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Abstract – The objective of this work was to evaluate the use of multispectral remote sensing for site‑specific 
nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection 
radiometer (Aster) was acquired in a 23 ha corn‑planted area in Iran. For the collection of field samples, a total 
of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues 
in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as 
normalized difference vegetation index (NDVI), soil‑adjusted vegetation index (Savi), optimized soil‑adjusted 
vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle 
vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral 
angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented 
the highest correlation (R2=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 
60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification 
results indicate three levels of required nitrogen per pixel: low (0–2.5  kg), medium (2.5–3  kg), and high  
(3–3.3 kg). 

Index terms: Aster, nitrogen content, near infrared, multispectral response, precision agriculture, vegetation 
indices.

Sensoriamento remoto multiespectral no manejo  
sítio‑específico da adubação nitrogenada

Resumo  – O objetivo deste trabalho foi avaliar o uso de sensoriamento remoto multiespectral no manejo 
sítio‑específico da adubação nitrogenada. Imagens de satélite do “advanced spaceborne thermal emission e 
reflection radiometer” (Aster) foram obtidas em uma área de 23  ha cultivados com milho, no Irã. Para a 
coleta das amostras de campo, foi feita a seleção de 53 pixels, por meio do método de amostragem aleatória 
sistemática. Avaliou-se o teor de nitrogênio total nos tecidos foliares do milho, nesses pixels. Para estimar o 
teor de nitrogênio da parte aérea do milho, foram utilizados diferentes índices de vegetação, como “normalized 
difference vegetation index” (NDVI), “soil‑adjusted vegetation index” (Savi), “optimized soil‑adjusted 
vegetation index” (Osavi), “modified chlorophyll absorption ratio index 2” (MCARI2) e “modified triangle 
vegetation index 2” (MTVI2). Utilizou-se a técnica de classificação supervisionada com classificador “spectral 
angle mapper” (SAM) para a geração do mapa de adubação nitrogenada. O MTVI2 apresentou maior correlação 
(R2=0,87) e é um bom previsor do conteúdo de nitrogênio no estágio V13, 60 dias após o cultivo. Imagens Aster 
podem ser utilizadas para prever o status de nitrogênio na parte aérea do milho. Os resultados de classificação 
indicam três níveis de nitrogênio requerido por pixel: baixo (0–2,5 kg), médio (2,5–3 kg) e alto (3–3,3 kg).  
Termos para indexação: Aster, conteúdo de nitrogênio, infravermelho próximo, resposta multiespectral, 
agricultura de precisão, índices de vegetação.

Introduction
Excessive nitrogen fertilization negatively influences 

water and air quality and ecosystem biodiversity. 
Consequently, scientific and political communities 
are calling for agroecosystem managers to explore 

technological tools to reduce nitrate contamination 
(Beeri et  al., 2005). To minimize environmental 
concerns, farmers need to find a way to optimize 
nitrogen fertilizer application efficiency. Traditional 
fertilizer management methods were largely based on 
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either soil or plant analysis, which are expensive, slow 
or labor‑intensive (Min & Lee, 2005).
Remote sensing, as a timely and none destructive 

tool, could be an alternative to traditional plant testing 
for diagnosis of crop nitrogen status. Remote sensing 
of canopy reflectance can be used to sample a plant 
population or community rather than individual plants 
and to rapidly assess the spatial variability of a crop 
field (Feng et al., 2008). Remote sensing also has the 
potential to address environmental issues and to save 
cost, time, and labor (Min & Lee, 2005). Therefore, the 
application of remote sensing systems, which can be 
used to study large areas, has increased in agricultural 
management, mainly due to the improvement in the 
spatial, spectral, and temporal resolutions of remotely 
sensed observations (Karimi et al., 2005). The positive 
relationship between leaf greenness and crop canopy 
status indicates that it should be possible to assess 
crop nitrogen needs using remotely sensed reflectance 
measurements of crop canopy and leaves (Shanahan 
et  al., 2008). Xue & Yang (2008) suggested using 
remote sensing for nitrogen fertilizer application.
Remote sensing has been used for nitrogen diagnosis 

in several studies. Kostrzewski et al. (2003) developed a 
ground‑based remote sensing system to separate water 
and nitrogen stress. The authors observed differences 
in the coefficient of variation of stress indices between 
treatments at 3 and 7 m grid resolution, which were finer 
for water and nitrogen stress, respectively. Borhan et al. 
(2004) used multispectral and color imaging techniques 
to determine nitrate and chlorophyll content in potato 
leaves in a controlled environment. The multiple linear 
regression between multispectral band features and 
nitrate showed a linear relationship with a correlation 
of 0.84 (Borhan et  al., 2004). Jongschaap & Booij 
(2004) estimated canopy nitrogen contents of potato by 
remote sensing observations. The authors reported an 
exponential relation between canopy organic nitrogen 
contents and red edge position derived from reflectance 
measurements, with a good correlation of 0.82. Koch 
et al. (2004) compared different nitrogen management 
strategies, such as uniform, grid‑based, site‑specific 
management zone‑constant yield goal (SSMZ‑CYG) 
and site‑specific management zone‑variable yield 
goal (SSMZ‑VYG), and found that less total nitrogen 
fertilizer (6–46%) was used with the SSMZ‑VYG 
strategy than with uniform nitrogen management.

Beeri et al. (2005) used satellite models to estimate 
sugar beet residue nitrogen credit. Hyperspectral data 

were convolved to fit Landsat5, Spot5, Quick‑bird2, 
and Ikonos2 multispectral satellite band models, 
created using linear regression. The authors provided 
separate models for nitrogen credit and for precision 
sugar beet nitrogen management. Sui & Thomasson 
(2006) developed a ground‑based sensing system 
with a multispectral optical sensor to measure plant 
reflectance, determining nitrogen status in cotton 
plant. Results showed that the spectral information had 
significant correlation with cotton leaf nitrogen content 
(Sui & Thomasson, 2006).
Perry & Davenport (2007) evaluated spectral 

and spatial differences in the response of vegetation 
indices to nitrogen treatment on apple. Imagery 
from the Quick‑bird2 satellite was used to generate 
the normalized difference vegetation index (NDVI) 
for individual trees. Results showed that remote 
sensing could be a useful tool to extrapolate handheld 
measurements spatially throughout an orchard 
(Perry & Davenport, 2007). Feng et  al. (2008) used 
hyperspectral bands and estimation indices in wheat 
and found that the model could be used for reliable 
estimation of leaf nitrogen status.
Pagola et al. (2009) proposed and evaluated a new 

low‑cost method to estimate the nitrogen nutrition 
status of plants using digital color image analysis. 
They calculated the correlation between the indices 
and measurements obtained with a soil and plant 
analysis development (SPAD‑502) chlorophyll meter 
for fertilizer management decisions. Results showed 
that the capability of the proposed index to predict 
nitrogen deficiencies affecting barley yield was equal 
to or better than that of SPAD measurements under their 
experimental conditions (Pagola et al., 2009). Bagheri 
et  al. (2012) investigated the capability of soil‑line 
vegetation indices, such as “soil‑adjusted vegetation 
index” (Savi), “optimized soil‑adjusted vegetation 
index” (Osavi) and “modified triangle vegetation 
index 2” (MSAVI2), to predict corn nitrogen content 
and observed that the investigated vegetation indices 
were correlated with corn canopy nitrogen content.

The objective of this work was to evaluate the use of 
multispectral remote sensing for site‑specific nitrogen 
fertilizer management.

Materials and Methods

The experiment was carried out in a 23 ha corn (Zea 
mays L.) farm in the county of Pakdasht in the south 
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of Tehran Province, Iran (35°30'N, 51°36'E). Corn was 
cultivated on July 5th and harvested on October 10th, 
2009. The field was fertilized according to the usual 
practice of the region, and nitrogen was applied as urea 
solution in five times via 5 stage irrigations (150, 125, 
100, 75 and 50 kg urea per ha, respectively). 
For sampling, the farm was gridded using a 15 m 

grids, and coordinates were collected by a 3 m accuracy 
GPS Magellan Explorist‑600 (Magellan, Santa Clara, 
CA, USA). A  total of 53 pixels were selected by the 
systematic randomized sampling method for corn 
canopy nitrogen content analysis. For each pixel, 
five samples (an area of 1 m2 for each sample) were 
harvested 60 days after cultivating in the V13 stage on 
9/4/2009, and average data were used for analysis.
Leaves were separated, oven‑dried at 70°C for 

48  hours, weighed on a digital scale with 0.1  g 
accuracy, and then ground to pass a 1 mm mesh screen, 
stored in plastic bags, and sent to the laboratory for 

determination of total nitrogen content in leaf tissues 
by the Kjeldahl method (Xue & Yang, 2008).
Multispectral satellite imagery from the advanced 

spaceborne thermal emission and reflection radiometer 
(Aster), for a sunny and cloudless day, was acquired on 
9/4/2009. Three spectral bands in the visible (green and 
red bands) and near infrared (NIR) with 15 m ground 
resolution were used (Figure 1).

Image processing was carried out with the 
environment for visualizing images (Envi) remote 
sensing software (Research Systems Inc., Boulder, 
CO, USA). Geometric correction was performed with 
1:25000  scale maps by root mean square (RMS) of 
0.2 pixels.
To predict corn canopy nitrogen content, vegetation 

indices sensitive to crop canopy nitrogen were used, 
namely, NDVI, Savi, Osavi, MCARI2, and MTVI2. 
The vegetation indices’ equations used for nitrogen 
prediction are shown on Table 1.

Figure 1. Advanced spaceborne thermal emission and reflection radiometer (Aster) imagery of the county of 
Pakdasht in the south of Tehran Province, Iran.

Table 1. Specification of vegetation indices used for prediction of corn canopy nitrogen.
No. Vegetation index(1) Formula References
1 NDVI (NIR ‑ Red)/(NIR + Red) Perry & Davenport (2007)
2 Savi [(1 + L)(NIR - Red)]/(NIR + Red + L) … L=0.5 Lawrence & Ripple (1998)
3 Osavi 1.6 [(NIR - Red)/(NIR + Red + 0.16)] Lawrence & Ripple (1998)

4 MCARI2 Haboudane et al. (2004)

5 MTVI2 Haboudane et al. (2004)

(1)NDVI, normalized difference vegetation index; Savi, soil‑adjusted vegetation index; Osavi, optimized soil‑adjusted vegetation index; MCARI2, modified 
chlorophyll absorption ratio index 2; MTVI2, modified triangle vegetation index 2.
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To investigate the accuracy of vegetation indices 
in the prediction of corn canopy nitrogen content, 
the measured data obtained in laboratory tests were 
compared with data predicted by vegetation indices. 
For each vegetation index, different mathematical 
equations – linear, logarithmic, second‑order, power, 
and exponential regression types – were used to 
determine the highest correlation with nitrogen 
content.
The supervised classification technique using the 

spectral angle mapper classifier (SAM) was performed 
to identify different corn canopy nitrogen levels. To 
evaluate the accuracy of the supervised classification, 
the confusion matrix and overall accuracy were 
determined.

Results and Discussion

For all investigated vegetation indices, a 
second‑order polynomial equation was used to 
correlate vegetation indices to corn canopy nitrogen 
content, because this model had the highest correlation 
and the lowest root mean square error (RMSE) among 
the different regression models (Table 2). Among all 
vegetation indices, MTVI2 had the highest correlation 
(R2=0.87) (Figure 2) and lowest RMSE (0.088). The 
high correlation of MTVI2 with the nitrogen content is 
attributed to the fact that this index is an improved model 
of the triangle vegetation index (TVI), which depends 
on crop color and chlorophyll content (Haboudane 
et  al., 2004). Therefore, MTVI2 is a useful index to 
estimate nitrogen content. MCARI2, with coefficient 
of determination of 0.789 and RMSE of 0.115, was 
the second best index for nitrogen content prediction. 
This index is an improved model of the chlorophyll 
absorption ratio index (CARI), which is very sensitive 
to chlorophyll and nitrogen content (Haboudane et al., 
2004).

The results of Savi and Osavi were similar because 
both are soil‑line vegetation indices that have the same 
effect on canopy and can minimize soil brightness 
(Bagheri et al., 2012).
NDVI had the lowest correlation (adjusted R2=0.72 

and RMSE=0.121) due to its inability to remove soil 
effects and reflection (Perry & Davenport, 2007). 
In general, the results indicated that all evaluated 
vegetation indices were highly correlated to corn 
canopy nitrogen content and could successfully 
estimate corn canopy nitrogen in the V13  stage 
(Figure  3). Therefore, among the studied indices, 
MTVI2 had the highest correlation (R2=0.90) between 
measured and predicted data. Prediction power 
analysis of the algorithms proposed by Haboudane 
et al. (2004), based on MTVI2, resulted in agreements 
between modeled and ground measurements of 
non‑destructive leaf area index, with adjusted R2 of 
0.89 for corn.
Since MTVI2 had the highest correlation with 

nitrogen content among the investigated vegetation 
indices, it was used to generate a corn canopy nitrogen 
map (Figure  4). The overall accuracy and kappa 
coefficient were 97.53% and 0.967, respectively, for 
supervised classification. The results showed that the 
required nitrogen in the experimental area could be 
categorized in three levels: low (0–2.5 kg N per pixel), 
medium (2.5–3 kg N per pixel), and high (3–3.3 kg N 
per pixel).
Based on these results, the nitrogen fertilizer 

application rate in the experimental farm varied widely 
(Figure 4). Therefore, it is important to consider these 
changes for nitrogen application management during 
the vegetation period. Results also showed poor 
distribution of nitrogen fertilizer application in the 
experimental farm, indicating that it is necessary to 
use site‑specific nitrogen fertilizer management and 
variable‑rate nitrogen application.

Table 2. Root mean square error (RMSE) and adjusted R2 of regression models for different vegetation indices to predict 
nitrogen in corn canopy.
Row Vegetation index(1) Regression model R2 RMSE
1 NDVI N = 38.764 (NDVI)2 - 24.605(NDVI) + 5.8103 0.724 0.121
2 Savi N = 6.3707 (Savi)2 - 2.8503 (Savi) + 1.6335 0.737 0.135
3 Osavi N = 1.7276 (Osavi)2 + 5.986(Osavi) - 0.9756 0.733 0.163
4 MCARI2 N = 13.958(MCARI2)2 - 12.995(MCARI2) + 4.6125 0.786 0.114
5 MTVI2 N = 26.901(MTVI2)2 - 30.669(MTVI2) + 10.648 0.874 0.087
(1)NDVI, normalized difference vegetation index; Savi, soil‑adjusted vegetation index; Osavi, optimized soil‑adjusted vegetation index; MCARI2, modified 
chlorophyll absorption ratio index 2; MTVI2, modified triangle vegetation index 2.
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Figure 2. Regression models between corn canopy nitrogen content and vegetation indices used for nitrogen prediction in the 
south of Tehran Province, Iran. NDVI, normalized difference vegetation index; Savi, soil‑adjusted vegetation index; Osavi, 
optimized soil‑adjusted vegetation index; MCARI2, modified chlorophyll absorption ratio index 2; MTVI2, modified triangle 
vegetation index 2. 
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Figure 3. Linear relationship between predicted and measured nitrogen contents for different vegetation indices. NDVI, 
normalized difference vegetation index; Savi, soil‑adjusted vegetation index; Osavi, optimized soil‑adjusted vegetation 
index; MCARI2, modified chlorophyll absorption ratio index 2; MTVI2, modified triangle vegetation index 2.
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Conclusions

1. The modified triangle vegetation index 2 (MTVI2) 
is a good predictor of corn canopy nitrogen content in 
the V13 stage, at 60 days after sowing.

2. Advanced spaceborne thermal emission and 
reflection radiometer (Aster) imagery can be used to 
predict nitrogen status in corn canopy.
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