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1 Abstract 

2 Background: High rates of iron deficiency anemia and early linear growth faltering 

3 possibly due to zinc deficiency are observed in infants in the developing world. We 

4 recently demonstrated that microencapsulated ferrous fumarate sprinkles were efficacious 

5 in the treatment of anemia, yet infants manifested a rapid decline in linear growth. Since 

6 iron supplementation can depress zinc absorption we speculated that the growth faltering 

7 might be due to zinc deficiency. 

8 Objective: To determine the effect of zinc supplementation on linear growth in anemic 

9 infants treated with microencapsulated ferrous fumarate. 

10 Design: In a prospective randomized double-masked clinical trial, we studied 304 

11 anemic infants (mean age 10.3 ± 2.5 months; hemoglobin 87.4 ± 8.4 g/L) in rural Ghana. 

12 The intervention group (n= 160) received a daily sachet of microencapsulated ferrous 

13 fumarate (80 mg iron) and zinc gluconate (10 mg) in powder form to be sprinkled on to 

14 any complementary food; the control group (n=144) received an identical sachet without 

15 added zinc. Both groups received the sachets once daily for 2 months. Anthropometric 

16 measurements, plasma zinc, hemoglobin and ferritin were measured at baseline and end. 

17 78.6% of infants completed the study. 

18 Results At baseline, 80.7% of infants had normal plasma zinc concentrations but were 

19 stunted. Stunting significantly worsened alter zinc supplementation (z-score, -1.70 start, 

20 -1.81 end, p=0.001) when compared to the control group (z-score, -1.81 start, -1.86, 

21 p=0.0985). Mean plasma zinc concentration decreased significantly in both groups 

22 (p<0.05). The rate of recovery from anemia was higher in the control group than in the 

23 zinc supplemented group (74.8% (86/115) vs 62.9% (78/124); p = 0.048). 
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1 Conclusion Short-term use of zinc supplements in anemic children did not prevent 

2 growth faltering and was associated with a lower rate of successful treatment of anemia. 
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1 Introduction 

2 High prevalence rates for anemia and early linear growth faltering are common 

3 features of malnourished infants in the developing world (1, 2). Both are associated with 

4 diminished cognitive and physical development that may not be reversible (3). Anemia 

5 and stunting are also common consequences of the plant- and cereal-based 

6 complementary diet typically fed to infants and children in developing countries (4). 

7 These complementary foods are low in energy and poor sources of bioavailable iron and 

8 zinc. They are high in phytic acid, which further reduces the absorption of both 

9 micronutrients from the diet. To improve the nutritional status of these infants, it has been 

10 suggested that supplementation with micronutrients may be the most appropriate strategy 

11 (5) 

12 

13 In an effort to improve the iron status of infants, we recently developed a novel 

14 supplementation approach, which provides microencapsulated ferrous fumarate and 

15 ascorbic acid in powder form. Packaged in individual sachets, the supplement is 

16 designed to be sprinkled on to complementary foods alter the food is cooked. In a 

17 randomized controlled trial we demonstrated that microencapsulated ferrous fumarate 

18 sprinkles were as efficacious as ferrous sulfate drops in the treatment of anemia in infants 

19 6-18 months of age (6). Despite the positive effect on anemia status, we observed a rapid 

20 and significant decline in linear growth over the two-month study period. Height-for-age 

21 z-scores in both groups (drops and sprinkles) decreased from a mean of -1.36 ± 1.12 at 

22 the beginning, to -1.53±1.16 at the end of the two-month intervention (p<0.0001) without 

23 concurrent changes in either weight-for-age or weight-for-height z-scores in either group. 
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1 We speculated that this rapid decline in linear growth might have been due to a 

2 combination of de novo and iatrogenic zinc deficiency, since linear growth failure in 

3 infants is a principle clinical feature of zinc deficiency (7-10). 

4 

5 The interaction between iron and zinc has been well-described (11-13). At an 

6 estimated molar ratio (Fe:Zn) of >2:1 in adults, iron can depress zinc absorption when 

7 iron is given as a supplement (14). Moreover, iron supplementation has also been 

8 associated with impaired linear growth in Honduran infants (15). To explain the linear 

growth faltering observed among infants in our original study, we speculated that iron 

10 supplementation provided to the infants may have depressed the absorption of 

11 endogenous zinc from primarily cereal-based weaning diet, thereby, exacerbating an 

12 already precarious zinc status. This may have led to the observed rapid decline in linear 

13 growth. 

14 

15 In the prospective double-masked randomized controlled trial reported here, we 

16 tested the hypothesis that anemic infants receiving daily zinc supplementation combined 

17 with microencapsulated ferrous fumarate sprinkles plus ascorbic acid would manifest 

18 improved height-for-age z-scores and plasma zinc concentrations when compared to 

19 anemic infants receiving microencapsulated ferrous fumarate sprinkles with ascorbic acid 

20 alone. Our objective therefore was to determine the effect of zinc supplementation on 

21 linear growth in anemic infants treated with microencapsulated ferrous fumarate. 
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1 Methods 

2 Study area, subjects and recruitment 

3 The research took place in the field study area for the Kintampo Health Research 

4 Centre (KHRC), located in the Brong Ahafo Region of Ghana. This is a malaria-endemic 

5 ares where the principle complementary food is a maize-based porridge, low in 

6 bioavailable iron and zinc. The prevalence of anemia in young children is estimated at 

7 about 70%, a significant proportion of which is due to iron deficiency (16). 

8 Eligible infants were identified from an existing surveillance database of births in 

9 the district. To be included in the study, infants had to be 6 to 24 months old at the time 

10 of recruitment; ingesting a weaning food in addition to breast milk; with a hemoglobin 

11 concentration between 70 and 99 g/L, as measured during a baseline assessment. 

12 Children who were severely anemic (hemoglobin <70 g/L) were excluded from the trial 

13 and treated. 

14 

15 Study Design 

16 Since it was unethical to provide a placebo to a child with anemia at the start of the 

17 trial, we did not include a placebo control. Randomization to one of the two treatment 

18 groups was done with sealed opaque envelopes containing group designations, which 

19 were generated randomly by computer with Microsoft Access 97 (Microsoft Corporation, 

20 Seattle, WA). Ail individuals involved in the study (including parents and field workers) 

21 were blinded to group assignments until the code was broken at the completion of the 

22 data analysis. 
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1 The intervention group received microencapsulated ferrous fumarate (80 mg of 

2 elemental iron) and zinc gluconate (10 mg of zinc) packaged in a sachet with ascorbic 

3 acid (50 mg), added to the child's meal serving (alter it was cooked) once daily. The 

4 control group received iron sprinkles (80 mg of encapsulated ferrous fumarate plus 50 mg 

5 of ascorbic acid) administered similarly, once daily. The dose of iron was identical to that 

6 which had been shown to be efficacious in our earlier study (6). Because the ferrous 

7 fumarate was lipid-coated, we documented minimal intestinal irritation from this 

8 relatively high dose of iron. 

9 

10 During the baseline assessment, a written questionnaire was administered to collect 

11 demographic, nutritional, and health data for each infant. Field workers visited infants at 2- 

12 week intervals alter the baseline visit, for a total of 5 visits. At each visit, a questionnaire 

13 regarding side effects (diarrhea, constipation, and general discomfort), ease of use and 

14 adherence over the preceding 7 days was completed. Questions related to ease of use 

15 included whether children objected to taking the iron and whether microencapsulated 

16 ferrous fumarate changed the colour, taste or texture of the infants' food. To evaluate 

17 adherence, during each visit, the number of used (empty) sachets was counted.. At each 

18 visit, fieldworkers provided parents with verbal educational reinforcement to maximize 

19 adherence to the intervention. 

20 Anthropometric measurements, including weight and height were completed 

21 during baseline and final visits as previously described (6). Capillary blood samples at 

22 baseline and final visits were obtained from a finger prick using aseptic techniques, and 

23 hemoglobin concentration was determined on the spot using a portable HEMOCUE B- 
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1 hemoglobin photometer (Hemocue Inc, Angelholm, Sweden) by trained technicians-using 

2 standardized techniques (17). Malaria parasite smears were taken (at the final visit only), 

3 and 500 pL blood samples were collected and preserved in ice-lined cold boxes. Blood 

4 samples were returned to the base station within 6 hours of collection, where the plasma 

5 was separated by centrifugation (10 minutes at 1300 RPM) before storage at -40°C. 

6 Serum ferritin was assayed in duplicate by a commercial enzyme-linked immunosorbent 

7 assay (ELISA), using a Spectro Ferritin Kit (Ramco Laboratories, Houston, TX) (18). 

8 Baseline and final ferritin samples from an individual subject were assayed on the same 

9 day (in a single batch) on one 96-well microtitre plate to minimize inter-assay variation. 

10 An external reference standard (Lyphochek Anaemia Control, Bio-Rad, Anaheim, CA) 

11 was assayed in duplicate on each microtitre plate for the ferritin assay. Plasma zinc 

12 concentration was determined by inductively coupled plasma mass spectrophotometry 

13 (ICP-MS) (19). 

14 

15 Sample size and power 

16 Based on a literature review and data from our previous study in Ghana, in which 

17 initial mean height-for-age z-score was -1.36 1 1.12, we expected that zinc 

18 supplementation would improve the z-score by 0.49 standard deviation units. Using an ct 

19 = 0.05 and power = 0.80 the estimated sample size was 112 subjects per group (20). 

20 Assuming a 20 % dropout rate, we planned to recruit 135 infants per group. 

21 
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1 Data processing and analysis 

2 Data were entered in Visual Fox Pro 6.0 (Microsoft Corporation), verified, and 

3 checked for range and consistency with customized data-entry and processing programs 

4 (Microsoft Access 97, Microsoft Corporation) as previously described (6). Data were 

5 analyzed with Statistical Analysis Software, version 8.0 (SAS Institute, Inc, Carey, NC). 

6 Paired t tests were used to analyze the change in plasma zinc and anthropometric 

7 measurements, as well as hemoglobin and ferritin, over time. Différences between groups 

8 in anthropometric measurements, plasma zinc, hemoglobin and ferritin, at the beginning 

9 and the end of the study were assessed by ANOVA (with proc GLM). Analysis of 

10 ferritin values was conducted on log-transformed data because of their skewed frequency 

11 distribution. The proportion of children who went from an anemic to a non-anemic state 

12 (hemoglobin >100 g/L) and from iron depleted to an iron replete state (ferritin >12 gg/L) 

13 was compared between the groups with chi-square analysis. McNemar's test was run to 

14 compare change in anemia and ferritin status at the beginning and end of the study. The 

15 acceptable level of statistical significance for all tests was p<0.05. 

16 

17 Ethics approval and consent 

18 Ethics approval was obtained from The Hospital for Sick Children (Toronto, 

19 Canada), the London School of Hygiene and Tropical Medicine (London, UK), and 

20 Ghana's Ministry of (Kintampo, Ghana). 

21 Oral consent to conduct the study in the Kintampo district was obtained from the 

22 District Assembly of Elected Representatives; in each village from village elders; and 

23 individual signed consent was obtained from the mothers of infants in the study. 
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1 Results 

2 After the screening survey, a total of 529 infants were found to be eligible for the 

3 study. 57.5% (304 infants) had hemoglobin concentrations between 70.0 g/L and 99.9 

4 g/L. Their mean age was 10.3 ± 2.5 months. Infants were randomized into 2 groups 

5 (Figure). 65 (21.4%) of the 304 infants did not attend the final assessment visit. 

6 Consequently, a total of 239 infants completed the final assessment, including 

7 anthropometric measurements and blood sampling. 

8 At baseline there were no significant différences in mean [SD] plasma zinc 

9 (p=0.58), age (p=0.78), hemoglobin (p=0.95) or ferritin (p=0.44) values between the 

10 treatment groups. 

11 

12 Anthropometric measurements 

13 There was no effect of group, gender or their interaction on initial and final z- 

14 score values. The mean weight-for-age, height-for-age and weight-for-height z-scores at 

15 baseline and final were all below zero (table 1). There were no différences between 

16 groups at baseline and end. Both groups had a significant decrease in mean weight-for- 

17 age and weight-for-height z-scores between baseline and final. Infants in the `Iron + zinc' 

18 group had a significant decrease in their mean height-for-age z-score (p=0.001), whereas 

19 there was no significant decrease in the `Fe- alone' group (p=0.099). There was a 

20 significant negative association between initial age and final mean weight-for-age 

21 (p=0.02) and weight-for-height z-scores (p=0.02) among the entire sample population. 

22 

23 Plasma Zinc Response 
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1 At baseline, the mean plasma zinc concentrations were similar between groups 

2 (Table 2). From baseline to the end of the study the mean plasma zinc concentration 

3 decreased significantly in both groups although there was a trend toward higher mean 

4 zinc concentrations in the `Fe + zinc' group at the end. 

5 

6 At baseline there was no différence between the groups in the proportion of 

7 infants with low plasma zinc values (p=0.4601). Overall, 43/223 (19.3%) had plasma 

zinc values below 10.7 gmol/L (normal range 11.5 -22.2 µmol/L for infants under the age 

9 of 1 year and 10.7 - 20.0 µmol/L for infants >1 year; HSC reference values). The 

10 proportion of infants with zinc values below 10.7µmol/L increased significantly in the 

11 'Iron' only group from 23/108 (21.3%) at baseline to 39/108 (36.1%) at the end 

12 (p=0.016). 

13 

14 Hemoglobin response 

15 There was no effect of initial hemoglobin, group, gender or age on final 

16 hemoglobin. In both groups, there was a significant increase in hemoglobin concentration 

17 from baseline to the end of the study (p< 0.0001; table 3). Overall, 164/239 (68.6%) of 

18 infants advanced from an anemic to a non-anemic state (hemoglobin values >100 g/L). 

19 The hemoglobin concentration in the `Iron' group was significantly higher than the "Iron 

20 + zinc' group at the end of the study (p=0.024). The rate of recovery was higher in the 

21 `Iron' group 86/115 (74.8%) than in the `Iron + zinc' group 78/124 (62.9%) (p = 0.048). 

22 Data were also analyzed to determine the percentage of infants who positively 

23 responded to iron treatment (a positive response was defined as an increase in 
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1 hemoglobin of 10 g/L or greater at the final blood sample). In the `Iron group, 89/115 

2 (77.4%) of the infants responded; in the `Iron + zinc' group, 84/124 (67.7%) responded 

3 (p=0.028). The relative risk of remaining anemic alter two months of treatment was 0.74 

4 times lower for the 'Iron' group (95% CI 0.54 - 1.02; p=0.049). 

5 

6 Ferritin response 

7 At baseline and at the end, geometric mean ferritin values were similar between the two 

8 groups (p= 0.44; table 4). There was a significant increase in both after the 2-month 

9 intervention (p<0.0001). The variance for ferritin values was wide at both baseline and at 

10 the end of the study, as is commonly found in malaria endemic regions. (21). At baseline 

11 there was no difference in the proportion of infants with iron depletion (defined as ferritin 

12 <12µg/L) between treatment groups (p=0.49). McNemar's analysis showed that there 

13 was a significant decrease in the number of infants with iron depletion after two months 

14 of treatment within both groups. In the'Iron' group the rate of iron depletion decreased 

15 from 36/92 (39.13%) at baseline to 22/92 (23.91%) at the end (p=0.0043) and from 

16 49/110 (44.5%) to 17/110 (15.45%) in the'Iron + Zn' group (p<0.0001). The rate of 

17 decrease observed in the zinc supplemented group was significantly greater (p<0.0001). 

18 

19 

20 Malaria status 

21 178/286 (62.24%) infants tested positive for malaria parasites. Infants who tested 

22 positive for malaria were more likely to be anemic in both groups (p< 0.0001). There was 

23 no difference in malaria status différent between groups. 
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1 Compliance 

2 Over the two-month intervention, 82.1 % of the infants received sprinkles at least 

3 5 times a week. Only 3.4% of parents reported having any problems using sprinkles. Of 

4 those who reported problems, only 1.8% reported that they had an unpleasant odor while 

5 80.5% reported that the sprinkles changed the colour of their infant's food (much like the 

effect of adding a condiment such as pepper to food). Fewer than 3% of all caregivers 

7 gave the sprinkles to a `non-study' child and 69.7% reported using the full contents of the 

8 sachet all of the time. All infants were breast-feeding at the start of the study and 

9 continued breast-feeding during the two-month period, although not exclusively. None of 

10 the children received commercial infant formulas. 

11 
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1 Discussion 

2 In the current study, we proposed that zinc was the limiting nutrient for the 

3 promotion and maintenance of linear growth and that supplementation with iron would 

4 further predispose to zinc deficiency and growth faltering, while zinc supplementation 

5 would sustain growth. Continued growth faltering was observed in both groups, thus 

6 zinc-supplementation did not improve growth. It is likely, therefore, that growth faltering 

7 is due to multiple factors in addition to marginal zinc status. 

8 With the single exception of the height-for-age z-score in the unsupplemented 

9 group, weight-for-age, weight-for-height and height-for-age z-scores decreased 

10 significantly in both groups over the study period.Lir-growth faltering was, however, 

11 greater in the zinc supplemented group. This suggests that zinc was not the limiting factor 

12 for linear growth. The majority of infants had adequate zinc status at baseline despite 

13 their food supply that was limited in zinc and high in zinc-binding phytate. Others have 

14 made similar observations (22). We believe that there are four possible explanations for 

15 this observation. Firstly, zinc is likely preserved when growth is limited. A rapidly 

16 growing infant needs more nutrients than a slowly growing one. Thus if growth is limited 

17 because of inadequate energy, for example, zinc needs may be concomitantly decreased. 

18 Secondly, increased stool losses of zinc from diarrhea is often a predisposing cause of 

19 zinc deficiency (7). The frequency of diarrhea in infants in the current study was not 

20 high, possibly because the study was conducted during the `dry season'. Thirdly, zinc 

21 status as assessed by plasma zinc concentration is of limited value because of its poor 

22 sensitivity and specificity to changes in dietary zinc and the inability to adequately 

23 control for postprandial variation and infection (23). Finally, it has been suggested that as 
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1 dietary intake becomes limited, endogenous zinc losses are homeostatically decreased 

2 (24). One or more of these reasons may explain the preservation of zinc status at baseline. 

3 It is notable that infants in the unsupplemented group were able to maintain their 

4 initial height-for-age z-scores without further significant growth faltering, while the zinc- 

5 supplemented group did not. This refutes our original hypothesis that iron supplementation 

6 alone was the major contributing factor to linear growth faltering. Alternatively, it suggests 

7 that the iron may have had a protective effect on further faltering, possibly through the 

8 greater improvement of iron status in the unsupplemented group. The impact of iron 

9 supplementation on growth could not be directly assessed in this study because, for ethical 

10 reasons, a placebo group of anemic infants was not included. The effect of iron 

11 supplementation on linear growth has been equivocal with nome reports describing 

12 enhanced growth and others the opposite (25). 

13 Like others, we observed a decrease in mean weight-for-age and weight-for- 

14 height z-scores in infants between 6 and 24 months of age (25,26). Factors that could 

15 have affected growth included infant and maternai stores of nutrients at birth, multiple 

16 deficiencies of macro- and micronutrients, and the impact of infections diseases (25). Our 

17 results showed a significant negative association between initial age and final 

18 underweight z-scores. These results imply that with increasing age, infants may not have 

19 met their dietary energy and nutrient requirements. Similar results were recently 

20 described in Ghana, where weight-for-length z-scores significantly decreased between 

21 ages 2 to 12 months (22). These observations are consistent with Brown and Dewey's 

22 conclusions that unfortified cereal-based complementary foods are inadequate total 

23 sources of nutrition for breast-feeding infants in the first years of life (27). 
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1 A significant decrease in mean plasma zinc concentrations was observed in both 

2 groups over the two-month study. However, the decrease was smaller and only 

3 marginally significant in the zinc-supplemented group (p=0.046). This would suggest 

4 that either the amount of zinc provided in the sachet or the bioavailability of the zinc 

5 compound was insufficient to maintain zinc status during the two-month study period or 

6 that the intervention period was too short. Dirren et al recently documented a significant 

7 increase in plasma zinc concentrations in children supplemented with 10 mg of zinc/day 

8 compared to a placebo, but over a 15-month period. Thus duration of supplementation 

9 may be a contributing factor (28). Lartey et al in Ghana, observed an inverse relationship 

10 between dietary available zinc and plasma zinc concentrations in a similar group of 

11 infants (29). When the estimate was adjusted for calcium, phytate and animal protein, the 

12 inverse relationship was relinquished. Thus, the bioavailability of zinc, when added to 

13 food as a powdered sprinkle, is likely strongly influenced by the content of other 

14 nutrients in the food to which it is added. 

15 We had originally hypothesized that iron supplementation alone depressed zinc 

16 absorption leading to linear growth faltering. The mechanism by which iron and zinc 

17 compete for absorption is not fully understood. Results of past research on the effect of 

18 dietary iron on zinc absorption are conflicting. Studies have shown that iron-fortified 

19 infant foods did not interfère with zinc absorption at Fe:Zn molar ratios of as high as 57:1 

20 (30,31). However, there is evidence that iron provided at supplementation levels may 

21 have an adverse effect on zinc absorption when Fe:Zn ratios exceed 2:1 (12,32). 

22 Furthermore, studies on the effect of prenatal iron supplements have found a decrease in 

23 fractional zinc absorption when iron was provided at amounts as small as 18 mg/d (32- 
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1 35). In the current study, the Fe:Zn molar ratio was relatively high at 9:1. There is no way 

2 of determining whether iron affected zinc absorption. 

3 Although the primary purpose of this study was to examine the effect of 

4 supplementary zinc on linear growth, a secondary objective was to confirm the positive 

5 effect of microencapsulated ferrous fumarate sprinkles on the treatment of anemia, as had 

6 been previously shown (6). In the current study we confirmed our earlier observations 

7 that iron sprinkles are an efficacious alternative to treating anemia in infants. In fact, the 

8 overall rate of successful treatment in the current study was even higher than in our 

9 original report. However, the rate of successful treatment of anemia in the iron-alone 

10 group was higher. The différence remained alter adjusting for age, initial hemoglobin 

11 and plasma zinc levels and malaria status. Dijkhuizen et al reported a similar antagonistic 

12 interaction on combined supplementation when compared to iron alone, which was also 

13 more effective in reducing the prevalence of anemia in Indonesian infants (36). These 

14 results imply that iron absorption was greater in infants receiving iron supplements 

15 without zinc. Inhibition of iron absorption in the zinc-supplemented group may have been 

16 a result of zinc competing with iron for the saine receptor sites on intestinal mucosal cells 

17 (37). Although a few studies have demonstrated an effect of zinc on iron absorption when 

18 Zn:Fe molar proportions were equal (38,39), there is no data on the effect of zinc on iron 

19 absorption when iron molar proportions exceed those of zinc. 

20 Results of this study indicate that in a controlled setting, micronutrient sprinkles 

21 with iron and zinc do not prevent linear growth faltering in anemic infants, although 

22 sprinkles are very successful in treating anemia. Early growth faltering in this population 

23 is likely of multifactorial origin. Sprinkles with iron alone did not contribute to an 
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1 increased risk of linear growth faltering and although the addition of zinc had a 

2 marginally negative effect on linear growth, one must be careful not to over-interpret 

3 these results. Had the study lasted for longer than 2 months, we may have seen a positive 

4 effect of zinc supplementation on growth as has been previously reported (40-42). 

5 Further research is in progress to directly examine the interaction between iron and zinc 

6 in sprinkles using stable isotope methodology. 



20 

1 References 

2 1. The State of the World's Children 2000. New York: The United Nations Children's 

3 Fund (UNICEF), 2000. 

4 2. World Health Organization. Malnutrition. The global picture. Geneva: World 

5 Health Organization, 2000. 

6 3. Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on 

7 cognitive development in children. J Nutr 2001;131:649S-68S. 

8 4. Hautvast JLA, Tolbloom JJM, Kafwembe EM, Musonda RM, Mwanakasale V, van 

9 Staveren WA, van `t Hof MA, Sauerwein RW, Willems JL, Monnens LAH. Severe 

10 linear growth retardation in rural Zambian children: the influence of biological 

11 variables. AJCN 2000;71:550-9. 

12 5. Preventing iron deficiency in women and children: background and consensus on key 

13 technical issues and resources for advocacy, planning and implementing national 

14 programmes. UNICEF/UNU/WHO/M1 Technical Workshop, UNICEF, New York, 

15 7-9 October 1998. 

16 6. Zlotkin S, Arthur P, Antwi KY, Yeung G. Treatment of anemia with 

17 microencapsulated ferrous fumarate plus ascorbic acid supplied as sprinkles to 

18 complementary (weaning) foods. Am J Clin Nutr. 2001 Dec;74:791-5. 

19 7. Gibson R. Zinc nutrition in developing countries. Nutr Res Rev 1994;7:151-73. 

20 8. Prasad AS. Discovery of human zinc deficiency and studies in an experimental 

21 human model. Am J Clin Nutr. 1991;53:403-12. 



21 

1 9. Ronaghy HA, Reinhold JG, Mahloudji M, Ghavami P, Fox MR, Halsted JA. Ziric 

2 supplementation of malnourished schoolboys in Iran: increased growth and other 

3 effects. Am J Clin Nutr. 1974;27:112-21. 

4 10. Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat 

5 RM,Reinhold JG. Zinc deficiency in man. The Shiraz experiment. Am J Med. 

6 1972;53:277-84. 

7 11. Solomons NW, Pineda O, Viteri F, Sandstead HH. Studies on the bioavailability of 

8 zinc in humans: mechanism of the intestinal interaction of nonheme iron and zinc. J 

9 Nutr. 1983;113:337-49. 

10 12. Solomons NW. Competitive interaction of iron and zinc in the diet: consequences for 

11 human nutrition. J Nutr. 1986;116:927-35. 

12 13. Meadows NJ, Grainger SL, Ruse W, Keeling PW, Thompson RP. Oral iron and the 

13 bioavailability of zinc. Br Med J 1983;287:1013-4. 

14 14. Whittaker P. Iron and zinc interactions in humans. Am J Clin Nutr 1998;68 (Suppl): 

15 442S-6S. 

16 15. Dewey KG, Domellof M, Cohen RJ, Rivera L, Hernell O, Lonnerdal B. Effects of 

17 iron supplementation on growth and morbidity of breastfed infants: a randomized trial 

18 in Sweden and Honduras. FASEB J 2000;14:A509. 

19 16. Quarshie K, Amoaful E, editors. Study on anaemia in Ghana. Proceedings of the 

20 Workshop on Dissemination of Findings of Vitamin A and Anaemia Prevalence 

21 Surveys; 1998 November 24-25; Accra, Ghana. Ministry of Health, Ghana and 

22 UNICEF. 



22 

1 17. Cohen AR, Seidl-Friedman J. HemoCue system for hemoglobin measurement. 

2 Evaluation in anemic and nonanemic children. Am J Clin Path 1988;90:302-5. 

3 18. Miles LEM, Lipschitz DA, Bieber CP, Cook JD. Measurement of serum ferritin by a 

4 2-site immunoradiometric assay. Anal Biochem 1974; 61: 209-24. 

5 19. Vanhoe H, Vandecasteele C, Versieck J, Dams R. Determination of iron, cobalt, 

6 copper, zinc, rubidium, molybdenum, and cesium in human serum by inductively 

7 coupled plasma mass spectrometry. Anal Chem. 1989 Sep 1;61:1851-7. 

8 20. Dupont WD, Plummer WD. Power and sample size calculations: A review and 

9 computer program. Controlled Clinical Trials. 1990; 11:116-28. 

10 21. Odunukwe NN, Salako LA, Okany C, Ibrahim MM. Serum ferritin and other 

11 haematological measurements in apparently healthy adults with malaria parasitaemia 

12 in Lagos, Nigeria. Trop Med Int Health 2000;5:582-6. 

13 22. Lartey A, Manu A, Brown KH, Peerson JM, Dewey KG. Predictors of growth from 1 

14 to 18 months among breast-fed Ghanaian infants. Eur J Clin Nutr. 2000;54:41-9. 

15 23. Brown KH. Effect of infections on plasma zinc concentration and implications for 

16 zinc status assessment in low-income countries. Am J Clin Nutr 1998;68(suppl): 

17 425S-9S. 

18 24. Lee DY, Prasad AS, Hydrick-Adair C, Brewer G, Johnson PE. Homeostasis of zinc in 

19 marginal human zinc deficiency: role of absorption and endogenous excretion of zinc. 

20 J Lab Clin Med. 1993;122:549-56. 

21 25. Allen LH. Nutritional influences on linear growth: a general review. Eur J Clin Nutr. 

22 1994;48:S75-89. 



23 

1 26. Neumann CG, Harrison GG. Onset and evolution of stunting in infants and children. 

2 Examples from the Human Nutrition Collaborative Research Support Program. 

3 Kenya and Egypt studies. Eur J Clin Nutr 1994;48:S90-120. 

4 27. World Health Organization. Complementary Feeding of Young Children in 

5 Developing Countries: a review of current scientific knowledge. WHO/NUT/98.1. 

6 Geneva: WHO 1998. 

7 28. Dirren H, Barclay D, Ramos JG, Lozano R, Montalvo MM, Davila N, Mora JO. Zinc 

8 supplementation and child growth in Ecuador. In: Nutrient Regulation during 

9 Pregnancy, Lactation and Infant Growth, Edited by Lindsay Allen, Janet King and Bo 

10 Lonnerdal, Plenum Press, New York 1994, p 215-22. 

11 29. Lartey A, Manu A, Brown KH, Dewey KG. Predictors of micronutrient status among 

12 six- to twenvle-month-old breast-fed Ghanaian infants. J Nutr 2000;130:199-207. 

13 30. Davidsson L, Almgren A, Sandstrom B, Hurrell RF. Zinc absorption in adult humans: 

14 the effect of iron fortification. Br J Nutr. 1995;74:417-25. 

15 31. Fairweather-Tait SJ, Wharf SG, Fox TE. Zinc absorption in infants fed iron-fortified 

16 weaning food. Am J Clin Nutr. 1995;62:785-9. 

17 32. Solomons NW, Jacob RA. Studies on the bioavailability of zinc in humans: effects of 

18 heme and nonheme iron on the absorption of zinc. Am J Clin Nutr. 198 1;34:475-82. 

19 33. O'Brien KO, Zavaleta N, Caulfield LE, Wen J, Abrams SA. Prenatal iron 

20 supplements impair zinc absorption in pregnant Peruvian women. J Nutr. 

21 2000;130:2251-5. 

22 34. Dawson EB, Albers J, McGanity WJ. Plasma zinc changes due to iron 

23 supplementation in teen-age pregnancy. Am J Clin Nutr. 1989;50:848-52. 



24 

1 35. Hambidge KM, Krebs NF, Sibley L, English J. Acute effects of iron therapy on zinc 

2 status during pregnancy. Obstet Gynecol. 1987;70:593-6. 

3 36. Dijkhuizen MA, Wieringa FT, West CE, Martuti S, Muhilal. Effects of iron and zinc 

4 supplementation in Indonesian infants on micronutrient status and growth. J Nutr. 

5 2001;131:2860-5. 

37. Roifs A, Hediger MA. Metal ion transporters in mammals: structure, fonction and 

7 pathological implications. J Physiol. 1999;518:1-12. 

8 38. Crofton RW, Gvozdanovic D, Gvozdanovic S, Khin CC, Brunt PW, Mowat NA, 

9 Aggett PJ. Inorganic zinc and the intestinal absorption of ferrous iron. Am J Clin 

10 Nutr. 1989;50:141-4. 

11 39. Rossander-Hulten L, Brune M, Sandstrom B, Lonnerdal B, Hallberg L. Competitive 

12 inhibition of iron absorption by manganese and zinc in humans. Am J Clin Nutr. 

13 1991;54:152-6. 

14 40. Black R. Therapeutic and preventative effects of zinc on serious childhood infectious 

15 diseases in developing countries. Am J Clin Nutr 1998;68(suppl):476S-9S. 

16 41. Black R. Zinc deficiency and child development. Am J Clin Nutr 

17 1998;68(suppl):464S-9S. 

18 42. Castillo-Duran C, Perales CG, Hertrampf ED, Marin VB, Rivera F, Icaza G. Effect of 

19 zinc supplementation on development and growth of Chilean infants. J Pediatr 

20 2001;138:229-35. 

21 

22 

23 



25 

Population of 
592 children screened 

529 children 
elegible 

for recruitment 

63 children 
not elegible 

for recruitment 

I 

304 children enrolled 
Hb: 85.3 ± 10.6 

225 children exciuded 

I-b: 110. 1 ± 7.8 

Iron atone 

144 children 
Hb: 84.7 ± 11.5 

29 children 
Lost to follow-up 

Iron and Zinc 
160 children 

Hb: 85.7 ± 9.6 

36 children 
Lost to follow-up 

115 children 
Hb: 108.1 ± 15.5 

1 

124 children 
Hb: 103.5 ± 15.8 

2 Figure 1. Trial Profile 
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1 Table 1: Anthropometry as determined by z-score values for weight- and height-for-age 

2 and weight for height at baseline and at the end of the two-month intervention. 

3 (i) Weight-for-Age Z-score 

Group Iron Iron + Zinc P-value 

Baseline -1.80 ± 1.14 -1.69 ±1.01 0.4243 

Final -1.95 ± 1.09 -1.89 ± 0.93 0.6898 

Différences -0.14 ± 0.47 -0.20 ± 0.42 0.3033 

p = 0.0022 p < 0.0001 

4 N= 230 paired samples 

5 

6 (ii) Height-for-Age Z-scores 

Group Iron Iron + Zinc P-value 

Baseline -1.81 ± 1.12 -1.70 ± 1.14 0.4890 

Final -1.86 ± 1.11 -1.81 ± 1.10 0.7321 

Différences -0.05 ± 0.32 -0.10 ± 0.34 0.2244 

p = 0.0985 p = 0.0011 
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1 (iii) Weight-for-Height Z-scores 

Group Fe Fe + zinc P-value 

Baseline -0.65 f 0.93 -0.60 ± 0.86 0.5863 

Final -0.92 ± 0.93 -0.88 ± 0.71 0.6773 

Différences -0.27 ± 0.54 -0.29 ± 0.50 0.7801 

p < 0.0001 p < 0.0001 

2 

3 
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1 

2 

3 

Table 2. Mean plasma zinc concentration by treatment group at baseline 

and two months later 

Group Iron Iron + Zinc p-value 

(n=108) (n=115) 

Plasma Zinc 

(tmoVL) 

Baseline 14.04 ± 4.42 14.36 ± 4.40 0.585 

Final 12.44±3.29 13.36±3.81 0.056 

Différences -1.60 ± 4.90 -1.00 ± 5.33 0.3877 

p=0.0010 p=0.0461 

5 *Values are means ± SD 
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1 Table 3. Mean hemoglobin values at baseline and alter the two-month intervention *. 

2 

Group Iron Iron + Zinc p-value 

(n=115) (n=124) 

Hemoglobin 

(9/L) 

Baseline 87.4 ± 8.2 87.4 ± 8.5 0.9527 

Final 108.1 + 15.5 103.5 + 15.8 0.0235 

Différences 20.7 + 15.3 16.1 + 16.4 0.0282 

p : 0.0001 p:5 0.0001 

3 

4 * Values are means + SD. 

5 
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1 Table 4: Geometric mean ferritin values and range, by treatment group, at baseline atid 

2 after the 2 months intervention 

3 

Group Iron 

(n=92) 

Iron + Zinc 

(n=110) 

p-value 

Ferritin 

(99/L) 

Baseline 16.3 13.7 0.4416 

(0.2-316.8) (0.03-365.2) 

Final 37.4 51.0 0.2926 

(1.2 -390.1) (1.4-386.1) 

Différences t 21.1 37.3 0.1140 

p<.0001 p<.0001 

5 *Data are geometric means and range; analysis was done with log-transformed values 

6 since ferritin values are not normally distributed. t Mean ferritin increased significantly 

7 from baseline to the final visit in both groups (p<0.001). Normal values are 12-400 µg/L 

8 (48). Cut off values used: 400 (µg/L) 

9 




