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An Efficient Adaptive Routing Algorithm for the Faulty

Star Graph

Leqiang BAI', Nonmember, Hiroyuki EBARA'T, Hideo NAKANO'1f,

SUMMARY  This paper introduces an adaptive distributed
routing algorithm for the faulty star graph. The algorithm is
based on that the n-star graph has uniform node degree n — 1
and is n — 1-connected. By giving two routing rules based on the
properties of nodes, an optimal routing function for the fault-
free star graph is presented. For a given destination in the n-star
graph, n — 1 node-disjoint and edge-disjoint subgraphs, which
are derived from n — 1 adjacent edges of the destination, can be
constructed by this routing function and the concept of Breadth
First Search. When faults are encountered, according to that
there are n — 1 node-disjoint paths between two arbitrary nodes,
the algorithm can route messages to the destination by finding a
fault-free subgraphs based on the local failure information (the
status of all its incident edges). As long as the number f of faults
(node faults and/or edge faults) is less than the degree n—1 of the
n-star graph, the algorithm can adaptively find a path of length
at most d + 4f to route messages successfully from a source to a
destination, where d is the distance between source and destina-
tion.

key words:  star graph, node-disjoint subgraph, node-disjoint
path, fault-tolerance, adaptive routing

1. Introduction

With the advance in VLSI, a lot of research has been
initiated to design large multiprocessors computing sys-
tems using special topologies. In fact, by using a non-
trivial topology, we can interconnect many processors
without increasing the cost. The most popular mode
is the hypercube which has been drawn considerable
attention from both academic and industrial communi-
ties. The star graph in[1] claims to possess topological
superiority over the hypercube. Similar to the hyper-
cube, the star graph possesses rich recursive structure,
symmetrical properties and simple routing on the fault-
free star graph. In addition, it has a lower diameter and
degree, and a smaller average diameter for a given size
than the hypercube.

There are two different algorithms for message rout-
ing: static and adaptive. Static routing algorithms use
only a single path to route messages, whereas adaptive
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routing algorithms allows more freedom in selecting the
paths to route messages. If there are faults on networks,
adaptive routing algorithms are necessary because static
routing algorithms cannot insure messages being routed
successfully. But the flexibility of adaptive routing may
cause deadlock and livelock problems. A deadlock oc-
curs when a message waits for an event that will never
happen. In contrast, a livelock keeps a message mov-
ing indefinitely without reaching the destination. If any
node only knows the condition of its incident edges,
a node fault will easily cause deadlock and livelock
problems than an edge fault in communication because
a node fault corresponds to more than one edge fault
on the interconnection network.

The study of fault-tolerant routing algorithm is
very popular in the field of parallel computation, be-
cause the effective execution of parallel tasks depends
on the reliable communication among processors. The
problems with different fault models for the hypercube
have been studied in[7],[11],[15],[16]. Fault tolerance
of the star graph has been discussed in[1],[9],[13]. The
question of simulating a completely healthy n-star graph
with a degraded one (one with some faulty nodes) has
been discussed in[4]. Given a set of at most n — 2
faulty nodes, node-to-node and set-to-set fault tolerant
routing algorithms for the star graph have been pre-
sented in[7],[8]. Fault-tolerant routing algorithms for
the star graph, based on the local failure information,
have been developed subject to faulty edges in[3],[5].
The shortcoming of the algorithms listed above for the
star graph is that all these algorithms are only directly
subject to node faults or edge faults. Therefore, it is
necessary to develop a routing algorithm which can di-
rectly tolerate node faults and/or edge faults for the star
graph.

In this paper, we present an adaptive distributed
routing algorithm that has no deadlock and livelock
for the faulty star graph. The algorithm is based on
that the n-star graph has uniform node degree n — 1
and is n — l-connected. By giving two routing rules
based on the properties of nodes, we present a routing
function by which the shortest path between source and
destination can be found for the fault-free star graph.
For a given destination in the n-star graph, n — 1 node-
disjoint and edge-disjoint subgraphs, which are derived
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from n — 1 adjacent edges of the destination, can be de-
termined by using this routing function and the concept
of Breadth First Search. When faults are encountered,
according to that there are n — 1 node-disjoint paths
between two arbitrary nodes, the algorithm can always
route messages to the destination by finding a fault-free
subgraphs based on the local failure information and
the properties of nodes. It is not necessary to judge
the types of faults that are encountered. The algorithm
can tolerate at most n — 2 faults (node faults and/or
edge faults) to route messages successfully for the faulty
n-star graph.

The remainder of this paper is organized as follows.
The star graph and notations throughout this paper are
given in Sect.2; The routing function for the fault-free
star graph, and the fault-tolerant routing algorithm and
performance comparisons with the other routing algo-
rithms are described in Sect. 3; Conclusions are drawn
in Sect. 4.

2. Preliminaries

Let V' denote the set of n! permutations of symbols
{1,2,...,n}. An n-star graph interconnection network
on n symbols, denoted by S, = (V,FE), is an undi-
rected graph with n! nodes. The nodes of S, are in a
1-1 correspondence with the permutation p = pips...p,
of (n) = {1,2,...,n}. Two nodes of S,, are connected
by an edge if and only if the permutation of one node
can be obtained from the other by interchanging the first
symbol p; with the ith symbol p;, 2 < 7 < n. Obviously,
every node has n— 1 incident edges, corresponding with
n—1 symbols which the symbol in the first position can
be interchanged with. Thus, S,, is a regular graph of
degree n — 1 and is (n — 1)-connected. S,, possesses a
number of properties that are desired by interconnec-
tion networks. These include node and edge symmetry,
maximal fault tolerance, and strong resilience. S,, has
a high recursive structure, and is made up of n copies
of n — 1-star graph. Figure 1 is one 4-star graph. It can
be partitioned into four 3-star graphs. S3(i) denotes a
3-star graph induced by all the nodes with the same last
symbol i, i € (4), and Sy = E3 U {S3(:)|1 £ i < 4},
where F5 is the set of edges among four 3-star graphs.

A permutation can be viewed as a set of cycles, i.e.,
a cyclically ordered set of symbols with the property that
each symbol’s correct position is occupied by the next
symbol in the set. Since the n-star graph is node sym-
metric, the routing between two arbitrary nodes reduces
to the routing from an arbitrary node to the special
node labeled with the identity permutation I = 12...n.
To reach I from a node p in S,,, it suffices to use one of
the following two rules [ 1] repeatedly, until I is reached:

R1. If symbol I is in the first position, then exchange it
with any symbol not in its position.

R2. If symbol ¢ (¢ + 1) is in the first position, then
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1234 4231
3214 2134 3241 2431
S:(4) S«(1)
2314 3124 2341 3421
1324 4321
3412 2413
4312 1432 4213 1423
Si(2) S:(3)
1342 413 1243 4123
3142 2143

Fig. 1  The 4-star graph viewed as four 3-star graphs.

move it to its correct position.

Let p-cycles be the set of the cycles of length at least
2, the rules R1 and R2 insure a path of the minimum
distance d (p,I) from p to the identity permutation I:

d(p, 1)
B 0 if 1 is in the first position in p,
=etme= { 2 otherwise.

where ¢ denotes the number of cycles in p-cycles and m
is the number of symbols in the cycles of p-cycles.
Example 1: Here, we will explain some properties of cy-
cles and how to route messages by the rules R1 and R2.
Let p = 13254 be the source node, and let I = 12345 be
the destination node in S;. Compared with [ = 12345,
since p = 13254 has the symbol 3 in the correct posi-
tion 2 of the symbol 2 and the symbol 2 in the correct
position 3 of the symbol 3, the symbols 2 and 3 form
the cycle (23) : 2 — 3 — 2. In the cycle (23), the next
symbol of the symbol 2 is the symbol 3, the next symbol
of the symbol 3 is the symbol 2. Similarly, the symbols
4 and 5 form the cycle (45) : 4 — 5 — 4. Therefore,
p-cycles = {(23), (45)}, where ¢ = 2 and m = 4. Since
p1 =1, d(13254,12345) = ¢+ m = 6. In the same way
as described above, the node 23154 contains the cycle
(123) : 1 - 2 — 3 — 1 and the cycle (45) : 4 —> 5 — 4.
Let p; < p; denote interchanging the symbol p; with
the symbol p; of p. Applying the two rules described
above repeatedly, messages can be sent at 6 steps from
p to I through any one of 8 shortest paths as follows.

B2 23154 279 32154 25 e
13 32 20y (12354
13254 | 31254757 21354 5
R (R2)
(Rl) 1—4 45 51

15 54 41

— 43251 — 53241 — 13245
— 53214 — 43215
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21 4035 1*_:’ 52341 228

122 59314 229 49315 11

(R1) (R2)
12 23 31
L3945 { 122 93145 278 30145 322

12354

I = 12345.

'8 31945 275 21345 21

Definition 1: Let p be a node in S,, and let
{iy,i2, ...,k 1,3k} € (n). Then, plit) denotes the node
that is obtained by interchanging the first symbol with
the symbol i; of the node p, specially p") = p. And,
plinizik-1ix) denotes the node that is obtained by in-
terchanging the first symbol with the symbol i, of the
node p<i1~i2---.iw 1)

Example 2: Let p = 5423
p(&Z.l) — §42§1(21)

. then p® 34251 and

:2435 ) = 14352

3. Routing Algorithm for S,

In this section, based on that the n-star graph has uni-
form node degree n—1 and is n—1-connected, we present
an adaptive distributed fault-tolerant routing algorithm
for S,, with at most n—2 node faults and/or edge faults.
Then, we prove its correctness, and analyze its proper-
ties. We make the following assumptions:

Assumptions. A fault can be a node fault or an edge
fault. If a node is faulty, all the edges incident to
it are treated as faulty edges. Each edge is bidi-
rectional. If an edge is faulty, both directions are
faulty. The total number of faults is less than de-
gree n— 1 of S,,. Any node only knows the status
of all its incident edges that is called the local fail-
ure information. Both source and destination are
fault-free.

3.1 Routing Function for the Fault-Free S,

If messages are routed based on R1 and R2, it is very
difficult for an arbitrary node p to know through which
adjacent node of I messages are sent to I. Let p-
cycles = {Cy,Ca}, where C; with |Cy] < 1 denotes
the set of the cycle that contains the symbol | and Cy
denotes the set of the cycles that don’t contain the sym-
bol 1. Let M, denote the set of the symbols in the cycle
of Cy, and let M5 denote the set of the symbols in the
cycles of C. To route messages from any node p to I,
through a given adjacent node of I, two routing rules
RD1 and RD2 are proposed as follows:

RD1. If Cy # 0, then exchange p; with the minimum
symbol in M.

RD2. If Cy = (), then exchange p, with the symbol in
position p; in M.

The rules RD1 and RD2 mean that the routing is
performed based on the properties of the cycles C'; and
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Cy of the nodes. If Cy & 0, by using the rule RD1,
the number of the cycles Cs is reduced to Co = () and
Cy 0. If Co = 0 and C; % ), by using the rules RD2,
the number of the symbols in C; is reduced to C; = (.
Obviously, p; = 1 and pV) = p if C; = Cy = 0.

Let FFR denote the routing function that returns a
node based on the rules RD1 and RD2.

function FFR (p,I: node): node;
var i, p;: integer; Co: the set of cycles;
var My the set of the symbols in the cycles of Cy;
begin

if Cy & () then begin p; := minimum(M>);

return(p?)) end /* RD1 */

else begin i := p;; return(p*’)) end /* RD2 */

end

Example 3: Let s = 42351, p = 23154 and ¢ = 14523 be
three nodes, and let I = 12345 be the destination node
in S5. Then, the cycles of each node and the shortest
path from each node to I, which is decided by FFR,
can be described as follows.

1. s = 42351: Since the symbols 2 and 3 are in their
correct positions and 4 — 5 — 1 — 4 forms the
cycle (145), s-cycles = {C1}, where C; = (145)
and Cy = 0.

The shortest path; s — s(®) — s(>1) =T

2. p = 23154: Since 2 — 3 — 1 — 2 forms the cy-
cle (123) and 5 — 4 — 5 forms the cycle (45),
p-cycles {C1,C5}, where C; = (123) and
Cy = (45).

The shortest path; p — p(*) — p*5) — pd:52)
piA528) _, p(45.23.1) _ 1

3. g = 14523: Since 4 — 2 — 4 forms the cycle (24) and
5 — 3 — 5 forms the cycle (35), g-cycles = {Ca},
where C, = 0 and Cy = {(24), (35)}.

The shortest path; ¢ — ¢(2) — ¢(23) — (235 —
q2352) , g(23.52.4) _, 0(235.241) _ |

Now, we show some properties of the function
FFR, which are very important for us to develop our
fault-tolerant routing algorithm in S, with less than
n — 1 faults.

Lemma 1: For the fault-free S,, the path from any
node p with p & I to I, which is decided using re-
peatedly the function FFR, is the shortest and unique.
Proof: Let ¢ = FFR(p,I), then d(q,I) = d(p,I) — 1
based on the properties of cycles. By induction, it is
easy to prove that Lemma 1 is correct. O
Example 4: For any node p with p # I in the fault-free
Sp, p-cycles = {C7,C3} must belong to one of follow-
ing three cycles: {C1}, {C1,C>} and {C>}. Considering
S, as shown in Fig. 1, and I = 1234, for given any node
p withp £ I in Sy, d(q,I) = d(p,I) — 1 is shown as
follows.

1. For C; £ 0 and Cy = :
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Let p = 2314, then ¢ = FFR(2314,1234) = 3214
and d (3214,1234) = d(2314,1234) — 1 = 1.
2. For Cy 0 and C; # §:

Let p = 2143, then ¢ = FFR(2143,1234) = 3142
and d (3142,1234) = d (2143,1234) — 1 = 3.
3. For C; =0 and Cy + §:

Let p = 1342, then ¢ = FFR(1342,1234) = 2341
and d (2341,1234) = d(1342,1234) — 1 = 3.
Lemma 2: For the fault-free S,,, the shortest path from
any node p with p & I to I, which is decided using
repeatedly the function FFR, passes through a given
adjacent node of I, which can be decided only by the
properties of p-cycles.
Proof: Let Cy = {c1,...,¢j, ..., Ck—1, Ck }, then p-cycles =
{C1,¢1, .0, ¢j, .y i1, ¢, }. Let p denote the minimum
symbol in the cycle ¢;. Without loss of generality, as-
sume that p* < ... < p%9 < ... < p%-1 < p°, then
minimum (M) = p°*. When C; = 0, using the func-
tion FFR repeatedly, the node p(®"" PP 71.p™) g
the kth node in the shortest path from p to I. Let
the symbol p°* be in position 7 of p, then the sym-
bol 1 is in position i of p®'). Since there are one
C1 cycle and k — j C3 cycles in the nodes of the path
from p®") to pPP?) where 1 < j < k — 1, the
position of the symbol 1 in the nodes of the path
from p®™) to p@ PV TDH) g not changed.
Since there is only one C; cycle in the nodes from
pPT VPP o [ there is only one short-
est path from p®™ PP 71P™) (o T which passes
through the given adjacent node IY) of I. Lemma 2
holds. O

Let Dim be a function that can get the position
of the given symbol that is the symbol 1 of M; or the
minimum symbol of M, for the node p.

function Dim(p, I: node): integer;
var Cp, Cy: the set of cycles;
var M, M>: the set of the symbols in C; and Cy;
begin
if C1 = and CQ :F (b then
return(the position of the symbol min(Ms));
if C1 £ 0 then
return(the position of the symbol 1 in M;)
end

Lemma 3: For any node p in the fault-free S,, the
shortest path from p with p &= I to I, which is decided
using repeatedly the function FFR, passes through the
node I¥), where i = Dim(p, I).

Proof: As shown in the proof of Lemma 2. ]
Example 5: Let s = 42351, p = 23154 and ¢ = 14523
be three nodes, and let I = 12345 be the destination
node in S5. Referred to Example 3, the properties of
the cycles of the nodes s, p and ¢ can be known. By
the function Dim, we can get the position ¢ of the given
symbol that corresponds to the node ("),

1. s = 42351: i = Dim(s,I) = 5 that is the position of
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1

4321 1342,

Fig. 2 The breadth-first spanning tree T from [ = 1234 in S;.

the symbol 1 since C; + 0.

2. p = 23154: i = Dim(p,I) = 3 that is the position of
the symbol 1 since C =+ 0.

3. ¢ =14523: i = Dim(q,I) = 4 that is the position of
the symbol 2 since C; = 0 and Cs + 0.

Definition 2: Let / be a node on S,,, a spanning tree
derived from the node I, which is constituted by Breadth
First Search, is called a breadth-first spanning tree de-
rived from I on S,,.

Lemma 4: For the fault-free S,,, the tree T that is con-
structed using the function FFR as the parent function is
a breadth-first spanning tree derived from /. Let T; de-
note the subgraph that contains the edge (I, 1)) and the
subtree derived from the node I'Y) of T, then T;NT; = ()
for2<i+j<nand T =1TU{T;]2<i< n}.
Proof: Based on Breadth First Search, Lemma [, 2 and
3. a
Figure 2 is the breadth-first spanning tree 1" de-
rived from I = 1234 in the fault-free S, which satisfies
Lemma 4. It is obvious that T, Ty and T, are node-
disjoint and edge-disjoint, and T'= 71U T, U T3 UT}.
Lemma 4 shows a method that can construct a
breadth-first spanning tree from I. By applying the
function FFR to a node p except I in S,,, the node p de-
cides a node ¢ and an edge (p,q), where FFR(p,I) =q
and d(q,I) =d(p,I) — 1. Let E1 denote the set of the
edges that are created by applying the function FFR to
all the nodes except I in S,,. Since a node p creates only
an edge (p,q) with (p,q) € Er based on the function
FFR,|Er| = |V|—1. Since FFR(p,I) = I for each node
pwithd(p, 1) =1,T = (V, Er) construct a breadth-first
spanning tree from /. By finding a fault-free subtree T;
for2 < i < n, we will develop an adaptive fault-tolerant
routing algorithm for S,,. Now, we give a method for
a node through node-disjoint paths to find the different
subtrees T;, 2 < i < n, of the breadth-first spanning tree
T from I.
Lemma 5: Let p be a node in some T;, then there are
n — 2 node-disjoint paths of length at most 3 that pass
not through the node FFR(p,I) and connect respec-
tively p to the othern —2 T; for2 < j i < n.
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Proof: For2 < j £+ i< n,
I. ifp; =1, then p — pPi) € T;.

2. ifpy £ 1,

a. if p») = FFR(p,I), then p — p1) —
p(lal’,l) = Tj-
b. if pP1) £ FEFR(p,I), then p — pPi) —
pPil) - p(pj-l‘m) €T
O
Example 6: Asshown in Fig. 2, two node-disjoint paths
from the node p = 1324 or ¢ = 4312 in T3 to T, and Ty
can be given by:
A. From the node p = 1324 with p; =1 to Ty and T},

. p=1324 — 1324(r2) = 13240 = 3124 € T3,
2. p=1324 — 1324+) = 1324 = 4321 € T}.

B. From the node ¢ = 4312 with p; + 1 to T, and Ty,
since ¢(1) = 43122 = FFR(q,I),

l.g = 4312 — 431202 431202
4312002 ba1) = 43120:14) = 4132 € Ty,

2. q = 4312 — 431200 — 43120090 = 4312(1:2) =
2341 € T).

3.2 Routing Algorithm for the Faulty S,

Given the destination node I, since the total number of
faults is less than degree n — 1 of S,,, there is at least
one fault-free subgraph T; for 2 < i < n. Since S,
is n — 1-connected, there are n — 1 node-disjoint paths
between two arbitrary nodes in the n-star graph. By
finding a fault-free 7} for 2 < i < n based on Lemma 5
for determining a fault-free path from a source node to
a destination node, we can develop a fault-tolerant rout-
ing algorithm for S, with less than n — 1 faults. Now,
we present a routing algorithm called ROUTING that
can tolerate at most n — 2 faults that are node faults
and/or edge faults.

Let M = {messages, I, F, Path} denote a sending
request. £ is the set of the invalid nodes which are rel-
ative to the faults and are treated as the faulty nodes,
Path denotes the path from p to a given T; which con-
tains no nodes in F. Let S be the set of invalid sub-
graphs T; that contain the nodes in F. When a faulty
edge is encountered in the course of ROUTING, F, S
and Path are updated by the function FSP(p,I.F) in
the following steps.

Step 1. Since the node p is not invalid node, remove p
from F if p € F, and reset S and Path.

Step 2. Update F' based on the local failure informa-
tion.

Step 3. Update S based on F, the function Dim,
Lemma 3 and 4.
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Step 4. Update Path based on F', S and Lemma 5.

function F'SP(p, I: node;
var F': the set of invalid nodes): path;
var ¢,p;: integer; g: node; Path: path;
var S: the set of invalid subgraphs;
begin
F:=F —p;S:=0; Path:=0 /* Step 1 */
for i := 2 to n do begin /* Step 2 */
if the edge (p,pP?)) is faulty and p®P?) & I
then F:= F U pPi);
if the edge (p,pP?)) is faulty and p(?) = I
then F' := F U p;
end;
for all ¢ € F do /* Step 3 */
begin i := Dim(q,I); S := SUT,; end;
for i := 2 to n do begin /* Step 4 */
if T; ¢ S then
if p =1 then
begin /* p(P?) € T; based on Lemma 5 */
Path := p — pP); return(Path)
end;
if p») = FFR(p,I) and p") ¢ F then
begin /* pt-P) & F */
Path :=p — p) — p(1-P)); return(Path)
end;
if pP) + FFR(p,I) and p() ¢ F
and p(*>1) ¢ F then
begin /* p(ri:1.p1) ¢ F*/
Path :==p — p(Pi) - p(PiJ) - p([’ivlapl);
return(Path)
end
end
end;

Based on the functions FFR, FF'SP and the lo-
cal failure information, we can develop the algorithm
ROUTING. Let p be the node that has received M and
is ready to forward M. The following is the skeleton of
the algorithm.

Phase 1. Path = (): decide a node z by FFR. If the edge
(p, z) is non-faulty, send M to z. Otherwise, go to
Phase 3.

Phase 2. Path + (: decide a node z by Path. If the
edge (p, z) is non-faulty, send M to z. Otherwise,
go to Phase 3.

Phase 3. Updating: update Path by FSP, and send M
to z that is decided by Path.

Algorithm ROUTING

Input: A sending request M.

Output: A node z to receive the request M.
var p, z, I: node; Path: path;

var F': the set of invalid nodes;

begin
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/* p is ready to send M, z is ready to receive M */
if Path = () then begin /* Phase | */
z:= FFR(p,1);
if edge (p, z) is non-faulty then goto Sending
else goto Updating
end;
if Path + 0 then begin /* Phase 2 */
decide z by Path;
if z is the terminal node of Path then Path := ();
if edge (p, z) is non-faulty then goto Sending
else goto Updating
end;
Updating:
begin /* Phase 3 */
Path :== FSP(p, 1, F); decide z by Path
end;
Sending: if p £+ I then send M to =
end;

For convenience, we call a pair of sending and re-
ceiving a step, and denote the length of path by the
number of steps. Let f < n — 2 denote the number of
faults in S,,. Now, we prove the algorithm ROUTING,
analyze its properties, and give the length of the path
that is decided by the algorithm ROUTING as well as
its message complexity.

Lemma 6: If f < n—2inS,, then |F| < n— 2 and
S| <n—2;1f |S|=n—2, then |F| =n— 2.

Proof: Since a fault induces only an invalid node in F',
|F| £ f £ n—2. Since all the invalid nodes in T; in-
S| =n—2,since |F| 2 |S|=n—2and |F| < f<n-2,
|F|=n—2. O
Lemma 7: If f <n—2in S,, the algorithm ROUT-
ING can always find a node in T; ¢ S.

Proof: We prove Lemma 7 by induction. It is obvious
that Lemma 7 is correct when f = 1.

Assume Lemma 7 is correct when f = k < n — 3.
Let = be the node that encounters k faults, then |F| = k
in M that is sent out from .

When f = k + 1, let p be the node that encoun-
ters (k + 1)th faults, then |F| = k+1 < n — 2 and
|S| £ |F| £ n— 2 for the node p. Since [F| < n—2
and |S| < n — 2 and there are n — 1 node-disjoint paths
that connect respectively p to the other n — 2 T for
2 < j # ¢ < n based on Lemma 35, the function FSR
can decide Path that connects p to some of the other
n—2—|S|T; ¢ Sfor2<j+i<n. Sinceall k+1
faults have been encountered before M is sent out from
p, there are no faults in Path fromp toT; ¢ S. Through
this fault-free Path, M can be sent to a node inT; ¢S.
Lemma 7 holds. 0O
Theorem 1: The algorithm ROUTING can adaptively
find fault-free path to route messages successfully from
a source to a destination in S,, with less than n — 2
faults.

Proof: Without loss of generality, let s denote the source
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node, and I denote the destination node. Before faults
are encountered, according to Lemma 1, M is routed
through an optimal path. After faults are encountered,
according to Lemma 7, A can always be sent to a node
p inT; where there are no faults if f < n—2. According
to Lemma 1, M can be sent from p to I through an op-
timal path. Since the function F'SP in the course of the
algorithm ROUTING always decides Path to T; ¢ S
based on the local failure information, this algorithm
is adaptive when faults are encountered. O
Corollary 1: If f <n—2inS,, the algorithm ROUT-
ING is deadlock-free and livelock-free.

Theorem 2: The algorithm ROUTING can take at
most d (s, I)+4f steps to route messages from the source
s to the destination [ in S,, with f < n — 2 faults.
Proof: We prove the correctness of Theorem 2 by in-
duction. It is obvious that Theorem 2 is correct when
no faults are encountered in routing.

When f =1, let p be the node that encounters the
fault, and let ¢ = Dim(p,I), then p is in T;. Based on
Lemma 5, we need to prove that Theorem 2 holds for
2 < j %1 < nin the following cases:

Case 1: p; = 1. p — pi) € T;.
Case 2: p + 1,

Case 2.1: p»)
pthri) e T;.

Case 2.2: p')) 4+ FFR(p,I).
pil) — pitn) ¢ T;.

= FFR(p,I).

p — p(l) —

p — p(ni) N

Case 1. Sinceonly T; € S, it tdkeS one step to send
M from the node p to the node p'*i) in T; %+ T;. From
d(pP) 1) < d(p,I)+ 1, d(s,p) + 1 + d(p(” DI <
d(s,p) +d(p, 1)+ 2 = d(s,I)+ 2. It takes at most
d(s,1)+ 2 steps to send M from s to I.

Case 2. Without loss of generality, let p =
P1---Pi-pj...Pu> then p = pr1..pj..p,.

Case 2.1. p'?/) = FFR(p,I). It takes two steps
to send M from the node p to the node p''*i) in
T, + T;. From d(p'r) 1) < d(p,I)+ 2, d(s.p) +
2+d(p L) 1) <d(s,p)+d(p, D) +4=d(s, 1)+ 4. It
takes at most d (s,1) + 4 steps to send M from s to I.

Case 2.2. p'?/) & FEFR(p,I). It takes three steps
to send M from the node p to the node ¢ = pPi-1:r1) =
p1..-pj---L...p, in T; £ T, where the symbol I is in po-
sition j of p 1P Let p-cycles = {CV,CY}, then
d(p,I)= )+ |MP| 4+ |MY| — 2. Since there are
only three cases: p; € M, p; € My orp; ¢ MUM, for
the symbol p;, we need to prove thatd (¢, 1) < d (p, I)+1
in the following three cases:

l.p;, € M. Without loss of generality, let
{p1,e, .y, pj, 2, 11} € CF, then {z,...,1,p;} €
¢4 and {py. 1z, .. ,’u,l} € CY. Since [M] + W"i =

M) + [MJ] and || + |C

d(q, 1) =d(p, 1)+ 1.

= ]+ 1C3] + 1,
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o

pj € M. Without loss of generality, let
{pr.e,...y, 1} € C7 and ¢; = {pj.z.....L,p.,},
then {p\,z,....y,pj,z,....L,p.,, 1} € C{. Since
A+ (] =N+ A and (O (Cl =
CY+1CY| =1, d(q, 1) =d(p,I)— 1.

3.p; ¢ M, U M,. Without loss of generality, let
{p1,..,1} € C7, then {py,...,p;,1} € C{ and
[M{| = |M}| + 1. Since M| + |MJ| = | M| +
M|+ 1 and |CY] 4 CY] = [CF] + [CY]. d (g, 1) =
d(p,I)+1.

In Case 2.2, d(q,1) < d(p,I)+ 1. Let L(p,q) denote
the length of the path from p to ¢, then L(p,q) = 3
based on Lemma 5. Since d(s,p) + L(p,q) +d(q,1) <
d(s,p) +d(p, 1) +4 = d(s,I) + 4, Theorem 2 holds
when f = 1.

Assume that M can be sent from s to [ ind(s,I)+
4k steps when f =k <n — 3.

When f = k + 1, let p be a node that encounters
k+ 1th fault, then it takes at most 4k extra steps to send
M from s to p. Since it takes at most 4 extra steps from
p to I based on the proof of f = 1, the length of the
path from s to I isd(s,I) +4(k+1).

In conclusion, the algorithm ROUTING takes at
most 4f extra steps to route messages from the source s
to the destination I if f <n —2in S,,. The maximum
length of the path is d (s,t) +4f. d
Corollary 2: If no faults are encountered in routing,
the algorithm ROUTING is optimal.

Corollary 3: If f < n — 2 in S,,, the number of
M transmitted from the source s to the destination [
in the course of ROUTING is less than or equal to
d(s,I)+4f.

Here, we give two examples to illustrate the routing
course of the algorithm ROUTING. Example 7 shows
that this algorithm needs not to judge the types of faults,
because it can tolerate not only node faults but also edge
faults. Example 8 shows that this algorithm can take at
most 4f extra steps to route messages from a source
node to a destination node if f < n —2in S,. Let

e M y denote that x sends M to y. Referred to Fig. 2,
the subgraphs T; for 2 < i < 4, where each node is, can
be determined.

Example 7: As shown in Fig.3, let s = 2143 be the
source, and let the node 1324 and the edge (1234,2134)

be faulty. Through the shortest path that is decided

using repeatedly FFR, 2143 ™ 3142 2 4130 M

2134. Since FFR(2134,1234) = 1234 and the edge
(1234,2134) is faulty, FSP(2134,1234) updates F =
(2134}, S = {Ty} and Path = {2134 — 3124 —
1324 — 2314} that connects to T3. Through this path,
2134 2 3124, When the faulty edge (3124,1324) in
Path is encountered, F.SP(3124,1234) updates F =
{2134,1324}, S = {T»,T3} and Path = {3124 —
4123 — 1423 — 3421} that connects to Ty. Through

789

Fig. 3 Routing from s to I in Sy with the faulty edge
(1234, 2134) and the faulty node 1324.

Fig. 4 Routing from s to I in S4 with the faulty edges
(1234,2134) and (1234,4231).

M M M

this path, 3124 — 4123 — 1423 — 3421. Then,
M M M

3421 — 2431 — 4231 — 1234 = I. The length of
the path from s = 2143 to I = 1234 is 10 that is less
than d(s,I) + 4 x 2 = 12. It shows that this algorithm
can tolerate not only node faults but also edge faults.

Example 8: As shown in Fig. 4, let s = 1324 be the
source, and let the edges (1234,2134) and (1234, 4231)
be faulty. Through the shortest path, 1342 Moogq1 M
3241 X 4231, When the faulty edge (1234,4231) is
encountered, F'SP(4231,1234) updates F' = {4231},

S = {T4} and Path = {4231 — 2431 — 1432 —
4132} that connects to Tb. Then, 4231 5 2431

1432 2 4132 and 4132 X 2134. When the faulty edge
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Table 1  Comparison of basic parameters of n-hypercube and n-star graph with n > 2.
graph dimension nodes | degree diameter average diameter shortest cycle
n-cube n 2n n n 5 4
n-star n n! n—1 [E‘(n -] | n—a4+ % + Z:”:| 1/i 6
7-cube 7 128 7 7 3.5 4
5-star 5 120 4 6 3.7 6
12-cube 12 4096 12 12 6 1
7-star 7 5040 6 9 5.9 6
18-cube 18 262144 18 18 9 4
9-star 9 362880 8 12 8.1 6

(1234,2134) is encountered, F'SP(2134,1234) updates
F = {4231,2134}, S = {Ty,T>} and Path = {2134 —
3124 — 1324 — 2314} that connects to T3. Then,

2134 % 3124 M 1324 M 2314, and 2314 2 1234 = 1.
The length of the path from s = 1324 to I = 1234 is 12
that is equal to d(s,I) +4 x 2 = 12. It shows that the
maximum length of the path is equal to d (s, I) +4f if
f£n-2inS,.

Note that the actual path lengths are shorter than
the upper boundary given in Theorem 2 in general and
the conditions of faults affect the length of the path that
is decided by the algorithm ROUTING. Though there
are the shortest paths between s and I, it is obvious
that it is impossible to insure to find it only based on
the local failure information. For example as shown in
Fig. 4, there is the shortest path 1342 — 4312 — 2314 —
3214 — 1234. Since three adjacent edges are all non-
faulty and there is the shortest path from 1342 through
2341 to 1234, the node 1342 can route M through the
shortest path 1342 — 2341 — 3241 — 4231 — 1234 if
the faulty edge (1234, 4231) is unknown. It shows that,
for the n-star graph, there are not any optimal routing
algorithms only based on the local failure information.

As described in[10], the shortest length of cycles
of the n-star graph is 6. As shown in Fig. 1, let the
edge (1234,2134) be faulty, any algorithm takes at least
4 steps to route messages from 2134 to 3214 or 4231.
It shows that any routing algorithm will take at least
4f extra steps to complete routing in the worst case
when any node only knows the condition of its inci-
dent edges. Example 8 shows that it takes d(s,I) + 8
steps for s = 1324 to send messages to I = 1234 when
the edges (1234,2134) and (1234, 4231) be faulty in S;.
If any node only knows the condition of its incident
edges, we conjecture that any routing algorithm cannot
always route messages through the path whose length
is less than the length of the path that is decided by
the algorithm ROUTING for the n-star graph with less
than n — 1 faults.

3.3 Performance Comparisons

We show the performance of our algorithm ROUT-
ING by comparing it with the algorithm Unicast_V
proposed by Lan[l1] for the hypercube, and the

algorithm DSR (Depth-Search-Routing) proposed by
Bagherzadeh, Nassif, and Latifi[3] for the star graph.
We compare with those algorithms since they all make
routing decisions adaptively based on the local failure
information only.

Both the hypercube and the star graph are regular,
node symmetric and edge symmetric. Table | shows a
summary of the basic parameters of the n-dimension hy-
percube and the n-star graph. From Table I, we can see
that, based purely on the degree and diameter require-
ments, the n-star graph is asymptotically superior for a
given size.

By applying the property of n-bit binary numbers
that are correspondence with nodes of the n-dimension
hypercube, Lan proposed the adaptive fault-tolerant al-
gorithm Unicast_V for the n-dimension hypercube with
less than n faults. It can route messages from a source
us 1o a destination ug in no more than H(uy,uq) + 2F
steps, where F’ is the number of faults (edge and/or node
faults) and H (ug,uq) is the distance from ug to ug. The
set of the extra arguments required for the routing is
called message overhead. In the algorithm Unicast_V,
the message overhead consists of two arguments: the
destination node, and an n-bit binary vector T that is
introduced to deal with faults. Since the n-star graph
is more complex than the n-dimension hypercube, the
fault-tolerant routing algorithms, which have been pro-
posed for the n-star graph, introduce more message over-
heads to deal with faults than that for the n-dimension
hypercube. In our algorithm ROUTING, the message
overhead consists of three arguments: the destination
node, F' which is bounded by n — 2 elements, and Path
which is bounded by 4 elements. The total message
overheads are bounded by n + 3 elements.

Based on Depth First Search, the algorithm DSR
always can find a path between two nodes within a
bounded number of steps if the two nodes in the star
graph are connected. Faults are assumed to be one or
more edges in the algorithm DSR. If the total number
of edge faults is less than degree n — 1 of S,,, the algo-
rithm DSR can take at most d (s, I) + (2i + 2) f steps to
route messages from a source s to a destination I, where
= V2n —5.75+0.5. Whenn = 3, 2i + 2 > 4 since
1 =+2n—5.754+ 0.5 = 1. It shows that the time com-
plexity of the algorithm DSR is worse than the time
complexity of ROUTING. For the n-star graph with
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f < n —1 edge faults, the algorithm DSR introduces
the following message overhead that consists of four ar-
guments: the destination node, f/w which is one bit,
Visited which is bounded by n! elements, and Linklist
which is bounded by d(s,1) + (2i + 2)f elements. It
is obvious that the total number of the message over-
heads of the algorithm DSR is more than that of our
algorithm ROUTING.

In order to insure that two non-faulty nodes in S,
are always connected, we assume that the total number
of faults is less than degree n—1 of S,,. Compared with
the algorithm DSR, our algorithm ROUTING has the
following advantages:

I. ROUTING is better than DSR in the sense that
ROUTING can directly tolerate not only edge
faults but also node faults.

2. ROUTING is better than DSR in the time com-
plexity.

3. ROUTING introduces less message overheads than
DSR.

4. Conclusions

This paper has presented an adaptive distributed rout-
ing algorithm without deadlock and livelock for the
faulty star graph. Based on the given routing rules and
the concept of Breadth First Search, we can determine
n — 1 node-disjoint and edge-disjoint subgraphs, which
are derived from n— 1 adjacent edges of a given destina-
tion in the n-star graph. When faults are encountered,
the algorithm can route messages to the destination by
finding a fault-free node-disjoint subgraphs based on the
local failure information and the properties of nodes.
The judgment of the types of faults is not required. It
insures that the routing procedure is deadlock-free and
livelock-free. If there are f < n — 2 faults (node faults
and/or edge faults) in the n-star graph, it can find a
path of length at most d (s, 1) + 4f to route messages
from a source s to a destination [ successfully.
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