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Abstract – The objective of this work was to evaluate the use of artificial neural networks in comparison with 
Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This 
study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting 
from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant 
parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial 
neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural 
networks were able to identify four important markers belonging to linkage groups that have been recently 
mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower 
prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial 
neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that 
artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.

Index terms: Coffea arabica, Hemileia vastatrix, artificial intelligence, molecular markers, prediction.

Redes neurais artificiais comparadas com modelos lineares generalizados sob 
o enfoque bayesiano para predição de resistência à ferrugem em café arábica

Resumo – O objetivo deste trabalho foi avaliar o uso de redes neurais artificiais em comparação à modelagem 
por meio de modelos lineares generalizados na predição de resistência à ferrugem em café arábica (Coffea  
arabica). Foram utilizados 245 indivíduos provenientes de uma população F2, oriundos da autofecundação 
do híbrido F1 H511-1, resultante do cruzamento da cultivar suscetível Catuaí Amarelo IAC 64 (UFV 2148-
57) e do genitor resistente Híbrido de Timor (UFV 443-03). Os 245 indivíduos foram genotipados com 137 
marcadores. Realizaram-se análises com redes neurais artificiais e com modelos lineares generalizados sob o 
enfoque bayesiano. As redes neurais identificaram quatro marcadores importantes pertencentes a grupos de 
ligação que foram recentemente mapeados, enquanto o modelo generalizado bayesiano identificou somente 
dois marcadores pertencentes a esses grupos. Foram observadas taxas de erro de predição inferiores (1,60%) 
para predizer a resistência à ferrugem em café arábica, quando foram utilizadas as redes neurais artificiais em 
vez de modelos lineares generalizados sob o enfoque bayesiano (2,4%). Os resultados mostraram que as redes 
neurais artificiais são uma abordagem promissora para predizer a resistência à ferrugem em café arábica.

Termos para indexação: Coffea arabica, Hemileia vastatrix, inteligência artificial, marcadores moleculares, 
predição. 

Introduction

Coffee is a culture that belongs to the Coffea genus 
of the Rubiaceae family. It is one of the main Brazilian 
crops, placing Brazil as the largest coffee producer 
and exporter in the world, and as the second largest 
coffee consumer. Among the cultivated species, 

Coffea arabica L. stands out for presenting great 
economic value, since it is the most appreciated coffee 
by consumers (Brasil, 2015). Factors that could affect 
coffee production include major diseases, such as the 
coffee leaf rust or coffee berry disease (Silva et al., 
2006). Particularly, leaf rust is the main disease that 
affects coffee, and it is caused by Hemileia vastatrix, 
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which affects all coffee producing regions worldwide 
(Várzea et al., 2002). One way to minimize the damage 
caused by this disease is to use resistant varieties, 
obtained in breeding programs (Alvarenga et al., 
2011). In this context, plant genome sequencing and 
identification of molecular markers associated with 
resistance have been used to assist breeding programs 
(Morceli et al., 2008; Alvarenga et al., 2011).

Among the statistical methods based on molecular 
markers, genome wide selection (GWS) is a technique 
that has been widely used for selecting materials 
with higher performance based on information from 
molecular markers. Such methodology, proposed 
by Meuwissen et al. (2001), allows incorporating 
molecular information directly in the prediction 
of the individuals’ genetic merit. In general, the 
methodologies developed for genomic selection, such 
as Ridge Regression Best Linear Unbiased Prediction 
(RR-BLUP), Bayes A and B (Meuwissen et al., 2001) 
and Bayesian Lasso (Campos et al., 2009), are based 
on the normality assumption of the studied phenotype. 
Thus, using them in categorical variables, such as leaf 
rust resistance, becomes inadequate.

In order to avoid this limitation, Pérez & Campos 
(2014) proposed the use of Bayesian generalized linear 
regression (BGLR), extending the genomic selection 
to continuous (e.g., yield) and discrete (e.g., disease 
resistance) models (Pérez & Campos, 2014). However, 
even including other types of models, the methodology 
requires that these models are previously established by 
the researcher, i.e., the problem’s modeling is essential 
to the use of this technique. Also, another deficiency 
of the techniques commonly used in GWS is that they 
do not extend to problems involving dominance and 
epistatic effects (Resende, 2007).

As an alternative to the use of conventional stochastic 
modeling, artificial neural networks can be used for 
prediction and classification, with the advantage of not 
having assumptions regarding the model that should 
be adopted, since their results depend on the learning 
process rather than on the distribution of variables. 
Such approach has been successfully applied to solve 
several problems related to genetics (Nascimento et al., 
2013; Silva et al., 2014, 2016; Sant’Anna et al., 2015).

The objective of this work was to evaluate the 
use of artificial neural networks in comparison with 
Bayesian generalized linear regression to predict leaf 
rust resistance in Arabica coffee (Coffea arabica).

Material and Methods
Phenotyping and genotyping experiments 

were carried out in a greenhouse and in a coffee 
biotechnology laboratory, the Laboratório de 
Biotecnologia do Cafeeiro (BioCafé), of the Instituto de 
Biotecnologia Aplicada à Agropecuária (Bioagro), an 
institute of biotechnology applied to agriculture, of the 
Universidade Federal de Viçosa (UFV) (20°45'37"S, 
42°52'4" W) as described by Pestana et al. (2015). 
Phenotyping was conducted in May 2009, July 
2009 and August 2009 for the repetitions 1, 2 and 3 
respectively. Genotyping was carried out in the years 
2010, 2011 and 2012. The study used 245 individuals 
in a F2 population derived from the self-fertilization 
of the F1 H511-1 hybrid, resulting from a crossing 
between the susceptible cultivar Catuaí Amarelo IAC 
64 (UFV 2148-57) and the resistant parent Híbrido de 
Timor (UFV 443-03). DNA extraction of F2 population 
individuals was carried out according to the protocol 
described by Diniz et al. (2005). Genotyping was 
carried out with 137 markers (74 AFLP, 58 SSR, 4 
RAPD, and 1 specific primer) (Pestana et al., 2015).

Markers data for each individual were scored for 
genomic selection analysis. For approaching dominant 
markers (allele from the resistant parent Híbrido de 
Timor UFV443-03), -1 was assigned for presence, 
and 1 for absence of the band. For repulsion dominant 
markers (allele from the susceptible parent Catuaí 
Amarelo, UFV 2148-57), 1 and -1 were assigned for 
presence and absence of the band, respectively. The 
codominant markers were scored as 0 for heterozygote; 
-1, for bands from the resistant parent; and 1, for bands 
from the susceptible parent.

In the phenotyping regarding the expression of 
genotype resistance or susceptibility, inoculations 
were carried out, and uredospores of H. vastatrix race 
II were multiplied and inoculated according to the 
methodology described by Capucho et al. (2009).

Inoculation – for the 245 individuals of a F2 – was 
carried out using leaf discs, as described by Eskes 
(1982), using 20 µL of spore suspension with viability 
over 30% at a concentration of 2.0 mg µL-1, with three 
replications. In each plant and each replication, 16 leaf 
discs of 1.5 cm diameter were used as sample units, 
and four discs from each plant were uninoculated as 
a control. After inoculation, the discs were placed on 
a nylon fabric with water and saturated foam inside 
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a gearbox disinfected, followed by methodology 
described by Capucho et al. (2009).

The assessment of resistance/susceptibility was 
carried out according to Capucho et al. (2009), following 
the scale of Tamayo et al. (1995), which is based on the 
absence or presence of uredospores. According to this 
scale, scores 1-3 are considered resistant (1 - absence 
of symptoms; 2 - small chlorotic lesions; and 3 - large 
chlorotic lesions without sporulation). Susceptibility 
(scores 4 to 6) is assigned to large chlorotic lesions, with 
few uredospores, occupying less than 25% of the leaf 
area (score 4); to lesions with sporulation, occupying 
25 to 50% of the leaf area (score 5); and to lesions 
with sporulation, occupying more than 50% of the leaf 
area, and with uredospores (score 6). To predict the 
resistance pattern to leaf rust using two methodologies 
(BGLR and ANN), scores were rescored as resistant 
(1 = scores 1 to 3) and susceptible (0 = scores 4 to 6).

The architecture of the ANN used was the single 
hidden layer back-propagation (Rumelhart et al., 
1986) with six neurons, 137 inputs (represented by the 
marker values) and one output layer, which provided 
the prediction of leaf rust resistance. The architecture 
was represented by a functional form, as the topology 
described in Figure 1.

The Wm variables were functions of pondered sums 
of the 137 input variables Xi (represented by the marker 
values), and the output variable, Yk (leaf resistance 
scores), that is, W X mm m m

T= + =γ α α( ), , , ..., ,0 1 2 6    which 
was modeled as functions of these combinations.

T = + W,k = 1,2, ,K;
Y =f X =g T ,k = 1,2, ,K;
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and the softmax, g T e Tk

T
ll

k
k( ) =

=∑ 1
  (Hastie et al., 

2009).
The estimate of the weights {α0m, αm; m = 1, 2, 

…, M} and {β0k, βk; k = 1, 2, …, K}  was carried 
out by minimization of the sum of square errors,
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11  
by the application of the descending gradient algorithm. 
Since the hidden layers were used, the adjustment 
procedure known as back-propagation was applied.

For the network training (obtainment of weights), 
the set of observations was divided in two parts: 
training and validation, as commonly adopted in the 

literature (Silva et al., 2014, 2016; Sant’Anna et al., 
2015). The first, denoted by training set, consisted 
of 160 individuals taken at random. The second, 
composed of the remaining 85 observations, was used 
for network validation. The number of individuals 
for training and validating the network was defined 
following the percentages (around 65% of the data 
information to train the network) usually adopted by 
the other authors (Braga et al., 2011; Nascimento et 
al., 2013). The arguments required for the function of 
the network, such as number of neurons in the hidden 
layer, weight initial value, and decay rate were chosen 
considering the network that provided error value of 
15%, at most, for the validation set.

For comparison, prediction was also carried out using 
the genomic selection method based on generalized 
linear models under the Bayesian approach (Campos 
& Perez Rodriguez, 2014). Regression model under the 
Bayesian approach is given by: yi = ηi + εi, where ηi is a 
linear predictor, and εi are independent normal model 
residuals.

Rewriting ηi:  ηi = 1µ + X1β1 + … + Xjβj + u1 + … + uq, 
in which µ is an intercept; Xj are the matrices for 
predictors, Xp = {xijk}; βj are the vectors of effects 
associated to the columns of Xj; uq = {uq1, …, uqn}  are 
the vectors of random effects.

Figure 1. Schematic of a single hidden layer back-
propagation. Inputs x1 to x137 in the input layer are related to 
the 137 markers information and are considered as inputs. 
One hidden layer consisting of Wm  nodes (i = 1, 2, …, 6). 
Artificial neural network returns the predicted breeding 
value in the output layer, in the figure represented by 
vector Yk
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For categorical variables, as leaf rust resistance, 
the vector response adopted in BGLR is the probit 
link (Perez & Campos, 2014), where the probability 
of each of the categories is linked to the linear 
predictor according to the link function below:  
P(yi = k) = Φ(ηi – yk) – Φ(ηi – yk-1), where Φ(.) is the 
standard normal cumulative distribution function, ηi is 
the linear predictor, and yk are threshold parameters 
(y0 = -∞, yk ≥ yk-1 and yk = ∞). 

The prior density was the same adopted in the 
Bayesian Lasso, which assumes that the marginal 
distribution of marker effects is double exponential 
(Perez & Campos, 2014).

To estimate the model in BGLR, the study used the 
same 65% of individuals used in ANN training. For 
validation, the study used the same 35% of individuals 
used to validate the neural network.

After obtaining the results, the percentage of 
prediction errors was calculated for the artificial 
neural networks and the Bayesian generalized linear 
regression was studied in training populations 
(estimate) and in validation. Coincidence coefficients 
between predictions were calculated regarding leaf 
rust resistance by both approaches. Manhattan plots 
were constructed in order to observe if the behavior 
and distribution of the most important markers for 
neural networks and Bayesian approach were similar.

In order to verify the possibility of using marker 
assisted selection for predicting leaf rust resistance, 
two situations were taken into account. At first, the 
study considered the three most important markers, 
for which three prediction scenarios were assessed: the 
use of the most important marker; the use of the two 
most important markers; and the use of the three most 
important markers.

In the second assessed situation, among the ten most 
important markers, the study selected the two markers 
that belong to the linkage groups in which Pestana et 
al. (2015) detected two important QTLs for leaf rust 
resistance in C. arabica.

The models used were carried out by using nnet 
(to fit a neural network) function and BGLR (to fit a 
generalized Bayesian model) functions of the packages 
nnet (Venables & Ripley, 2002) and BGLR (Campos et 
al., 2009; Pérez et al., 2010), respectively. Both were 
developed in the R software (R Core Team, 2016).

A total of 100,000 iterations were used in this study, 
with 20,000 burn-in and thin iterations assuming 

the value 10, following authors as Macpherson et al. 
(2004) and Kwon & Reis (2015).

Results and Discussion

After the training algorithm was executed, the 
topology with prediction error rate of less than 15% was 
considered. For this topology, the number of neurons 
was six, decay rate was 5.0x10-4, and maximum number 
of iterations was equal to 5,000. The initial values for 
the network weights were randomly chosen from the 
interval [-0.5, 0.5] and assuming max = 2. According 
to Venables & Ripley (2002), the initial values of the 
process should be chosen in order to satisfy the equation 
LS × max(|x|) ≈ 1, where LS denotes the upper limit of 
the range and max(|x|) is the largest absolute value of 
the set of training data.

Neural networks provided slightly lower error rates 
than BGLR in the validation population. Specifically, 
error rates were equal to 2.40% and 1.60% in the 
validation population, considering the predictions 
carried out by BGLR and ANN, respectively (Table 1). 

In order to select resistant varieties, genomic selection 
methodologies, especially Bayesian generalized linear 
regression, once that BGLR extend the genomic 
selection to discrete variables as resistance, have been 
proposed to predict the breeding values by analyzing 
their phenotypes and high-density marker information 
(Heffner et al., 2009; Pérez & Campos, 2014). However, 
when carrying out prediction studies of genetic values 
from phenotypic values with aggregation of molecular 
information, some statistical and genetic aspects 
should be considered.

In the statistical context, appropriate models must be 
adopted upon the possibility of occurrence of serious 
problems of multicollinearity and dimensionality of 
the incidence matrix (Ferrari, 1989). Multicollinearity 
is conditioned by the existence of correlations 
between markers and can result in inconsistent 

Table 1. Prediction error rates obtained with artificial neural 
network and Bayesian generalized linear regression (BGLR) 
in training and validation populations, and percentage of 
agreement between the two methodologies.

Methodology Classification error (%)
Training Validation

Artificial neural network 0.00 1.600
Bayesian generalized linear regression 0.00 2.400
Concordance (%) - 81.37
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estimates of the regression coefficient and also in an 
overestimation of the direct effects of the explanatory 
variables on the dependent variable, which may lead 
to misinterpretation, and dimensionality issue occurs 
when the number of available observations is lower 
than the number of explanatory variables (or markers) 
included in the model (Cruz & Carneiro, 2003; 
Resende, 2007).

The existence of multicollinearity and the 
dimensionality issue are limiting factors for the 
Bayesian models, since the once that data set used 
in this methodology needs to be defined and known 
priorly, satisfying the presupposition of being in the 
exponential family (Resende, 2007; Garcia et al., 
2012). In comparison to this, the ANN is not affect 
by those issues because it does not involve stochastic 
modeling, since it is nonparametric and the theory 
behind them is quite different from the linear model 
BGLR described above, based on computational 
intelligence and principles of learning (Heslot et al., 
2012; Silva et al., 2014).

Apparently, both BGLR and ANN approaches 
are able to circumvent such problems, since results 
regarding prediction were satisfactory. In this study, 
dimensionality is not a limiting factor in view of the 
number of observations and studied markers. In the 
genetic context, it should be taken into account that 
BGLR approach uses a linear model in which the 
predicted value – being function only of favorable 
allele dose – predicts the additive genetic value 
with higher mean squared error, or lower genotypic 
reliability, expressed by the r2, of the model because 
of the effects assigned to dominance and epistatic 
interactions disregarded in this model (Cruz, 2012). 
However, when a computational intelligence approach 
as ANN is used, such information and other important 
information that the breeder has about the genotype 
in study constitute a relevant input to be considered 
during the training processes for increasing the 
efficiency of the selection process, and it becomes 
possible to capture different relationships between 
markers and phenotypes (Bureau et al., 2005; Heslot et 
al., 2012; Silva et al., 2014, 2016).

The percentage of agreement between the results 
obtained by the two methodologies was 81.37%. 
Comparing the results obtained with the mapping 
that had recently been carried out by Pestana et 
al. (2015), neural networks were able to identify 
four markers (E-CGT/M-ATC1, E-CGT/M-TCT1, 

E-CTT/M-TGC3, and E-CGA/M-ACA2) belonging 
to the identified QTLs. BGLR could only identify 
two markers belonging to QTLs. It is believed that the 
ANN approach, due to its different neurons in hidden 
layers, can capture linear and nonlinear relationships 
between the response variable and the values assigned 
to molecular markers (Braga et al., 2011). This means 
that they were capable of detecting the effects of 
dominance and epistasis that are neglected by other 
methodologies (Heslot et al., 2012; Silva et al., 2014, 
2016).

Manhattan plot graphs showed the most important 
markers for both methodologies (Figure 2). Markers 
behavior pattern regarding its importance in 
the prediction process was different in the two 
methodologies (ANN and BGLR) regarding leaf rust 
resistance. This difference occurs since the markers 
that were identified as the most important are different 
in the two methodologies. Particularly for neural 
networks, it is noted that a relatively large number of 
markers had effects of great magnitude.

The 10 most important markers obtained for the 
Bayesian methodology were: M34, M36, M132, M101, 
M88, M62, M29, M85, M65 and M116; and the 10 most 
important markers obtained for the neural networks 
were: M6, M19, M35, M44, M56, M80, M59, M64, 
M67 and M84. These results justify the difference 
between the graphs.

In order to simulate a selection strategy similar 
to that used in marker assisted selection (MAS) – in 
which only a small group of markers, supposedly in 
linkage disequilibrium with QTL, could be effective 
in prediction –, classification error rates were obtained 
for ANN, by evaluating three situations (Table 2). 
Error rates were relatively high, and ranged between 
44.90% and 53.47%, evidencing the importance of 
using all the information available for predicting 
leaf rust resistance in coffee, i.e., the need for more 
parameterized predictive models.

The high prediction error rates obtained in Table 2 
when using markers selection show that the joint action 
of several markers is more appropriate for prediction 
of resistance or susceptibility to H. vastatrix. The 
complexity of the genetic control of H. vastatrix has 
been reported by several authors (Bettencourt & 
Carvalho, 1968; Capucho et al., 2009; Pestana et al., 
2015). Studies on coffee demonstrated that Híbrido de 
Timor derived accessions have five dominant genes 
(SH5, SH6, SH7, SH8 and SH9) that provide, alone or in 
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combination, the resistance spectra (Bettencourt et al., 
1992), indicating both horizontal control, of polygenic 
nature, and vertical control, provided by few genes of 
major effect. In this study, the most relevant markers 
are those that present gametic phase disequilibrium 
with the probable genes that control the studied trait. 
This association, either by factorial linkage, or by a 
non-random combination between marker and QTL 
(quantitative trait loci), has been considered a crucial 
factor in obtaining gains with selection (Resende et al., 
2008).

In general, important markers to be used in MAS 
are identified through genomic analyses in populations 
structured for genetic mapping with the aid of 
regression models, assuming the existence of markers 
flanked to significant QTLs (Caixeta et al., 2009). In 
this work, the use of computational intelligence as an 
auxiliary tool for QTLs detection was proposed. For 
assisted selection of this work, the ten most important 
markers for prediction were selected. Another reason 
for the high prediction error rates found in Table 2, 
even for the markers identified in the linkage maps, 
is the fact that the QTLs identified by Pestana et al. 

(2015) have low coefficients of determination (5.8% 
and 8.1%). This means that they are not sufficient to 
confer leaf rust resistance in C. arabica alone.

Finally, it is noteworthy that the low polymorphism 
rate found in C. arabica populations (Geleta et al., 2012) 
was not a limiting factor for the use of neural networks 
in predicting leaf rust resistance, since it presented 
satisfactory results considering the prediction error 
rate. The proposed method has low prediction error 
rate and superior results when compared to those found 
by the Bayesian generalized model. The advantage 
of neural networks over other approaches has been 
proven in genetic studies. In relation to genotype x 
environment interaction, Nascimento et al. (2013) 
assessed the adaptability and phenotypic stability of 
alfalfa genotypes based on formation of an artificial 
neural network, considering the method of Eberhart & 
Russell (1966). Percentage agreements were of 89 and 
100% for adaptability, and of 78 and 100% for stability, 
considering favorable and unfavorable environments, 
respectively. Silva et al. (2014, 2016) concluded that 
ANNs are efficient in predicting values and genetic 
gain in simulated trials under randomized block 
design. Regarding the classification studies, Sant’Anna 
et al. (2015) showed that neural networks had results 
superior to those obtained by discriminant analysis in 
the classification of simulated populations.

Figure 2. Importance of markers for the prediction process: 
A, graph in which the x axis corresponds to the information 
of the markers, and the y axis represents the estimate 
of markers effect for the model obtained by Bayesian 
generalized linear regression; and B, graph in which the x 
axis represents the dispersion of markers; and the y axis 
represents the respective prediction errors when each 
marker is removed from the model obtained by artificial 
neural network.

Table 2. Prediction error rates (TEP) obtained in the two 
studied situations: situation I, marker assisted selection 
(MAS) using the best marker, the two most important 
markers or the three most important markers, and situation 
II, marker assisted selection (MAS) using the two most 
important markers identified by Pestana et al. (2015). In 
each case, all possible marker combinations were assessed: 
presence (1) or absence (-1).

Situation I Situation II
MAS (1 
marker)

TEP MAS (2 
markers)

TEP MAS (3 
markers)

TEP MAS(1) TEP

-1 51.02 (1,1) 44.9 (1,1,1) 43.67 (1,1) 46.12
(-1) 48.98 (1,-1) 46.94 (1,1,-1) 47.35 (1,-1) 45.71

(-1,1) 52.24 (1,-1,1) 53.47 (-1,1) 53.88
- - (-1,-1) 48.16 (1,-1,-1) 44.9 (-1,-1) 46.53
- - - - (-1,1,1) 46.12

- - - - (-1,1,-1) 46.94

- - - - (-1,-1,1) 47.75
 - -  - - (-1,-1,-1) 46.53   
(1)Mark assisted selection by Pestana et al. ( 2015).

http://dx.doi.org/10.1590/S0100-204X2017000300006


192 G.N. Silva et al.

Pesq. agropec. bras., Brasília, v.52, n.3, p.186-193, mar. 2017 
DOI: 10.1590/S0100-204X2017000300009 

Conclusions
1. Artificial neural network is more efficient to 

predict leaf resistance in Coffea arabica than Bayesian 
generalized linear regression.

2. Artificial neural networks are an interesting and 
promising approach to predict C. arabica leaf rust 
resistance.
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