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Dynamically Optimal Strategy to Manage Resistance to Genetically Modified 

(GM) Crops 

 
 
 
 

Abstract 
 

This paper uses a simple model of evolution of pest population and pest resistance to 
characterize the socially optimal refuge strategy to manage pest’s resistance to 
genetically modified (GM) crops. The technical part of this paper extends previous 
theoretical economic analyses of treatment by addressing the optimal path to the 
equilibrium. In this study, we not only show, using detailed theoretical analyses of the 
characteristics of the steady state, but also analytically and numerically results 
characterizing the optimal control paths that lead to the final equilibria. We also study 
the initial circumstances under which a synthesized interventionist control is optimal 
and the initial circumstances under which an ecological control (zero control) is 
optimal.  
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Dynamically Optimal Strategy to Manage Resistance to Genetically Modified (GM) 

Crops 

 

Introduction 

The development of genetically modified (GM) crops has been the most successful 

application of agricultural biotechnology research to date. The main commercialized varieties, 

Bacillus thuringiensis (Bt) transgenic crops, derive their resistance from the insecticide 

expressed by the gene of the bacterium Bt that is inserted into the DNA of the host crop. Even 

though cotton and maize engineered with such genes were grown commercially for the first 

time in 1996, their use has spread very quickly all over the world. In 2004, the total planting 

area of Bt maize and Bt cotton is 23 million hectares in the world (James, 2005). In addition, 

James’s report predicts that Bt crops as well as other GM crops will be planted on more arable 

land and in more countries in the future. 

The development of biotechnology also has spurred interest in resistance management 

in recent years. The biotechnologies are also two-edged swords. Even though biotechnology 

represents the cutting edge of efforts to increase agricultural productivity as well as the 

improvement of environmental conditions, it also has given rise to a number of concerns. One 

of the major worries lurking behind this success is the potential vulnerability of GM crops to 

adaptation by pests. As resistance builds up, the GM crops will lose their efficiency in 

controlling the pests. In order to control the buildup of resistance in the pest population, a 

refuge strategy is suggested and applied in almost all the countries where GM crops are 

planted. Refugia reduce the rate of resistance evolution by allowing insects, which are 

susceptible to toxins not used in the refuge, to survive and reproduce successfully, thereby 

reducing the percentage of potentially resistant insects in the overall population. Even though 

refuge strategy is a commonsense, appreciate refuge requirements remain a matter of debate 
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because of uncertainty regarding levels of genetic and biological parameters used to simulate 

resistance evolution and uncertainty regarding models used to estimate the costs and benefits 

of managing resistance with refugia. Consequently, an interest in searching for an optimal 

refuge strategy has arisen (Gould, 1998; Hurley et al., 2001; Livingston et al., 2002; 

Laxminarayan and Simpson, 2002).  

The current literature on the design of a refuge strategy to manage the resistance of a 

pest population to GM crops can be divided into two types. The main objective of the first 

type study seeks, above all, to determine an optimal refuge size that preserves a pest’s 

susceptibility (henceforth, called biological models). A good example of a biological model is 

Gould (1998). The other type of study, while also concerned about the buildup of resistance, 

is more concerned about doing so in a way that maximizes the benefits provided by GM crops 

to producers (henceforth, called economic models). Among the most notable papers that have 

dealt with the economic considerations of an optimal refuge strategy to manage Bt crop 

resistance have been those of Hurley et al. (2001), Livingston et al. (2002), and Laxminarayan 

and Simpson (2002). 

Gould (1998) was one of the first entomologists to examine optimal refuge size using 

a biological model. In order to preserve the insect population’s susceptibility, entomologists 

try to determine ways to minimize the share of the population of pests that have the resistant 

genes. Gould’s research tried to determine a level such that the part of the population that is 

resistant to a toxin is small enough that it does not become dominant in the population for 

some specified length of time. The biological objective is to try to ensure that the population 

will not evolve into one that is uncontrollable by the GM toxin. By using a population 

genetics model, Gould (1998) shows that in order to keep the fraction of the resistant pests 

below a goal of 0.10 over a 10 year span, the effective non-spray refuge size needs to be 

larger than the current requirements of 4%.  
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Hurley and his colleagues (Hurley et al., 1997 and 2001; Secchi et al., 2001) were 

among the first research team to set up economic models that seek to estimate an optimal 

refuge strategy for the management of a pest population’s resistance to GM crops. The 

shortcoming of biological models is that they ignore the economic tradeoffs between the pest 

control and population management benefits and costs of transgenic varieties. Economists 

have pointed out that even though the establishment of refuges for pests helps to preserve the 

pest’s susceptibility to the toxins expressed by the GM crops, maintaining susceptibility can 

be costly. If the cost is too high, it may be that the benefits from the adopting refuge strategy 

are not substantial enough to offset the costs. Numerically, Hurley and colleagues show that 

the benefit of maize production can be maximized with a 10.6% non-Bt maize refuge size 

which is smaller than the required 20% by the United States Environmental Protection 

Agency (EPA). Empirical studies by Livingston et al. (2000 and 2002) found a similar set of 

results for the case of Bt cotton in the United States.  Both sets of results assume fixed pest 

resistance and are derived with models that are static. 

The work of Laxminarayan and Simpson (2000 and 2002) goes one step further than 

the previous studies that use economic models. Using an analytical model that incorporates 

the evolution of pest populations and pest resistance buildup, Laxminarayan and Simpson 

characterize the socially optimal refuge strategy for managing pest resistance to GM crops.  

There results are derived within a dynamic modeling framework, but they characterize 

solutions only in terms of steady state solutions.  The second contribution of Laxminarayan 

and Simpson is that they show both that the establishment of refuge areas might best be 

delayed until resistance becomes an important concern, and that the use of refuge areas in the 

long run will not be optimal under some circumstances (i.e. the fitness cost of resistance does 

not exceed the discount rate). While an important extension of the literature, the shortcoming 

of Laxminarayan and Simpson’s paper is that it lacks an analysis of the optimal path of refuge, 
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which is an important feature of an optimal refuge strategy. 

The bioeconomic model we use as a foundation for our analysis follows from the 

epidemiological model in Wilen and Msangi (2002). However, the model we present is not 

only an application of Wilen and Msangi’s model in the case of GM crops, but also a 

generalization in several directions. The first important generalization is the detailed analysis 

of the characteristics of the steady states. Wilen and Msangi did solve for the steady states, 

however, they did not focus on the analytical discussion of the characteristics of the steady 

states. In this study, we discuss in detail the nature of all the steady states, their stability 

properties, and circumstances under which these steady states will emerge as long run 

solutions to the dynamic problem.  

Our second contribution is to explore the importance of the impact of fitness cost on 

an optimal refuge strategy. Wilen and Msangi generalize the zero fitness cost assumption in 

Laxminarayan and Brown’s model, but they focus on the differences between zero fitness cost 

and non-zero fitness cost. We generalize the impact of fitness cost on optimal treatment 

strategy by exploring how the qualitative properties of optimal solutions depend upon the size 

of fitness costs. We numerically show that relatively low fitness cost makes the solution 

qualitatively like that of a non-renewable resource problem, in the sense that the decision is 

mainly one of determining how fast to dissipate a valuable stock, namely the stock of 

susceptible pests. In contrast, we show that relatively high fitness cost makes the problem 

more like a renewable resource problem in which the main decision concerns the steady state 

level that the stock of susceptible pests ought to be driven to.   

The remainder of this paper is organized as follows. We introduce our model in 

section 2. Analysis of our bioeconomic model shows that the under different circumstances, 

the dynamic optimal refuge strategy is also different. For some initial conditions where the 

pest population and/or the fraction of susceptible pests are high, the dynamically optimal 
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refuge strategy is a combination of the extreme control and a singular control that will drive 

the whole system into a final equilibrium. For other circumstances with different initial points, 

no control (or rather, a zero control) is optimal. In Section 3, we develop a discretized form of 

our bioeconomic model to check these theoretical results. Results of the numerical simulation 

of our model are consistent with our theoretical analysis. Section 4 concludes the paper. 

 

The Bioeconomic Model 

The integrated bioeconomic model that we use follows the epidemiological model 

presented by Wilen and Msangi (2002). A similar approach is used in the models presented by 

Laxminarayan and Simpson (2002), Hurley et al. (2001) and Livingston et al. (2002) in their 

studies on refuge strategies. The pest population is assumed to be local (that is, both in- and 

out-migration is ruled out). We also use other standard assumptions implicit in deriving the 

Hardy-Weinberg principle, such as random mating between resistant and susceptible pests, 

negligible mutation, non-overlapping pest generations and the sexual reproduction of pests. 

The model consists of two parts: a biological model which is used to simulate the evolution of 

pest resistance; and a dynamic regulatory model which is used to examine the impact of 

refuge policies. Because the regulatory model is easier to describe once the biological model 

is understood, we begin with the biological model. 

Biological Model 

The pest population is denoted by D. A number of biological models assume that the 

pest population grows logistically (see, e.g. Clark 1976). Following the assumption of these 

studies, we shall assume that the pest population grows logistically with an intrinsic growth 

rate of g, and a carrying capacity per unit of land normalized to 1. Total land is assumed to be 

fixed, and is normalized to 1. The total number of new pest organisms hatched (presuming 

them to be the offspring of egg-bearing insects) in every period is given by gD(1-D). From 
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this gross addition, we must subtract to account for mortality among pests. 

The pest population is divided among “susceptible” and “resistant” organisms. 

The former will be assumed to die with a high mortality rate, h, if treated and a zero mortality 

rate if not. The mortality rate of the resistant organisms is assumed to be r, which is also 

known as the fitness cost, regardless of whether the pest is treated or not. We assume that a 

fraction, w, of all pests is susceptible to the toxin, and the remaining fraction 1-w is immune. 

A refuge strategy calls for planting a fraction, q, of the total land devoted to agriculture in the 

GM crop. Hence, the fraction 1 – q of agricultural land will be devoted to a non-GM variety. 

As shown in Appendix 1, the dynamics of the pest population and the fraction of the 

susceptible pests are given by: 

dt
dD   = gD(1-D) – qwhD - (1-w)rD                   

dt
dw  = (qh – r)w(w-1)          (1) 

 

Regulatory Model 

The objective economic function is to minimize the discounted sum of treatment costs 

(cost of planting GM crops) and damage costs as a result of pests.  The dynamic model 

system can be stated as follows: 

10
min

≤≤q ∫
∞

0
 [α*D + c*q]*e-ρt dt 

  s.t.  
dt
dD   = gD(1 - D) – qwhD - (1-w)rD  

dt
dw     = (qh – r)w(w-1)        (2) 

where α is the average damage cost per unit of the normalized pest population; c is the 

average additional cost associated with GM crop planting; and ρ is the discount rate. The 
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control variable in Equation (2) is the fraction of GM crop, q. And the two state variables are 

the total pest population (D) and the fraction of the susceptible pests (w). The fraction of 

agricultural land set aside as refuge area in each period (1-q) determines the cost in each 

period, as well as the effectiveness of the GM crop against pests in the subsequent periods. 

There is, then, an inter-temporal tradeoff between crop losses today and more rapidly eroding 

toxic effectiveness in the future. 

Unfortunately, as shown in Appendix 2, the second-order necessary conditions for a 

minimum of the Hamiltonian do not hold for this type of problem. The corresponding current 

value Hamiltonian is: 

       H(.) =α*D+c*q+λ[gD(1- D) –wqhD–(1-w)rD]+μ(qh -r)w(w-1)  (3) 

and it is not globally convex, as is necessary to conclude that the solution is a global 

minimum. As a consequence in the following section, we solve the system for some equilibria 

that may only be local minima. In this sense, these equilibria are called “potential steady 

states” (See Appendix 3). This inability to identify global minimizing equilibria seems to be a 

feature of these kinds of models, and is found, for example, in Gersovitz and Hammer (2004). 

Optimal Control Strategies 

The Hamiltonian is minimized in each period with an appropriate choice of the 

optimal fraction of GM crop, q.  Since this problem is linear in the control variable, we need 

to isolate the switching function, which is σ (t) = c - λwhD + μwh(w-1).  The switching 

function is a coefficient in the Hamiltonian that multiplies the control variable and hence 

measures the marginal addition to costs that are contributed per unit of the control variable. 

As can be seen, the switching function is time dependent, and it depends upon both state 

variables and shadow values. Here λ and μ are the shadow values of the size of the total pest 

population and the population that is made up of susceptible pests. In a traditional resource 

problem (which typically is seeking to maximizing the value of return-based activities), the 
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shadow price of the pest population is negative since the pest population is a “bad” resource. 

In our study, however, since the objective is to minimize the cost function, a large pest 

population will contribute to higher costs, so λ can be defined as positive. For a similar reason, 

μ can be viewed as negative instead of positive as in a traditional resource problem. 

The sign of the switching function determines the choice of the treatment. The 

switching function is the coefficient of the control, and the Pontryagin optimality conditions 

state that:  

q = 0   if  σ (t) >0 

q = q*   if  σ (t) =0 

q = 1   if  σ (t) <0           (4) 

When the switching function is negative, all of the land should be planted with GM crop (or 

q=1) to minimize the Hamiltonian. And when the switching function is positive, all of the 

land should be planted to the non-GM crop. When the switching function is zero, however, a 

so-called singular path is followed. The singular control may be complicated and time varying, 

and it must be determined using additional computations that hold along an optimal path. As 

in Wilen and Msangi (2002), the complete solution to a linear control problem generally 

involves a “synthesized” control that consists of segments of extreme controls, followed by 

segments of singular controls.   

The choice of treatment also affects the value of the switching function as the 

dynamics unfold and change relative values of the state and shadow variables. For example, if 

the switching function is negative initially, then a maximum control is used to minimize the 

Hamiltonian. With the use of the maximum treatment, the total pest population and the 

fraction of the susceptible pests will decrease. Consequently, both the shadow prices of the 

total pest population and the susceptible pests will also change. These factors, working 

together, will change the value of the switching function. And if the sign of the switching 
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function changes from negative to positive, the optimal treatment will change from maximum 

control (q=1) into minimum control (q=0). In other words, choice of treatment will also 

change the value of the switching function, which in turn will influence future optimal values 

of the treatment. 

There are three possibilities for sign regimes of the switching function along the 

optimal path. First, the sign of the switching function may not change and remain always 

negative up to and until the final equilibrium is arrived at. The second possibility is that the 

sign of the switching function may not change and always remain positive. The third 

possibility is that the sign of the switching function may change (possibly multiple times) 

along the optimal path, either from positive to negative or vice versa. Each of these 

possibilities will be associated with a qualitatively and quantitatively different optimal control 

path and a different final equilibrium. 

An extreme maximum control will be optimal if the switching function is always 

negative along the control path. As discussed above, as the maximum treatment is adopted, 

the system dynamics will cause the magnitude of the switching function to change. However, 

these changes may not lead to a change in the sign of the switching function. If the switching 

function is always negative, even though it is becoming larger and larger, the optimal choice 

is still to always use maximum treatment to minimize the Hamiltonian. If this policy is used 

throughout the whole program, the fraction of the susceptible pest population will be driven 

towards zero and the total pest population will return to a high level less than the natural 

equilibrium. 

Similarly, a zero control (no Bt planting) will be optimal if the switching function is 

always positive along the control path. If the switching function does not change sign before 

the equilibrium arrives, the second possibility is that the switching function is always positive 

throughout the whole program. . In this case, a zero control will lead the system back to the 
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natural equilibrium in which both the fraction of the susceptible pests and the total pest 

population levels are at their maximum levels. 

A synthesized control that consists of segments of extreme control and singular 

control is optimal if the switching function changes sign along the control path. As discussed 

above, the sign of the switching function determines the treatment, and the treatment also 

impacts the magnitude of the switching function. Consequently, along the control path, the 

switching function may change signs, either from negative to positive or vice versa. Under 

this situation, the optimal treatment strategy is a combination of extreme control (maximum if 

the sign of the switching function is negative or/and minimum if the sign of the switching 

function is positive) and a possibly singular path that will drive the whole system into 

equilibrium. In Appendix 3, we solve for the singular control and prove that the equilibrium 

approached by the singular path is a saddle point.  

 

Numerical Simulations of the Model 

To check these qualitative predictions and perform comparative dynamics experiments, 

we develop a discretized form of this problem that can be solved with Dynamic Programming 

methods. We can optimize this problem by using the Bellman Equation, which can be written 

as: 

)()( 1
10

+
≤≤

++= ttt
q

DVcqDDVMin δα  

 s.t. 001 ,)1()1( DDrDwhDqwDgDDD tttttttttt =−−−−=− =+  

  001 ),1()( wwwwrhqww tttttt =−−=− =+          (5) 

where the function V(Dt+1) gives the carry-over cost from one period  (t) to the next (t+1) of 

the residual pest population level, which we also seek to minimize and discount with the 

factor 1/(1 )δ ρ= + . The optimal solution of the Bellman equation in each period is 
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equivalent to the optimal solution of the continuous time control problem for the 

corresponding periods, by Bellman’s principle of optimality. We iterate to find a polynomial 

approximation to the value function V(Dt+1) and then use it to solve the Bellman equation 

forward for each period. We employ a Chebychev polynomial approximation algorithm to 

solve for the value function, which was easily implemented in GAMS. A good discussion of 

approximation methods is given by Kenneth Judd (Judd, 1998). 

Table 1 reports the defaults values and resources of the economic and biological 

parameters that we use in the simulation model. The data that form the base for this study are 

from a dataset collected by the Center for Chinese Agricultural Policy of the Chinese 

Academy of Sciences in the Yellow River cotton production region. The Yellow River Valley 

is the largest cotton production region in China and it is also the region where cotton 

bollworm is most serious. The economic parameters used in this study are based on these 

empirical data. The biological parameters (i.e. the mortality rates of the pests) come from 

previous studies and data that were collected by scientists from the Institute of Plant 

Protection of the Chinese Academy of Agricultural Sciences in their laboratories and during 

their fieldwork. A detailed discussion about the economic parameters and biological 

parameters is given in another paper (Qiao, 2006). 

The simulation results demonstrate that the qualitative nature of the optimal dynamic 

refuge strategy to manage the pest’s resistance depends importantly on whether the fitness 

cost is high or low (Figure 1). Recall that fitness cost is the extra mortality that a pest endures 

if it has the gene that allows it to be resistant to Bt toxin.  Consider first the case when 

fitness cost is low (Panel A), so that there is no mortality penalty associated with being 

resistant to Bt toxin. Then the consequences of using Bt to control a pest population will be an 

inevitable loss of the stock of susceptible pests and the main decision is how fast to dissipate 

this value stock.   
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This scenario is demonstrated in Panel A. Suppose, to start the simulation, that the 

initial conditions are characterized by a sudden infestation of a pest, all of which are 

susceptible to Bt toxins. The optimal solution begins with a phase in which it is optimal to 

plant the Bt crop on all arable land. Because both the fraction of susceptible pests and the total 

pest population level are high in the initial period, the marginal payoff to control (planting 

GM crop) is higher than the payoff of planting non-GM refuge. Consequently, the optimal 

refuge size is set to zero at the initial periods. This policy continues for several periods, 

reducing the pest population and associated damages, and as a negative side effect, reducing 

the population of pests that are susceptible to the toxin. The simulation results demonstrate 

that planting a refuge initially is not economic. It is not economic, in fact, until the buildup of 

resistance in the pest population becomes an important concern. This finding is consistent 

with previous studies (i.e. Laxminarayan and Simpson, 2002).  

The second phase exhibits periods of either full control (100% GM crops) or no 

control. As discussed in the above, the 100% full control in the first phase will continuously 

increase the value of the switching function. Consequently, the value of the switching 

function might become positive, in which case in order to minimize the objective function, a 

zero control, or 100% non-GM crop planting policy, is optimal. Similarly, zero control 

decreases the value of the switching function, and then, after some period has elapsed, might 

allow full control to again become optimal if the value switching function change signs. As 

can be seen in Panel A, the second phases is characterized by “bang-bang” controls in which 

the optimal decision switches back and forth between extreme controls in response to the sign 

switches of the switching function. The switching function, of course, is the contribution of a 

marginal unit of GM crop planting to overall damage and planting costs. During the second 

phase, the pest population is driven down by the use of Bt cropping, while the stock of 

susceptible pests also falls in a manner moderated by periodic planting of non-Bt crops. These 
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phases in which all non-Bt crops are planted are essentially periods of refuge establishment, 

but global and periodic rather than spatial and permanent.   

During the third phase, an oscillating control is followed when the switching function 

is zero. The oscillation happens because there is only one control variable (Bt planting) to 

control two state variables (total pest population and proportion susceptible). That is, it is 

desirable to reduce the total pest population and sustain the susceptible, but the only way to 

affect those states is via Bt planting. But the single control does not allow smooth and 

independent control of each state variable separately and the best that can be done is joint 

control with oscillation into equilibrium. After several sign switches in the second phase, 

either from positive to negative or from negative to positive, the switching function becomes 

zero the control locks into a singular path of time-varying interior controls. Detailed 

discussion of single path and the equilibrium driven by the singular path is shown in 

Appendix 3. Along the singular path, the switching function stays zero and some non-zero 

refuge is planted. The oscillating control will lead the whole system into the final equilibrium. 

Eventually, the singular path causes the stock of the pest population and the fraction of 

the susceptible pests to approach a steady state equilibrium. Note that in Panel A, the steady 

state is one in which the pest population is high and the susceptible population low. This s a 

characteristic of the low fitness cost case. With low fitness costs, the long run steady state is 

one where most of the crop land is planted to non-Bt crop and the little Bt that is used is used 

to keep the pest population only moderately at bay. Most of the activity for this case is 

focused on getting the pest population and its damages reduced early in the horizon, after 

which controls are reduced controls are reduced because of the unavoidable buildup of 

resistant pests  

In contrast, suppose that fitness costs are high, as depicted in Panel B of Figure 1. In 

this case, “nature” helps clear out some of the pests, particularly those bearing the fitness cost 
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of having a resistance gene to Bt. When fitness costs are high, the optimal dynamic policy is 

much more straightforward than for the low fitness cost case. In particular, there is no 

bang-bang switching of controls and no oscillation into an equilibrium. In this case, the higher 

natural mortality experienced by resistant pests helps drive their numbers and the total pest 

population to low levels after application of Bt cropping for an initial period. After a (longer) 

period of Bt planting, the optimal strategy shifts directly into a steady state strategy with 

partial Bt planting. That interior control of a mixed system is maintained in a long run 

equilibrium. 

The steady state equilibrium with high fitness costs is qualitatively different from the 

low fitness cost case. In the limiting case of low fitness where there is absolutely no fitness 

cost to being resistant, the long run outcome is one with a very high pest population, most of 

which is resistant to Bt, and a low application of Bt cropping. This is the long run 

consequence of having no other way to deal with the pest population than to control it with Bt, 

at a cost of permanently building up the resistant pest population. With low fitness costs, the 

steady state is one in which there is some continual and significant application of Bt 

technology, a relatively lower overall pest population level, and a lower proportion of 

resistant pests. In this case, the application of Bt to reduce pests is aided by high natural 

mortality of resistant pests, and the pest population can be maintained at a lower level for a 

longer period of time.  

The scenarios depicted in Panels A and B in Figure 1 begin with initial conditions 

depicting an infestation, so that the initial pest population is assumed large.  In addition, we 

must make assumptions about the nature of the initial infestation and particularly its make up 

with respect to resistant pests. Both of the above cases assume an initial population of pests 

near its maximum natural carrying capacity level, with virtually all pests susceptible to Bt 

toxins. But what about other initial conditions?  Are the steady states depicted in Figure 1 to 
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be expected for other initial circumstances? We investigated this by searching for initial 

condition combinations in which the steady states were not interior as depicted in Figure 1.  

As discussed earlier, the qualitatively nature of the control type depends upon the path 

of the switching function, which is itself endogenous. In the cases in Figure 1 the switching 

function changes sign at least once. If the switching function does not change sign along the 

control path, then an extreme control (either full control or zero control) will be optimal. To 

check whether there are indeed initial circumstances under which the extreme control is 

optimal, we re-simulated the model, changing only the initial values of the state variables. 

The results are shown in Figure 2, for the low fitness cost case. Panel A of Figure 2 shows the 

circumstances under which a synthesized control is optimal, while Panel B shows the 

circumstances under which extreme control (zero control in this case) is optimal. As shown in 

Panel B, for some initial values, it is optimal to forego any intervention and control, and 

instead rely on nature to fight pests. These are conditions under which the pest population is 

large, but the fraction of susceptible pests is not high. Under this treatment regime, since no 

control is used, both the pest population and the fraction of the susceptible pests will finally 

return to their maximums. In Panel A, we show some initial conditions for which the optimal 

policy is the synthesized control shown in Panel A of Figure 1, namely extreme, bang-bang, 

oscillation and steady state, ending with a low population of susceptible pests. These 

circumstances are when the initial pest infestation is high, but the level of susceptible pests is 

low. The important point is that the optimal strategy for introducing Bt cropping (inherently 

more expensive) depends upon, in addition to relative costs and damages, the size of the 

control task as indicated by the nature of the original infestation.  
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Conclusions 

In this paper, we theoretically and numerically analyze the optimal strategy to manage 

the buildup of resistance in the pest population. The technical part of this paper extends 

previous theoretical economic analyses of treatment by addressing the optimal path to the 

equilibrium. In this study, we not only show, using detailed theoretical analyses of the 

characteristics of the steady state, but also analytically and numerically results characterizing 

the optimal control paths that lead to the final equilibria. We also study the initial 

circumstances under which a synthesized interventionist control is optimal and the initial 

circumstances under which an ecological control (zero control) is optimal.  

We believe these results have important qualitative implications for economically 

optimal GM crop planting strategies. Even though this paper does not exactly mimic the real 

production environments of GM crops, results from this study at least provide some useful 

hint about optimal GM crop planting strategies. As shown in the figures, when a GM crop is 

first introduced in circumstances in which both the pest population and the fraction of the 

susceptible pests are high, the best choice is to plant 100% GM crop. If we believe a new GM 

variety or conventional pesticide will be developed in a short run, then planting non-GM crop 

as a refuge might not be needed. Even if a refuge is needed in the long-term, establishment of 

the refuges can be delayed until the resistance becomes a real concern. 

Qualitative implications of these results are not limited in the management of the GM 

crops. Even though this study deals directly with the management problem of pesticide 

resistance to GM crops, the analysis can be used to address other similar questions in 

biological and medicinal fields, such as antibiotic use in humans, controlling the spread of 

epidemics, etc. In other words, this analysis contributes understanding to the general 

resistance management problem.  
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Appendix 1.  Solving for Equations of Motion 

 

The essentials of the bioeconomic model are captured in the schematic in 

Figure A1. The pest population is divided into “susceptible” pests (denoted by Ds) 

and “resistant” pests (denoted by Dr). Since we assume the fraction of the susceptible 

pests in the total pest population is w, we have Ds=w*D and Dr=(1-w)*D. Similarly, 

among the total number of the new pests, there are w*g*D*(1-D) susceptible pests 

and (1-w)*g*D*(1-D) resistant pests separately. From this gross addition, we must 

subtract mortality among pests. We continue to assume that the total pest population 

is distributed evenly in the GM and non-GM crop field, so there are q*D pests in the 

GM crop field and (1-q)*D pests in the refuge. Since the mortality rate of susceptible 

and resistance pests are h and r separately, there are q*w*h*D susceptible and 

q*(1-w)*r*D resistant pests dying in the Bt field. Similarly, in the non-GM crop 

refuge, there are 0 susceptible pests and (1-q)*(1-w)*r*D resistant pests dying. 

 We must subtract mortality pests from the intrinsic growth rate for both 

susceptible pest and resistant pests. Then we have an expression for the evolution of 

the susceptible pests and resistant pests. 

dt
dDs   = wgD(1 - D) – wqhD          (A1-1) 

            
dt

dDr   = (1-w)gD(1-D) – q(1-w)rD -  (1-q)(1-w)rD  

=(1-w)gD(1-D) – (1-w)rD          (A1-2) 

Consequently, the evolution of the total pests is: 

dt
dD   = 

dt
dDs + 

dt
dDr  = gD(1-D) – qwhD - (1-w)rD    (A1-3) 
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And the evolution of the fraction of the susceptible pests in the total pest population 

is: 

dt
dw     = 

dt
D
Dsd )(

= [(
dt

dDs ) * D – Ds*(
dt

dDr )] / D2

  ={[wgD(1-D) – wqhD]*D – wD*[gD(1-D) – wqhD – (1-w)rD]}/D2

  = ( – wqh) - w[– wqh – (1-w)r] 

 = (qh – r)w(w-1)            (A1-4) 
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Appendix 2.  Convexity of the Hessian Matrix of the Hamiltonian 

 

The sufficient conditions to minimize the Hamiltonian is that the Hessian 

matrix of the Hamiltonian with respect to (q, D, w) must be positive semi-definite. In 

other words, three types of conditions must be satisfied. First, all the determinants of 

the three first-order principle minors must be non-negative, or Hqq ≥0, HDD≥0, and 

Hww≥0. Secondly, all the determinants of the three second-order principle minors must 

be non-positive, or  

  

 

Finally, the determinant of the third-order principle minors must be non-negative. 

0≤
qqDq

DqDD

HH
HH

0≤
qqwq

wqww

HH
HH

0≤
wwDw

DwDD

HH
HH

qq

wq

Dq

wq

ww

Dw

Dq

Dw

DD

H
H
H

H
H
H

H
H
H

 ≥0 

In the following, we will check these conditions one by one. 

From the Hamiltonian, H = D*α  + c*q +λ*dD/dt + u*dw/dt = Dα + cq 

+λ[gD(1-D) –  wqhD  – (1-w)rD] + μ(qh – r)w(w-1), we get:  

HDD =  2gλ 

HDw = λ*[– q*h  + r]  

HDq = λ*[ – w*h ]  

Hww =  2μ*(q*h – r) 

Hqw = –λ*h*D +μ*h*(2w-1) 

Hqq = 0 

As discussed above, the shadow price, λ, is positive in this study. So we have: 

HDD =  2gλ ≥0, Hww =  0  ≥0, Hqq  = 0  ≥0.  
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 Secondly, these three second-order principle minors are:  

 
00

00
02

≤==
λg

HH
HH

wwDw

DwDD

 
0)(

0
2 2 ≤−−=
−

−
= wh

wh
whg

HH
HH

qqDq

DqDD λ
λ

λλ

 

 
0)(

0
0 2 ≤−−=

−
−

= hD
hD

hD
HH
HH

qqwq

wqww λ
λ

λ

 

Finally, the determinants of the third-order principle minors must be negative, or 

qq

wq

Dq

wq

ww

Dw

Dq

Dw

DD

H
H
H

H
H
H

H
H
H

 = 0)(*)2(
0

0
0

0
2

2 ≤−=−
−

−−
hDghD

wh

hDwh

g
λλλ

λ

λλ

λ
 

Even though the necessary conditions for the first-order and second-order principle 

minors are satisfied, the necessary condition for the third-order principle minor does 

not hold. Consequently, the second order necessary conditions of the minimum do not 

hold. 
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Appendix 3 The Optimal Control Path 

 

As discussed in the second section of this paper, there are three possibilities 

for the sign of the switching function along the optimal path: always negative, always 

positive, or sometime positive and sometimes negative. In this appendix, we will 

discuss these three possibilities, characteristics of the fixed points and the optimal 

control path for each possibility.  

A1  Case I –  Optimal Full Control 

 If the switching function is always negative, full control, or q=1, will be used to 

minimize the Hamiltonian. And at the equilibrium, we should have:  

 
dt
dD   = gD(1 - D) – qwhD - (1-w)rD  = gD(1 - D) – whD - (1-w)rD =0 

dt
dw     = (qh – r)w(w-1) =(h – r)w(w-1) =0 

σ (t) =  c - λwhD + uhw(w-1) <0          (A3-1) 

From 
dt
dw =0, we either have w1

 =0 or w2 =1. Plug w=0 into the switching function to 

get σ (t) =  c - λwhD + uhw(w-1) = c > 0, which is contradicted with the negative 

switching function assumption. Similarly, if we plug w=1 into 
dt
dD =0 to get D1 =0 or 

D2 = g
hg − . Using the default value of Appendix Table 1, we have D = 0<

−
g

hg , which 

is not a true solution in practice. Plug w=1 and D=0 to the switching function to get σ 

(t) = c - λwhD + uhw(w-1) = c > 0, which is contradicted with the negative switching 

function assumption. In other words, the negative switching function and full control 

can not be an optimal solution. 
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A2  Case  II –  Optimal No Control 

 If the switching function is always positive, in order to minimize the Hamiltonian, 

no control is used, or q=0. And at the equilibrium, we should have: 

 
dt
dD   = gD(1 - D) – qwhD - (1-w)rD  = gD(1 - D) - (1-w)rD = 0 

dt
dw     = (qh – r)w(w-1)  =(– r)w(w-1) = 0 

σ (t) =  c - λwhD + uhw(w-1) >0         (A3-2) 

Solve for the equation system (A3-2), we get four steady points. They are: 

 (D=0, w=0) 

 (D=0, w=1)  

 (D=
g

rg − , w=0) and 

 (D=1, w=1) 

 In order to analyze the characteristics of these possible steady points, in the 

following, I will first discuss the characteristics of these four possible steady states by 

drawing a phase diagram in a (D, w) plane. Then I will check the analytical results 

using numerical simulations 

 
dt
dD   = gD(1 - D) – qwhD - (1-w)rD  = gD(1 - D) - (1-w)rD  

dt
dw     = (qh – r)w(w-1)  =(– r)w(w-1)       (A3-3) 

First, to solve for the w and D nullclines, we set 
dt
dw =0 and 

dt
dD =0. Solving these 

two equations yields w=0, w=1, D=0, and D= w
g
r

g
rg
+

− .  These nullclines are 

plotted in Figure A2, which presents the phase portrait of the dynamic system. 
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Note that the nullclines divide the phase space into different isosectors. In the 

following, we will turn to the derivation of the vector field. In other words, we need to 

figure out the directions of motion for points not on the nullclines. First of all, we take 

the first derivative of 
dt
dD with respect to w, and evaluate it at 

dt
dD =0, we get 

rD
dw

dt
dD

dt
dD

=

=0

            (A3-4) 

So we have 
0=

dt
dDdw

dt
dD

>0 when D >0 and 
0=

dt
dDdw

dt
dD

<0 when D <0. Sign of 

rwDg
dD

dt
dD

)1()21( −−−= is positive near (D=0, w=0) and (D=0, w=1). Similarly, 

)12( −−= wr
dw

dt
dw

is positive near (D=0, w=0) and (D=
g

rg − , w=0), and it is negative 

near (D=0, w=1) and (D=1,w=1). From these signs, we can determine the direction of 

motions for points that are not on the nullclines (see Figure A2). In addition, 

numerical simulation of function A3-3 is consistent with the theoretical analysis 

above (see Figure A3). In other words, both numerical simulation and analytical 

discussion show that (D=0, w=0) and (D=0, w=1) are two saddle points, (D=1, w=1) 

is an asymptotically stable node while (D=
g

rg − , w=0) is an unstable star node. 

A3  Case  III – Synthesized Optimal Control 

As discussed above, when a synthesized optimal control is optimal, a singular 

control will also lead the whole system into an equilibrium. We will derive the 

singular path and analyze the characteristics of the equilibria driven by the singular 

path in this case. In our model, the singular path results in two potential equilibria. 

Both theoretical analysis and numerical simulation show that one of the potential 
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steady states is an unstable star node, while the other is a saddle point. Detailed 

discussion is shown in the following. In the following, I will first solve for the 

singular path. Then I will turn to analyzing the characteristics of the equilibria driven 

by the singular path, numerically and analytically. 

Solving for the singular path involves investigating conditions that must hold 

when the switching function is identically zero for some finite interval.  If the 

switching function, σ (t), is zero, then its derivative must also be zero.  

Differentiating the switching function gives us: 

dt
σd   =  - λwhD [

λ
λ dtd   +  

w
dtdw +  

D
dtdD ] +  

μhw(w-1)[ 
μ
μ dtd + 

w
dtdw ] + μhw2 

w
dtdw     (A3-5) 

We also know from the Pontryagin conditions that the adjoint variables must satisfy: 

ρλ - 
dt
λd  = 

dD
dH  = α+ λ[g( 1 – 2*D) – wqh – (1-w)r ]     (A3-6) 

and     ρμ - 
dt
dμ  = 

dw
dH  =  -λ[qhD - rD ] + μ(qh -r) (2w-1)    (A3-7) 

From (A3-6) and (A3-7), it can be shown that: 

λ
λ dtd  + 

D
dtdD  = ρ - 

λ
α  +gD                      (A3-8) 

μ
μ dtd   +   

w
dtdw    = ρ - ( w- 

μ
λD  )*(qh -r)      (A3-9) 

Substituting (A3-8), (A3-9), 
dt
dw  , and 

dt
dD  into the expression for the rate of 

change of the switching function (A3-5), we have: 

dt
σd   = - λwhD *[

λ
λ dtd   +  

D
dtdD ]+[

w
dtdw ]*(μhw2- λwhD)  
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 + μhw(w-1)[ 
μ
μ dtd + 

w
dtdw ] 

  

   

= - λwhD * [ρ - 
λ
α  +

K
gD ]   +    [

w
dtdw ]*(μhw2- λwhD) + 

 + μhw(w-1)[ ρ - (
μ
λD  + w)*(qh-r)]     (A3-10) 

Expanding this gives us: 

 
dt
σd = - ρ[λwhD - μhw(w-1)] +whDα - λwhD*gD     (A3-11) 

With the switching function, it can be shown that the terms inside the first bracket in 

(A3-11) equals to c. So, the equation (A3-5) becomes 

 
dt
σd   = - ρc +whDα - λwhD*

K
gD =0         (A3-12) 

Since the switching function is zero along the singular interval, its first 

derivative also must be zero and hence the above equation (A3-12) must hold.  For 

the same reason, it second derivative of the switching function also must be zero, or  

dt
)dt( σdd   = whDα [

w
dtdw + 

D
dtdD ]  

- λwhD*
K
gD  [

λ
λ dtd  + 

w
dtdw + 2*

D
dtdD ]   (A3-13) 

Substituting 
λ
λ dtd  + 

D
dtdD  = ρ - 

λ
α  +gD, and the two co-state equations into 

Equation (A3-13), and collecting terms, we get:   

dt
)dt( σdd = whD(α - λgD)*(

w
dtdw +

D
dtdD ) - λwhD*gD*(ρ - 

λ
α  +gD) (A3-14) 

 28



Since Equation (A3-14) equals zero, dividing whD on both sides and inserting the 

state equation for 
w

dtdw  and 
D

dtdD  yields: 

whD
cρ *[(qh -r) (w-1) + g(1- D ) – wqh – (1-w)r  + ρ + gD ] - αρ =0   (A3-15) 

Or     qsingular control = 
h

g+ρ   -  
c
wDα         (A3-16) 

This equation must be satisfied along the singular path. In the following, I turn to 

analyzing the characteristics of the equilibria driven by the singular path. I will first 

solve for the possible steady states. 

 As discussed above, if the equilibrium is driven by a singular path, then, at the 

equilibrium, these following conditions must hold: 

   
dt
dD   = gD(1 - D) – qwhD - (1-w)rD =0 

dt
dw     = (qh – r)w(w-1) =0      

σ (t)  = c - λwhD + μhw(w-1)  =0    (A3-17) 

We also need to note that since the second order necessary conditions of a minimum 

do not hold (see Appendix 2), solutions of function system (A3-17) are not “real” 

steady states. We call these solutions, in this sense, “potential steady states”. 

From the Pontryagin conditions of the Hamiltonian, we know that the adjoint 

variables must satisfy: ρλ - 
dt
λd = 

dD
dH  =   α + λ[g(1-2D) – wqh – (1-w)r ]. At the 

steady state, 
dt
λd = 0, and 

dt
dD = 0. Therefore, we have ρλ =  α + λ[ g(1- 2D) – wqh 

– (1-w)r ] =  α + λ[
dt
dD  - gD] =  α - λgD. Solving this equation, we get λ = 

gD+ρ
α .  Similarly, another Pontryagin condition that the adjoint variables must 
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satisfy is that ρμ - 
dt
dμ  = 

dw
dH  =  λ[– qhD + rD ] + μ(qh -r) (2w-1)= (qh 

-r)*[ μ(2w-1) - λD]. Solving this question, we get 
ρ

ρ
α

ρ
λ

−−
+

−
=

−−
−

=
)(

*)(

)(
)(

rqhw
gD

Drqh

rqhw
Drqhu  .

    

Plugging λ and μ into the switching function, we have σ (t) = c-whD*
gD+ρ

α + 

hw(w-1)* 
ρ

ρ
α

−−
+

−

)(

*)(

rqhw
gD

Drqh
=0.  Now, the original function system (A3-17) 

becomes, 

   
dt
dD   = gD(1 - D) – qwhD - (1-w)rD     =0 

dt
dw     = (qh – r)w(w-1)    =0 

σ (t) =  c-whD*
gD+ρ

α + hw(w-1)* 
ρ

ρ
α

−−
+

−

)(

*)(

rqhw
gD

Drqh
=0 (A3-18) 

From 
dt
dw  = (qh – r)w(w-1) =0, we can get three solution: w=0, w=1, and q=

h
r . 

First of all, if we plug q=
h
r  into 

dt
dD =0, we get two solutions: D1 =0 and D2 

=
g

rg − . Next, plugging q = 
h
r  and D=0 into the switching function, we get σ (t) =  

c-whD*
gD+ρ

α + hw(w-1)* 
ρ

ρ
α

−−
+

−

)(

*)(

rqhw
gD

Drqh
=c 0≠ . In other words, (q = 

h
r , D=0) 

can not be a steady state. However, if we plug another solution q = 
h
r  and D=

g
rg −  
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into the switching function, we get w = 
)(

)(
rgha

rgcg
−
−+ρ , which is a possible solution. 

So the first potential steady state is (q= 
h
r ,  D=

g
rg − , and w =

)(
)(

rgha
rgcg

−
−+ρ ).  

Secondly, if we plug w=0 into 
dt
dD =0, we get D1 =  0 and D2 = g

rg − . 

However, if we plug in w=0 into the switching function, we get σ (t) =  c - λwhD + 

uhw(w-1)  = c 0≠ , no matter what D is. In other words, w=0 can not be a possible 

steady state. 

 Finally, if we plug w=1 into 
dt
dD =0, we get two solutions: D1 =  0 and D2   

=
g

qhg − . Then, we plug w=1 and D=0 into the switching function to get σ (t) =  c - 

whD*
gD+ρ

α + hw(w-1)* 
ρ

ρ
α

−−
+

−

)(

*)(

rqhw
gD

Drqh
=c 0≠ . So w=1 and D=0 can not be a 

possible steady state. However, if we plug w=1 and D=
g

qhg −  into the switching 

function, we get σ (t) =  c - whD*
gD+ρ

α + hw(w-1)* 
ρ

ρ
α

−−
+

−

)(

*)(

rqhw
gD

Drqh
 = c – 

h*
g

qhg − *
qhg −+ρ

α . Solving this equation by setting σ (t) =0 yields 

cghh
gcgghq

−
+−

=
α

ρα
2

)( . Finally if we plug this solution back into D=
g

qhg − , we get 

cgh
cD
−

=
α
ρ . So the second possible steady state is (

cghh
gcgghq

−
+−

=
α

ρα
2

)( ,
cgh

cD
−

=
α
ρ , 

and w=1). Let us call these two possible stead states as points PSS1 and PSS2 

respectively (Figure A4). In the following, I will first discuss the characteristics of 

these possible steady states both analytically. Then I will check the analytical results 

using numerical simulations. 
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 In order to analytically discuss the characteristics of these two possible steady 

points, I will draw a phase diagram in a (D, w) plane. If we plug the singular path 

(A3-16), or qsingular control = 
h

g+ρ   -  
c
wDα , into the equation of motion 

dt
dD = 

gD(1 - D) – qwhD - (1-w)rD , and 
dt
dw = (qh – r)w(w-1), we get: 

 rDwwDwD
c
hgDgD

dt
dD )1()()1( −−−+−−=

αρ     

)1()( −−−+= wwwD
c
hrg

dt
dw αρ          (A3-19) 

The phase diagram is determined by the equation system (A3-19). 

First of all, to solve for the w and D nullclines, we set 

)1()( −−−+= wwwD
c
hrg

dt
dw αρ =0, and rDwwDwD

c
hgDgD

dt
dD )1()()1( −−−+−−=

αρ =0. 

Solving these two equations yields w=0, w=1, and w=
hD

rgc
α
ρ )(* −+ ; D=0, and 

D=

c
hwg

rwwgg
2

)1()(
α

ρ

−

−−+− .  These nullclines are plotted in Figure A4, which presents 

the phase portrait of the dynamic system. 

Note that the nullclines divide the phase space into different isosectors. In the 

following, we will turn to the derivation of the vector field. In other words, we need to 

figure out the directions of motion for points not on the nullclines. First of all, we take 

the first derivative of 
dt
dD with respect to w, and evaluate it at 

dt
dD =0, we get 

]2)([*2)( 2

0

rwD
c
hDgDrDwD

c
hDg

dw
dt

dD

dt
dD

+−+−=+−+−=

=

αραρ  (A3-20) 
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The sign of 
0=

dt
dDdw

dt
dD

depends on the magnitude of w and D. Using the default value 

from Table 1, we can determine its sign numerically at the two steady states. If we 

plug the values of these two potential steady states (PSS1 and PSS2), the sign of  

0=
dt
dDdw

dt
dD

is positive at the first potential steady state (PSS1), with a high pest 

population and a relatively low fraction of susceptible pests, and its sign is negative at 

the second potential steady state (PSS2), with a small pest population and a maximum 

fraction of susceptible pests.  

Similarly, by taking the first derivative of 
dt
dw  with respect to D and 

estimating it at 
dt
dw =0, we have: 

)1(**
0

−−=

=

www
c
h

dD
dt

dw

dt
dw

α          (A3-21) 

It is easy to see that 
0=

dt
dwdD

dt
dw

will be positive as long as w is less than 1, and it is 

negative when w is greater than 1. In other words, its sign is positive near the first 

potential steady state, and it is negative near the second potential steady state.  

From the signs of 
0=

dt
dwdD

dt
dw

and 
0=

dt
dDdw

dt
dD

, we can determine the direction of 

motions for points that are not on the nullclines (See Figure A4). In addition, 

numerical simulation of function A3-5 is consistent with the theoretical analysis 

above (Figure A5). Figure A5 shows that the equilibrium driven by the singular path 

is a saddle point. 
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Table 1: Parameters, sources and range for Bt-resistance and economic parameters 
explored in the sensitivity analysis 
Parameter Default  Source 
    
Average yield loss due to pest $1030/ha  Calculated based on data 

collected by IPPa

    
Average Bt cotton planting cost $143/ha  Calculated based on data 

collected by CCAPb

    
Discount rate 0.036  0.1 (Livingston et al., 2002); 

 
0.04 (Hurley et al., 2001) 

    
Initial fraction of resistant pests 0.001  Personal talk with Kongming 

Wu 
    
Mortality rate of susceptible 
pest in Bt field 

0.90  0.85-0.95 (Wu et al., 2000); 
 
0.75((Livingston et al., 2002); 
Storer et al. (2003); 
 
0.95(Caprio, 2000) 

    
Intrinsic growth rate  0.68  Author’s Calculation 
    
a. IPP is the Institute of Plant Protection of the Chinese Academy of Agricultural Science. 
b. CCAP is the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Sciences 
(CAS). 
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Figure 1. Simulation results of the bioeconomic model 
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Figure 2.  Initial values and optimal control path 
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     wqDh (death)    (1-w)qDr (death)                    0 (death)  
(1-q)D(1-w)r (death) 

Sensitive 
pest (w) 

Resistant 
pest (1-w) 
 

Resistant 
pest (w) 

Sensitive 
pest (w) 

Bt field (q) 

Newborn pests 
gD(1-D) 

Non-Bt field (1-q) 

 
D: total pest population     
g: an intrinsic growth rate 
w: the proportion of susceptible pests in the population 
q: fraction of Bt land 
h: death rate of susceptible pests in Bt field 
r: death rate of resistant pests in either Bt or non-Bt field 
 
 
 
Figure A1. Schematic of the biological model with refuge  
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Figure A2. Phase diagram to show the characteristics of the four fixed points led 
by the no control strategy: (D=0, w=0) and (D=0, w=1) are two saddle points, 
(D=1, w=1) is an asymptotically stable node while (D=

g
rg − , w=0) is an unstable 

star node. 
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Figure A3. Numerical analysis of the characteristics of the four fixed points led by the no control strategy: (D=0, w=0) and (D=0, w=1) 
are two saddle points, (D=1, w=1) is an asymptotically stable node while (D=

g
rg − , w=0) is an unstable star node.  
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Figure A4. Phase diagram to show the characteristics of the two fixed points led 

by the singular path: (
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Figure A5. Numerical analysis of the characteristics of the two fixed points led by 

the singular path: (
cgh

cD
−

=
α
ρ , w=1) is an unstable star node, (D=

g
rg − , w 

=
)(

)(
rgha

rgcg
−
−+ρ ) is a saddle point.  
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	We also know from the Pontryagin conditions that the adjoint variables must satisfy: 
	 




