
Multilevel Analysis

著者 Mizumoto Atsushi
journal or
publication title

日本言語テスト学会誌 = JLTA journal

volume 19
number 2
page range 236-239
year 2017-06-16
その他のタイトル マルチレベル分析
URL http://hdl.handle.net/10112/13020

doi: 10.20622/jltajournal.19.2_0



3.5.10 Multilevel Analysis 

Multilevel analysis (or multilevel model), also known by names such as hierarchical linear 

model (HLM), linear mixed model, mixed-effect model, and random effects model, is being 

increasingly used as an alternative to conventional analyses in the field of language testing and 

applied linguistics in general. 

(1) Rationales behind using multilevel analysis 

As the name suggests, multilevel analysis is used when data has a "nested," "clustered," or 

"grouped" structure (Robson & Pevalin, 2015, p. 2). Figure 3.5.10.1 shows an example of such a 

hierarchical data structure, in which students (Level 1) are nested within their classes (Level 2). It 

should be noted that because classes are nested within schools, multilevel analysis could include a 

higher level (i.e., Level 3). If we analyze the pooled data at Level 1, the dependency of data is 

ignored (i.e., students are nested in each class). Therefore, it is not possible to distinguish the 

results that are derived from the differences among students (Level 1) or from those among classes 

(Level 2). Furthermore, as the students nested within classes tend to have similar abilities, the 

assumption of independence, which is the prerequisite to the correct statistical inference, is violated 

and thus leads to an erroneous result. Multilevel analysis takes this type of hierarchical structure in 

data into consideration, and thus it is more appropriate than conventional analyses. More 

specifically, in multilevel analysis, the information about Level 1 and Level 2 is retained and 

"separate estimates are produced for both" (Robson & Pevalin, 2015, p. 7). As data obtained in 

education research are most likely have such a hierarchical structure, it is only natural that 

multilevel analysis has recently gained considerable attention in several fields. 

Level 1 

Figure 3.5. 10.1. An example of two-level hierarchical data 

(2) Types of multilevel analysis 

Multilevel analysis can handle both cross-sectional and longitudinal data. Figure 3.5.10.2 

displays two types of data structures to which multilevel analysis is often applied. The left panel 

shows learners (Level I) who are nested within schools (Level 2). This is a cross-sectional data 

sample. On the other hand, in the right panel, time points of the measurement (Level 1) are nested 
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within an individual learner (Level 2). As the right panel shows, multilevel analysis can be applied 

to longitudinal data analysis to investigate change over time (specifically called growth curve 

model in such application). 

Figure 3.5. 10.2. Types of multilevel analysis (cross-sectional and longitudinal data). 

(3) Concepts 

Multilevel analysis can be regarded as "basically just a posh regression" (Field, Miles, & Field, 

2012, p. 866). As such, users of multilevel analysis should be familiar with the terns used in 

regression analysis such as intercept (切片 inJapanese) and slope (傾き inJapanese). In a very 

simplified formula without symbols, in the multilevel analysis for the left panel of Figure 3.5.10.2, 

a learner's dependent variable (i.e., an outcome variable such as a score) could be modeled as 

follows: 

the intercept of level 2 + the slope of Level 2 x independent variable (of the learner) + error term 

Although this formula looks exactly like the one for regression analysis, the key difference is that it 

includes the intercept and the slope of Level 2 in the formula for modeling a learner's dependent 

variable value (Level I). 

Other concepts central to multilevel analysis are "fixed effects" and "random effects." A fixed 

effect is one value (parameter) estimated from the sample. We are familiar with a fixed effect 

because it is the value we can obtain in ordinary regression (e.g., an intercept or a slope). For 

example, in an experiment, if all treatment conditions are in the design and no generalization is 

made beyond the experiment, it can be regarded as a fixed effect. On the other hand, if the 

conditions are random samples from a population, it is a random effect and we could generalize 

beyond the conditions within an experiment. Multilevel analysis is otten referred to as a "mixed 

effects model" because it is a model that contains a mixture of fixed effects and random effects 

(Diez Roux, 2002, p. 59 I). The concept of random effects is of particular importance for language 

researchers as both participants and language stimuli (e.g., test items) are presumably sampled 

from a larger population (see Cunnings, 2012, for a more detailed description). 

In the case of multilevel analysis, the intercept and the slope of Level 2 (or a higher level) can 
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include both a fixed effect and a random effect. Since the combinations are (a) intercepts are 

random and slopes are fixed, (b) intercepts are fixed and slopes are random (which, in reality, is 

rarely assumed as a model), and (c) both intercepts and slopes are random, Figure 3.5.10.3 shows 

possible scenarios for such random effect models. 

Random intercept model Random slope model 
Random intercept and 
random slope model 

Figure 3.5.10.3. How intercepts or slopes could be random. 

Multilevel analysis is interchangeably called multilevel model/modeling, wherein researchers 

compare different models similar to those seen above. For that purpose, model comparisons are 

made by assessing the goodness-of-fit indexes such as AIC, BIC, and log-likelihood. 

(4) Benefits of using multilevel analysis 

Multilevel analysis is not a completely new statistical approach, but rather, an extension of 

conventional linear models as shown in Figure 3.5. l 0.4. Multilevel analysis is a type of generalized 

linear mixed models. 

Generalized Linear Mixed Model (GLMM) 
= Including random effects in addition to fixed effects 

會 Estimation method: 
Maximum Likelihood 

Generalized Linear Model (GLM) 
= Handling non-normal distributions 

Figure 3.5.10.4. Extensions of linear models. 

As it is an extension of conventional methods, additional benefits exist in using multilevel 

analysis in addition to the above-mentioned desirable characteristics. For example, it is robust 

against violations of assumptions such as homogeneity of variance and sphericity. Moreover, 

homogeneity of regression slopes in ANCOVA (analysis of covariance) is no longer a problem as 
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such a variability can be included in the multilevel model. Another advantage of multilevel analysis 

is that it can model distributions other than the normal distribution, and both continuous and 

categorical variables can be included. Multilevel analysis is also suitable for longitudinal data 

analysis because it can factor in individually varying time points and better analyze dependent, 

repeated-measures data. Finally, multilevel analysis can handle unbalanced datasets and missing 

values without any loss of data. 

(5) Conclusion 

In recent years, L2 researchers have started utilizing multilevel analysis (e.g., Ardasheva & 

Tretter, 2013; Ardasheva, Tretter, & Kinny, 2012; Barkaoui, 20IO, 2013; Kozaki & Ross, 2011; 

Son bu I & Schmitt, 2013) for various research purposes. Considering all the benefits of multilevel 

analysis, more researchers in the field of language testing will conduct multilevel analysis in their 

research. Mastering multilevel analysis has a steep learning curve, sometimes with complex 

mathematical equations. Thus, a hands-on approach with examples using software such as HLM, R, 

SPSS (SPSS Advanced Models), SAS, Mplus, and MLwiN will certainly be helpful for 

understanding the multilevel analysis more clearly and in greater depth. 

[Atsushi MIZUMOTO, Kansai University] 
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