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A novel method for simulating field propagation is presented. The method, based on the angular spectrum of
plane waves and coordinate rotation in the Fourier domain, removes geometric limitations posed by conven-
tional propagation calculation and enables us to calculate complex amplitudes of diffracted waves on a plane
not parallel to the aperture. This method can be implemented by using the fast Fourier transformation twice
and a spectrum interpolation. It features computation time that is comparable with that of standard calcu-
lation methods for diffraction or propagation between parallel planes. To demonstrate the method, numerical
results as well as a general formulation are reported for a single-axis rotation. © 2003 Optical Society of
America

OCIS codes: 050.1960, 350.5500, 090.1970, 000.3860.
1. INTRODUCTION
Developments in computer technology in the past few de-
cades have created a revolution in the field of wave optics.
Today our desktop computers can easily simulate optical
diffraction by an aperture. The complex amplitudes in
simulations are typically sampled on an equidistant grid.
These simulations of diffraction are usually based on
well-known scalar theories such as the Rayleigh–
Sommerfeld formula, the Fresnel–Kirchhoff formula, and
the Fresnel and Fraunhofer approximations of the latter.
Another important method for computing optical diffrac-
tion is to use the angular spectrum of plane waves.1 This
method, accompanied by the fast-Fourier-transformation
(FFT) algorithm, plays an important role in numerical
simulations of optical diffraction and propagation. How-
ever, these methods share a common constraint in simu-
lating diffraction: The screen or plane on which light
waves diffracted by an aperture are calculated must be
parallel to the aperture. No tilted screens or tilted aper-
tures are allowed in standard formulations. To get rid of
this limitation, diffraction by a tilted aperture has been
investigated in some studies: Fraunhofer diffraction in
Refs. 2–5 and Fresnel diffraction in Ref. 6. Furthermore,
in the context of creating image holograms, Leseberg has
suggested using rotational transformation of complex am-
plitudes in the Fourier domain in order to calculate object
waves diffracted by tilted apertures.7 However, we have
found no complete formulations or results on such rota-
tion in the literature.
1084-7529/2003/091755-08$15.00 ©
New methods of simulation for optical diffraction and
propagation with fewer constraints and higher perfor-
mance are needed to improve optical techniques such as
diffractive optics and digital holography, which allow us
to measure8 and create9 complex amplitudes of light
waves emitted by three-dimensional objects. In this pa-
per we treat the formulation and numerical simulation of
diffraction by an aperture onto an inclined plane, i.e., we
calculate complex amplitudes at sampling points placed
on a plane not parallel to the aperture. Although our
major interest lies in three-dimensional displays,10 the
technique presented is useful in any wave-optical simula-
tion concerning tilted planes.

2. BASIC THEORY AND FORMULATION
A. Basic Idea and Concept
Two coordinate systems are used in this investigation.
One is the (x, y, z) source coordinate system, in which
the complex amplitude g(x, y) of a light wave is initially
defined in the (x, y, 0) plane. This plane is referred to as
the source plane in this paper. The other system is the
reference coordinate system ( x̂, ŷ, ẑ) at a distance d from
the source coordinates, in which the complex amplitude
f( x̂, ŷ) of the propagated field is finally obtained in the
( x̂, ŷ, 0) plane, which is referred to as the reference
plane.

Figure 1 illustrates the specified coordinate systems
with the source and reference planes and geometries cor-
2003 Optical Society of America
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responding to (a) a tilted screen and (b) a tilted aperture.
In (a), the source plane is perpendicular to the z axis,
while the reference plane is not. The inverse situation is
depicted in (b). Figure 2 shows schemes (a) and (b) from
Fig. 1 depicted for a common aperture placed in the
source plane. Figure 2(a) illustrates the situation for a
tilted screen and Fig. 2(b) for a tilted aperture.

In both schemes the calculation of diffraction consists
of two essential steps. For the inclined reference plane,
light diffracted by the aperture is propagated to an inter-
mediate plane (x8, ŷ) that is parallel to the source plane.
This calculation can be carried out with conventional
methods based on the traditional diffraction theory.
Next the calculated field given as complex amplitudes on
(x8, ŷ) is decomposed into plane waves by Fourier trans-
formation. The expanded plane waves are reassembled
in the tilted reference plane ( x̂, ŷ) and then combined
again by using an inverse Fourier transformation. This
step is referred to as coordinate rotation in the Fourier
domain. The same procedure is generally applicable to a
tilted source plane, as shown in Fig. 2(b); i.e., source com-
plex amplitudes are propagated with conventional meth-
ods, followed by coordinate rotation.

In either scheme, the most essential and significant op-
eration is the coordinate rotation in the Fourier domain,
which will be described in the following subsection.

B. Coordinate Rotation in the Fourier Domain
In this subsection, assume that d 5 0, i.e., the two coor-
dinates share the origin, so that we can concentrate on
the formulation of the coordinate rotation. If the two-
dimensional complex amplitude g(x, y, 0) is given in the
source plane, the spectrum G(u, v) is defined by

Fig. 1. Definition of coordinate system and schemes for (a) a
tilted screen and (b) a tilted aperture.

Fig. 2. Geometry for (a) a tilted screen and (b) a tilted aperture.
G~u, v ! 5 F $ g~x, y !%

5 EE
2`

`

g~x, y !exp@2i2p~ux 1 vy !#dxdy (1)

and the inverse transformation by

g~x, y ! 5 F 21$G~u, v !%

5 EE
2`

`

G~u, v !exp@i2p~ux 1 vy !#dudv. (2)

Equation (2) can be interpreted as a superimposition of
plane waves:

u~x, y, z 5 0; u, v ! 5 G~u, v !exp@i2p~ux 1 vy !#.
(3)

G(u, v) expresses the complex amplitude of the plane
wave. The same plane wave with a complex amplitude A
and a wave vector k can be defined in general as

u~x, y, z 5 0; k! 5 A expF i
2p

l
~kxx 1 kyy !G , (4)

with

k 5
2p

l
@kx ky kz#. (5)

Therefore uku 5 2p/l and kx
2 1 ky

2 1 kz
2 5 1. By com-

paring Eq. (3) with Eq. (4), wave vector k can be associ-
ated with Fourier frequencies (u, v) in the source plane
by

k 5 2p@u v w~u, v !#, (6)

with w(u, v) 5 (l22 2 u2 2 v2)1/2.
Let us now turn to the field in the reference plane,

which is denoted f( x̂, ŷ). Its spectrum is given by

F~ û, v̂ ! 5 F $ f~ û, v̂ !%

5 E
2`

`

f~ x̂, ŷ !exp@2i2p~ ûx̂ 1 v̂ ŷ !#dx̂dŷ. (7)

Similarly to obtaining Eq. (4), we obtain

k̂ 5 2p@ û v̂ ŵ~ û, v̂ !#, (8)

with ŵ(û, v̂) 5 (l22 2 û2 2 v̂2)1/2.
The wave vectors given in Eqs. (6) and (8) are defined

respectively, in the (x, y, z) and ( x̂, ŷ, ẑ) coordinate sys-
tems. Therefore if the two fields represent the same
wave, the wave vector expressed in one coordinate system
can be transformed into the other by using ordinary
coordinate-transformation procedures.

Suppose that T is a matrix used to transform the
source coordinates into the reference coordinates; then
the wave vectors can be transformed into each other by

k̂ 5 Tk, k 5 T21k̂. (9)

When the inverse transformation matrix is given as

T21 5 F a1 a2 a3

a4 a5 a6

a7 a8 a9

G , (10)
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we can associate the Fourier frequencies in the source co-
ordinates with those in the reference coordinates as fol-
lows:

u 5 a~ û, v̂ ! 5 a1û 1 a2v̂ 1 a3ŵ~ û, v̂ !,

v 5 b~ û, v̂ ! 5 a4û 1 a5v̂ 1 a6ŵ~ û, v̂ !. (11)

Thus the spectrum in the reference coordinates is given
by the spectrum in the source coordinates according to

F~ û, v̂ ! 5 G(a~ û, v̂ !, b~ û, v̂ !). (12)

It appears as if it is possible to calculate the complex am-
plitude in the reference plane by inverse transformation
of the spectrum F(û, v̂). However, a simple inverse Fou-
rier transformation of F(û, v̂) does not provide correct re-
sults, because the total energy of the field is not conserved
after rotational transformation, owing to the nonlinearity
of the transformation in Eq. (11).

The energy of a plane wave in Eq. (3) in source coordi-
nates, which have Fourier frequencies (u, v) to (u
1 du, v 1 dv), is proportional to uG(u, v)exp@i2p(ux
1 vy)#u2dudv, and therefore the total energy of the field is
given by

Etotal } EE
2`

`

uG~u, v !u2dudv. (13)

In the transformed spectrum F(û, v̂) 5 G(a(û, v̂),
b(û, v̂)), the energy factor of a plane wave with Fourier
frequencies (û, v̂) to (û 1 dû, v̂ 1 dv̂) is written as

uG(a~ û, v̂ !, b~ û, v̂ !)u2uJ~ û, v̂ !udûdv̂,

where the Jacobian J(û, v̂) is defined as

J~ û, v̂ ! 5
]a

]û

]b

] v̂
2

]a

] v̂

]b

]û

5 ~a2a6 2 a3a5!
û

ŵ~ û, v̂ !

1 ~a3a4 2 a1a6!
v̂

ŵ~ û, v̂ !
1 ~a1a5 2 a2a4!,

(14)

which is needed to compensate for the nonlinearity of the
rotational transformation. Thus the total energy is writ-
ten as

Etotal } EE
2`

`

uG(a~ û, v̂ !, b~ û, v̂ !)u2uJ~ û, v̂ !udûdv̂.

(15)

To obtain complex amplitudes of the field in the refer-
ence coordinates that posses the same energy as that
in the source coordinates, the plane waves
F(û, v̂)exp@i2p(ûx̂ 1 v̂ŷ)# must be integrated as follows:

f~ x̂, ŷ ! 5 EE
2`

`

F~ û, v̂ !exp@i2p~ ûx̂ 1 v̂ ŷ !#

3 uJ~ û, v̂ !udûdv̂. (16)

This is rewritten with the inverse Fourier transformation
and yields
f~ x̂, ŷ ! 5 F 21$F~ û, v̂ !uJ~ û, v̂ !u%. (17)

When waves are paraxial in the reference coordinates
[i.e., fields propagate in the ẑ direction as shown in Fig.
1(b)], û and v̂ are much smaller than ŵ(û, v̂). As a re-
sult, the first and second terms of the Jacobian in Eq. (14)
can be ignored. In that case,

J~ û, v̂ ! . ~a1a5 2 a2a4! (18)

is a good approximation.
On the other hand, when the waves are paraxial in the

source coordinates, the Jacobian remaining after the ap-
proximation is a little complex, as described in Appendix
A, but all terms that include the Fourier frequencies can
be ignored. As a result, the integration of the rotated
spectrum for the paraxial waves is reduced to the inverse
Fourier transformation

f~ x̂, ŷ ! } F 21$F~ û, v̂ !%. (19)

We refer to this as the paraxial approximation in the co-
ordinate rotation.

3. SINGLE-AXIS ROTATION OF THE
REFERENCE COORDINATES
In this section we treat the single-axis rotation of the ref-
erence coordinates, of which the scheme is depicted in
Fig. 1(a), to verify the basic idea of rotating the coordi-
nates in the Fourier domain.

A. Analytical Procedure
Suppose that a source field is given by g(x, y) and its
spectrum is given again by G(u, v) in the source plane,
but in this subsection the reference plane is assumed to
be apart from the source plane; i.e., d . 0. In addition,
suppose that Gd(u, v) denotes the source spectrum in an
intermediate plane, which is parallel to the source plane,
and that its coordinates share the origin with the refer-
ence coordinates. One can choose an analytical or a nu-
merical method from some conventional algorithms of
field propagation to calculate fields in the intermediate
plane, because this propagation is translational and is in-
dependent of the step in the coordinate rotation. In this
paper we choose a standard formula of the angular spec-
trum of plane waves given as follows:

Gd~u, v ! 5 G~u, v !exp@i2pd~l22 2 u2 2 v2!1/2#.
(20)

The transformation matrix used to rotate coordinates
on the y axis with the angle of w is given as

T21 5 F cos w 0 sin w

0 1 0

2sin w 0 cos w
G . (21)

By substituting elements of matrix (21) into Eqs. (11) and
(14), we can write the angular spectrum in the reference
coordinates and the Jacobian, respectively, as follows:

F~ û, v̂ ! 5 Gd~ û cos w 1 ŵ~ û, v̂ !sin w, v̂ !, (22)

J~ û, v̂ ! 5 cos w 2
û

ŵ~ û, v̂ !
sin w. (23)
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Therefore complex amplitudes in the reference plane are
given by the inverse Fourier transformation

f~ x̂, ŷ ! 5 F 21H Gd~ û cos w 1 ŵ~ û, v̂ !sin w, v̂ !

3 Ucos w 2
û

ŵ~ û, v̂ !
sin wUJ . (24)

In the case of paraxial waves or small rotation angles,
the second term on the right-hand side of Eq. (23) can be
ignored. As a result, complex amplitudes in the paraxial
approximation (19) are written as

f~ x̂, ŷ ! } F 21$Gd~ û cos w 1 ŵ~ û, v̂ !sin w, v̂ !%. (25)

B. Numerical Procedure
Equation (24) is rigorous in an analytic sense. However,
the transformation in Eq. (22) causes numerical prob-
lems. One problem is the distortion of the equidistant
sampling grid. For a fast calculation of diffraction for
practical purposes, the FFT algorithm is commonly used
to calculate G(u, v) from g(x, y) and f( x̂, ŷ) from
F(û, v̂). The FFT algorithm, however, works only for an
equidistant sampling grid. Since the inverse function
û 5 a21(u, 0), as well as the function u 5 a(û, 0) itself,
is a nonlinear function as shown in Fig. 3, even if G(u, v)
and Gd(u, v) are evenly sampled, the spacing of the sam-
pling points for the transformed spectrum is not equal.
As a result, some method of interpolation must be intro-
duced into the sampled F(û, v̂) to calculate f( x̂, ŷ) by
FFT.

Furthermore, the transformation from Eq. (22) also
causes a shift in the center frequency in the spectrum
F(û, v̂). When u 5 0 and v 5 0 in the source coordi-
nates, the corresponding reference frequency û
5 a21(0, 0) does not equal zero. This can be interpreted
to be a carrier frequency observed in the tilted reference
coordinates. If one wants to calculate the diffracted
waves in the reference plane by FFT, this nonzero carrier
frequency should be eliminated, because the FFT algo-
rithm does not work effectively for spectrums sampled far
from zero frequency. Figure 4 shows the procedure used
to eliminate the carrier frequency in the reference coordi-

Fig. 3. Curves for transforming Fourier frequency u in source
coordinates into û in reference coordinates; v 5 0.
nates. Assume that the center frequency is u0 (50) in
the source spectrum, as shown in Fig. 4(a), and that
û0 (Þ0) is the carrier frequency after rotation, as shown
in Fig. 4(b). For an efficient conversion by FFT, another
coordinate u8 5 û 2 û0 should be introduced, as shown
in Fig. 4(c). This results in complex amplitudes in the
reference coordinates, which are given as

f~ x̂, ŷ ! 5 F 21$F~u8, v̂ !uJ~u8, v̂ !u%exp@i2pû0x#. (26)

The carrier frequency û0 is possibly too high to be
sampled in a given sampling scheme in the reference
plane. Even in this case, the intensity distribution
u f( x̂, ŷ)u2 can be easily obtained, because the carrier fre-
quency is included only as a phase factor of exp (i2pû0x).
Moreover, when one wants to consider the factor of the
carrier frequency, it can be multiplied after inverse FFT.

C. Numerical Examples for Single-Axis Rotation
We prepared three numerical examples for the source am-
plitude g(x, y) to verify the theory and evaluate numeri-
cal accuracy. We calculated complex amplitudes in a ref-
erence plane at z 5 d, which was rotated at an angle w on
the y axis, as shown in Fig. 5.

Parameters of the three samples are summarized in
Table 1. Sample A is a paraxial Gaussian wave with a
constant phase (i.e., the wave’s waist) in the source plane.
This is an example of a simple paraxial wave with smooth
amplitude distribution. Sample B is a plane wave dif-
fracted by a rectangular aperture in the source plane.

Fig. 4. Schematic diagram of spectrum shift: (a) spectrum in
source coordinates, (b) reference coordinates, and (c) shift of spec-
tral origin.

Fig. 5. Schematic setup for numerical simulation of single-axis
rotation. One-dimensional rigorous amplitudes for comparison
are calculated at sampling points (dots).
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The amplitude distribution of this wave is not smooth in
the reference plane because of the fringe pattern.
Sample C is also Gaussian, but it has a spherical phase in
the source plane to simulate a Gaussian beam behind a
lens with a focal length of 15 mm. This phase brings
asymmetry as well as nonparaxiality into the distribution
of the complex amplitudes in the tilted reference plane
placed near the focal point.

D. Numerical Accuracy
As mentioned at the beginning of Subsection 3.B, approxi-
mations are not applied in the derivation of Eq. (24); i.e.,
the equation itself is rigorous. However, the interpola-
tion of the sampled spectrum, which is necessary for the
numerical calculation, causes numerical errors. There-
fore the accuracy as well as the computation time of the
numerical calculation is dependent on the method of in-
terpolation. According to the sampling theorem, the sinc
interpolation should provide the most accurate results,
but the sinc interpolation is generally a very time-
consuming method. Therefore we examine other interpo-
lation methods in this section.

The numerical accuracy of the coordinate rotation was
evaluated as signal-to-noise ratio (SNR) of rotated com-
plex amplitudes defined as

SNR 5

EÈ u f~ x̂, ŷ !u2dx̂dŷ

EÈ u f~ x̂, ŷ ! 2 afrig~ x̂, ŷ !u2dx̂dŷ

, (27)

where frig( x̂, ŷ) is the distribution of complex amplitudes
calculated by another rigorous method described below.
In most cases, magnitude of the field is of no concern, and
accuracy in the field form is of interest to us. Therefore a
scale factor a maximizing SNR is defined as follows:

a 5

EÈ f~ x̂, ŷ !frig* ~ x̂, ŷ !dx̂dŷ

EÈ u frig~ x̂, ŷ !u2dx̂dŷ

. (28)

A rigorous calculation of complex amplitudes in the
tilted reference plane is a serious problem because of its
mathematical complexity. In almost all cases it seems to
be impossible to obtain analytically rigorous solutions of
the field in a tilted plane, and therefore we adopted a nu-
merical approach. Figure 5 shows how we obtained the
exact amplitudes in the tilted plane in this paper. Com-
plex amplitudes were calculated on many planes perpen-

Table 1. Summary of Parameters Used for
Numerical Simulations

g(x, y)

Sampling

Number Pitch d

Sample A, Gaussian 256 20 mm 10 mm
Sample B, rectangle aperture 256 20 mm 30 mm
Sample C, Gaussian with quadratic

phase
512 5 mm 10 mm
dicular to the z axis and placed before and behind the po-
sition d; then the resultant amplitudes at sampling points
were stitched along side the tilted reference plane. Al-
though the resulting amplitudes may also create numeri-
cal errors, the accuracy of the method is high enough to
provide a reference for comparison with complex ampli-
tudes calculated by the proposed coordinate rotation. In
addition, calculating exact amplitudes with this method
was possible only for a one-dimensional distribution be-
cause of the long computation time.

Figure 6 shows SNRs measured numerically for a rota-
tion angle of 30° in various interpolation algorithms of the
Fourier spectrum. ‘‘nth’’ and ‘‘Cubic 8’’ indicate the
nth-order iterated linear interpolation and the cubic-
interpolation algorithms at 8 points,11 respectively. The
cubic interpolation almost always results in the best
SNRs. These SNRs exceeded 50 dB for all samples with
an angle of 30°.

In Fig. 7, SNRs measured in the cubic interpolation are
shown in relation to the rotation angles. In samples A
and B, the paraxial approximation of Eq. (25) gives the
same SNRs as Eq. (24), whereas in sample C, the SNR
calculated with the approximation decreases with an in-
crease in rotation angle. The reason for this is clear:
samples A and B are paraxial waves, whereas sample C,
which has a definite beam waist, deviates from the
paraxial condition. Thus the accuracy of numerical cal-

Fig. 6. SNRs in one-dimensional amplitudes for several inter-
polation algorithms. Here nth and Cubic 8 stand for nth itera-
tive linear interpolation and cubic interpolation at 8 points, re-
spectively. The rotation angle is 30°.

Fig. 7. SNR versus rotation angle. Cubic interpolation at 8
points is used in calculation.
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Fig. 8. Two-dimensional distribution of amplitudes and phase calculated on tilted reference planes. The phase factor due to the carrier
frequency appearing on the tilted plane is eliminated in depicted phase images.
culation obtained by Eq. (25) drops with increasing degree
of the rotation angle.

E. Two-Dimensional Results and Computation Time
Figure 8 shows the two-dimensional distributions of com-
plex amplitudes for numerical samples A–C. The left
and right columns for each sample depict amplitude and
phase distribution, respectively. Note that the carrier
frequency û0 mentioned in Subsection 3.B has been elimi-
nated in the phase distributions.

The computation time for rotation accompanied by
translational propagation was measured on an Intel Pen-
tium III processor at 1 GHz. Figure 9 shows the time at
different numbers of sampling points. In the measure-
ment, the single-axis rotation was again calculated with
cubic interpolation. The results of the computation time
approximately agree with those of FFT, i.e., n log n for n
samplings. This is attributed to the fact that two itera-

Fig. 9. Computation time for rotation and translational propa-
gation. Measurements were made by using a Pentium III pro-
cessor with 1 GHz frequency.
tions of the FFT consume most of the processing time and
the rest of the time is spent on interpolation and propa-
gation, with computational costs that are proportional to
n.

4. DISCUSSION
As shown in Fig. 3, the curves for transformation of fre-
quency u into û open upward with positive values of w
and open downward with negative w. Therefore the
curves have a minimum value or a maximum value ex-
cept for the case w 5 0. In some cases of large-angle ro-
tation, this causes a ‘‘fold in the spectrum’’ in the refer-
ence coordinates. For example, when w 5 90° in Fig. 3,
two source frequencies 1u8 and 2u8 are assigned to an
identical frequency û8 of the reference spectrum. This
means that the source spectrum is folded at its origin; i.e.,
both negative and positive frequency ranges in the source
coordinates are projected onto the same range of the ref-
erence frequency.

The spectral fold originates in a group of plane waves
that propagates from the region ẑ . 0 to the region
ẑ , 0 in reference coordinates, as shown in the following.
In the single-axis rotation, the frequency transformation
is written as

û 5 u cos w 2 w~u, v !sin w, (29)

ŵ 5 u sin w 1 w~u, v !cos w. (30)

The maximum and the minimum values are given at u
satisfying dû/du 5 0, and thus

u sin w 1 w~u, v !cos w 5 0, (31)
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and the z element of the wave vector in the reference co-
ordinates is given by substituting Eq. (30) into Eq. (8) as
follows:

k̂z~u, v ! 5 2p@u sin w 1 w~u, v !cos w#. (32)

If u 5 ufold satisfies the condition defined in Eq. (31),
ufold leads to k̂z(ufold , v) 5 0. Therefore the sign of k̂z
changes at u 5 ufold when u increases or decreases. The
plane wave with a frequency uuu , uufoldu in the source
coordinates consequently propagates in the direction
ẑ . 0, and vice versa. This relation is depicted in Fig.
10. Accordingly, the spectral fold means that two plane
waves having an opposite sign of k̂z to each other, i.e.,
having a mirrorlike symmetry with respect to the refer-
ence plane, contribute to the same plane.

This spectral fold does not occur in our numerical ex-
amples, because the spectrum is folded at uu foldu
5 w(0, v)cos w in the single-axis rotation, and thus
uu foldu 5 cos w/l in v 5 0. In the examples presented, the
broadest source spectrum is provided in u 5 60.063/l
from Sample C, whereas uu foldu 5 0.174/l even in the
maximum rotation angle of 80°.

5. CONCLUSION
A method for calculating complex amplitudes of a dif-
fracted wave on an inclined screen as well as on a wave
diffracted by an inclined aperture was suggested. This
method features a computation time that is comparable
with that of standard methods in which a reference plane
is parallel to a source plane. The procedure of this
method can be summarized as follows: First calculate
the spectrum of the source amplitude by FFT, then rotate
the coordinate system in which the spectrum is given, and
finally reintegrate the spectrum in rotated coordinates by
using inverse FFT with a Jacobian because of the nonlin-
earity of the rotational transformation of the spectrum.

In the examples of single-axis rotation, SNRs of com-
plex amplitudes on the tilted reference plane are mea-
sured by comparing them with rigorous results. In the
one-dimensional distribution of complex amplitudes,
these SNRs exceeded 50 dB in almost all examples and
rotation angles. Two-dimensional distributions of com-
plex amplitudes in the rotated reference plane were cal-
culated for these examples, and the computation time was

Fig. 10. Schematic depiction of the spectral fold. Each side
with respect to the maximum or minimum value in frequency
transformation curves corresponds to the sign of the k̂z element
of wave vectors in the reference coordinates.
measured on a Pentium III processor at 1 GHz. The com-
putation time was similar to that of FFT, for example,
35.6 s in the case of 20482 sampling points.

Finally, a physical interpretation for the spectral fold
was discussed in relation to the propagation direction of
plane waves in the reference coordinate system.

APPENDIX A: PARAXIAL APPROXIMATION
IN THE SOURCE COORDINATES
When the inverse rotation matrix T21 is defined by Eq.
(10), assume that the rotation matrix is given by

T 5
1

uT21u F A1 A2 A3

A4 A5 A6

A7 A8 A9

G . (A1)

Here Ai is a cofactor of the matrix T21, and Ai’s in the
third column are associated with the matrix T21 by

A3 5 ~21 !~113 !Ua2 a3

a5 a6
U 5 a2a6 2 a3a5 , (A2)

A6 5 ~21 !~312 !Ua1 a3

a4 a6
U 5 a3a4 2 a1a6 . (A3)

A9 5 ~21 !~313 !Ua1 a2

a4 a5
U 5 a1a5 2 a2a4 . (A4)

Thus the Jacobian (14) is rewritten by using the cofactors:

J~ û, v̂ ! 5 A3

û

ŵ
1 A6

v̂

ŵ
1 A9 . (A5)

Moreover, the first term of the Jacobian is rewritten by
transforming frequencies (û, v̂, ŵ) into (u, v, w)
through the matrix T:

A3

û

ŵ
5 A3

A1u 1 A2v 1 A3w

A7u 1 A8v 1 A9w
. (A6)

If a field is paraxial in the source coordinate, i.e., if it
propagates in almost the z direction, the frequency w is
much larger than u and v. Therefore

A3

û

ŵ
5 A3

A1u/w 1 A2v/w 1 A3

A7u/w 1 A8v/w 1 A9
.

A3
2

A9
, (A7)

is a good approximation. With the same procedure, the
second term of the Jacobian (A5) is approximated to

A6

v̂

ŵ
.

A6
2

A9
. (A8)

As a result, when fields are paraxial in the source coordi-
nates, the paraxial approximation of coordinate rotation
is given by

J~ û, v̂ ! .
A3

2 1 A6
2 1 A9

2

A9
. (A9)
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