnel method 
(SFT-FR) [1–5] and the convolution-based Fresnel method (CV-FR) [1,6], are continually 
being proposed. However, the angular spectrum-based method (AS) [7] is potentially the most 
powerful, because it is rigorously derived from the Rayleigh-Sommerfeld integral. However, 
the traditional AS cannot serve as an all-round method in a numerical implementation due to 
sampling problems. The author recently proposed the band-limited AS (BL-AS) to avoid the 
sampling problems [8]. This is a simple, yet effective, improvement of the AS that magnifies 
the range of the effective propagation distance of the AS. 

Another category of free space propagation is propagation between non-parallel planes  
[9–12]. The AS also plays an important role in this category. The rotational transformation of 
wave fields [9,10], formulated as an expansion of the AS, makes it possible to calculate wave 
fields in arbitrarily tilted planes from a given source field. This method is used for clear 
imaging of deeply tilted surfaces [10,13] and forming surface sources of light in the polygon-
based method for creating CGHs of surface-modeled objects [14]. 

Recently, a new category of free space propagation, off-axis numerical propagation, was 
added to the field. This involves propagation between parallel planes, but with the sampling 
window of the output destination field shifted from that of the input source field. This is very 
useful in cases where a field is not paraxial and travels in an off-axis direction. In such cases, 
the sampling window needs to be expanded in conventional methods, as described in Section 
2. This generally leads to a much higher computational effort. The techniques of off-axis 
numerical propagation can remove this difficulty. Off-axis numerical propagation is also 
useful for the propagation of large-scale wave fields that cannot be stored simultaneously in 
main memory due to the size of the data. An extremely high-definition CGH, reconstructing 
true fine 3D images, can also be calculated using off-axis numerical propagation [15]. 

The most notable method for off-axis numerical propagation is the shifted Fresnel method 
(Shift-FR) [5]. This excellent technique is derived from the SFT-FR using a scaled FFT and 
includes the capabilities of off-axis propagation and a variable sampling interval. However, 
the Shift-FR has a serious problem in that it causes strong aliasing when applied to short 
distance propagation for given sampling intervals and field sizes, as discussed in Section 4. 

The novel method for off-axis numerical propagation proposed in this paper is a 
generalization of the BL-AS introduced in [8]. Therefore, the proposed method, called the 
shifted angular spectrum method (Shift-AS), does not cause any aliasing errors in short 
distance propagation, unlike the Shift-FR. The formulation thereof and numerical examples 
are presented in the following sections. 
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Fig. 1. Calculation of the diffracted field using (a) conventional methods and (b) methods for 
off-axis propagation, where the region of interest is apart from the optical axis in the 
destination pane. 

2. Off-axis numerical propagation 

In numerical propagation of wave fields, the destination field is sometimes required to be in a 
region set apart from the optical axis in the destination plane. This situation is depicted in  
Fig. 1. The source sampling area is placed around the origin of the coordinate system, whereas 
the region of interest in the destination plane is located apart from the origin. In this case, the 
destination field is generally calculated by the following procedure: 

Step 1. Extend the source sampling window so that the sampling window includes the 
region of interest after numerical propagation. 

Step 2. Pad the extended source sampling window with zeros. 

Step 3. Numerically propagate the source wave field onto the destination plane. 

Step 4. Cut out the region of interest from the destination sampling window. 

Here, in Step 3, the source wave field is propagated using conventional numerical methods 
that do not change the sampling interval, such as the CV-FR, AS, or BL-AS. The diffracted 
field can be calculated using this procedure. However, the procedure usually requires a huge 
computational effort, especially in cases where the region of interest is far from the optical 
axis. 

On the other hand, as shown in Fig. 1(b), a numerical method can compute directly the 
diffracted field in a sampling window set apart from the optical axis without extending the 
sampling window. This type of propagation is referred to as off-axis numerical propagation in 
this paper. The most notable method for off-axis numerical propagation is the Shift-FR [5], 
which makes it possible to change the sampling distance and the center of the sampling area 
in the destination plane by applying a scaled FFT to the SFT-FR method. Although this is an 
excellent method, it causes a serious problem in short-distance propagation as discussed in 
Section 4. 
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Fig. 2. The coordinate system used for formulation. 

3. Formulation of the shifted angular spectrum method 

3.1 The angular spectrum method for shifted coordinates 

The coordinate system used for the formulation is shown in Fig. 2. The source field ( , , 0)g x y  

is given in the source plane ( , , 0)x y , while the destination field 
0

ˆ ˆ( , , )g x y z  is given in the 

destination plane 
0

ˆ ˆ( , , )x y z , in that the origin of the lateral coordinates x̂  and ŷ  is shifted 

from the source coordinates as follows: 

 
0

0

ˆ

ˆ

x x x

y y y

= −

= −
  (1) 

Without any shifts (
0 0

0x y= = ), the spectrum of the destination field is given by a 

convolution form of the Rayleigh-Sommerfeld integral (see Section 2.1 in [8]). 

 
0 0 0

0

ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , )

( , , 0) ( , , )

g x y z g x y z g x y z

g x y h x x y y z dx dy

= =

′ ′ ′ ′ ′ ′= − −∫∫
  (2) 

where 
0

( , , )h x y z  is the propagation kernel (the impulse response) of the Rayleigh-

Sommerfeld formula. This convolution is rewritten using the convolution theorem as: 

 
0 0

( , ; ) ( , ; 0) ( , ; ),G u v z G u v H u v z=   (3) 

where u  and v  are Fourier frequencies with respect to x  and y , respectively. The spectrum 

of the source field is given as: 

 
[ ]

{ }

( , ; 0) ( , , 0) exp 2 ( )

( , , 0) .

G u v g x y i ux vy dxdy

F g x y

π= − +

=

∫∫
  (4) 

Here, F  represents the Fourier transform. The transfer function 
0

( , ; )H u v z  is given by: 

 

[ ]

( )
0 0

1/2
2 2 2 2 2 2

( , ; ) exp 2 ,

 
( , )

0  otherwise

H u v z i wz

u v u v
w w u v

π

λ λ− −

=

 − − + ≤
= = 



⋯

⋯

  (5) 

where λ  denotes the wavelength. 

In cases with shifted coordinates (
0

0x ≠ and/or
0

0y ≠ ), Eq. (2) is rewritten as: 
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0 0 0 0

0 0 0

ˆ ˆ ˆ ˆ ˆ( , , ) ( , , )

ˆ ˆ( , , 0) ( , , ) .

g x y z g x x y y z

g x y h x x x y y y z dx dy

= + +

′ ′ ′ ′ ′ ′= + − + −∫∫
  (6) 

This can be rewritten using the convolution theorem and shift theorem of the Fourier 
transform as: 

 

0 0

0 0 0 0

0 0 0

ˆ ˆ( , ; ) ( , ; 0) ( , ; ),

ˆ ( , ; ) ( , ; ) exp[ 2 ( )]

exp[ 2 ( )]

G u v z G u v H u v z

H u v z H u v z i x u y v

i x u y v z w

π

π

=

= +

= + +

  (7) 

Consequently, we obtain the destination field as follows: 

 { }1

0 0
ˆˆ ˆ ˆ( , , ) ( , ; ) .g x y z F G u v z−=   (8) 

Nevertheless, simple numerical implementations of the above procedure are most likely to 
cause considerable sampling problems as described in the next section. 

3.2 One-dimensional wave fields 

For simplicity, one-dimensional wave fields that are a function of x are discussed in this 
section. In this case, the transfer function of Eq. (7) is redefined as follows: 

 
[ ]

( )
0 0

1/2
2 2

0 0 0

ˆ ( ; ) exp ( ; ) ,

( ; ) 2 .

H u z i u z

u z x u z u

φ

φ π λ −

=

 = + −  

  (9) 

The local signal frequency of the transfer function is given by [16]: 

 

( )
0 01/2

2 2

1

2

,

u
f

u

u
x z

u

φ
π

λ −

∂
=

∂

= −
−

  (10) 

where the local signal frequency denotes neither physical frequencies of time nor space, but 

the frequency of peaks and valleys in the function 
0

( ; )H u z  in a certain period u. Therefore, 

supposing that the transfer function is sampled at intervals of u∆ , the Nyquist theorem 

requires the following relation to avoid sampling problems: 

 
1

2 .
u

u f
−∆ ≥   (11) 

By substituting Eq. (10) into Eq. (11), the Nyquist condition is rewritten as: 

 

( )
0 01/2

2 2
0 0

1 1 1 1

2 2

u
x x

u z u zuλ −

   − ≤ ≤ +   ∆ ∆   −
  (12) 

Finally, the conditions are summarized in the following three cases: 

 

( ) ( )

limit limit 0

( ) ( )

limit limit 0

( ) ( )

limit limit 0

 if

 if

 if

x

x x

x

u u u S x

u u u S x S

u u u x S

− +

− +

− +

 < < <

− < < − ≤ <

− < < − ≤ −

⋯

⋯

⋯

  (13) 

where 1(2 )
x

S u −= ∆  is the size of the source sampling window. Here, it should be noted that 

the size of the sampling window is given by 1(2 )
x

S u
−= ∆ , and not by 1

x
S u

−= ∆ , since the 
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source sampling window is doubled to linearize the discrete convolution, as described in 

Section 2.2 in [8]. The constant ( )

limit
u

±  is given by 

 

1/2
2

( ) 2 1

limit 0 0

1
1 .

2
u x z

u
λ

−−
± −

  ≡ ± +  ∆   
  (14) 

Where 
0

0x = , this agrees with 
1/2

2 1

limit (2 ) 1u uz λ
− − ≡ ∆ +   defined in Eq. (13) in [8]. 

u

λ−1/10

( )

limitu
−− ( )

limitu
+

{ }0
ˆRe ( ; )H u z

Aliasing error

 

Fig. 3. Example of a sampled transfer function. Only the real part of 
0

ˆ ( ; )H u z  is depicted in 

the sampling interval 
1 1(2 ) (2 )

x x
u S N x− −∆ = = ∆ , where 1024

x
N = , 2x λ∆ = , 

0
/ 2

x
x S= + , and 

0
20

x
z S= . 

Table 1. Constants used for the band-limit to avoid aliasing errors 

Case 
0

u  
width

u   Case 
0

v  
width

v  

0x
S x<  

( ) ( )

limit limit
( ) 2u u+ −+ ( ) ( )

limit limit
u u+ −−  0y

S y<  ( ) ( )

limit limit
( ) 2v v+ −+ ( ) ( )

limit limit
v v+ −−

0x x
S x S− ≤ <

 

( ) ( )

limit limit
( ) 2u u+ −−

 

( ) ( )

limit limit
u u+ −+

 

 0y y
S y S− ≤ <

 

( ) ( )

limit limit
( ) 2v v+ −−

 

( ) ( )

limit limit
v v+ −+

 
0 x

x S≤ −  
( ) ( )

limit limit
( ) 2u u+ −− +

 

( ) ( )

limit limit
u u− +−

 

 0 y
y S≤ −  

( ) ( )

limit limit
( ) 2v v+ −− +

 

( ) ( )

limit limit
v v− +−

 

An example of the sampled function of 
0

ˆ ( ; )H u z  is depicted in Fig. 3. Here, the center of 

the destination sampling window is shifted by an amount half the size of the sampling window 

in this example, i.e., 
0

/ 2
x

x S= + is assumed. Since aliasing errors occur below ( )

limit
u

−−  or 

above ( )

limit
u

+ , in this case the sampled transfer function and the source field should be band-

limited within ( ) ( )

limit limit
u u u− +− < <  to avoid aliasing errors. 

Consequently, the transfer function for shifted coordinates is given by: 

 0

0 0

width

ˆ ˆ( ; ) ( ; ) rect ,
u u

H u z H u z
u

 −
′ =  

 
  (15) 

where rect( )ξ  is a rectangular function with unity width. The constants 
0

u  and 
width

u  are 

given in Table 1. 

3.3 Two-dimensional wave fields 

In two-dimensional cases, the Nyquist condition is given as two-dimensional regions in the 

( , )u v  plane. The local signal frequencies of the function 
0 0

ˆ ( , ; ) exp[ ( , ; )]H u v z i u v zφ=  are 

given by: 
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0 0 0 0

1 1
,      ,

2 2
u v

u v
f x z f y z

u w v w

φ φ
π π

∂ ∂
= = − = = −

∂ ∂
  (16) 

where 
0 0 0 0

( , ; ) 2 ( )u v z x u y v z wφ π= + + . The Nyquist conditions are given by: 

 
1

2 ,
u

u f
−∆ ≥   (17) 

 
1

2 ,
v

v f
−∆ ≥   (18) 

where 
1

(2 )
y

v S
−∆ =  is the sampling interval and Sy is the size of the source sampling window 

in the y direction. Note that the sampling window is also doubled in the y direction to linearize 
the discrete convolution. 

Both conditions Eqs. (17) and (18) should be satisfied simultaneously to avoid sampling 
problems in two-dimensional wave fields. Since these conditions are very similar, let us 

formulate the region that satisfies only condition Eq. (17) in the ( , )u v space as follows: 

Case (i): 
0x

S x<  

 
2 2 2 2

2 2 2 2
( ) ( )

limit limit

0  and  1  and  1,
u v u v

u
u uλ λ− −− +

≥ + ≥ + ≤
      

  (19) 

Case (ii): 
0x x

S x S− ≤ <  

 
2 2 2 2

2 2 2 2
( ) ( )

limit limit

1  and  0   or  1  and  0 ,
u v u v

u u
u uλ λ− −− +

   
   + ≤ ≤ + ≤ >
            

  (20) 

Case (iii): 
0 x

x S≤ −  

 
2 2 2 2

2 2 2 2
( ) ( )

limit limit

0  and  1  and  1.
u v u v

u
u uλ λ− −+ −

≤ + ≥ + ≤
      

  (21) 

Here, the region satisfying the other condition [Eq. (18)] is simply obtained by switching 
the symbols x  and u  to y  and v  in the above relations, respectively. Note that the region 

under the conditions 
0

0x =  or 
0

0y = , that is, the special case of (ii) is given by: 

 
2 2 2 2

2 2 2 2

limit limit

1,     1.
u v u v

u vλ λ− −
+ ≤ + ≤   (22) 

These agree with relations Eqs. (18) and (19) in [8]. 
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v

u

λ−1−λ−1

λ−1

−λ−1

Case (i) :
0x

S x<

0
0

x
S x− ≤ <

Case (ii)

2 2

2 2( )

limit

1
u v

u λ −−
+ =

  

2 2

2 2( )

limit

1
u v

u λ −+
+ =

  
2 2

2 2

limit

1
u v

vλ−
+ =

v

u

λ−1−λ−1

λ−1

−λ−1

v

u

λ−1−λ−1

λ−1

−λ−1

0 x
x S≤ −Case (iii) :

u

λ−1−λ−1

λ−1

−λ−1

2 2

2 2( )

limit

1
u v

u λ −−
+ =

  

2 2

2 2( )

limit

1
u v

u λ −+
+ =

  
2 2

2 2

limit

1
u v

vλ−
+ =

0
0

x
x S≤ <

v

 

Fig. 4. Schematic illustrations of frequency regions to avoid aliasing errors of the sampled 

transfer function. Here, 
0

0x ≠  and 
0

0y = . 

Relations Eqs. (19)–(21) for shifting 
0

x  give a region specified by the combination of 

vertical ellipsoidal regions with a major diameter 2λ
−1

 in the (u, v) plane, while the relations 

for shifting 
0

y  give horizontal ellipsoidal regions. Figure 4 shows these ellipsoidal regions in 

cases where 
0

0x ≠  and 
0

0y = . In this figure, the overlap regions that satisfy both Nyquist 

conditions Eqs. (17) and (18) are schematically depicted as red-hatched areas. The sampled 
transfer function should be limited in the overlap region to avoid sampling problems. This is 
equivalent to limiting the bandwidth of the source field within the overlap region. 

Here, note that the inside ellipse in Case (i) is switched to the outside ellipse in Case (iii). 

This switching occurs when 
0

x  changes its sign in Case (ii). Although Eq. (20) seems, in a 

sense, to be written as a separate form, the mathematical expression of Case (ii) is the same, 

irrespective of the sign of 
0

x . 

3.4 Approximated rectangular region to avoid aliasing errors 

Regions that avoid sampling problems are considerably more complicated in two-dimensional 

wave fields. However, in most cases where 
0

 and 
x y

z S S> , the two-dimensional region can 

be approximated as a simple rectangular region by combining the one-dimensional relations 
of Eq. (13). An example of the approximated region is illustrated schematically in Fig. 5. 
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v

u
λ−1−λ−1

λ−1

−λ−1

( )

limitu
− ( )

limitu
+

( )

limitv
−−

( )

limitv
+−

 

Fig. 5. Schematic illustrating the approximated rectangular region for the band-limit of a two-

dimensional wave field. Here, the region is depicted with 
0 x

x S> +  and 
0 y

y S< −  as an 

example. 

Finally, the sampled transfer function for two-dimensional wave fields is approximately 
given by: 

 0 0

0 0

width width

ˆ ˆ( , ; ) ( , ; ) rect rect ,
u u v v

H u v z H u v z
u v

   − −
′ =    

   
  (23) 

where the additional constants are listed in Table 1 with: 

 

1/2
2

( ) 2 1

limit 0 0

1
1 .

2
v y z

v
λ

−−
± −

  ≡ ± +  ∆   
  (24) 

4. Numerical verification of the shifted angular spectrum method 

The optical setup used for numerical verification is shown in Fig. 6(a). We assume that a 

plane wave travels at an incident angle of θ . Supposing that the plane wave is diffracted by a 

circular aperture, we calculate the diffracted field in the plane at position 
0

z . Here, the source 

field including the plane wave and the aperture is sampled at intervals of 8 mx y µ∆ = ∆ = and 

the number of sampling points is 1024
x y

N N= = . Thus, the source sampling area is 

2
8.192 8.192 mm

x y
S S× = × . The incident angle and wavelength of the plane wave are 

1.5θ = �  and 532 nmλ = , respectively. The amplitude and phase images of the sampled 

source field are shown in Fig. 6(b). 
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θ

z0

x

D = 6 mm
y

xSy = 

8.192 mm
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8.192 mm

(a) (b)

z

Amp. Phase

 

Fig. 6. Setup for (a) numerical simulation of off-axis propagation, and (b) the sampled source 
field used in the simulation. 
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(a) z0 = 5 cm, x0 = 0.4 cm

Shift-AS
(This work)

Shift-FR

BL-AS

(b) z0 = 10 cm, x0 = 0.4 cm (c) z0 = 40 cm, x0 = 1 cm  

Fig. 7. Amplitude images of the destination fields calculated for different propagation and shift 
distances using three different methods. 

The diffracted field is calculated using three different methods: the band-limited angular 
spectrum (BL-AS), shifted Fresnel (Shift-FR), and shifted angular spectrum method (Shift-
AS) proposed in this paper. Since the BL-AS is not a method for off-axis numerical 
propagation, the number of sampling points in the source field is doubled both on the x- and y-
axes so that the diffracted field is included within the destination sampling window. In 
addition, the approximated transfer function given by Eq. (23) is used for calculating the 
Shift-AS. 

The calculated destination field is shown in Fig. 7(a)–7(c) for three positions of z0. The 
shift of the destination sampling window is x0 = 0.4 cm both for z0 = 5 cm in (a) and 10 cm in 
(b), whereas x0 = 1 cm for z0 = 40 cm in (c). In the case of z0 = 5 cm in (a), the position of the 
destination field is shifted slightly along the x-axis because of the slanted plane wave. In this 
case, the field calculated by the Shift-AS agrees with that by the BL-AS, whereas the field by 
the Shift-FR disagrees with these fields because of the aliasing error. The field calculated by 
the Shift-FR is also not normal in z0 = 10 cm in (b), while the BL-AS and Shift-AS again give 
similar fields. 

In the case of z0 = 40 cm in (c), the destination field lies outside the extended sampling 
area of the BL-AS. However, the Shift-AS and Shift-FR can calculate the field within the 
sampling area owing to their off-axis property. The Shift-FR, in this case, gives the same 
result as that using the Shift-AS, due to the long distance of the propagation. 
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Fig. 8. Model for discussing the highest and lowest spatial frequencies required for off-axis 
numerical propagation. 

5. Discussion on the limit frequency 

We limit the spatial frequencies of the source fields to a band specified by ( )

limit
u ± . This limit 

frequency can be physically interpreted as the local spatial frequency of the field emitted from 
a point within the source sampling window, as shown in Fig. 8. The highest spatial frequency 
is given by the field emitted from the point at the lower end of the source sampling window to 
the point at the upper end of the destination window. The lowest frequency is given in the 

same manner. Here, angles 
max

θ  and 
min

θ  in Fig. 8 are given by the geometry of the source 

and destination window as follows: 

 
( )

( )

1/2
2

max 0 0 0

1/ 2
2

min 0 0 0

sin ( ) ,

sin ( ) .

x x

x x

x S z x S

x S z x S

θ

θ

 = + + + 

 = − + − 

  (25) 

By substituting 1(2 )
x

S u −= ∆ , the highest and lowest spatial frequencies are given by: 

 

( )

high max l imit

( )

low min l imit

sin ,

sin .

u u

u u

θ λ

θ λ

+

−

= =

= =
  (26) 

As a result, the limits imposed on the frequencies by the procedure to avoid sampling 
problems are in agreement with the highest and lowest frequencies. Therefore, we can 

interpret the condition specified by ( )

limit
u ±  as the frequency band that is required to physically 

propagate the source wave field onto the shifted destination area. 

6. Conclusion 

A numerical technique called the shifted angular spectrum method is proposed for off-axis 
numerical propagation. The Shift-AS is a generalization of the band-limited angular spectrum 
method, and therefore, the method does not have any defined restrictions on the propagation 
distance. This new method makes it possible to calculate exact wave fields without any 
aliasing errors, such as those caused by the shifted Fresnel method. 
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