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Abstract: A novel method is proposed for simulating free-space 
propagation. This method is an improvement of the angular spectrum 
method (AS). The AS does not include any approximation of the 
propagation distance, because the formula thereof is derived directly from 
the Rayleigh-Sommerfeld equation. However, the AS is not an all-round 
method, because it produces severe numerical errors due to a sampling 
problem of the transfer function even in Fresnel regions. The proposed 
method resolves this problem by limiting the bandwidth of the propagation 
field and also expands the region in which exact fields can be calculated by 
the AS. A discussion on the validity of limiting the bandwidth is also 
presented. 
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1. Introduction 

The study of the propagation of wave fields in homogeneous and isotropic mediums has a 
long history. However, many researchers are still reporting new methods for numerical 
simulation of free-space propagation. In recent years, developments in computational 
holography such as digital holography or computer-generated holograms (CGH), have 
obviously driven this investigation. In digital holography, object fields are recorded using an 
image sensor and a numerical reconstruction is obtained as amplitude or phase images of the 
wave field that is numerically propagated to a plane around the object surface from the sensor 
[1–3]. This propagation process can be regarded as digital signal processing of light. 
Therefore, various reconstructions that are impossible in ordinary digital imaging are possible 
in digital holography. For example, free viewpoint images [4] and a clear image of a deeply 
tilted surface [5] have been presented in digital holography using specific numerical 
propagation methods for the purpose. In the field of CGHs, numerical propagation also plays 
an important role in synthesizing object waves numerically [6–8]. 

There are three main methods for propagating wave fields between parallel planes [9]. 
These methods, commonly based on the fast Fourier transform (FFT), are referred to in this 
paper as the single Fourier-transform-based Fresnel method (SFT-FR), the convolution-based 
Fresnel method (CV-FR), and the angular spectrum method (AS). There is also another 
category of numerical propagation, that is, propagation between non-parallel planes [5,10–
13], Methods for this type of propagation are usually given as an extension or modification of 
the parallel propagation methods. 

The SFT-FR is simple and the fastest of the three methods as it uses only a single FFT. 
However, it has a serious disadvantage, in that the sampling window and intervals are 
proportionate to the propagation distance. To overcome this problem and add the ability to 
control the sampling intervals, the multi-step Fresnel method [14–16] and shifted Fresnel 
method (Shift-FR) [17] have been proposed as improvements to the original SFT-FR. 

The CV-FR and AS are convolution-based methods, and as such, require at least two FFTs 
in the computation. The sampling window and intervals are not dependent on the propagation 
distance, i.e., they are always the same as the source field. The CV-FR is suitable for paraxial 
wave fields, while the AS is applicable to both non-paraxial fields and paraxial fields, since 
the formulas of the AS are derived directly from the Kirchhoff or Rayleigh-Sommerfeld 
diffraction theory without approximation. The CV-FR can be regarded as a kind of Fresnel 
approximation and a subset of the AS. Therefore, the behavior of the CV-FR is similar to that 
of the AS except in non-paraxial fields. Hence, we focus on the AS and barely consider the 
CV-FR in subsequent sections. 

The current AS is, however, not an all-round method. It is suitable only for near field 
regions, whereas the SFT-FR and its family of algorithms are suitable for numerical 
propagation in far fields [18]. The reason that the AS is not applicable for far field 
propagation is the sampling problem in its transfer function. Since the CV-FR is also not 
suitable for far-field calculation for the same reason, a multi-step method has been proposed 
for the CV-FR [19]. This method, however, causes a different error especially in long distance 
propagation, because the cascaded sampling windows used are equivalent to diffraction by 
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cascaded apertures. In addition, the computation time of the method is equal to the product of 
the number of the steps and the computation time of the original CV-FR. Total computation 
time is, therefore, much greater than that of the original method, especially in multiple step 
cases. This technique is applicable to the AS without any modification, but causes the same 
problem. 

Consequently, the current AS is not suitable for long distance propagation. The field size 
usually increases with increasing the propagation distance, whereas the size of the output 
sampling window of the AS does not change during propagation. Therefore, to achieve long 
distance propagation without sampling problem, the input sampling window must be extended 
so as to cover the whole filed in the output diffraction plane. This, however, requires a high 
computational effort. If the whole field in the diffraction plane is necessary for a specific 
purpose, there is no method other than the extension of the sampling window. However, in 
some cases, only a small region of the diffraction field within the aperture of an optical 
element is necessary for numerical simulation. In this case, the current AS has the big 
disadvantage. These sampling and window size problems of the AS already pointed out in 
early works using the AS [20]. 

We note that direct integration methods of Rayleigh-Sommerfeld diffraction formula are 
suitable for this kind of simulation [21]. However, the methods require three FFTs for the 
computation, whereas the AS can be executed by two FFTs. 

In this paper, we propose an improved AS that features suitability for long distance 
propagation as well as short distance propagation. This new method resolves the sampling 
problem in the AS and avoids the aliasing error of the transfer function by limiting the 
bandwidth and truncating unnecessary high-frequency signals in the input source field. 
Computation time of the proposed method is the same as the original AS. The suitability of 
limiting the bandwidth is also discussed in relation to the minimum bandwidth required for 
exact numerical propagation. 

 

Fig. 1. Definition of the coordinate system and the geometry of the model. 

2. The angular spectrum method and its inherent problem 

2.1 Formulation of the angular spectrum method 

The coordinate system used in formulation is shown in Fig. 1. Source fields given in the 
source plane (x, y, 0) are propagated to the destination plane parallel to the source plane. The 
AS is equivalent to the Rayleigh-Sommerfeld formula [21]. Here, the Rayleigh-Sommerfeld 

solution for an input monochromatic source field ( , ,0)g x y  is given by: 

 
( )1

exp 2 ' 1 1
( , , ) ( ', ', 0) ' ',

' ' 2 '

i r
g x y g x y dx dy

r r r i

π λ

π λ

−
 = + 
 ∫∫

z
z  (1) 
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where ( ) ( )
1/2

2 2 2' ' 'r x x y y = − + − + z  and λ is the wavelength. This diffraction integral is 

rewritten by a convolution form using the propagation kernel (the impulse response) 

( , , )h x y z  as follows: 

 ( , , ) ( , ,0) ( , , ),g x y g x y h x y= ∗z z  (2) 

where the symbol ∗  represents the two-dimensional convolution with respect to x and y. The 
propagation kernel is given by 

 
( )1

exp 2 1 1
( , , ) ,

2

i r
h x y

r r r i

π λ

π λ

−
 = + 
 

z
z  (3) 

where ( )1/ 2
2 2 2

r x y= + + z . The convolution of Eq. (2) is rewritten using the convolution 

theorem as: 

 ( , ; ) ( , ;0) ( , ; ).G u v G u v H u v=z z  (4) 

Here, the spectrum, ( , ;0)G u v , and the transfer function, ( , ; )H u v z , are given by: 

 
[ ]

{ }

( , ;0) ( , ,0) exp 2 ( )

( , ,0) ,

G u v g x y i ux vy dxdy

F g x y

π= − +

=

∫∫
 (5) 

and 

 
{ }
[ ]

( , ; ) ( , , )

exp 2 ,

H u v F h x y

i wπ

=

=

z z

z
 (6) 

where F  represents the Fourier transform. The symbols u, v, and w are Fourier frequencies in 
the x, y, and z directions, respectively. These frequencies are not independent, i.e., frequency 
w is a function of u and v: 

 
( )1/2

2 2 2 2 2 2
 

( , )
0  otherwise

u v u v
w w u v

λ λ− − − − + ≤
= = 



⋯

⋯

 (7) 

Consequently, the AS is formulated as follows: 

 [ ]{ }1
( , , ) ( , ;0) exp 2 ( , ) .g x y F G u v i w u vπ−=z z  (8) 

Note that the impulse response and transfer function in the case of the Fresnel 
approximation are given, respectively, as: 

 

( )

2 2
1

FR

2 2

FR

1
( , ; ) exp 2 ,

2

2
( , ; ) exp .

x y
h x y i

i z

H u v i u v

πλ
λ

π λ
λ

−  +
= +  

  

  = − +    

z z
z

z z

 (9) 

In the CV-FR, the transfer function 
FR

( , ; )H u v z  is used instead of ( , ; )H u v z . 

2.2 Discrete linear convolution in the convolution-based methods 

All wave fields, spectrums, and the transfer function are sampled using an equidistant grid in 
a numerical simulation. Fourier transforms of Eqs. (5) and (8) are also replaced by the FFT. 
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However, a discrete Fourier transform of the sampled input field of ( , ,0)g x y  involves 

periodicity of the fields in both the Fourier and real space, and therefore, the convolution with 
the transfer function using the FFT is a circular convolution. The terminology, circular 
convolution, is of the field of signal processing. Since circular convolution is for periodic 

functions, an error is caused by aperiodic functions of ( , ,0)g x y and ( , , )h x y z  in the edge of 

the computation window of ( , , )g x y z . If the spatial extent of the output field ( , , )g x y z  is 

sufficiently small compared with the computation window and invasion of the fields in 
neighbor periods can be ignored, the influence of the circular convolution may be within a 
permissible level. However, in cases where the field diffuses strongly and runs over the 
computation window in the output plane, numerical propagation by convolution-based 
methods such as the AS or CV-FR no longer gives accurate results. 

 

Fig. 2. Conversion of a circular convolution into a linear convolution in cases where the origin 
of the coordinates system is placed at the center (a) and the left lower corner (b) of the 
sampling array. 

To convert a circular convolution to a linear convolution, the area of the sampling window 
of the input field needs to be doubled along both the x- and y-axes as shown in Fig. 2, and the 
additional sampling points must be padded with zeros. Furthermore, the output window 
should be clipped and reduced to the original size once again. The manner of this clipping 
depends on the position of the input window in the given coordinates, as shown in Fig. 2. If 
the origin of the coordinates system is placed at the center of sampling array as shown in (a), 
the clipped output window is the same as that of the input sampling window, whereas if the 
origin is at the left lower corner, the output window is right upper quadrant of the sampling 
array and the origin is again left lower corner of the clipped output window. 

2.3 Numerical errors of the angular spectrum method in long distance propagation 

Computational results of long distance field propagation using the AS are not accurate, even if 
the convolution is linearized. To verify accuracy of the AS, one-dimensional diffraction by a 
rectangular aperture shown in Fig. 3 is computed by three methods. Here, the sampling 

interval and the number of samplings are 2x λ∆ =  and 1024
x

N = , respectively, in the source 

and destination, and therefore the size of the sampling window is 2048
x

S λ= . The width of 

the rectangular aperture and the propagation distance are / 2
x x

W S=  and 50
x

S=z , 

respectively. 
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Fig. 3. Numerical simulation for verifying accuracy of the AS. 

Amplitude distributions computed by the AS, Shifted-FR, and numerical integration of the 
diffraction integral, are shown in Fig. 4(a). Here, the numerical integration of Eq. (1) is 
calculated by using the trapezium rule. To ensure that errors of numerical integration are 
sufficiently smaller than that in other methods, the step size of numerical integration, which 
strongly affects the accuracy, is reduced to a value that the resultant wave field is no longer 
changed below. 

 

Fig. 4. Comparison of the accuracy of the AS and Shift-FR. (a) One-dimensional amplitude 
distribution in the destination plane. (b) SNR of the AS and Shift-FR. 

The Shift-FR gives almost the same results as the numerical integration, whereas the 
results obtained by the AS are very noisy. A comparison of accuracy between the AS and 
Shift-FR is shown as a function of the propagation distance in Fig. 4(b). Accuracy is defined 
as the SNR of the wave fields calculated by the methods as compared with the reference fields 
[11]. Here the reference field is provided by numerical integration. Although the AS obtains 
good results in the near field regions, the accuracy declines for distances greater than 

about10
x

S . 

We note that this numerical error of the AS can be avoided by extending the sampling 
window and computing the whole field. The exact result can be obtained by clipping the 
interest region of the whole field. However, this procedure requires a huge computational 
effort especially in long distance propagation of two dimensional wave fields. 

3. The aliasing error of the sampled transfer function 

3.1 One-dimensional wave fields 

For simplicity, one-dimensional wave fields that are a function of x are discussed in this 
section. The transfer function of Eq. (6) for the AS is a kind of chirp function with respect to 
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u, i.e., the signal frequency increases as u increases. Note that “signal frequency” as used here 
refers neither to physical frequencies of time nor space, but means the frequency of peaks and 

valleys of the function ( ; )H u z  in a certain period of u. 

Supposing that the one-dimensional transfer function of the AS is redefined as follows: 

 
[ ]

( )1/2
2 2

( ; ) exp ( ) ,

( ) 2 ,

H u i u

u u

φ

φ π λ −

=

= −

z

z
 (10) 

the local signal frequency of the function ( ; )H u z  is given by [22]: 

 

1/2
2 2

1

2

.

uf
u

u

u

φ
π

λ −

∂
=

∂

=
 − 

z  (11) 

When the transfer function is sampled at intervals of u∆ , an aliasing error may be introduced 

in the sampled transfer function, as shown in Fig. 5. Note that the sampling interval is given 

by 1(2 )
x

u S
−∆ = and not by 1

x
u S

−∆ = , because the source sampling area is doubled to 

linearize the discrete convolution, as mentioned in Section 2.2. 

 

Fig. 5. Example of a sampled transfer function of the AS. Only the real part of the transfer 

function ( ; )H u z  is depicted in the sampling interval 
1 1

(2 ) (2 )
x x

u S N x
− −∆ = = ∆ , where 

1024
x

N = , 2x λ∆ = , and 50
x

S=z . 

The Nyquist theorem requires the following relation to avoid the aliasing error in the 
sampled transfer function. 

 
1

2 .
u

u f
−∆ ≥  (12) 

This relation provides the means to determine the sampling intervals of the transfer function 
when band limited wave fields are numerically propagated. However, in practical applications 
such as digital holography, the sampling intervals are generally fixed and cannot be freely 
chosen. Therefore, the frequency range for which the transfer function causes no aliasing error 
must be determined by Eq. (12) as follows: 

 
1/2

2

limit

1

(2 ) 1

.

u
u

u

λ
≤
 ∆ + 

≡

z  (13) 

As a result, the transfer function must be clipped within a bandwidth of 
limit

2u . 
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limit

( ; ) ( ; )rect ,
2

u
H u H u

u

 
′ =  

 
z z  (14) 

where rect( )ξ  is a rectangular function with width unity. 

The wave field calculated by the AS using the band-limited transfer function of Eq. (14) is 
shown in Fig. 6(a). The errors seen in Fig. 4(a) have disappeared and the SNR does not 
decrease in long distance propagation as shown in Fig. 6(b). 

 

Fig. 6. Accuracy of the band-limited AS proposed in this work. (a) One-dimensional amplitude 
distribution in the destination plane. (b) SNR of the AS and Shift-FR. Parameters used in the 
calculation are the same as in Fig. 4. 

3.2 Two-dimensional wave fields 

To avoid aliasing errors, the region of the two-dimensional transfer function of Eq. (6) must 
be limited, by applying the same procedure as in the one-dimensional case. The local signal 

frequency of the function ( , ; ) exp[ ( , )]H u v i u vφ=z  is given by: 

 
1/2

2 2 2

1
,

2
u

u
f

u u v

φ
π λ −

∂
= =

∂  − − 

z
 (15) 

 
1/2

2 2 2

1
,

2
v

v
f

v u v

φ
π λ −

∂
= =

∂  − − 

z
 (16) 

where ( )1/2
2 2 2

( , ) 2u v u vφ π λ −= − − z . Relations to avoid the aliasing error are given by: 

 
1 1

2    and   2 ,
u v

u f v f
− −∆ ≥ ∆ ≥  (17) 
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Fig. 7. Regions in the ( , )u v  space to avoid aliasing errors of the sampled transfer function. 

The sampling intervals in the Fourier space are 
1 1

(2 ) (2 )
x y

u v S S
− −∆ = ∆ = =  for the sampling 

windows 
x x

S N x= ∆  and 
y y

S N y= ∆  in the real space, where 1024
x y

N N= =  and 

2x y λ∆ = ∆ = . 

where 
1

(2 )
y

v S
−∆ =  is the sampling interval for the spatial frequency v and Sy is the size of the 

sampling window in the y direction. Both relations in (17) must be satisfied in order to avoid 
the aliasing error in two-dimensional wave fields. 

Consequently, the sampled transfer function is limited within the region expressed by: 

 
2 2

2 2

limit

1,
u v

u λ −
+ ≤  (18) 

 
2 2

2 2

limit

1,
u v

vλ −
+ ≤  (19) 

where 
limit

u  is defined in Eq. (13) and 
limit

v  is given by: 

 
1/ 2

2 1

limit (2 ) 1 .v v λ
− − = ∆ + z  (20) 

Although both relations give ellipsoidal regions with major diameter 2λ
−1

 in the (u, v) plane as 
shown in Fig. 7, Eq. (18) depicts a vertical ellipse, whereas Eq. (19) produces a horizontal 
one. The transfer function and the spectrum of the wave field must be limited within the 
common region of these ellipsoidal regions. 

Minor radii of the ellipsoidal regions for Eqs. (18) and (19) are given by 
limit

u  and 
limit

v , 

and therefore, the eccentricities are given by 2 u∆ z  and 2 v∆ z , respectively. If either 

eccentricity of the ellipses is sufficiently greater than zero, the ellipse is oblate enough to 

regard the region as a rectangle within the sampling window of 1
x
−∆  and 1y−∆ , as shown in 

Fig. 8. Therefore, the ellipsoidal region can be approximated by a simple form in this case. 
When we adopt a value of 1/2 as the criterion of the eccentricity, the approximated regions 
and the criteria for applying the approximation are given by: 

 
limit

    if   2 ,
x

u u S≤ ≪ z  (21) 

 
limit

    if   2 ,
y

v v S≤ ≪ z  (22) 

where Sx and Sy are again the sizes of the sampling window in the x and y directions, 
respectively. Note that the sampling intervals in the linearized convolution are once again 
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given by 1(2 )
x

u S −∆ =  and 
1

(2 )
y

v S
−∆ = . As a result, if the condition  and 2

x y
S S ≪ z  is 

satisfied, the common region is a simple rectangle. In this case, the band-limited transfer 
function is written as: 

 
limit limit

( , ; ) ( , ; )rect rect .
2 2

u v
H u v H u v

u v

   
′ =    

   
z z   (23) 

Amplitude images of the output fields calculated using the original and the band-limited 
AS are shown in Fig. 9. These fields are diffracted by square and circular apertures. 
Numerical errors such as high-frequency noise found in the original AS are not present in the 
band-limited AS. 

 

Fig. 8. A schematic illustration of the approximated rectangular region. 

 

Fig. 9. Amplitude images calculated by the original and band-limited AS. (a) Diffraction by a 

square aperture with dimensions 2 2
x y

S S×  and z = 100 Sx. (b) Diffraction by a circular 

aperture with diameter Sx/2 and z = 200 Sx. 
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Fig. 10. Model for the minimum bandwidth required for exact calculation of field propagation. 

4. Discussion on the minimum bandwidth required for exact numerical propagation 

We can improve the angular spectrum method by limiting bandwidth of the sampled transfer 
function. However, because limiting bandwidth of the transfer function is equivalent to 
limiting bandwidth of the propagation field, the question arises of what bandwidth of the 
propagation field is required for accurate calculation. 

A model for estimating the minimum bandwidth necessary for exact numerical 

propagation is shown in Fig. 10. An aperture with size 
x

W  is placed at the center of a 

sampling window with size 
x

S . The highest spatial frequency, observed at the upper end of 

the destination sampling window, may be given by the field emitted from the point at the 
lower end of the source window. Therefore, the maximum frequency is given by 

max
sin /u θ λ=  using the angle θ  shown in Fig. 10 [16]. 

We introduced a band-limit of 
limit

2u into the source field and the transfer function in order 

to avoid numerical errors. However, if the cutting frequency is less than the maximum 

frequency, i.e. 
limit max

u u< , we might introduce another physical error into the diffraction 

field, because the source field loses a part of the frequency band necessary for exact 
diffraction. 

Supposing that the destination plane is placed at a distance z from the aperture, the 
required minimum bandwidth is obtained from the geometry of the model as follows: 

 

1/ 2
2

1

need max

2
2 2 1 .

x x

z
u u

W S
λ

−

−
  
 ≡ = + 

+   
 (24) 

When the size of the aperture 
x

W  is the same as the size of the sampling window 
x

S , 
need

u  

has the maximum value, which is the same as 
limit

2u  defined in Eq. (13), otherwise 
need

u  is 

always less than 
limit

2u . As a result, the bandwidth of the proposed method always satisfies 

the condition of the minimum bandwidth. 
In Fig. 11, the SNR is depicted as a function of the bandwidth of the propagation field in 

the AS. For the normal sampling of ( ) 1
2

x
u S

−
∆ = , the SNR has the maximum value for a 

bandwidth around 
limit

2u , and it decreases rapidly for bandwidths below 
need

u . In the case of 

the over sampling of ( ) 1
4

x
u S

−
∆ = , since the numerical error owing to the sampling problem 

is not caused, the SNR does not decrease for bandwidths above 
limit

2u , and there is no clear 

peak in the curve. However, the SNR decreases for bandwidths below 
need

u  as in the normal 
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sampling. This means that the error in bandwidths below 
need

u  is not attributed to numerical 

problems but physical property of field propagation. 
These results verify the validity of the idea of a minimum bandwidth of field propagation 

and the suitability of limiting bandwidth proposed in this paper. 

 

Fig. 11. SNR as a function of bandwidth in the AS in cases of the normal sampling (black solid 

line) and over sampling (red broken line). Here / 2
x x

W S=  and 50
x

S=z . The other 

parameters are the same as in Fig. 4. 

5. Conclusion 

We proposed a new method for the exact calculation of field propagation in the free-space. 
This method is based on the angular spectrum method, but resolves the problem of numerical 
errors produced in far field propagation by the original AS. Since the errors can be attributed 
to the sampling problem of the sampled transfer function of the original AS, the bandwidth of 
the propagation field is limited to the range in which the sampling problem does not occur. As 
a result, the band-limited AS proposed in this paper is applicable to far field propagation as 
well as near field propagation. In addition, we verify the validity of limiting the bandwidth of 
the propagation field by considering the minimum bandwidth required for exact calculation of 
field propagation. 
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